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Summary

The scientific rigor and computational methods of causal inference have had great impacts on
many disciplines but have only recently begun to take hold in spatial applications. Spatial causal
inference poses analytic challenges due to complex correlation structures and interference between
the treatment at one location and the outcomes at others. In this paper, we review the current liter-
ature on spatial causal inference and identify areas of future work. We first discuss methods that
exploit spatial structure to account for unmeasured confounding variables. We then discuss causal
analysis in the presence of spatial interference including several common assumptions used to re-
duce the complexity of the interference patterns under consideration. These methods are extended
to the spatiotemporal case where we compare and contrast the potential outcomes framework with
Granger causality and to geostatistical analyses involving spatial random fields of treatments and
responses. The methods are introduced in the context of observational environmental and epidemi-
ological studies and are compared using both a simulation study and analysis of the effect of ambi-
ent air pollution on COVID-19 mortality rate. Code to implement many of the methods using the
popular Bayesian software OpenBUGS is provided.
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1 Introduction

Large-scale environmental and epidemiological studies often use spatially referenced data to
examine the effect of treatments or exposures on a health endpoint. Examples include studying
the effect of interventions on the spread of an infectious disease, pesticide application on cancer
rates and lead exposure on childhood development. While standard analyses of spatial data sim-
ply estimate correlations, the ultimate goal of this research is to establish causal relationships
(e.g. Bind, 2019) to inform decision making. Therefore, developing statistical methods to
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establish causal relationships when data show spatial and temporal variation is invaluable to en-
vironmental science and epidemiology.

A rich literature on the theory and methods for causal inference for independent data has
emerged (Bind, 2019; Hernán & Robins, 2020), but progress for spatial applications has been
slow due to several analytic challenges. First, randomisation is often infeasible due to logistical
or ethical concerns, and so studies rely on observational data. Second, exposure and response
variables exhibit spatial correlation complicating statistical modelling and computation. Third,
the treatment at one location may influence the outcomes at nearby locations, a phenomenon
known as spillover or interference. These features of spatial applications violate the assumptions
of standard causal inference methods and require new theory and computational tools.

Despite these challenges, major advances in spatial causal inference have been made in
recent years. In this paper, we review the recent progress on spatial causal inference, evalu-
ate and compare current methods, and suggest areas of future work. We first review methods
to adjust for missing spatial confounding variables (Hodges & Reich, 2010). Most causal in-
ference methods for observational data rely on an assumption of no missing confounding
variables (i.e. unmeasured variables correlated with both the treatment and response).
However, if the missing confounding variables have prominent spatial patterns, methods
have been developed to mitigate the bias caused by their omission. These methods include
case-control matching (e.g. Jarner et al., 2002), neighbourhood adjustments by spatial
smoothing (e.g. Schnell & Papadogeorgou, 2020) and propensity-score methods (e.g. Davis
et al., 2019). We review these methods and conduct a simulation study to compare their
precision for estimating a causal treatment effect in the presence of a missing spatial con-
founding variable. A subset of the methods are applied to a study of the effect of ambient
air pollution on the COVID-19 mortality rate.

A second major challenge in spatial causal inference is interference, where the treatment
applied at one location affects the outcomes at other locations. For example, an intervention
to reduce the emissions from a power plant would affect the air quality at the power plant,
but also locations downwind. Capturing these spillover effects requires new definitions of the
estimands of interest and new spatial models for the causal effects. In full generality, allowing
the treatment at a site to affect the outcomes at all other sites results in an intractable estimation
problem. Therefore, assumptions are required to limit the form and spatial extent of
interference. We review several models for spatial interference including partial (e.g. Zigler
et al., 2012) and network (e.g. Tchetgen Tchetgen et al., 2017) interference. We also discuss
recent methods that combine mechanistic and spatial statistical models to anchor the causal
analysis to scientific theory.

We begin reviewing these methods using cross-sectional data at a single time point and then
extend these methods to the spatiotemporal data. We discuss adapting spatial methods to the
spatiotemporal setting and methods specific to the temporal case such as difference-
in-difference (DID) methods (e.g. Delgado & Florax, 2015) that exploit changes over time to
estimate causal effects. We also compare and contrast causal methods based on the potential
outcomes framework (Rubin, 1974) with Granger causality (Granger, 1969), which is defined
specifically for processes that evolve over time. We also discuss extensions of spatial methods
for areal data defined at a finite number of regions (e.g. geopolitical units) to point-referenced
(geostatistical) data in which case the treatment and response variables can be modelled as
continuous random fields over an uncountable number of spatial locations. This requires new
definitions of causal effects, new methods for matching observations for case-control studies
and new models for missing spatial confounding variables and spillover effects. The paper con-
cludes with a summary of the current literature and discussion of open problems in this rapidly
advancing field.
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2 Adjusting for Spatial Confounders

To ensure privacy, public health data are often made available only after aggregation to ad-
ministrative or geopolitical regions. For areal data of this nature, we adapt the notation that
Y⊂ij, A⊂ij andXij ¼ ðX ij1; …; X ijpÞ are the response, treatment and potential confounding var-
iables (with X ij1 ¼ 1 for the intercept) for observation j∈ {1,… , n⊂i} in region i∈ {1,… ,N}
for a total of n ¼ ∑N

i¼1ni observations. The confounding variables in X⊂ij can include both co-
variates specific to observation j within region i or summaries of the region i common to all n⊂i
observations in the region. In addition to these observed variables, we allow for an unobserved
confounding variable U⊂i in region i, which is assumed to be a purely spatial term and thus the
same for all observations in a region.

Example 1. As a concrete example, consider an environmental epidemiology study where Y⊂ij is
the birth weight of the j-th baby born in zip code i and Aij ¼ 1 if the average ambient air pollution
concentration in the mother’s zip code exceeds a high threshold and Aij ¼ 0 otherwise. We may ad-
just for known confounding variables by including the mother’s age and family income in X⊂ij, and
describe the mother’s environment by including the median income and measurable environmental
factors such the average concentration of other known pollutants in region i in X⊂ij. In this sce-
nario, the missing spatial confounder variable U⊂i might be a second pollutant unknown to the re-
searchers. The second pollutant qualifies as a missing spatial confounder if it has a strong spatial
pattern, is associated with low birth weight while holding the treatment fixed, and is correlated with
the pollutant of interest, perhaps via a common source. Failing to account for this missing spatial
confounder, either because its importance is unknown or data are unavailable, may inadvertently
attribute the effects of the unknown pollutant to the pollutant of interest, biasing the estimator.

In this section, we review spatial models for unknown processes such asU ¼ ðU1; …; UN ÞT
(Section 2.1). However, we argue that these standard spatial models are insufficient to remove
the effects of spatial confounding, and the remainder of the section focuses on methods that ex-
plicitly consider missing spatial confounder variables. We begin with causal inference methods
that would apply if U were observed (Section 2.2). The remainder of the section is dedicated to
methods that attempt to control for the missing confounder variable by exploiting its spatial
structure.

2.1 Review of Spatial Confounding

Consider the spatial regression model

Y ij ¼ Aijβ þ Xijγþ Ui þ εij; (1)

where β is the treatment effect of interest, γ determines the effects of the confounding variables,

U⊂i is the spatial random effect for region i and εij ∼
iid

Normalð0; τ2Þ. A common approach
(Banerjee et al., 2014) for areal data is to model the unobserved spatial effects using a condi-
tionally autoregressive (CAR) model (also known as a Gaussian Markov random field model).
The CAR model specifies spatial dependence in terms of the adjacencies between the regions.
The full conditional distribution of the random effect for one region given all other random ef-
fects is UijUk ; k ≠ i ∼ NormalðρŪ i; σ2=miÞ, where Ū i is the mean of U at the m⊂i regions ad-
jacent to region i, and ρ∈ (0, 1) and σ > 0 are spatial covariance parameters. These full
conditional distributions define a multivariate normal distribution (Appendix S1) for U, which
we denote as U ∼ CARðρ; σÞ.

607A review of spatial causal inference methods

International Statistical Review (2021), 89, 3, 605–634
© 2021 International Statistical Institute.



The spatial regression model in Equation (1), where U is modelled as a spatial process often
gives very different estimates of covariate effects than the non-spatial (NS) model that excludes
U, especially when the treatment variable exhibits a strong spatial pattern (Reich et al., 2006;
Paciorek, 2010; Hodges & Reich, 2010). However, simply accounting for spatial correlation
does not resolve spatial confounding. For example, Appendix S2 describes a scenario where
the bias of the posterior-mean estimator for β depends on the strength of dependence between
the treatment variable and the unmeasured confounding variable but is the same whether the re-
siduals are assumed to be independent or spatially correlated. The bias of this approach is con-
firmed in our simulation study (Section 2.8) when data are generated with correlation between
U and the treatment and response variables. This calls for methods that explicitly adjust for
missing spatial confounders by blocking the dependence of U on either the treatment or
response variable.

2.2 Potential Outcomes Framework

In this section, we temporarily assume that U⊂i is observed (and thus treated the same way as
X⊂ij) to facilitate a review of standard NS causal inference methods. We begin with the poten-
tial outcomes framework (Rubin, 1974). Assume that the treatment A⊂ij is binary and that each
unit has two potential outcomes, Y⊂ij(0) and Y⊂ij(1), which represent the outcomes if the unit j
in region i is given treatment Aij ¼ 0 or Aij ¼ 1, respectively. Our goal is to estimate the average
treatment effect (ATE),

δ ¼ E
1

n
∑
N

i¼1
∑
ni

j¼1
fY ijð1Þ � Y ijð0Þg

� �
; (2)

where the expectation is taken with respect to both X⊂ij and {Y⊂ij(0), Y⊂ij(1)}. The funda-
mental problem is that only one of the two potential outcomes can be observed (Holland, 1986)
rendering the other as counterfactual. Therefore, assumptions are required to ensure the ATE
can be identified.

This notion of potential outcomes implicitly encodes the Stable Unit Treatment Value As-
sumption (SUTVA Rubin, 1978).

Assumption 1 (SUTVA). There is no interference and a single version of treatment.

Stable Unit Treatment Value Assumption is violated under interference, where Y⊂ij depends
not only on A⊂ij but also on the treatment of other units. For instance, the birth weight of a baby
in Example 1 could be influenced by the air pollution concentration both in the mother’s zip
code (A⊂ij) but also in other zip codes that the mother frequents. In this case, the potential out-
comes are not determined by A⊂ij alone, and we would need to introduce a different potential
outcome for each combination of the treatment variables in the mother’s vicinity (Section 3).

An example of multiple versions of treatment might be if birth weight actually depends not
only on whether the air pollution exceeds a high threshold but also a second extremely high
threshold. In this case, A⊂ij actually has three levels (low, high and extremely high), and there
should be three potential outcomes. An analysis that collapses the two high categories into a
single group with Aij ¼ 1 would violate SUTVA by having multiple versions of the treatment.
Violation of this assumption could be rectified by assuming A⊂ij has three categories, and thus,
each unit has three potential outcomes.

While SUTVA links treatments to potential outcomes, the consistency assumption is needed
to further link the potential outcomes to the observations.
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Assumption 2 (Consistency). The observed response is the potential outcome determined by the
observed treatment variable, Y ij ¼ Y ijðAijÞ.

In addition to these assumptions about the treatment and response variables, a standard as-
sumption that permits unbiased estimation of the ATE is that there are no missing confounder
variables other than the observed covariates X⊂ij and the latent spatial confounder U⊂i.
Following Frangakis & Rubin (1999), we term this assumption as the latent ignorability
assumption:

Assumption 3 (Latent ignorability). The potential outcomes {Y⊂ij(0), Y⊂ij(1)} and treatments
A⊂ij are independent given X⊂ij and U⊂i.

The notion of latent ignorability was proposed by Frangakis & Rubin (1999) for identifying
the complier treatment effect from randomised experiments. They assume that the missing out-
comes are ignorable given the latent complier status (a complier would have been determined
had the subject received the opposite treatment). Yang et al. (2019) formulate a latent
ignorability assumption to deal with partially observed confounders. Although this assumption
alone does not guarantee identifying the causal estimand of interest, it can help to incorporate
subject matter knowledge and formulate plausible assumptions to scrutinise.
Because U is generally a latent (i.e. unknown) variable in the spatial setting, this assumption

presumes that there exists some variable U that blocks dependence between the treatment
variable and potential outcomes; if U is observed then this is the usual assumption that there
are no unmeasured confounding variables. This assumption implies that the confounding
variables {X⊂ij,U⊂i} are sufficient to adjust for correlation between the observed treatment
and response that is due to non-randomised treatment allocation and not an actual causal effect.
This requirement highlights the importance of careful evaluation of the system under study to
ensure that all relevant variables are considered in X⊂ij.
The final assumption deals with the distribution of observed treatment variables, that is, the

propensity score. The propensity score is the probability of the treatment assignments,
ProbfAij ¼ 1jXij; Ui; Y ijð0Þ; Y ijð1Þg. Under Assumption 3, the propensity score becomes

eðXij; UiÞ ¼ ProbðAij ¼ 1jXij; UiÞ: (3)

Assumption 4 is the standard positivity assumption on the propensity score:
Assumption 4 (Positivity). Both e(X⊂ij, U⊂i) and 1� e(X⊂ij, U⊂i) are positive for all X⊂ij

and U⊂i.

This assumption implies that both Aij ¼ 0 and Aij ¼ 1 are possible under the treatment
allocation mechanism, which is necessary to estimate the ATE in Equation (2), which averages
over the expected potential outcome under both treatments. When this assumption is violated,
Yang & Ding (2018) suggest trimming the sample.
Under Assumption 3, the propensity score is a function of known variables X⊂ij and U⊂i

and can thus be estimated without knowledge of unobservable counterfactual responses.
However, Assumptions 1–3 are difficult or impossible to verify empirically, and thus a causal
inference requires scrutinising the study design and the processes of interest to justify that these
assumptions hold. One of the main contributions of causal inference is to state explicitly the
assumptions needed for an estimator to have a causal interpretation and thus guide a discussion
of a study’s results.
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Assumptions 1–4 underlie many NS causal estimation procedures such as (augmented)
inverse probability weighting (e.g. Rosenbaum & Rubin, 1983a; Robins & Greenland, 1994;
Bang & Robins, 2005; Cao et al., 2009) and matching (e.g. Stuart, 2010; Abadie &
Imbens, 2016). To fix ideas, we focus on the simplest approach of the linear model in
Equation (1), where U⊂i is observed and thus not given a spatial model. Spatial analyses often
rely on parametric models because the lack of independent replications in a region complicates
non-parametric methods. The parametric model in Equation (1) makes the additional assump-
tions of linearity and normality, but gives valid causal inference under the assumed model
and Assumptions 1–4. In other words, the regression coefficient β can be interpreted as the
ATE, δ. Therefore, if U⊂i is observed and these assumptions hold, then the estimate of β from
a standard least squares analysis has a causal interpretation. In the remainder of this section, we
discuss methods to deal with unknown U.

2.3 Case-Control Matching Methods

While most of the methods we discuss control for confounding at the analysis stage, a
case-control study controls for confounding at the design stage. In a case-control analysis of
a binary response variable (i.e. Y⊂ij∈ {0, 1}), each case (Y ij ¼ 1) is matched with one or more
controls (Y ij ¼ 0) that are drawn from the same underlying population at risk. When applying
this study design, investigators sample controls to resemble cases with respect to all factors that
may determine the disease status except for the exposure of interest. As discussed below, this
design removes the need to adjust for the matching factors at the analysis stage. Matching var-
iables can be specific to the individual, such as age or education level. Partial control for spatial
variation of risk can be achieved by matching on confounding factors that vary spatially such as
the region’s median income. To adjust for unmeasured spatial confounders, controls can be
matched based on their proximity to the cases (Jarner et al., 2002). Assuming there is replica-
tion within region (n⊂i> 1) and treatment varies within region (A⊂ij ≠ A⊂il for some j and l)
then matching individuals in the same region is an effective means of adjusting for spatial
confounding.

Matched case-control data are most often analysed using conditional logistic regression. As-
sume each case Y ij ¼ 1 is paired with a single control Ykl ¼ 0. Under the spatial logistic regres-
sion model logitfProbðY ij ¼ 1Þg ¼ Aijβ þ Xijγþ Ui , the log odds that Y ij ¼ 1 given either
Y ij ¼ 1 or Ykl ¼ 1 (but not both) is

ηij ¼ ðAij � AklÞβ þ ðXij � XklÞγþ Ui � Uk :

To account for variability within each pair (strata), a random intercept z⊂ij is added so the like-
lihood contribution of the pair is

ProbðY ij ¼ 1jY ij þ Ykl ¼ 1Þ ¼ expðηij þ zijÞ=f1þ expðηij þ zijÞg:
Because the covariates appear in the likelihood only through the difference X⊂ij�X⊂kl, the
effect of covariates used for matching cannot be estimated and these covariates can be removed
from the model. Similarly, if cases are paired with observations from the same region (i.e. i = k),
then the spatial random effects U do not appear in the likelihood and an NS analysis is suffi-
cient. Thus, while the matched case-control analysis is an excellent means of controlling for
confounders, its drawbacks include discarding data and not being able to estimate all covariate
effects and spatial variation in risk.

Pairing observations in the same region can also be applied for continuous responses. For a
continuous response, there is no natural definition of a case or control, but regressing the
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difference between the responses in the same region removes spatial confounding. For example,
under the linear model in Equation (1), the model for the difference between responses in the
same region is

Y ij � Y il ¼ ðAij � AilÞβ þ ðXij � XilÞγþ ~ϵi; (4)

where ~ϵi is independent error. Again, differencing eliminates the latent variable U⊂i, and thus
the differences can be analysed with NS methods. This approach relies on a parametric linear
outcome model and matching observations in the same location. He (2018) and Yang (2018)
propose alternative approaches that rely on a parametric propensity score model. He (2018) uses
weighting based on a sufficient statistic of the treatments to control cluster-level confounding,
while Yang (2018) suggests calibration of treatments within clusters.

2.4 Neighbourhood Adjustments

In Equation (4), modelling the difference between observations in the same region eliminated
the unmeasured confounders. In cases without replication and a missing confounder that varies
smoothly across space, its effect can be reduced by removing large-scale spatial trends from the
response, the treatment or both. Removing large-scale trends isolates local variation in the re-
sponse, which is arguably less prone to spatial confounding than large-scale variation. In this
section, we review several methods that have been proposed for removing large-trends in spatial
regression.

2.4.1 Simultaneous autoregressive models

For simplicity, assume there are no replications within each region and temporarily drop the
replication subscript by defining Y i1 ¼ Y i, Xi1 ¼ Xi and Ai1 ¼ Ai. Rather than specifying the
regression on the response, the simultaneous autoregressive (SAR) model first subtracts re-
gional means

Y i � ϕY i ¼ ðAi � ϕĀ iÞβ þ ðXi � ϕXiÞγþ εi; (5)

where Y i, Ā i and X
i are the means of the response, treatment and covariates at the m⊂i regions

adjacent to region i, ϕ is an unknown parameter and εi ∼
iid

Normalð0; σ2Þ. Taking differences
reduces the effect of missing confounding variables that are constant across neighbouring re-
gions. In vector form, Equation (5) can be expressed asY ¼ Aβ þ Xγþ εwhere the spatial co-
variance of ε is given in Appendix S1. Wall (2004) compares differences in covariance implied
by the SAR and CAR models and finds the models produce similar regression coefficient esti-
mates despite sometimes large differences in covariances between regions.

2.4.2 Neighbourhood adjustment via spatial smoothing

Rather than simply subtracting the mean of neighbouring sites, spatial trends can be removed
by joint spatial modelling of the treatment and the missing spatial confounder. Consider the spa-
tial regression model in Equation (1) without replicates. The bias is a result of attributing the
effect of the confounder on Y to the treatment variable when A and U are correlated (Appendix
S3). Schnell & Papadogeorgou (2020) provide a set of assumptions (given in the supporting in-
formation) to identify the unmeasured confounding bias EðUijAÞ ¼ BiðAÞ. They model B⊂i(A)
by specifying a joint distribution for U and A that allows each process to have a different range
of spatial correlation and permits correlation between U and A. The confounding bias is miti-
gated by fitting a joint model
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Y i ¼ Aiβ � BiðAÞþXiγþ ei1Ai ¼ Xiαþ ei2; (6)

where the form of B⊂i(A) and the spatial covariance of e⊂i1 and e⊂i2 are given in Appendix
S3. As noted by Schnell & Papadogeorgou (2020) and was also suggested by Paciorek (2010),
if the spatial scale of treatment is larger or about the same as the unmeasured confounder, the
confounding bias cannot be mitigated.

2.5 Propensity Score Methods

Propensity scores are used in a wide range of causal inference methods. Assuming a binary
treatment variable, the propensity score for observation j in region i is ProbðAij ¼ 1Þ ¼ eij. In a
standard analysis, the propensity scores are modelled as a function of the known covariates
X⊂ij, and the estimated propensity scores are used to alleviate the imbalance of the covariates
between treatment groups. Here, we face the additional challenge that the propensity scores may
depend on the unobserved spatial process, U⊂i.

For example, consider the simple hierarchical model that includes the unobserved spatial pro-
cess in the propensity score,

Y ij ¼ Aijβ þ Xijγþ Ui þ εij (7)

Aij ∼ BernoulliðeijÞ with logitðeijÞ ¼ Xijαþ ϕUi þ V i; (8)

where V⊂i accounts for spatial patterns in treatment allocation not accounted for by the
covariates or the missing confounder U⊂i. To emphasise the effect of the propensity
score on the response model, Equations (7)–(8) can be reparameterised (U⊂i = u⊂i + ψv⊂i
and V⊂i = v⊂i�ϕu⊂i�ϕψv⊂i) as

Y ij ¼ Aijβ þ Xijγþ ui þ ψvi þ εij (9)

Aij ∼ BernoulliðeijÞ with logitðeijÞ ¼ Xijαþ vi: (10)

The shared spatial random effect v⊂i adjusts for the missing confounder by absorbing signal
in the response that can be explained by spatial trends in the treatment allocation. If the spatial
trend in the treatment variable is strong and thus A⊂ij ≈ e⊂ij, this method will be unstable, and
it will be difficult to estimate the causal effect. The spatial random effects can be assigned priors
u ¼ ðu1; …; uN ÞT ∼ CARðρu; σuÞ independent of v ¼ ðv1; …; vN ÞT ∼ CARðρv; σvÞ . Fitting
this joint model for the treatment and response processes is straightforward using hierarchical
Bayesian methods.

A concern with this model is that some of its many parametric assumptions could be violated,
invalidating inference. Another issue is that of so-called ‘feedback’, which in this context refers to
information in the response influencing the posterior of the propensity scores (e.g. Zigler
et al., 2013; Zigler, 2016; Saarela et al., 2016). Eliminating this feedback can be done by fitting
the model in two stages, that is, first fitting the model for the treatment indicators in Equation (10)
to obtain an estimate of v and then fitting Equation (9) withv fixed at its first-stage estimate. Other
possible remedies include ‘cutting feedback’ in the steps of the MCMC algorithm (Lunn
et al., 2009; McCandless et al., 2010) or post-hoc reweighting of the posterior distribution
(Saarela et al., 2015; Davis et al., 2019). These methods are discussed below.

Referring to the joint model in Equations (9)–(10), if the propensity score e⊂ij were known
and logitðeijÞ were included as a known confounder in X⊂ij, then treatment ignorability would
hold given X⊂ij, and the resulting estimate of β would have a causal interpretation. Of course,
the exact propensity is unknown and must be estimated. Let êij be a first-stage propensity score
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estimator, for example, as estimated by fitting the spatial logistic regression model in
Equation (10). The estimated propensity scores can be included in the mean of the response
model to account for spatial confounding. The propensity score can be added to the response
model as

Y ij ¼ Aijβ þ Xij~γ þ Ui þ f ðêijÞþεij; (11)

where f is the logit function or more generally a non-linear function estimated by, say, smooth-
ing splines. Given the inclusion of the propensity score, it can now be assumed that U⊂i and
A⊂ij are conditionally independent. Assuming the model assumptions hold and the propensity
score estimate is accurate, then β has a causal interpretation.
Alternatively, the propensity score estimates can be used to define strata, that is,

Y ijjêij ∈ ½Tl; Tl þ 1Þ ¼ Sl þ Aijβ þ Xijγþ Ui þ εij; (12)

where 0 ¼ T1 < T2 < …: < TL þ 1 ¼ 1 define the propensity score strata, S⊂l encodes the
unmeasured confounder effect for stratum l and U⊂i and A⊂ij are conditionally independent.
Although the strata are defined irrespective of spatial information, the spatial random effect
U⊂i accounts for spatial dependence.
This joint modelling framework can be extended to continuous treatment variables by replac-

ing the the Bernoulli/logistic model for A⊂ij in Equation (10) with a normal model with
EðAijjXij; viÞ ¼ eij ¼ Xijαþ vi and VarðAijjXij; viÞ ¼ σ2A . This method could be fit as a joint
model or in two stages where first a Gaussian spatial model for A⊂ij is fit and estimates of e⊂ij
are used as generalised propensity scores (Hirano & Imbens, 2004) in the response model as in
Equation (11) or (12). Generally, this model-based framework can be adapted to more complex
settings as long as a model with reasonable fidelity to the data generating process can be deter-
mined and justified.
As an alternative to model-based causal adjustment, Davis et al. (2019) use imputation of

potential outcomes and propensity score weighting. They first estimate propensity scores êij
using a spatial regression such as Equation (10). Then, in a second stage, they fit the re-
sponse model in Equation (1), which excludes the propensity score. Rather than use the es-
timate of β from this analysis, they post-process the model output to remove confounding
bias. They estimate the causal effect using concepts from augmented inverse probability
weighting (Rosenbaum & Rubin, 1983; Robins et al., 1994; Bang & Robins, 2005; Cao
et al., 2009)

δ ¼ 1

N
∑
N

i¼1
∑
ni

j¼1
δijδij ¼ 1

êij
AijY ij � ðAij � êijÞ~Y ij1

� � � 1

1 � êij
ð1 � AijÞY ij � ðêij � AijÞ~Y ij0

� �
;

(13)

where ~Y ija ¼ aβ̂ þ Xij γ̂ þ Û i is the estimated mean response setting A⊂ij = a for a∈ {0, 1}.
Davis et al. (2019) suggest using bootstrap sampling (which accounts for uncertainty at all
stages) or a closed form large-sample variance estimator to quantify uncertainty in δ.
Alternatively, in a Bayesian analysis, samples from the posterior distribution of δ can be made
by computing δ for each posterior sample of fβ; γ; Ug.

2.6 Instrumental Variables

An instrumental variable (IV) Z⊂i is widely used to deal with unmeasured confounding. A
valid IV must (i) be associated with the treatment A⊂i, (ii) not be related to the unmeasured
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confounder U⊂i and (iii) only affect the outcome through A⊂i. Figure 1 illustrates the depen-
dence structure of the random variables. As an example, suppose A⊂i and U⊂i are the region’s
concentrations of air pollutants 1 and 2, respectively, and Y⊂i is the region’s asthma rate. Further,
assume that Pollutant 1 is the treatment of interest and is produced by both traffic and power
plants, while Pollutant 2 is unmeasured and produced only by power plants. Assuming Pollutant
2 has a health impact, it is a confounding variable because it is correlated with Pollutant 1 via their
shared source. A potential IV to resolve this confounding is the region’s traffic density, Z⊂i. It
could be argued that this is a valid IV because (i) it is a source of pollutant 1 and thus Z⊂i and
A⊂i are strongly correlated, (ii) it is not a source of Pollutant 2 and thus Z⊂i and U⊂i are
uncorrelated, and (iii) traffic density is unrelated to asthma rate other than via air quality.

The classic causal analysis with IVs is a two-stage least squares regression. The treatment
is first regressed onto the IV and then the fitted values from this first-stage regression as
used as the treatment variable in the response model. That is, if the first-stage regression
gives Âi ¼ α̂0 þ Ziα̂1 þ Xiα̂2, then the second stage model replaces A⊂i with Ziα̂1, i.e., Y i ¼
α̂1Ziβ þ Xiγþ εi. This confines the treatment variable to the span of the IV, and thus to a
space orthogonal to the missing confounding variable. If a valid IV can be identified then
this provides a simpler means of estimating average treatment effect instead of adjusting
for missing confounders than propensity scores.

Some caution has to be exercised when interpreting causal estimates based on IVs. In the
observational setting, as in traffic instrument example, the investigators do not have the ability
to enforce treatment (PM) based on treatment assignment (traffic). Although traffic is a major
source of variation in PM, other sources can play a role, which leads to differences between
intended and observed treatments among units and potentially to the heterogeneity of responses
(power plants, wildfires, etc). In randomised treatment-control examples, this equates to the lack
of full compliance between treatment assignment and the intake of drug. The implication is that
the ATE is estimated only among those whose PM variation is explained by variation in the IV,
referred to as the local average treatment effect or complier average treatment effect. Imbens &
Angrist (1994) provide the criteria under which the local average treatment effect/complier
average treatment effect represents the ATE.

Spatial consideration can be made in both stages of the model. Consider a continuous
treatment variable and the joint model

Y ij ¼ α1Zijβ þ Xijγþ Ui þ ϵ1ij (14)

Aij ¼ α0 þ Zijα1 þ Xijαþ ϕUi þ V i þ ϵ2ij; (15)

Figure 1. A directed acyclic graph (DAG) represents the dependence of the random variables. Z is the instrumental variable,
A is the treatment, Y is the outcome, X is the observed confounder and U is the unobserved confounder.
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whereU ∼ CARðρU ; σU Þ,V ∼ CARðρV ; σV Þ, ϵ1ij ∼iid Normalð0; τ21Þ and ϵ2ij ∼iid Normalð0; τ22Þ. In
Equation (14), A⊂ij in the response model in Equation (1) is replaced by Z⊂ijα⊂1 in the IV
regression. Spatial random effects are included in both stages of the model to provide more ef-
ficient estimators of the regression coefficients and valid uncertainty quantification. This model
closely resembles the joint propensity score model in Equations (7)–(8) except that only the sig-
nal in A⊂ij that can be explained by the IV enters the response model.
The two models in Equations (14)–(15) can be fit simultaneously, although feedback effects

must be considered as in the propensity score methods of Section 2.5. Alternatively, the method
can be fit in two stages. The first stage is a spatial regression of A⊂i onto Z⊂i in Equation (15)
and X⊂i gives an estimate of α⊂1. In the second stage spatial regression of the response,Ziα̂1 is
used as the treatment variable. An important difference between the classical and this spatial IV
approach is that in the spatial version the fitted values will not be strictly orthogonal to the errors
U⊂i. A potential remedy is the use of restricted spatial regression (Reich et al., 2006; Hodges &
Reich, 2010; Hughes & Haran, 2013; Hanks et al., 2015), although these methods should be
used with caution in light of the recent work of Khan & Calder (2020).

2.7 Structural Equation Modelling

Thaden & Kneib (2018) propose to adjust for spatial confounding using structural equation
modelling (SEM). They introduce binary indicator variables for each spatial location in both
the models for the treatment and response variables. Therefore, although motivated using
structural equation modelling, they arrive at a similar model to the joint model in Equations
(9)–(10). They argue that independent priors for the random effects (u⊂i and v⊂i in Equations
9–10) more effectively resolve spatial confounding than spatial priors. Treating the random
effects as independent requires replication within region, which is not always available. How-
ever, when there is sufficient replication within regions, independent priors are preferable to
spatial models because they are less constrained and thus more completely block spatial
confounding.

2.8 Simulation Study

In this section, we conduct a simulation study to compare methods for adjusting for an un-
measured confounding variable. We examine how the methods compare with different levels
of spatial correlation in the treatment and confounding variable, and robustness to model
misspecification.

2.8.1 Data generation

We simulate data with a missing spatial confounder variable from a general form that permits
performance evaluation under both correctly and incorrectly specified spatial models. The gen-
eral data-generating model is

Y ijAi ∼indepNormalðAiβ þ Ui; 1Þ and Ai ∼indepBernoulli expit gðV i; ϕUiÞf g½ �; (16)

where the spatial terms are drawn from the model U ∼ CARðρU ; 2Þ, V ∼ CARðρV ; 2Þ and the
transformation function g is given below. The correlation structure is determined by three
parameters: ρ⊂U and ρ⊂V control the range of spatial dependence and ϕ controls the strength
of spatial confounding. For simplicity, we exclude known confounders X⊂i to isolate the effects
of spatial confounding. The first four scenarios have gðV i; ϕUiÞ ¼ V i þ ϕUi and vary ρ⊂U,
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ρ⊂V∈ {0.90, 0.99} to study the performance of the joint model when it is correctly specified.
Setting the CAR dependence parameter to 0.99 gives strong spatial dependence with correlation
0.54 between adjacent regions in the center of the grid, while the value 0.90 gives moderate cor-
relation of 0.35 between adjacent regions in the center of the grid. The final two scenarios have
ρU ¼ ρV ¼ 0:99 and either nonlinear or nonstationary g. The non-linear case has gðV i; ϕUiÞ ¼
V i þ ϕfUiIðUi > 0Þ � 0:63g (‘non-linear’). The nonstationary case has gðV i; ϕUiÞ ¼
V i þ ϕUici , where c⊂i increases linearly from zero to one across the columns of the grid
(‘non-stationary’). These scenarios are included to investigate the performance of the joint
model when it is misspecified. A stimulation study with more complex data-generating mecha-
nism using the observed covariates from the data analysis in Section 2.9 is presented in Appen-
dix S4.

We generated 100 data sets on a 30 × 30 square grid of regions with rook neighbours and β ¼
ϕ ¼ 0:5. For each data set, we fit the following models.

• NS: NS least squares, Y i ∼indepNormalðγþ Aiβ; τ2Þ
• NS + P: NS least squares with a spline function of the propensity score,

Y i ∼indepNormal γþ Aiβ þ f ðêiÞ; τ2
� �

• S: Spatial CAR regression without confounder adjustment, Y i ∼indepNormalðγþ Aiβ þ Ui; τ2Þ
• S + P: Spatial CAR regression with a spline function of the spatial propensity score,

Y i ∼indepNormalðγþ Aiβ þ Ui þ f ðêiÞ; τ2Þ

Figure 2. Simulation study results. The boxplots summarise the sampling distribution of the causal estimates across data sets
and the solid line at 0.5 is the true value. The scenarios vary by the spatial dependence parameter of the confounder (ρ⊂u)
and treatment (ρ⊂v) variables, and whether the joint model is misspecified. The competing methods are defined in Section 2.8.
The empirical coverage of 95% credible intervals for the causal effect are given above the model labels.
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• S + AIPW: Spatial CAR regression with post-hoc IDW debiasing step, that is, model S with
post-processing as in Equation (13)

• Joint: Joint model in Equations (9)–(10)
• Cut: Joint model with feedback cut as in McCandless et al. (2010)
In these models, êi is computed using the spatial logistic regression in Equation (10) and f is a

B-spline basis expansion with 5 degrees of freedom. In the model-fitting stage, the spatial
processes U and V are assumed to be unknown and given priors U ∼ CARðρU ; σU Þ and
V ∼ CARðρv; σvÞ. For all models, the hyperpriors are ρU ; ρV ∼ Uniformð0; 1Þ, all mean param-
eters have Normalð0; 10Þ priors and all variances have InvGammað0:5; 0:005Þ priors. All of
these methods are fit in OpenBUGS, and the code is available at https://github.com/reich-
group/SpatialCausalReview/.
Figure 2 plots the causal effect estimates across data sets for each scenario and statistical

method. As expected, the NS method without causal adjustment is biased and has low coverage

Figure 3. Plots of the COVID-19/PM⊂2.5 data. Panel (a) plots the sample log COVID-19 mortality rate, logðY i=NiÞ, through
12 May 2020 with gray denoting no observed deaths (Y i ¼ 0); panel (b) maps the long-term (2000–2016) average fine
particulate matter (PM⊂2.5) concentration. Alaska and Hawaii are excluded from the study.
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in all cases. The spatial model without causal adjustment (S) provides only a small improve-
ment. The NS model with spatial propensity score (NS + P) substantially reduces bias although
its coverage remains below the nominal level. The spatial model with causal post-processing
(AIPW) and the joint model that cuts feedback (Cut) have large bias and low coverage in the
cases we considered.

In this simulation, the most effective methods are the spatial model with propensity score ad-
justment (S + P) and the full joint model (Joint). This is not surprising in the first four scenarios
because the joint model was used to generate the data. In these cases, the joint model appears to
have less bias than the two-stage spatial propensity score model, but both methods are similar.
These models are misspecified in the final two scenarios but still outperform the other methods.
Surely more extreme scenarios where these methods fail to deliver reliable inference can be de-
vised, but these results suggest some robustness to model assumptions.

The strength of the spatial correlation in the treatment allocation process appears to be more
predictive of reliable performance than model misspecification. In scenarios (b) and (d) with
ρU ¼ 0:9, all of the methods are biased and have low coverage. In these cases, the spatial model
of the treatment allocation process has low predictive power, and thus, all subsequent causal ad-
justments are ineffective. In these cases, the unmeasured confounder cannot be explained by
known covariates or spatial patterns, and there is simply no structure that can be exploited to
remove its effect.

2.9 Effect of PM⊂2.5 Exposure on COVID-19 Mortality

To illustrate the spatial confounder adjustment methods, we reanalyse the data provided by
Wu et al. (2020). The response Y⊂i for county i is the number of COVID-19 related deaths
through 12 May 2020. The treatment variable A⊂i is the long-term (2000–2016) average fine

Figure 4. Causal effect estimate for the COVID-19/PM⊂2.5 analysis. Posterior distribution of the log relative risk of an
increase of 1 μg/m3 in long-term average PM⊂2.5 (β) on a county’s COVID-19 mortality rate. The four models are
defined by whether they are non-spatial (‘NS’) or spatial (‘S’) and whether they include a spatial propensity score (‘+ P’).
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particulate matter (PM⊂2.5) concentration. These variables are plotted in Figure 3, and both
show strong spatial trends. The known confounder variables in X⊂i include p ¼ 15 measures
of the county’s demographic, socio-economic and climate conditions (refer to table 2 of Wu
et al. (2020) for a complete list). Some covariates (number of hospital beds, body mass index
and smoking rate) have a high proportion of missing values. Rather than removing the counties
with missing value, which would complicate the spatial adjacency structure, we remove the co-
variates with missing value. Removing these covariates does not greatly affect the effect esti-
mates (as discussed further).
Because the data set is large and the treatment is continuous, we consider only the

non-spatial (‘NS’) and spatial (‘S’) models and these models with a two-stage propensity
score adjustment (‘NS + P’ and ‘S + P’). The response model is Y i ∼ PoissonðNiλiÞ, where
N⊂i is the county’s population and λ⊂i is the mortality rate. Wu et al. (2020) use a
quasi-Poisson model with state-level random effects; we use county-level random effects
and allow these random effects to account for overdispersion. Specifically, the mortality rate
is modelled as

logλi ¼ Aiβ þ Xiγþ Ui þ f ðêiÞ (17)

where U ∼ CARðρu; σuÞ , êi is the estimated generalised propensity score (Hirano &
Imbens, 2004), and f is a B-spline basis with 5 degrees of freedom. The generalised propensity
score is the fitted negative log-likelihood (ignoring constants) êi ¼ ðAi � Xiα̂ � V̂ iÞ2, where α̂
and V̂ i are the posterior means from the model Ai ¼ Xiαþ V i þ εi and V ∼ CARðρv; σvÞ and
εi ∼

iid
Normalð0; σ2eÞ . The priors are the same as in Section 2.8. The NS models set ρu ¼ 0

(the county-level random effect remain in the model to account for overdispersion) and the
methods without a propensity score set f ðêiÞ ¼ 0.
The posterior distributions of β under these four models are plotted in Figure 4. The spatial

models give smaller posterior mean and larger posterior variance than the NS models. Including
the generalised propensity score leads to a slightly higher effect estimate for both the spatial and
NS analyses. The results are generally similar to those in Wu et al. (2020) who found an 8%
increase in COVID-19 related mortality for a unit increase in long-term average PM⊂2.5.
Therefore, this analysis does not detect a missing spatial confounder that dramatically affects
the causal effect estimate.

3 Methods for Spatial Interference/Spillover

Interference (also called spillover) occurs when the treatment received by one unit can affect
the outcomes of other units. The ubiquitous no interference assumption in Section 2.2 was first
discussed in Cox (1958), where it was referred to as ‘no interaction between units’ (Hernán &
Robins, 2020). In the subsequent literature, it is often simply referenced as part of SUTVA.
Despite a variety of data and treatments exhibiting interference, methods that account for
interference have only recently begun to proliferate in the statistics literature, in part because
interference significantly complicates the potential outcomes approach and requires additional
assumptions about the form of the interference.
In this section, we review the challenges associated with accounting for interference and the

current literature on this topic. In Section 3.1, we give a general formulation of potential
outcomes in the presence of interference and define several quantities of interest under this
framework. The remainder of the section discusses different assumptions about the nature of in-
terference and subsequent estimation methods.
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3.1 Potential Outcomes Framework

In the potential outcomes framework in Section 2.2 with binary treatment and no
interference, there are two potential outcomes defined for each unit: Y⊂ij(0) and Y⊂ij(1).
Allowing for general treatment interference entails considering 2n potential outcomes, each cor-
responding to a different combination of treatments received by all units. As a result, the
estimands under interference are more complicated because they require considering treatment
that could be applied to multiple units. Therefore, defining the potential outcomes and
estimands requires additional notation. We distinguish between the treatment applied to unit
(i, j) in the observed data set, A⊂ij, and a hypothetical treatment that could be applied to unit
(i, j), denoted a⊂ij. To describe potential outcomes under interference, we denote the treatments
that could be applied to all n units as a ¼ faij; i ¼ 1; …; N ; j ¼ 1; …; nig, and the collection
of the n� 1 treatments excluding a⊂ij as a⊂�ij. The potential outcome for each unit is then
written as Y⊂ij(a⊂ij, a⊂�ij), where the first term is the treatment received by unit (i, j) and
the second term are the treatments received by other units.

The average treatment effect in Equation (2) is insufficient in the presence of interference as it
depends only on the treatment assigned to unit (i, j). Rather, several treatment effects are needed
to provide a comprehensive summary. Halloran and Struchiner (1991,1995) and Hudgens &
Halloran (2008) describe four key estimands assuming binary treatments. The direct effect (DE) is

DEijða�ijÞ ¼ E Y ijð1; a�ijÞ � Y ijð0; a�ijÞ
� �

: (18)

The DE compares the difference potential between outcomes for unit (i, j) with treatments
Aij ¼ 1 versus Aij ¼ 0 and holding all other treatments fixed at a⊂�ij. Unlike Equation (2),
there is not a single DE, as Equation (18) may be different for each unit and for all 2n� 1 com-
binations of a⊂�ij. While the direct effect isolates the local treatment effect, the indirect effect
(IE) measures the contribution of other treatments,

IEijða� ij; a
0
�ijÞ ¼ E Y ijð0; a�ijÞ � Y ijð0; a0�ijÞ

n o
: (19)

The IE is also called the spillover effect because it compares the difference between potential
outcomes for two combinations of treatments for the other units, a⊂�ij and a0�ij, to an untreated
unit with aij ¼ 0 to quantify how much of the other treatment effects spill over to observation
(i, j). The DE and IE can be combined using either the total (TE) or overall effects (OE):

TEijða�ij; a
0
�ijÞ ¼ DEijða�ijÞþIEijða�ij; a0�ijÞ ¼ E Y ijð1; a�ijÞ � Y ijð0; a0�ijÞ

n o

OEijða; a0Þ ¼ E Y ijðaij; a�ijÞ � Y ijða0ij; a0�ijÞ
n o

:

These effects are similar, except that the total effect always compares aij ¼ 1 versus aij ¼ 0,
whereas the overall effect allows the local treatment to be the same for a and a 0.

If these effects can be estimated, then the user can interrogate the fitted model by selecting
any scenarios defined by a and a 0. For example, in the context of Example 1, the DE might
be computed by fixing the air pollution status of all other units a⊂�ij at their current value
to determine the effect of a local action that changes the air pollution concentration in the
mother’s zip code but does not affect other zip codes. For the IE, we might fix all the treatment
variables at their observed values except set the air pollution variable for the zip codes
neighbouring a mother’s zip code to one in a⊂�ij versus zero in a0�ij to determine the impact
of changing the air pollution in zip codes where the mother spends some time outdoors. The
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sum of these two effects is the total effect of changing the air pollution status of all zip codes in
the mother’s home range (her zip code and those the mother frequents). This total effect equals
the overall effect of setting a ¼ 1 for the mother’s home range, a0 ¼ 0 for the mother’s home
range and both a and a 0 equal to the current value for all other zip codes.
While measures such as DE⊂ij(a⊂�ij) are useful for understanding the implications of in-

dividual actions on local outcomes, assessing the overall impact of the treatment requires aver-
aging over units and potential actions. Rather than weight all potential actions equally, they can
be assigned probabilities, Probða ¼ ~aÞ ¼ ψð~aÞ. The probability mass function ψ is called the
treatment policy. For example, the policy-averaged expected counterfactual outcome under
treatment a⊂ij = a for unit (i, j) is

Y ijða; ψÞ ¼ ∑

~a�ij
EfY ijða; ~a�ijÞgProbða�ij ¼ ~a�ijjaij ¼ aÞ (20)

where the sum is over all 2n� 1 possible values of a⊂�ij and Probða�ijjaij ¼ aÞ is determined
by the policy, ψ. The policy-averaged direct effect for unit (i, j) is then Y ijð1; ψÞ � Y ijð0; ψÞ,
and the spatial average DE is

DEðψÞ ¼ 1

n
∑
N

i¼1
∑
ni

j¼1
Y ijð1; ψÞ � Y ijð0; ψÞ: (21)

Policy-averaged IE, TE and OE have similar forms.

Figure 5. Variable dependencies under different forms of interference. Spatial location is indicated horizontally. Indirect ef-
fects are shown as dashed lines, and confounding relationships are shown as solid lines at a location and dotted lines across
locations. A is the treatment, Y is the outcome and X is the observed confounder.
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In the context of the environmental epidemiology study described in Example 1, a simple
policy is to assume that the a⊂ij are independent over units with Probðaij ¼ 1Þ ¼ p and com-
pute Equation (21) for several values of p to understand the DE. A policy more tailored to an-
ticipating short-term effects of interventions in a given region is to assume that the a⊂ij are
independent over units with Probðaij ¼ 1Þ ¼ pa if the current value of the treatment in unit
(i, j) is A⊂ij = a. Under this policy, a zip code currently below the threshold is converted to ex-
ceed the threshold with probability p⊂0, and a zip code currently above the threshold is con-
verted to below the threshold with probability 1� p⊂1. The policy-averaged DE, IE and TE
can be approximated via Monte Carlo simulation for a range of p⊂0 and p⊂1 to evaluate the
overall effects of a campaign to reduce air pollution.

While these summaries are well defined for any potential outcome model, estimation is vir-
tually impossible without simplifying assumptions. In the remainder of this section, we discuss
several methods that exploit the spatial structure of the units to simplify the interference pattern.
These methods are summarised in Figure 5.

3.2 Partial Interference

Partial interference, a term coined in Sobel (2006), or clustered interference, assumes that the
units can be partitioned into groups so that interference can occur only between observations in
the same group. In Example 1, partial interference might be evoked if it is reasonable to parti-
tion the zip codes into cities, and that birth weight is dependent only on the air pollution con-
centration in the mother’s city, and not air pollution in other cities. A further parametric
assumption might be that the potential outcome is a function only of the air pollution concen-
tration in the mother’s zip code and the proportion of her city’s zip codes that exceed the thresh-
old excluding zipcode i, denoted by ãi. A linear model with these assumptions is

Y ijðaij; a�ijÞ ¼ aijβ1 þ ãijβ2 þ Xijγþ εij; (22)

where β⊂1 and β⊂2 entail the DE and IE, respectively. This parametric model and assumptions
analogous to Assumptions , 1,3 and 4 that A is independent of all potential outcomes given the
n vectors X⊂ij and that ϕ(a)> 0 for all a endows the parametric model

Y ij ¼ Aijβ1 þ Ãijβ2 þ Xijγþ εij (23)

with a causal interpretation. Of course, this model relies on strong assumptions that are difficult
to verify, and thus a more flexible approach may be desirable.

There is an extensive literature that explores and expands on NS partial interference (Halloran
& Struchiner, 1991; 1995; Halloran, 2012; Tchetgen Tchetgen & VanderWeele, 2012;
VanderWeele et al., 2014; Liu et al., 2016; Barkley et al., 2017; Baird et al., 2018;
Papadogeorgou et al., 2019). Zigler et al. (2012) assume partial interference in a spatial analysis
of the health effects of environmental regulations, with clusters of sites defined by their attain-
ment status. Perez-Heydrich et al. (2014) and Zigler & Papadogeorgou (2021) assume partial
interference for groups defined by spatial proximity. Zigler & Papadogeorgou (2021) deal with
additional complications that arise when the spatial resolutions of the treatment and response
differ.

3.3 Spatial Network Interference

With the rise of social network data, there is a fast-growing literature on network-based inter-
ference, where observations can interfere with each other along connected edges. These
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methods can be applied to areal spatial data by viewing the regions as the network’s nodes and
defining spatial adjacency by the network’s edges (e.g. Verbitsky-Savitz & Raudenbush, 2012).
For example, as in the CAR model defined in Section 2.1, regions i and k can be defined as shar-
ing an edge if they share a common border. A simple example of a model to study spatial net-
work interference for Example 1 is Equation (23) with Ãij redefined as the mean treatment
variable across the m⊂i neighbours of region i.
More generally, Forastiere et al. (2016) propose a model that allows for interference between

an observation and its immediate neighbours, creating a local interference neighbourhood
around each observation. Treatment effects are estimated by conditioning on propensity scores
for the direct and indirect treatment effects. Aronow et al. (2017) consider network data in a
similar vein but loosen the restrictions on interference by defining an exposure mapping
function. Tchetgen Tchetgen et al. (2017) examine arbitrary network interference subject only
to a local Markov property that observations are conditionally independent after taking into
account the nodes between them. This gives both a reasonable constraint for estimation and also
allows for treatment effects to propagate through the network. Under a non-parametric structural
equation model, Ogburn et al. (2020) clarify assumptions required to estimate spillover effects
based on a single realisation of the network and propose a targeted maximum likelihood estima-
tor allowing dual dependence due to contagion and homophily (i.e. latent similarities). In a
further generalisation of the spatial network interference assumption, Giffin et al. (2020) use
the distance between units themselves, rather than a network approximation, to develop a gen-
eralised propensity score method to balance the spillover effect, Ā i.

3.4 Process-Based Spillover Models

Partial and network interference make assumptions that are conducive to a statistical analysis,
such as the simple spillover effect in Equation (23), but are likely crude representations of
reality. Mechanistic methods that encode scientific understanding of the physical processes of
interest offer increased fidelity to the true interference structure. Mechanistic models are indis-
pensable in environmental attribution studies. For example, climate models play a central role in
the Intergovernmental Panel on Climate Change’s conclusion that human activities likely caused
the majority of the observed increase in global mean surface temperature from 1951 to 2010
(Bindoff et al., 2013). As reviewed by Hegerl & Zwiers (2011), unlike purely statistical models
that are limited to scenarios observed in the data, mechanistic models can be run under counter-
factual scenarios that have not, or could not, be observed. This provides a key link to the
potential outcomes framework in Section 3.1.
While mechanistic models can be used to estimate direct effects, they are more critical in the

presence of interference because they can rule out many of the massive number of potential
spillover paths, greatly reducing the complexity of the problem. Despite these strengths,
mechanistic models are only approximations and thus need to be calibrated and validated using
observed data. Most relevant for our purposes is the recent work that combines mechanistic
modelling with spatial statistical methods to estimate causal effects. For example, Larsen
et al. (2020) fit a Bayesian geostatistical model to observed air pollution concentrations and
mechanistic model output under scenarios with and without wildland fires to map the total
causal effect of wildland fires on fine particulate matter concentration and the resulting health
burden. Rather than post-processing model runs, Forastiere et al. (2020) build a statistical
model based on a dispersion model to track air pollution from power plants in a causal analysis
of health effects, and Cross et al. (2019) embed an epidemiological model for disease spread in
a hierarchical Bayesian model to estimate spillover effects. These examples that highlight the
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important roles of mechanistic models not only likely provide more accurate estimates of causal
effects but also ensure the results are tethered to scientific theory.

4 Spatiotemporal Methods

Data collected over space and time are more informative about causal relationships than
cross-sectional data, because they afford the opportunity to observe variables coevolve. This
reduces the potential for spurious associations. For example, if a treatment is applied in the
course of the study, comparing a site’s responses before and after the treatment can control
for missing spatial confounding variables assuming they and their effects are time-invariant.
This narrows the search for potential confounding variables to those with a similar pattern as
the treatments over both space and time.

To describe spatiotemporal methods, we adopt new notation to accommodate the temporal
dimension. For simplicity, we assume areal spatial units, discrete time steps, and that each
region i∈ {1,… ,N} has a single observation at each time step t∈ {1,… , T}. We denote the
response, treatment, known and unknown confounding variables as Y⊂it, A⊂it, X⊂it and U⊂it,
respectively. The potential outcomes framework and assumptions in Section 2.2 apply with the
time step t replacing the replication number j. Similarly, many of the spatial methods in Section
2 such as matching (Section 2.3), neighbourhood adjustments (Section 2.4), propensity score
methods (Section 2.5) and the IV approach (Section 2.6) apply for spatiotemporal data by
viewing time as a third spatial dimension, with a different degree of correlation in this third
dimension.

4.1 Testing for Missing Spatial Confounders

Janes et al. (2007) propose a method to test for unmeasured spatial confounders using
spatiotemporal data. Letting Ā t denote the average of A⊂it at time t, their approach can be
adapted to our setting via the model

Y it ¼ η1Ā t þ η2ðAit � Ā tÞþXitγþ εit (24)

where X⊂it includes smooth functions of t to account for missing temporally varying con-
founders. In this model, η⊂1 and η⊂2 measure global and local effects of treatment, respec-
tively, and they argue that if the estimated values of η⊂1 and η⊂2 are equal and non-zero
then this represents an average causal effect of A⊂it on Y⊂it, and that a large difference between
the estimated η⊂1 and η⊂2 suggests there may be a missing spatial confounder.

4.2 Difference in Difference Methods

Difference-in-difference estimators (Ashenfelter & Card, 1985) aim to quantify the treatment
effect on the increase in the mean response over time. For simplicity, we assume a binary treat-
ment variable and two time steps (T ¼ 2). If the treatment at the both time steps is a⊂i1 = a⊂i2
= a, the increase in counterfactuals at site i is δiðaÞ ¼ Y i2ðaÞ � Y i1ðaÞ. Therefore, δ⊂i(0) is the
increase over time in the absence of treatment, and δ⊂i(1)� δ⊂i(0) is the increase that can be
attributed to treatment. The DID average treatment effect is then
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δDID ¼ E
1

N
∑
N

i¼1
fδið1Þ � δið0Þg

� �
; (25)

which is analogous to Equation (2) except that the outcomes are changes over time. Assume the
potential outcomes follow the model Y itðaÞ ¼ β1aþ β2t þ β3taþ Xitγþ Uit þ εit . Under
Assumptions 1–4, the observed outcome model follows the induced linear model

Y it ¼ β1Ait þ β2t þ β3tAit þ Xitγþ Uit þ εit: (26)

Moreover, β3 ¼ δDID has a causal interpretation.
To render Assumptions 1–3 plausible, it is important to include information on a rich enough

set of time-varying confounders in X⊂it that affect both A⊂it and Y⊂it. In the spatiotemporal
settings, the time-varying confounders X⊂it include the observed information on the past treat-
ments and outcomes.
Delgado & Florax (2015) extend the spatial DIDs by assuming Markov interference, where

treatment effects only impact neighbours. This gives the model

Y it ¼ β1Ait þ β2t þ β3tAit þ β4Ā it þ β5tĀ it þ Xitγþ Uit þ εit (27)

where Ā it is the mean of A⊂it over the m⊂i neighbours of region i at time step t. The
neighbourhood coefficients, β⊂4 and β⊂5, can be viewed either as indirect spillover effects
or added terms to adjust for local confounders to give more precise estimates of the direct causal
effect, β⊂3.
Matched wake analysis combines the DID approach with a spatiotemporal analogue to

coarsened exact matching (Schutte & Donnay, 2014). It was developed in the political science
literature for studying responses to whether insurgent violence in Iraq causes civilians to help
the US military. In this scenario, insurgent violence leading to civilian casualties is the
‘treatment’ and violence not resulting in casualties is the ‘control’. The response is the act of
turning in salvaged unexploded ordinance to the US military, so that it will not be used in an
improvised explosive device. The data are divided into sliding spatiotemporal windows called
‘wakes’ and matched. Then, a DIDs approach is applied to the matched sample by counting
the number of explosives turned in before and after events. A drawback to this method is that
in some cases, the sliding windows may overlap, which will violate SUTVA.

4.3 Granger Causality

Granger causality is a fundamentally different concept from the potential outcomes
framework. It is defined by temporal relationships and not potential outcomes. In a time series
analysis with response Y⊂t, treatment A⊂t, and all other relevant variables at time t, X⊂t, the
treatment is said to Granger cause the response if VarðY tjHtÞ > VarðY tjHt; A1; …; At � 1Þ,
where the history up to time t isHt ¼ fY 1; …; Y t � 1; X1; …; Xt � 1g. In other words, Granger
causality implies that given the history of all other variables, knowledge of past treatments re-
duces predictive uncertainty. If a linear lag L time series model is assumed, Y t ¼
∑L
l¼lðAt � lβl þ Xt � lγl þ Y t � lρlÞþεt, then the treatment is said to Granger cause the response

if β⊂l ≠ 0 for any l∈ {1,… , L}.
Because this notion of causality is inherently defined for temporal data, extending these

methods to the spatiotemporal case is straightforward. The simplest model is the linear
no-interference model
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Y it ¼ ∑
L

l¼l
Ait � lβl þ Xit � lγl þ Y it � lρlf g þ Uit þ εit; (28)

where U⊂it is correlated over space (e.g. following a CAR or SAR distribution) but indepen-
dent over time. It is also straightforward to include spillover effects by including spatial aver-
ages as covariates, that is, under a Markov interference assumption the mean of A⊂it� 1
over region is m⊂i neighbours could be added as a covariate.

Granger causality and Rubin causality based on potential outcomes are fundamentally
different. Granger causality is defined in terms of predictive uncertainty, as might be useful to
a passive observer of the system trying to maximise predictive power. In contrast, Rubin
causality is defined in terms of the effects of an active intervention, as might be performed by
a scientist conducting a controlled experiment. Despite their different definitions and objectives,
these two approaches share similarities. White & Lu (2010) show that Granger causality is
equivalent to Rubin causality for times series data with no missing confounders and valid
parametric assumptions. For example, the model in Equation (28) could be motivated by
Granger causality or Rubin causality with Assumptions 1–4 and further assumptions (normality,
linearity, etc) on the form of the potential outcomes model. For further discussion of the simi-
larities and differences between types of causality, refer to Holland (1986) or Eichler (2012).

5 Methods for Point-Referenced Data

Point-referenced, or geostatistical, data are not measurements of a region, but rather taken at a
specific point (latitude/longitude). Let si ∈ R2 be the spatial location corresponding to
observation i∈ {1,… , n}. The spatial regression model becomes

Y i ¼ Aiβ þ Xiγþ UðsiÞþεi (29)

where the unknown confounder U(s) is a continuous spatial processes and εi ∼
iid

Normalð0; τ2Þ.
This notation allows for replications at sites if, say si ¼ sj, in which case observations i and j
share the spatial term UðsiÞ ¼ UðsjÞ. The covariate vector X⊂i can include spatial covariates
such as the elevation at s⊂i and NS covariates such as the time of day the measurement was
taken.

Unlike an areal data analysis as in Section 2 where the number of potential sampling
locations is finite, a geostatistial analysis must consider an uncountable number of potential
sampling locations s ∈ D ⊂ R2. We use the bold to denote a process over the entire spatial
domain, for example, U ¼ fUðsÞ:s ∈ Dg. An unknown spatial process such as U is typically
assumed to be a continuous function of s overD and modelled as a Gaussian process with mean
zero and isotropic covariance function (i.e. a covariance that depends only on the distance be-
tween locations). Although other covariance functions are available (Banerjee et al., 2014),
the simplest choice is the exponential covariance function CovfUðsiÞ; UðsjÞg ¼
σ2expð�dij=ρÞ, where d⊂ij is the distance between s⊂i and s⊂j. We denote this Gaussian pro-
cess model as U ∼ GPðρ; σÞ.

5.1 Potential Outcomes Framework

In the most general form, the potential outcomes for observation i depend on the entire spatial
field of potential treatments, a ¼ faðsÞ:s ∈ Dg. Therefore, we define the potential outcome for
observation i as Y⊂i(a). In the context of Example 1, a(s) might be the air pollution
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concentration at spatial location s, as opposed to the average concentration in a zip code. In this
geostatistical setting, a mother’s exposure to air pollution would integrate the concentration a(s)
along the path the mother travels. This could be estimated by a backpack the mother wears that
continuously measures her local air pollution concentration. Therefore, changing a(s) for any s
in the spatial domain could affect her potential outcome.
The potential outcomes framework simplifies dramatically under the no interference assump-

tion. With a binary treatment, the two potential outcomes for unit i are Y⊂i(0) if aðsiÞ ¼ 0 and
Y⊂i(1) if aðsiÞ ¼ 1. In this simple case, the potential outcomes concepts, definitions and as-
sumptions introduced in Section 2.2directly apply to the geostatistical setting. Many of the
methods developed to adjust for missing spatial confounders described for areal data can also
be applied. For example, all of the propensity score methods in Section 2.5 and IVs methods in
Section 2.6 can be adapted for geostatistical data by replacing the CAR model for the missing
spatial confounder with a Gaussian process model. Similarly, the adjustments based on spatial
smoothing described in Section 2.4.2 can be extended to the geostatistical case as in Keller &
Szpiro (2020) and Dupont et al. (2020) using splines and Guan et al. (2020) using spectral
methods. Many of the other methods introduced for areal data can also be modified for
geostatistical applications, as described in the remainder of this section.

5.2 Matching Methods

The matching methods described in Section 2.3 that pair observations from the same region
can be applied for geostatistical data with replications at spatial locations. Distance adjusted
propensity score matching (Papadogeorgou et al., 2018) can be used when there are not repli-
cations. This method alters propensity score matching (Rosenbaum & Rubin, 1983a) by using
a standardised distance that combines the propensity score difference and geographic distance.
The logic is that if unmeasured spatial confounders exist, then observations that are close to-
gether will have confounders that are the most alike. Similar to the neighbourhood adjustment

Figure 6. Illustration of regression discontinuity. The treatment region A is the region above the curve, the points are the
sample locations s⊂i with samples with Ai ¼ 1 filled and the background color is the mean function A(s)β +U(s) were A
(s) indicates that s ¼ ðs1; s2Þ ∈ A.
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methods, this method balances treatment and control by including geographic distances as a
proxy for the unmeasured confounders in the matching process. The difference for a pair with
Ai ¼ 1 and Aj ¼ 0 is defined as

Dij ¼ wjêi � êjjþð1 � wÞdij=m (30)

where êi and êj are estimated propensity scores, m is the maximum distance between pairs of
locations in the study domain and w∈ [0, 1] is a weight. The authors propose an algorithm to
select pairs with small D⊂ij.

5.3 Regression Discontinuity

Regression discontinuity designs are generally used when treatment assignment is deter-
mined by whether the covariate value for a unit exceeds a threshold (Imbens & Lemieux, 2008;
Bor et al., 2014; Keele & Titiunik, 2015), for example, students are admitted to a college if and
only if their SAT score exceeds a threshold. These cases provide a natural experiment if it can
be assumed that units slightly above and slightly below the threshold are similar in every way
except the treatment assignment, and thus, the difference between these groups can be attributed
to the causal effect of the treatment. Natural experiments of this form often arise in environmen-
tal and epidemiological studies, where the variable being thresholded to determine treatment is
the spatial location. In the context of Example 1, the treatment might be whether a state is sub-
ject to an air pollution regulation, and the objective is to determine if this affects health out-
comes. Figure 6 shows a hypothetical example where treatment is applied to locations in the
region s ∈ A ⊂ D. If it can be assumed that all other factors are balanced across the border
of A , then comparing observations on either side of the border provides information about
the causal effect of treatment. Under this assumption, the causal effect can be estimated by
simply fitting the geostatistical model in Equation (29) with Ai ¼ 1 if si ∈ A and Ai ¼ 0
otherwise.

5.4 Neighbourhood Adjustments

5.4.1 Stochastic partial differential equation modelling

Section 2.4 introduces the SAR model that defines the regression of the response onto the
treatment after subtracting the means across neighbouring regions. The motivation for building
a model on the differences is to remove the effects of spatially smooth confounding variables.
The stochastic partial differential equation models of Lindgren et al. (2011) can be viewed as
an extension of this idea to the continuous (geostatistical) spatial domain. In the stochastic par-
tial differential equation framework, models are specified on the partial derivatives of the re-
sponse surface, which is a generalisation of the SAR model that can be applied to
differentiable functions such as U. Lindgren et al. (2011) show that this approach can be used
to approximate Gaussian processes with the Matérn covariance function and develop approxi-
mations that resemble the SAR covariance model.

5.5 Spillover/Interference Methods

Defining interference for geostatistical applications requires returning to the general potential
outcomes formulation in Section 5.1, where the potential outcome for observation i depends on
the entire field of treatments, a, and is denoted as Y⊂i(a). Relating the spatial field a with the
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scalar potential outcome requires assumptions about the form of interference. A general form of
the interference is

Y iðaÞ ¼ aðsiÞβ1 þ āðsiÞβ2 þ Xiγþ Ui þ εi (31)

āðsiÞ ¼ ∫D∖siwðsi; sÞaðsÞds; (32)

where w is a weighting function that determines the spillover effect āðsiÞ and β⊂1 and β⊂2 con-
trol the direct and indirect effects, respectively. Given this potential outcome model, the four
causal effects (direct, indirect, total and overall) can be defined and interpreted as in Section
3.1 with a⊂�i defined as the surface a excluding a(s⊂i), or perhaps excluding a for all sites
within a small radius of s⊂i.
The form of spillover in Equation (32) encompasses many common interference assump-

tions. For example, partial/cluster interference can be implemented by fixingwðsi; sÞ ¼ 0 if sites
s⊂i and s are in different groups. A structure resembling Markov/network interference assumes
thatwðsi; sÞ ¼ 1=ðπr2Þ if s is within radius r of s⊂i andwðsi; sÞ ¼ 0 otherwise. This reduces the
spillover measure āðsiÞ to the average treatment within radius r of s⊂i. If strict bounds on the
range of interference cannot be assumed, then the weight function could be a decreasing

function of the distance from s⊂i, such as the Gaussian kernel function with wðsi; sÞ ¼
exp �0:5ðjjs � sijj=ϕÞ2

n o
=

ffiffiffiffiffiffiffiffiffiffiffi
2πϕ2

p
.

Even after reducing the complexity of the model by selecting a simple form for the weighting
function, computing the spatial integral in Equation (32) is often impossible because the
treatments are only observed at a finite number of locations. One remedy is to use spatial
interpolation (Kriging) to impute the treatments onto a fine grid of locations covering the spatial
domain and then approximate the integrals as sums over the grid points. In this case, uncertainty
about the estimated spillover variables should be accounted for using Bayesian or multiple im-
putation methods.
Given a form of interference and the assumption of no missing confounders, estimation of

the direct and indirect effects can proceed with the usual spatial linear model. One approach
to accounting for missing spatial confounders is to include spatial propensity score models
for both the direct treatment A⊂i and the spillover effect Ā i (Giffin et al., 2020). The propensity
score for A⊂i can be estimated as in the areal case with say a spatial logistic regression to give
êðsiÞ.

6 Summary and Future Work

The field of spatial causal inference has seen impressive advances in recent years. There are
now methods to address the fundamental problems including accounting for missing spatial
confounding variables and modelling spatial interference. However, there are many opportuni-
ties for future work that we discuss below, including orthogonalisation of confounders and treat-
ment, combining data types, relaxing model assumptions, going beyond mean estimation and
using causal estimates for decision making.
Our discussion of spatial confounding began with the observation that fixed effects (e.g. treat-

ment) estimates can be quite different between spatial and NS regressions because the spatial
covariates and spatial random effects compete for the same spatial signal. In a spatial casual
analysis, the treatment variables, covariates and random effects may all have spatial patterns.
One way to resolve this conflict is to restrict the spatial random effects to be orthogonal
to the observed treatment variables (Reich et al., 2006; Hughes & Haran, 2013;
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Hanks et al., 2015; Page et al., 2017; Prates et al., 2019). However, Khan & Calder (2020)
showed that this can lead to poor performance for treatment estimates. A motivation for the
orthogonal regression approach is that it is easier to interpret a regression model if the signal
is attributed to known quantities (e.g. Plumlee & Joseph, 2018). While this may be appealing
in some settings, it is contrary to the conservative causal-inference approach that the treatment
effect is what remains after adjusting for confounding variable. Resolving these two approaches
is an area of future work.

We have discussed methods for areal data (Section 2) and point-referenced/geostatistical data
(Section 5) separately, but many analyses require utilising both types of data. For example, treat-
ments may be defined at point locations (e.g. air pollution concentration) while the response
variable is defined regionally (e.g. hospital admission rate by zip code). In spatial statistics, this
is referred to as the change of support problem (Gotway & Young, 2002; Gelfand et al., 2010).
One approach to combining data with different supports is to conceptualise the areal data as an
aggregation of a continuous latent process and then specify geostatistical models such as those
presented in Section 5 on the latent process. Extending these methods to the causal inference
would require carefully specifying the causal estimand and devising computationally
efficient methods for estimation. Zigler & Papadogeorgou (2021) may provide a template for
this work.

Change of support issues also arise when the treatment is a point source, such as an oil spill,
power plant or wildland fire. The effect of point source treatment variables can be direct, but
their most prominent causal effects will likely be the spillover effects (Section 3) felt by nearby
locations. The spillover effects can be modelled as a function of the distance from the response
location to the point source or mechanistically using a mathematical dispersion model (Section
3.4). These methods can also be extended to the spatiotemporal setting using spillover effects
that decay in space and time (e.g. Kim et al., 2018; 2019). Inferential methods that rely on
modelling the treatment variables (e.g. propensity scores) could apply a spatial point pattern
analysis (Baddeley et al., 2015), such as an inhomogeneous Poisson process model, to estimate
the treatment intensity. It may also be possible to leverage work on informative sampling
(Diggle et al., 2010; Pati et al., 2011) that uses a joint model for the sampling locations and
the responses to reduce the effects of systematic bias in the sampling design.

Most of the methods discussed in this review rely on strong parametric assumptions such as
linearity and normality. Parametric methods dominate spatial statistics because in the canonical
problem with one observation at each spatial location there is insufficient data to relax these as-
sumptions. In contrast, most causal inference methods aim to be robust to model
misspecification. There is a body of work on non-parametric spatial methods (Gelfand
et al., 2010; Reich & Fuentes, 2015) that might be used to relax the parametric assumptions
in spatial causal inference, but these ideas have yet to be applied in this context.

We focused only on the average treatment effect, and future work is to extend spatial causal
inference to other types of treatment effects. For example, extreme events are often the most
impactful in environmental studies, and thus, it would be of great interest to extend causal
inference ideas to spatial quantile regression (e.g. Reich et al., 2011; Reich, 2012; Lum &
Gelfand, 2012) or extreme value analysis (e.g. Davison & Huser, 2019). Another simplification
made throughout the review is that the confounder and treatment effects are the same
throughout the spatial domain. A more general approach is a locally adaptive model with
spatially varying coefficients (Gelfand et al., 2003), which would be a spatial application of
conditional treatment effects (Wu et al., 2020).

Ultimately, causal effect estimates can be used to influence decision making. An area of
future work is to use these estimates to derive individualised/localised treatment rules. This is
complicated in the spatial case by interference between regions that require considering
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simultaneously assigning the treatments to all regions to achieve optimality. Laber et al. (2018)
and Guan et al. (2020) propose a policy-search method for optimal treatment allocation for spa-
tiotemporal problems, but a general theory awaits development.
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