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Modern manufacturing systems are becoming increasingly complex, dynamic, and connected, and their performance is being affected by not only 
their constituent processes but also their system-level interactions. This paper presents an integrated modelling method based on a graph neural 
network (GNN) and multi-agent reinforcement learning (MARL) collaborative control for adjusting individual machining process parameters in 
response to system- and process-level conditions. The structural and operational dependencies among process machines are captured with a 
GNN. Iteratively trained with MARL, machines learn to adaptively control local process parameters, e.g., machining speed and depth of cut, while 
achieving the global goal of improving production yield. 
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1. Introduction 

As manufacturing systems become increasingly complicated and 
interconnected, challenges arise for throughput maximization, 
quality assurance, and cost reduction [1-2]. Despite extensive 
research on process- and system-level analysis, the integration of 
these two aspects for global operation optimization continues to 
attract researchers’ interest [3]. Integration of processes and 
systems is imperative to the overall system performance: 1) from 
the process perspective, local parameter adjustment without 
considering the system may lead to over- or under-production that 
overflows or depletes buffers and limits throughput; 2) from the 
system perspective, speeding up certain processes without 
ensuring that process constraints are met (e.g., part quality) may 
diminish the production yield. Therefore, the optimal process 
control strategy is deeply coupled with system-level conditions 
and vice versa. Seamlessly integrated process-system modelling 
and a holistic control scheme would significantly enhance the 
performance in both product quality and system productivity. 

However, effective integration of processes and systems is quite 
challenging. Current modelling methods for manufacturing 
systems are mostly dissociated from the underlying processes. A 
process model usually considers individual process parameters to 
optimize the process. System-level analysis mainly addresses 
time-stamped material flow and current methods mainly focus on 
system throughput evaluation in the steady state (e.g., Markov 
Chain based methods [4]) or real-time production loss evaluation 
(e.g., recursive algorithm-based model [5]). As such, the analysis of 
production quantity at the system level usually ignores the impact 
of process-level activities on system dynamics. With the current 
approach of separately analyzing processes and systems, it is 
fundamentally difficult for multi-stage manufacturing to achieve a 
real-time coordinated and optimized operation. 

With the increasing availability of manufacturing data enabled 
by extensive sensor deployment [6], learning-based methods for 
manufacturing process and system control have attracted interest 
as they provide a viable path towards process-system integration 
by capturing the dynamics and interdependencies embedded in 

the data [7-8]. Graph learning methods, as represented by GNN, 
have demonstrated a capability in modelling the interconnections 
among system elements by representing the system as a graph 
consisting of nodes and links. This topology allows information 
exchange among the connected elements [7] and achieves two-
level integrated modelling so that each node is aware of both its 
local condition and the status at the global level. 

In addition, reinforcement learning (RL), which aims to find an 
optimal policy through interactions with the environment [8], has 
opened up a new research avenue of process and system 
optimization without a rigid rulebook. Extensive RL-based 
research has been reported in the literature of manufacturing, for 
process optimization (e.g., deep drawing [9] and machining [10]), 
deficient stage identification [11], and maintenance scheduling 
[12]. However, due to the lack of integrated process-system 
modelling, there is a notable separation between process-level [9-
10] and system-level [11-12] RL applications. RL for process-
system integrated control is more challenging than single-level 
problems due to the dramatically expanded state/action space and 
more complicated process and system dynamics. 

Motivated by these prior efforts, this paper presents a process-
system integrated modelling based on GNN by representing the 
manufacturing system as a graph. Built on GNN modelling, a 
distributed adaptive control scheme is established based on the 
MARL paradigm in order to adjust individual process parameters 
and maximize system yield. The goal of this paper is to bridge the 
existing knowledge gap in process-system integration. Specifically, 
relevant machines are modelled as nodes in the GNN with their 
interdependencies modelled as links. Each machine in the graph is 
then represented by an MARL agent that makes decisions based on 
the information from both the process and system. Evaluation 
through simulations for a multi-stage grinding operation has 
shown that GNN-MARL framework is capable of adaptively 
optimizing local process parameters, e.g., machining speed and 
depth of cut, to achieve global maximization of the system yield. 

2. Problem description and formulation 

For manufacturing systems, multiple process stages are typically 
needed to produce a part. As shown in Fig. 1, which schematically 
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illustrates a simplified camshaft production line, machines process 
products with given process parameters and buffers temporarily 
hold intermediate parts that await further processing. 

 

 

Fig. 1. Manufacturing system structure and underlying process models. 

 
At the process level, process models often quantify the 

relationship between quality performance of manufacturing 
processes and input parameters. Such models can be used to 
optimize the process for improved efficiency and product quality. 
Let 𝑟𝑖 denote a series of key features that characterize the quality 
of product 𝑖, then the process model for machine 𝑛 at stage 𝑚 can 
be represented as a function 𝑝𝑚,𝑛(∗): 

 

𝑟𝑚
𝑖 = 𝑝𝑚,𝑛(𝑟𝑚−1

𝑖 , 𝑢𝑚,𝑛
𝑖 ) (1) 

 

where 𝑟𝑚−1
𝑖  and 𝑟𝑚

𝑖  are the product’s key features before and after 
stage 𝑚 respectively, and 𝑢𝑚,𝑛

𝑖  denotes the process control 

parameters for processing product 𝑖 . For example, in a grinding 
process, key features 𝑟𝑖 may refer to product geometry or surface 
roughness, while process parameters 𝑢𝑚,𝑛

𝑖  may include depth of 
cut and machining speed. Various physics models and machine 
learning methods have been developed to obtain 𝑝𝑚,𝑛(∗) [13-14]. 

Finally, the quality inspection is the procedure that compares key 
features 𝑟𝑚

𝑖  of the completed product against quality standard 𝑟∗ 
in order to determine if the product is defective or compliant. 

At the system level, current throughput analysis mainly concerns 
aggregated parameters from the process such as average cycle 
time. Machine downtimes and limited inline buffers lead to 
complicated stochastic dynamics and nonlinear interactions 
within the system. For example, a machine is starved and must idle 
when its upstream buffers are empty due to upstream machines’ 
inefficiencies. Let 𝑇𝑃𝑠𝑦𝑠 denote the system throughput, then: 
 

𝑇𝑃𝑠𝑦𝑠 = 𝑔(𝚺𝐩𝐫𝐨𝐜, 𝚺𝐬𝐲𝐬) (2) 
 

where 𝚺𝐩𝐫𝐨𝐜  are the aggregated parameters from processes, 𝚺𝐬𝐲𝐬 

are system-level architecture and parameters. In general, there is 
no closed-form representation for 𝑔(∗) , and aggregation [4] or 
recursive algorithms [5] have been used to evaluate throughput. 

Notably, Eq. (1) and Eq. (2) are not functionally connected. This 
indicates that process optimization based on process-level models 
and system-level throughput improvement based on system 
quantitative analysis are mostly separated in current methods. A 
key question that arises is: if the parameter (e.g., depth of cut) of an 
intermediate machining process changed, how will it impact the 
overall system yield? Or to maximize the yield of the system, how 
should the process parameters be adjusted? To formulate the 
research problem, two quantities that relate to the performance of 
both processes and system are denoted in this work: 
• Yield 𝑦: number of compliant products among 𝑇𝑃𝑠𝑦𝑠. 

• Defect 𝑑: number of defective products among 𝑇𝑃𝑠𝑦𝑠 . 

Accordingly, the problem studied in this paper is then presented 
as follows: 

Given the manufacturing system as described, establish an 
integrated process-system modelling approach, and build an 
automated control scheme to find optimal adaptive policies for each 
machine to adjust process parameters for each product with the aim 
of maximizing the system yield, i.e., 

 

𝑢𝑚,𝑛
𝑖 (𝑡) = arg max

𝑢𝑚,𝑛
𝑖 (𝑡)

{𝑦(𝑇)}, 𝑡 ∈ [0, 𝑇], 𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: 𝑪 (3) 
 

where 𝑦(𝑇) = 𝑓({𝑟𝑚
𝑖 , 𝑢𝑚,𝑛

𝑖 |𝑚 ∈ 𝑴, 𝑛 ∈ 𝑵, 𝑖 ∈ 𝒁+}, 𝑬, 𝚺𝐬𝐲𝐬)  is the 

total system yield during a given time horizon 𝑇, 𝑬 is set of random 
downtime events during time horizon 𝑇 . All the constraints are 
denoted by 𝑪, which are defined by Eqs. (1) and (2). 

3. Process-system integration through GNN 

To handle the complexity involved in optimizing Eq. (3), a GNN-
based integrated modelling is proposed to connect the process 
model with the flow-based system model. As shown in Fig. 2, the 
manufacturing system is represented as a graph, where machines 
are treated as nodes and material flows as links. The material flow 
showing possible routes of products also describes how machines 
may interact with each other. 

 

 
Fig. 2. Mapping a manufacturing system to a graph and extracting latent 
features with GNN. 

 
In the manufacturing system graph, the node feature 𝑥𝑛 includes 

local conditions for machine 𝑛, interaction between machines as 
represented by buffer conditions, and process model output in 
order to enable a direct connection between process outputs and 
system. Specifically, it is defined as: 

 

𝑥𝑛 = [𝑏𝑙𝑛, 𝑏𝑣𝑛, 𝑤𝑛, 𝛼𝑛, 𝑟𝑛, 𝑢𝑛, 𝑚, 𝑛] (4) 
 

The physical meanings of the components are described as follows: 
• 𝑏𝑙𝑛 and 𝑏𝑣𝑛 describe the buffer level/vacancy of machine’s 

immediate upstream/downstream buffer, which are closely 
related to potential blockages or starvations. 

• 𝑤𝑛  and 𝛼𝑛 indicate the local operation status of machine 𝑛, 
where 𝑤𝑛  is machine’s up/down status, and 𝛼𝑛 is machine’s 
processing progress on its current product. 

• 𝑟𝑛  and 𝑢𝑛  depict the process model output conditions of 
product, where 𝑟𝑛  denote the key features of the current 
product and 𝑢𝑛 is the currently applied process parameters. 

• 𝑚  and 𝑛  are included in the feature to uniquely identify 
machine’s stage and numbering respectively for the ease of 
parameter sharing in neural networks. 
 

In this work, we use a GNN to encode machine nodes and obtain 
each node’s latent feature that reflects both the local condition of 
the machine and global status of the whole system. Node encoding 
by GNN, specifically graph convolutional network (GCN) [7] used 
in this work, is carried out by layers (see Fig. 2). For each layer, a 
machine node pulls information from its first-order neighbouring 
machines according to the following function: 
 

ℎ𝑛
𝑙+1 = 𝜎 ( ∑ 𝛼𝑛𝑗

𝑙 ℎ𝑗
𝑙𝑊𝑙

𝑗∈(𝑛′∪𝑛)

) (5) 

 

where 𝜎  is the activation function, 𝛼𝑛𝑗
𝑙  is the learnable relation 

weight that determines the weight of information that machine 𝑛 
pulls from its neighbor machine 𝑛′, 𝑊𝑙 is learnable parameters for 



layer 𝑙 . Starting from local node feature ℎ𝑛
0 = 𝑥𝑛 , by stacking 𝑙 

layers, the machine node can aggregate information from the 
machines that are 𝑙-hops away and thereby, encoding the system 
dynamics in its latent feature ℎ𝑛. A GNN therefore bridges the gap 
between process- and system-level conditions and lays the 
foundation for adaptive process control. 

4. Distributed adaptive control through MARL 

Since the online control problem in Eq. (3) is NP-hard involving 
complex dynamics [15], a distributed adaptive control scheme 
based on MARL is established. Based on the GNN-integrated 
modelling, each agent (i.e., each machine) in MARL makes 
independent but informed local process control decisions to 
achieve the global maximization of yield in a collaborative manner. 
 
4.1. MARL problem formulation 

 
To fit the control problem in Eq. (3) into the MARL framework, 

each machine is modelled as a distributed agent and has an 
independent adaptive control policy 𝜋𝑛(𝑢𝑛|ℎ𝑛) that conditions on 
machine node’s latent feature ℎ𝑛. In other words, the latent feature 
ℎ𝑛  serves as the state/observation in MARL, and therefore 
machine agent could make control decisions that are adaptive to 
not only machine local conditions but also global system status. 

Besides the state/observation, the definitions of action and 
reward function are also indispensable in formulating the MARL 
problem. The definition of action 𝑢𝑛 for each machine depends on 
the specific manufacturing process. For example, the process 
control parameters in grinding often include machining speed and 
depth of cut. Then, the available actions for a grinding machine are 
all possible combinations of the two process parameters. The 
machine agent is triggered to select an action, i.e., a set of process 
parameters, whenever loading a product from its upstream buffer. 

The reward function 𝑟𝑡 is defined to reflect the “goodness” of the 
selected actions towards the collaborative common benefit. In this 
work, the global reward function at time step 𝑡 is defined as: 
 

𝑟𝑡 = −𝑑𝑡 + 𝑦𝑡 (6) 
 

where 𝑑𝑡  is the stepwise defect and 𝑦𝑡 is the stepwise yield. Note 
that if the costs/profits associated with defective/compliant 
products are available through additional cost analysis, which is 
beyond the scope of this presented study, Eq. (6) can be redefined 
to pursue maximum profits through MARL. 

 
4.2. MARL training paradigm and algorithm 

 
The formulated MARL problem relies on effective iterative 

training to learn the optimal control policies 𝜋𝑛(𝑢𝑛|ℎ𝑛) for each 
machine. In MARL, the major challenge lies in quantifying an 
individual agent’s contribution to the system performance, which 
is the key to improving the agents’ policies. There have been a 
number of relevant studies in this field. In this work, we investigate 
the C-COMA algorithm in [16] due to its compatibility with GNN. 

C-COMA algorithm employs the Advantage Actor Critic (A2C) 
framework in a distributed setting by designing a tailored 
advantage function 𝐴𝑛(𝑠, 𝒖) for each agent, expressed as: 

 

𝐴𝑛(𝑠, 𝒖) = 𝑄(𝑠, 𝒖) − ∑ 𝜋𝑛(𝑢𝑛
′ |ℎ𝑛)𝑄(𝑠, (𝒖−𝑢𝑛 , 𝑢𝑛

′ ))

𝑢𝑛
′

(7) 

 

where 𝑄(𝑠, 𝒖) is the state-action value for agents’ joint action 𝒖 =
[𝑢1, … , 𝑢𝑛, … ] in state 𝑠, 𝜋𝑛(𝑢𝑛

′ |ℎ𝑛) is agent 𝑛’s current policy, and 

𝑄(𝑠, (𝒖−𝑢𝑛 , 𝑢𝑛
′ ))  is the state-action value by replacing agent 𝑛 ’s 

current action 𝑢𝑛 in 𝒖 with 𝑢𝑛
′  while holding other agents’ actions 

fixed. The second term on the right-hand side of Eq. (7) is a 
counterfactual state-action value for agent 𝑛 by marginalizing its 

action over its current policy. Therefore, 𝐴𝑛(𝑠, 𝒖) evaluates how 
good an agent’s current action is compared to “average”, which 
offers a customized baseline for the agent to reason about the 
contribution of its current action to the global performance. Based 
on the advantage function, the policy gradient 𝑔𝜃 is obtained as: 
 

𝑔𝜃 = 𝐸𝜋 [∑ ∇𝜃 log 𝜋(𝑢𝑛|ℎ𝑛) 𝐴𝑛(𝑠, 𝒖)

𝑁

] (8) 

 

where 𝜃  denotes all the parameters in GNN and agent’s policy 
network. Therefore, the learnable parameters in GNN layers and 
MARL policy network are optimized simultaneously with gradient 
𝑔𝜃 . More details on C-COMA algorithm can be found in [16]. 

5. Prototype implementation 

The GNN integrated modelling and MARL-based adaptive control 
scheme (see Fig. 3) is implemented on a sequence of four grinding 
processes in simulated camshaft production, as shown in Fig. 1. 
 

 

Fig. 3. GNN-MARL neural network architecture. 

 
The system is a four-stage grinding line. Stage 1~3 have one 

machine each, and stage 4 has two parallel machines. Machines’ 
random downtimes are obtained from sensor data. In simulation, 
we assume the time between downtime event arrivals and 
duration of downtime events follow exponential distributions. 
Buffers are placed between every two stages and all of them have 
a limited capacity of ten. The time horizon considered in this case 
is a ten-hour shift, i.e., 600 minutes. 

The key feature of the product is characterized by the surface 
roughness of the four sequential grinding processes, i.e., 𝑟𝑖 =

[𝑟1
𝑖 , 𝑟2

𝑖 , 𝑟3
𝑖 , 𝑟4

𝑖]. The final product is deemed compliant if ∑ 𝑟𝑚
𝑖4

𝑚=1 <
5.0  μm, or defective otherwise. We adopt a simplified grinding 
process model [13] to relate the surface roughness to process 
parameters such as machining speed 𝑣𝑛  and depth of cut 𝑎𝑛 . 
Accordingly, the MARL agent’s action is 𝑢𝑛 = {[vn, an]} , where 
𝑣𝑛 ∈{0.30, 0.35, 0.40, 0.45, 0.50} m/s, and 𝑎𝑛 ∈{1.20, 1.35, 1.50, 
1.65, 1.80}× 10−5 m. The surface roughness and cycle time for the 
given process parameters at each stage are listed in Table 1. The 
resulting surface roughness at each stage follows a normal 
distribution with its mean and variance depending on the control 
parameters. The “reciprocal” relationship in terms of parameters 
between the surface roughness and cycle time requires the MARL 
to find the balance between quality and throughput in order to 
maximize the yield of production. 
 
Table 1 
Grinding process model and grinding cycle time given process parameters. 
 

Stage Surface roughness (μm) Cycle time (min) 

1 𝑟1
𝑖~𝑁 ((

𝑣1𝑎1

30
)

0.90

, 5.48𝑣1
2𝑎1

1.40) × 106 𝑇1
𝑖 =

1.0 × 10−5

𝑣1𝑎1
 

2 𝑟2
𝑖~𝑁 ((

𝑣2𝑎2

30
)

0.85

, 5.48𝑣2
2𝑎2

1.35) × 106 𝑇2
𝑖 =

1.0 × 10−5

𝑣2𝑎2
 

3 𝑟3
𝑖~𝑁 ((

𝑣3𝑎3

30
)

0.90

, 5.48𝑣3
2𝑎3

1.50) × 106 𝑇3
𝑖 =

0.5 × 10−5

𝑣3𝑎3
 

4 𝑟4
𝑖~𝑁 ((

𝑣4𝑎4

30
)

0.85

, 5.48𝑣4
2𝑎4

1.30) × 106 𝑇4
𝑖 =

3.0 × 10−5

𝑣4𝑎4
 



6. Results and discussion 

6.1. Convergence analysis 

 

In Fig. 4, the mean and standard deviation of the test returns (i.e., 
accumulated rewards) are plotted against training steps (left plot).  
Progress continues until a leap at around the four millionth steps. 
The algorithm convergence is confirmed after ten million steps. 

 

 
Fig. 4. GNN-MARL training progress and performance improvement. 

 
Fig. 4 also presents the breakdowns of the system throughput 

during training (right plot). It shows that the system outputs a 
large number of products with low yield when the training begins, 
due to the fact that initial policies are largely random. As the 
training continues, agents learn to adjust the parameters and 
collaborate with each other to gradually reduce defect while 
improving yield. The similar trend between the yield and return 
curves confirms the effectiveness of the reward setting (Eq. (6)). 

 
6.2. Performance evaluation and comparison 
 

To further evaluate the effectiveness of the developed method, 
we compared the performance of the GNN-MARL policy with two 
common industrial baselines. In Baseline 1, process parameters for 
each stage are tuned independently to keep the surface roughness 
of each stage under 1.25  μm with a 99% probability (i.e., three 
standard deviations from the mean in normal distribution) to 
ensure that the final product meet the quality standard. Process 
parameters remain unchanged during the whole production. In 
Baseline 2, a local controller is adopted to adjust the processing 
speed on the basis of the parameters obtained in Baseline 1 
according to only individual machines’ local features. 

 

 
Fig. 5. GNN-MARL policy compared with industrial baselines. Each bar 
shows the mean and 95% confidence interval. 

 
The system performance of the three scenarios is shown in Fig. 

5. Baseline 1 has the lowest defect rate since its process parameter 
setting statistically guarantees a high ratio of compliant product. 
However, Baseline 1 fixes process parameters and hence lacks 
adaptions to the dynamically changing system conditions. Given its 
convenience and stability, this strategy has been widely adopted 
by the industry, despite its conservative nature. 

Baseline 2 employs heuristics based on local machine conditions 
to change the processing speed. Although it leads to higher yield 
and throughput compared to Baseline 1, it results in many more 
defective products. This demonstrates that such local process 

optimization without considering the overall system dynamics is 
not sufficient for optimizing system-level performance.  

In comparison, the GNN-MARL algorithm is shown to achieve 
true process-system integration through GNN and effective 
learning of adaptive policies by MARL. It has not only achieved the 
highest yield, but also a 98.04% ratio of compliant product (i.e., 
yield/throughput), which is much better than that of Baseline 2. 
This demonstrates the effectiveness of GNN-MARL scheme. 

7. Conclusion 

An integrated method for manufacturing processes and system 
modelling and distributed adaptive control are developed for a 
multi-stage manufacturing system, based on a GNN and MARL. The 
GNN encodes complex system dynamics in machine nodes by 
aggregating real-time information from the neighbouring 
machines. MARL models each machine as individual agent and 
learns adaptive process parameter control policy to cooperatively 
achieve the goal of global maximization of system yield. Evaluated 
in a case study of simulated camshaft production, the developed 
GNN-MARL has achieved significant improvement on both product 
quality and system productivity as compared to baselines 
presently adopted by the industry. Future research will focus on 
understanding the effects of reward settings as well as the 
incorporation of real-time tool condition diagnosis and remaining 
useful life prognosis on the properties of the control policies. 
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