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Modern manufacturing systems are becoming increasingly complex, dynamic, and connected, and their performance is being affected by not only
their constituent processes but also their system-level interactions. This paper presents an integrated modelling method based on a graph neural
network (GNN) and multi-agent reinforcement learning (MARL) collaborative control for adjusting individual machining process parameters in
response to system- and process-level conditions. The structural and operational dependencies among process machines are captured with a
GNN. Iteratively trained with MARL, machines learn to adaptively control local process parameters, e.g., machining speed and depth of cut, while

achieving the global goal of improving production yield.

Multi-level modelling, Process control, Process-system integration

1. Introduction

As manufacturing systems become increasingly complicated and
interconnected, challenges arise for throughput maximization,
quality assurance, and cost reduction [1-2]. Despite extensive
research on process- and system-level analysis, the integration of
these two aspects for global operation optimization continues to
attract researchers’ interest [3]. Integration of processes and
systems is imperative to the overall system performance: 1) from
the process perspective, local parameter adjustment without
considering the system may lead to over- or under-production that
overflows or depletes buffers and limits throughput; 2) from the
system perspective, speeding up certain processes without
ensuring that process constraints are met (e.g.,, part quality) may
diminish the production yield. Therefore, the optimal process
control strategy is deeply coupled with system-level conditions
and vice versa. Seamlessly integrated process-system modelling
and a holistic control scheme would significantly enhance the
performance in both product quality and system productivity.

However, effective integration of processes and systems is quite
challenging. Current modelling methods for manufacturing
systems are mostly dissociated from the underlying processes. A
process model usually considers individual process parameters to
optimize the process. System-level analysis mainly addresses
time-stamped material flow and current methods mainly focus on
system throughput evaluation in the steady state (e.g., Markov
Chain based methods [4]) or real-time production loss evaluation
(e.g., recursive algorithm-based model [5]). As such, the analysis of
production quantity at the system level usually ignores the impact
of process-level activities on system dynamics. With the current
approach of separately analyzing processes and systems, it is
fundamentally difficult for multi-stage manufacturing to achieve a
real-time coordinated and optimized operation.

With the increasing availability of manufacturing data enabled
by extensive sensor deployment [6], learning-based methods for
manufacturing process and system control have attracted interest
as they provide a viable path towards process-system integration
by capturing the dynamics and interdependencies embedded in

the data [7-8]. Graph learning methods, as represented by GNN,
have demonstrated a capability in modelling the interconnections
among system elements by representing the system as a graph
consisting of nodes and links. This topology allows information
exchange among the connected elements [7] and achieves two-
level integrated modelling so that each node is aware of both its
local condition and the status at the global level.

In addition, reinforcement learning (RL), which aims to find an
optimal policy through interactions with the environment [8], has
opened up a new research avenue of process and system
optimization without a rigid rulebook. Extensive RL-based
research has been reported in the literature of manufacturing, for
process optimization (e.g., deep drawing [9] and machining [10]),
deficient stage identification [11], and maintenance scheduling
[12]. However, due to the lack of integrated process-system
modelling, there is a notable separation between process-level [9-
10] and system-level [11-12] RL applications. RL for process-
system integrated control is more challenging than single-level
problems due to the dramatically expanded state/action space and
more complicated process and system dynamics.

Motivated by these prior efforts, this paper presents a process-
system integrated modelling based on GNN by representing the
manufacturing system as a graph. Built on GNN modelling, a
distributed adaptive control scheme is established based on the
MARL paradigm in order to adjust individual process parameters
and maximize system yield. The goal of this paper is to bridge the
existing knowledge gap in process-system integration. Specifically,
relevant machines are modelled as nodes in the GNN with their
interdependencies modelled as links. Each machine in the graph is
then represented by an MARL agent that makes decisions based on
the information from both the process and system. Evaluation
through simulations for a multi-stage grinding operation has
shown that GNN-MARL framework is capable of adaptively
optimizing local process parameters, e.g., machining speed and
depth of cut, to achieve global maximization of the system yield.

2. Problem description and formulation

For manufacturing systems, multiple process stages are typically
needed to produce a part. As shown in Fig. 1, which schematically
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illustrates a simplified camshaft production line, machines process
products with given process parameters and buffers temporarily
hold intermediate parts that await further processing.
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Fig. 1. Manufacturing system structure and underlying process models.

At the process level, process models often quantify the
relationship between quality performance of manufacturing
processes and input parameters. Such models can be used to
optimize the process for improved efficiency and product quality.
Let r! denote a series of key features that characterize the quality
of product i, then the process model for machine n at stage m can
be represented as a function py, ,, (*):

T = pm,n(rél—lfuin,n) €Y)

where i}, _; and r}, are the product’s key features before and after
stage m respectively, and ul,, denotes the process control
parameters for processing product i. For example, in a grinding
process, key features r may refer to product geometry or surface
roughness, while process parameters uﬁn,n may include depth of
cut and machining speed. Various physics models and machine
learning methods have been developed to obtain p,, , (*) [13-14].
Finally, the quality inspection is the procedure that compares key
features 73}, of the completed product against quality standard r*
in order to determine if the product is defective or compliant.

At the system level, current throughput analysis mainly concerns
aggregated parameters from the process such as average cycle
time. Machine downtimes and limited inline buffers lead to
complicated stochastic dynamics and nonlinear interactions
within the system. For example, a machine is starved and must idle
when its upstream buffers are empty due to upstream machines’
inefficiencies. Let T P;,,; denote the system throughput, then:

TPsys = g(zproc' 2:sys) )

where Zppoc are the aggregated parameters from processes, Zgys
are system-level architecture and parameters. In general, there is
no closed-form representation for g(*), and aggregation [4] or
recursive algorithms [5] have been used to evaluate throughput.

Notably, Eq. (1) and Eq. (2) are not functionally connected. This
indicates that process optimization based on process-level models
and system-level throughput improvement based on system
quantitative analysis are mostly separated in current methods. A
key question that arises is: if the parameter (e.g., depth of cut) of an
intermediate machining process changed, how will it impact the
overall system yield? Or to maximize the yield of the system, how
should the process parameters be adjusted? To formulate the
research problem, two quantities that relate to the performance of
both processes and system are denoted in this work:

e  Yield y: number of compliant products among T Pyys.

e Defect d: number of defective products among T F;ys.

Accordingly, the problem studied in this paper is then presented
as follows:

Given the manufacturing system as described, establish an
integrated process-system modelling approach, and build an
automated control scheme to find optimal adaptive policies for each
machine to adjust process parameters for each product with the aim
of maximizing the system yield, i.e.,

uby o () = arg ma(x){y(T)}, t € [0,T], subject to: C 3
U n(t

where y(T) = f({rh, ubyn|/m € M;n € N,i € Z*}, E, Xgy) is the
total system yield during a given time horizon T, E is set of random

downtime events during time horizon T. All the constraints are
denoted by C, which are defined by Eqs. (1) and (2).

3. Process-system integration through GNN

To handle the complexity involved in optimizing Eq. (3), a GNN-
based integrated modelling is proposed to connect the process
model with the flow-based system model. As shown in Fig. 2, the
manufacturing system is represented as a graph, where machines
are treated as nodes and material flows as links. The material flow
showing possible routes of products also describes how machines
may interact with each other.
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Fig. 2. Mapping a manufacturing system to a graph and extracting latent
features with GNN.

In the manufacturing system graph, the node feature x,, includes
local conditions for machine n, interaction between machines as
represented by buffer conditions, and process model output in
order to enable a direct connection between process outputs and
system. Specifically, it is defined as:

Xn = [blnr bvy, Wi, @p, T,y Un, M, n] (€))

The physical meanings of the components are described as follows:

e  bl, and bv, describe the buffer level/vacancy of machine’s

immediate upstream/downstream buffer, which are closely
related to potential blockages or starvations.

e w, and a, indicate the local operation status of machine n,
where w,, is machine’s up/down status, and «,, is machine’s
processing progress on its current product.

e 1, and u, depict the process model output conditions of
product, where 7;, denote the key features of the current
product and u,, is the currently applied process parameters.

e m and n are included in the feature to uniquely identify
machine’s stage and numbering respectively for the ease of
parameter sharing in neural networks.

In this work, we use a GNN to encode machine nodes and obtain
each node’s latent feature that reflects both the local condition of
the machine and global status of the whole system. Node encoding
by GNN, specifically graph convolutional network (GCN) [7] used
in this work, is carried out by layers (see Fig. 2). For each layer, a
machine node pulls information from its first-order neighbouring
machines according to the following function:

hilt=g¢

jem'un)

an] h] wt (5)

where o is the activation function, afl]- is the learnable relation

weight that determines the weight of information that machine n
pulls from its neighbor machine n’, W' is learnable parameters for



layer l. Starting from local node feature h = x,,, by stacking [
layers, the machine node can aggregate information from the
machines that are [-hops away and thereby, encoding the system
dynamics in its latent feature h,. A GNN therefore bridges the gap
between process- and system-level conditions and lays the
foundation for adaptive process control.

4. Distributed adaptive control through MARL

Since the online control problem in Eq. (3) is NP-hard involving
complex dynamics [15], a distributed adaptive control scheme
based on MARL is established. Based on the GNN-integrated
modelling, each agent (i.e, each machine) in MARL makes
independent but informed local process control decisions to
achieve the global maximization of yield in a collaborative manner.

4.1. MARL problem formulation

To fit the control problem in Eq. (3) into the MARL framework,
each machine is modelled as a distributed agent and has an
independent adaptive control policy ™ (u,|h,) that conditions on
machine node’s latent feature h,,. In other words, the latent feature
h, serves as the state/observation in MARL, and therefore
machine agent could make control decisions that are adaptive to
not only machine local conditions but also global system status.

Besides the state/observation, the definitions of action and
reward function are also indispensable in formulating the MARL
problem. The definition of action u,, for each machine depends on
the specific manufacturing process. For example, the process
control parameters in grinding often include machining speed and
depth of cut. Then, the available actions for a grinding machine are
all possible combinations of the two process parameters. The
machine agent is triggered to select an action, i.e., a set of process
parameters, whenever loading a product from its upstream buffer.

The reward function r; is defined to reflect the “goodness” of the
selected actions towards the collaborative common benefit. In this
work, the global reward function at time step t is defined as:

e =—de+ Y (6)

where d; is the stepwise defect and y; is the stepwise yield. Note
that if the costs/profits associated with defective/compliant
products are available through additional cost analysis, which is
beyond the scope of this presented study, Eq. (6) can be redefined
to pursue maximum profits through MARL.

4.2. MARL training paradigm and algorithm

The formulated MARL problem relies on effective iterative
training to learn the optimal control policies n™(uy,|h,) for each
machine. In MARL, the major challenge lies in quantifying an
individual agent’s contribution to the system performance, which
is the key to improving the agents’ policies. There have been a
number of relevant studies in this field. In this work, we investigate
the C-COMA algorithm in [16] due to its compatibility with GNN.

C-COMA algorithm employs the Advantage Actor Critic (A2C)
framework in a distributed setting by designing a tailored
advantage function A™(s, u) for each agent, expressed as:

AV w) = Q5w = ) A" ll)Q(s, W u)) (D)

where Q(s, u) is the state-action value for agents’ joint action u =
[w4, ..., Up, ... ] in state s, ™ (uy, |h,) is agent n’s current policy, and
Q(s, (u™n,uy)) is the state-action value by replacing agent n’s
current action u,, in u with u; while holding other agents’ actions
fixed. The second term on the right-hand side of Eq. (7) is a
counterfactual state-action value for agent n by marginalizing its

action over its current policy. Therefore, A™(s, u) evaluates how
good an agent’s current action is compared to “average”, which
offers a customized baseline for the agent to reason about the
contribution of its current action to the global performance. Based
on the advantage function, the policy gradient gy is obtained as:

9o = Exn log 7 (uun | hy) A™ (s, u) (®)

where 6 denotes all the parameters in GNN and agent’s policy
network. Therefore, the learnable parameters in GNN layers and
MARL policy network are optimized simultaneously with gradient
Jo- More details on C-COMA algorithm can be found in [16].

5. Prototype implementation

The GNN integrated modelling and MARL-based adaptive control
scheme (see Fig. 3) is implemented on a sequence of four grinding
processes in simulated camshaft production, as shown in Fig. 1.
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Fig. 3. GNN-MARL neural network architecture.

The system is a four-stage grinding line. Stage 1~3 have one
machine each, and stage 4 has two parallel machines. Machines’
random downtimes are obtained from sensor data. In simulation,
we assume the time between downtime event arrivals and
duration of downtime events follow exponential distributions.
Buffers are placed between every two stages and all of them have
a limited capacity of ten. The time horizon considered in this case
is a ten-hour shift, i.e., 600 minutes.

The key feature of the product is characterized by the surface
roughness of the four sequential grinding processes, ie., ri =
[rf, v}, ri,vf]. The final product is deemed compliant if Y%, _, 7}, <
5.0 um, or defective otherwise. We adopt a simplified grinding
process model [13] to relate the surface roughness to process
parameters such as machining speed v, and depth of cut a,.
Accordingly, the MARL agent’s action is u, = {[vy,a,]}, where
v, €{0.30, 0.35, 0.40, 0.45, 0.50} m/s, and a,, €{1.20, 1.35, 1.50,
1.65, 1.80}x 107> m. The surface roughness and cycle time for the
given process parameters at each stage are listed in Table 1. The
resulting surface roughness at each stage follows a normal
distribution with its mean and variance depending on the control
parameters. The “reciprocal” relationship in terms of parameters
between the surface roughness and cycle time requires the MARL
to find the balance between quality and throughput in order to
maximize the yield of production.

Table 1
Grinding process model and grinding cycle time given process parameters.

Stage Surface roughness (Lm) Cycle time (min)
1 riN ((”;31)0'90 5.48v7al ") x 10° = 71'0;:1075
2 Fi~N ((v_j’gz) ,5.48v2 a135) x 106 Ti= 10;27[1120*‘
3 ri~N ((% ,5.48v2a} 50) x 106 Ti = 05:37:30_5
4 riN ((U;g“) 548070} %) x 100 Ti= 73'0;:40_5




6. Results and discussion
6.1. Convergence analysis

In Fig. 4, the mean and standard deviation of the test returns (i.e.,
accumulated rewards) are plotted against training steps (left plot).
Progress continues until a leap at around the four millionth steps.
The algorithm convergence is confirmed after ten million steps.
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Fig. 4. GNN-MARL training progress and performance improvement.

Fig. 4 also presents the breakdowns of the system throughput
during training (right plot). It shows that the system outputs a
large number of products with low yield when the training begins,
due to the fact that initial policies are largely random. As the
training continues, agents learn to adjust the parameters and
collaborate with each other to gradually reduce defect while
improving yield. The similar trend between the yield and return
curves confirms the effectiveness of the reward setting (Eq. (6)).

6.2. Performance evaluation and comparison

To further evaluate the effectiveness of the developed method,
we compared the performance of the GNN-MARL policy with two
common industrial baselines. In Baseline 1, process parameters for
each stage are tuned independently to keep the surface roughness
of each stage under 1.25 pm with a 99% probability (i.e., three
standard deviations from the mean in normal distribution) to
ensure that the final product meet the quality standard. Process
parameters remain unchanged during the whole production. In
Baseline 2, a local controller is adopted to adjust the processing
speed on the basis of the parameters obtained in Baseline 1
according to only individual machines’ local features.
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Fig. 5. GNN-MARL policy compared with industrial baselines. Each bar
shows the mean and 95% confidence interval.

The system performance of the three scenarios is shown in Fig.
5. Baseline 1 has the lowest defect rate since its process parameter
setting statistically guarantees a high ratio of compliant product.
However, Baseline 1 fixes process parameters and hence lacks
adaptions to the dynamically changing system conditions. Given its
convenience and stability, this strategy has been widely adopted
by the industry, despite its conservative nature.

Baseline 2 employs heuristics based on local machine conditions
to change the processing speed. Although it leads to higher yield
and throughput compared to Baseline 1, it results in many more
defective products. This demonstrates that such local process

optimization without considering the overall system dynamics is
not sufficient for optimizing system-level performance.

In comparison, the GNN-MARL algorithm is shown to achieve
true process-system integration through GNN and effective
learning of adaptive policies by MARL. It has not only achieved the
highest yield, but also a 98.04% ratio of compliant product (i.e.,
yield/throughput), which is much better than that of Baseline 2.
This demonstrates the effectiveness of GNN-MARL scheme.

7. Conclusion

An integrated method for manufacturing processes and system
modelling and distributed adaptive control are developed for a
multi-stage manufacturing system, based on a GNN and MARL. The
GNN encodes complex system dynamics in machine nodes by
aggregating real-time information from the neighbouring
machines. MARL models each machine as individual agent and
learns adaptive process parameter control policy to cooperatively
achieve the goal of global maximization of system yield. Evaluated
in a case study of simulated camshaft production, the developed
GNN-MARL has achieved significant improvement on both product
quality and system productivity as compared to baselines
presently adopted by the industry. Future research will focus on
understanding the effects of reward settings as well as the
incorporation of real-time tool condition diagnosis and remaining
useful life prognosis on the properties of the control policies.
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