
  

  

Abstract—Robots are good at performing repetitive tasks in 

modern manufacturing industries. However, robot motions are 

mostly planned and preprogramed with a notable lack of 

adaptivity to task changes. Even for slightly changed tasks, the 

whole system must be reprogrammed by robotics experts. 

Therefore, it is highly desirable to have a flexible motion 

planning method, with which robots can adapt to certain task 

changes in unstructured environments, such as production 

systems or warehouses, with little or no intervention needed 

from non-expert personnel. In this paper, we propose a user-

guided motion planning algorithm in combination with 

reinforcement learning (RL) method to enable robots to 

automatically generate their motion plans for new tasks by 

learning from a few common tasks saved as primitive actions by 

kinesthetic human demonstrations. Features of these primitive 

actions are captured through screw transformation of the end-

effector during the task. A mapping method is developed to 

convert features of primitive actions to new task segments and 

further used to construct the reward function in RL. A Q-

learning algorithm is applied to train the motion planning policy, 

following which an adaptive motion plan for the new task can be 

generated or a request for additional primitive actions will be 

returned if current primitive actions are insufficient for 

satisfying new task constraints. Multiple experiments conducted 

on common tasks and scenarios demonstrate that the proposed 

RL-based motion planning method is effective. 

 

I. INTRODUCTION 

In today’s manufacturing systems, robot manipulators are 
usually required to finish repeatable tasks from a starting 
configuration to a goal configuration while maintaining 
specific constraints on positions and orientations during the 
task. However, when task instances change, reprogramming 
work for robots to satisfy new task constraints is time-
consuming and incapable for non-expert human workers 
especially when the number of robots in human-robot-
collaboration (HRC) is large. With the development of 
Industry 4.0, there’s an increasing demand of robots working 
adaptively and smartly with humans in recent years [1]. 
Therefore, how to enable robots to collaborate with non-expert 
humans and automatically plan motions facing different tasks 
leave significant challenges to today’s smart manufacturing. 

To overcome these challenges, we involve both user 
demonstrations and robot motion planning to generate motion 
plans for tasks characterized by specific constraints. The use 
of user demonstration to teach a robot has been studied under 
the name of Learning from Demonstration (LfD). There is a 
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substantial body of literature on LfD that can be classified 
based on the method of acquiring the demonstration such as 
using haptic gloves, image-based sensors, and kinesthetic 
demonstrations [2]. In this paper, we take advantage of 
kinesthetic demonstrations since there is no correspondence 
problem between the kinematic structure of the demonstrating 
system and the follower robot [3]. 

There have been a significant number of literatures on LfD 
that are useful for learning from kinesthetic demonstrations. 
Some researches use spline functions to decompose 
demonstrated trajectories to generate new trajectories for 
manipulation tasks [4]. However, they do not take care of noise 
in the demonstration which may be significant, especially 
when the motion information is obtained through human 
demonstrations. Some nonlinear regression techniques use 
statistical techniques to incorporate the uncertainty of sensing 
in the estimation. For instance, a Hidden Markov Model 
combined with Non-Uniform Rational B-Splines is used in [5] 
for trajectory approximation. A data-driven approach using 
Gaussian Mixture Model is adopted in [6]. However, these 
statistical approaches require multiple similar demonstrations 
for only one trajectories of the new task. This inefficient usage 
of user demonstrations would increase the labor of human 
operators in HRC. The dynamical systems based approach, or 
dynamical motion primitives (DMPs), on the other hand, can 
learn from single examples [7]. However, most works assume 
that there is a dynamical system modeling each degree-of-
freedom (DoF) of the end-effector, which is not clear when 
both the position and orientation of the end-effector are 
relevant to the task. In addition, methods mentioned above are 
data-driven. The underlying kinetic transformations between 
each configuration in the user demonstration  are not well 
utilized during the process of LfD. 

For robot motion planning, existing algorithms can be 
divided into joint-space based approaches and task-space 
based approaches [8], [9]. For a robot manipulator, the joint 
space or configuration space is the set of all angles the joints 
can reach. The task space is the set of all end effector 
configurations of the robot manipulator. Joint space-based 
motion planning approaches have the advantage that they are 
(probabilistically or resolution) complete. Thus, in principle, 
they are guaranteed to give a feasible solution given enough 
time. However, in practice, they may not return a solution in 
reasonable time and a non-robotics expert will not be able to 
handle the situation. On the other hand, task-space based 
approaches handle task constraints more naturally, but they do 
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not have any completeness guarantees in the presence of 
obstacles. Recently, Chakraborty et al. [10] develop a user-
guided motion planning method in the task space that learns 
from only one human demonstration to generate motion plans 
for semantically similar task instances by using the imitated 
the human demonstration as a guidance given the new goal 
position. However, task constraints before the current pose 
blending into the imitated human demonstration are not 
guaranteed. In addition, the only explicit task constraint 
considered is the goal position. Other explicit task constraints 
like positions and orientations of some other configurations 
during the task are not considered, which makes it brittle to the 
change of task.  

In this paper, to enable the robot to work with non-expert 
humans in certain HRC environment and reduce 
reprogramming when tasks change, we develop an RL-based 
motion planning method that can enable the robot to learn from 
one or multiple human demonstrated primitive actions to 
generate adaptive motion plans for new tasks in such HRC 
environment. First, primitive actions are recorded in the joint 
space through kinesthetic demonstrations based on some 
common tasks such as stacking a block, twisting a screw driver 
and filling a cup of water. Next, features of these primitive 
actions are captured by calculating screw transformations 
throughout demonstrations. Given new task constraints, we 
formulate the motion planning problem in the task space into 
a Markov Decision Process (MDP) framework and use the Q-
learning method to train a motion planning policy to generate 
adaptive motion plans in the task space for the new task. 
Finally, inverse kinematics (IK) is used to calculate 
corresponding motion plans in the joint space to control the 
robot to execute learned motion plans. 

The main contributions of this paper can be listed as: (1) 
Propose a method to abstract features of primitive actions; (2) 
Develop a method that can map features of primitive actions 
to the new task; (3) Formulate the robot manipulator learning 
from demonstration and motion planning problem as a 
reinforcement learning problem in the Markov Decision 
Process framework; (4) Propose a reasonable reward function 
based on the evaluation of the deviation between the generated 
motion plan and the task constraints. 

The reminder of this paper is organized as follows: The 
mathematical preliminaries are introduced in Section II. The 
learning from demonstration and motion planning problem is 
stated in Section III. In Section IV, the learning from 
demonstration and motion planning problem is formulated as 
an MDP and solved by the Q-learning algorithm. Case studies 
and conclusions are provided in Section V and VI respectively. 

II. MATHEMATICAL BACKGROUND  

In this paper, the joint space or configuration space is 
represented by 𝒥, which is the set of all joint angles of the 
robot manipulator. 𝑆𝐸(3)  denotes the Special Euclidean 
group of 3, which represents the task space contains all rigid 
body motions (i.e., rotations and translations) [11]. 

To describe the rigid body rotation and translation in 
𝑆𝐸(3) , a dual quaternion representation is adopted in this 
paper [12]. A dual quaternion 𝑫 is defined as: 

𝑫 = 𝒅𝑟 +
1

2
𝜖𝒅𝑡⨂𝒅𝑟 (1) 

where 𝜖 ≠ 0, but 𝜖2 = 0. In this definition, 𝒅𝑡 and 𝒅𝑟  are two 
quaternions and ⨂  is the product of two quaternions. The 
translation of the rigid body is represented by the quaternion 
𝒅𝑡 which is denoted as: 

 𝒅𝑡 = (0, 𝒕̂) (2) 

where 𝒕̂ = 𝑡𝑥 𝒊̂ + 𝑡𝑦𝒋̂ + 𝑡𝑧𝒌̂ is the translation vector in 𝑆𝐸(3). 

The unit quaternion 𝒅𝑟  representing the pure rotation of the 
rigid body can also be expressed as: 

𝒅𝑟 = cos (
𝜙

2
) + 𝒏̂ sin (

𝜙

2
) (3) 

where 𝒏̂ = 𝑛𝑥 𝒊̂ + 𝑛𝑦𝒋̂ + 𝑛𝑧𝒌̂  is a unit vector in 𝑆𝐸(3) 

representing the rotation axis, and 𝜙  is the rotation angle. 
Using this 𝒅𝑟 , any vector 𝑣̂ can be rotated an angle 𝜙 about 
the axis 𝒏̂ by using the quaternion sandwich 𝒅𝑟𝑣̂𝒅𝑟

∗  [36], and 
𝒅𝑟

∗  is the conjugate of 𝒅𝑟 . For more quaternion manipulations, 
we refer readers to [12]. 

III. PROBLEM FORMULATION 

In this paper, we consider a human-robot collaboration 
(HRC) environment, where some common tasks are 
demonstrated by human workers and recorded as primitive 
actions. Given constraints of new tasks and environment 
conditions, e.g., critical configurations of the end-effector and 
locations of an obstacle, a robot is required to finish these tasks 
by learning from primitive actions in such HRC environment. 
We assume that the robot has basic capability to move its end-
effector from one configuration to another in the absence of 
any constraints.  Our goal is to develop a method to enable the 
robot to generate adaptive motion plans for different new tasks 
to satisfy explicit and implicit task constraints. 

A. Specify Manipulation Tasks for the Robot 

In this paper, a manipulation task 𝑻𝑲  is defined as a 
sequence of 𝑛  critical configurations based on the task 
constraints and environment conditions: 

𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} (4) 

where 𝑐𝑜𝑛𝑖 , 𝑖 = 1, … , 𝑛, is a tuple of two < 𝑷𝑖 , 𝜽𝑖 >. In this 
tuple, 𝑷𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]

𝑇 is a vector in 𝑆𝐸(3) that specifies the 
position of 𝑐𝑜𝑛𝑖 , 𝜽𝑖 = [𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3]𝑇 ,  is a vector in 𝒥  that 
defines Euler angles of 𝑐𝑜𝑛𝑖.  

B. Features of Primitive Actions 

Some common tasks in HRC environment, e.g., fastening 
screws can be regarded as primitive actions for a certain 
working scenario. A human can provide a kinesthetic 
demonstration of a primitive action  by holding the arm of the 
robot and demonstrates a trajectory for accomplishing a given 
task instance. Throughout this demonstration, the explicit and 
implicit task constraints embedded in this human 
demonstrated primitive action can be recorded by many 
commercial robots such as UR robots in the joint space 𝒥 as a 
time sequence of joint angles 𝝋𝑟𝑒𝑐 as: 

𝝋𝑟𝑒𝑐 = {𝝋(1), 𝝋(2), … , 𝝋(𝑚)} (5) 



  

where each 𝝋(𝑡𝑟𝑒𝑐) =
[𝜑1(𝑡𝑟𝑒𝑐), 𝜑2(𝑡𝑟𝑒𝑐), … , 𝜑𝑟(𝑡𝑟𝑒𝑐)]𝑇 , 𝑡𝑟𝑒𝑐 = 1, 2, . . . , 𝑚 
represents joint angles of the manipulator,  𝑟 is the DOF of the 
manipulator, and 𝑡𝑟𝑒𝑐  is the time sequence of the 
configurations reached during the motion. Using the forward 
kinematics mapping ℱ𝒦: 𝒥 → 𝑆𝐸(3) , the corresponding 
human demonstrated primitive action in 𝑆𝐸(3)  will be 
obtained as 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚} , in which each 𝑫𝑗  is a 

dual quaternion denoted as 𝑫𝑗 = 𝒅𝑟𝑗 +
1

2
𝜖𝒅𝑡𝑗⨂𝒅𝑟𝑗  , 𝑗 =

1,2, … , 𝑚.  

Starting from 𝑫1 , we compute the relative motion with 
respect to the final end effector configuration for each 
configuration 𝑫𝑗 . Using the dual quaternion representation, 

the transformation 𝛿𝑗 between the final configuration 𝑫𝑚 and 

every other configuration 𝑫𝑗 is: 

𝛿𝑗 = 𝑫𝑗
∗ ⊗ 𝑫𝑚   , 𝑖 = 1,2, … , 𝑚 − 1 (6) 

where 𝑫𝑗
∗ is the conjugate dual quaternion of 𝑫𝑗 and ⊗ is the 

product of two dual quaternions. This 𝛿𝑗  is also a dual 

quaternion and can be written as: 𝛿𝑗 = 𝒅𝑟

𝛿𝑗
+

1

2
𝜖𝒅𝑡

𝛿𝑗
⨂𝒅𝑟

𝛿𝑗
. 

Since this transformation 𝛿𝑗 represents the relative translation 

and rotation of the end-effector between two configurations. It 
does not change with respect to the current configuration of 
the end-effector. In this way, all implicit task constraints are 
embedded in the sequence of 𝛿𝑗 during the motion, which is 

referred to as the feature of the human demonstration. As such, 

the feature of the 𝑘𝑡ℎ primitive action in the 𝑆𝐸(3) can then 
be described as: 

𝑯𝑫𝑘
𝛿 = {𝛿1

𝐻𝐷𝑘 , 𝛿2
𝐻𝐷𝑘, … , 𝛿𝑚−1

𝐻𝐷𝑘 } (7) 

Suppose that there are ℎ  primitive actions in certain HRC 
environment, the set stores features of all ℎ primitive actions 
can be denoted as: 

𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} (8) 

Based on the definition of the manipulation task and 
features of primitive actions, the problem studied in this paper 
can be described as follows: Given a set of primitive action’s 

features 𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿}  and a new task 𝑻𝑲 =

{𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛}  in the task space 𝑆𝐸(3) , develop a 
method to find motion plan 𝑴𝑷 in the joint space 𝒥 for the 
new task by learning from human demonstrations in 𝑳𝑩 such 
that the explicit constraints specified in each 𝑐𝑜𝑛𝑖  in 𝑻𝑲 is 
satisfied. If no 𝑴𝑷 can be found, then a request for additional 
human demonstrations is made to satisfy all task-relevant 
constraints in 𝑻𝑲. 

IV. OBTAINING MOTION PLANS TROUGH REINFORCEMENT 

LEARNING 

In order to obtain the motion plan 𝑴𝑷 in 𝒥 given a new 
task, we want to find out the motion plan 𝑴𝑷 in 𝑆𝐸(3) first 
since the new task and the set of human demonstrated features 
have been already established in 𝑆𝐸(3). After the motion plan 
𝑴𝑷 in 𝑆𝐸(3) is generated, IK can be applied to convert the 
motion plan in 𝑆𝐸(3) to the motion plan in 𝒥.  

A. Map human demonstrated features to the new task 

Since the new task 𝑻𝑲 is specified only on some critical 
configurations 𝑐𝑜𝑛𝑖, we want to develop a method that learns 
from human demonstrated primitive tasks to generate an 
intermediate motion plan between two critical configurations 
of the new task. The final motion plan 𝑴𝑷  in 𝑆𝐸(3)  can 
consequently be obtained as a sequence of such intermediate 
motion plans. 

First, let 𝒕𝒌𝑠 ⊆ 𝑻𝑲 be a subset or the entire new task 𝑻𝑲 
that can be defined as: 

𝒕𝒌𝑠 = {𝑐𝑜𝑛𝑖 , 𝑐𝑜𝑛𝑖+1, … , 𝑐𝑜𝑛𝑣},   𝑖 ≥ 1, 𝑖 ≤ 𝑣 ≤ 𝑛 (9) 

Using the dual quaternion representation, the 𝑖𝑡ℎ configuration 
of the task 𝒕𝒌𝑠 can be written as: 

𝑫𝑖
𝑡𝑘𝑠 = 𝒅𝑟𝑖

𝑡𝑘𝑠 +
1

2
𝜖𝒅𝑡𝑖

𝑡𝑘𝑠 ⊗ 𝒅𝑟𝑖
𝑡𝑘𝑠  , 𝑖 = 1,2, … , 𝑛 (10) 

The transformation, 𝛿𝑖
𝑡𝑘𝑠 , between the last critical 

configuration 𝑐𝑜𝑛𝑛  and any other critical configuration 𝑐𝑜𝑛𝑖 
is defined as: 

𝛿𝑖
𝑡𝑘𝑠 = 𝑫𝑖

𝑡𝑘𝑠
∗

⊗ 𝑫𝑛
𝑡𝑘𝑠 , 𝑖 = 1, … , 𝑛 − 1 (11) 

which can also be written as: 𝛿𝑖
𝑡𝑘𝑠 = 𝒅𝑟

𝛿𝑖
𝑡𝑘𝑠

+
1

2
𝜖𝒅𝑡

𝛿𝑖
𝑡𝑘𝑠

⨂𝒅𝑟

𝛿𝑖
𝑡𝑘𝑠

. 

Therefore, features of the task 𝒕𝒌𝑠 can be represented as: 

𝒕𝒌𝑠
𝛿 = {𝛿1

𝑡𝑘𝑠 , 𝛿2
𝑡𝑘𝑠 , … , 𝛿𝑛−1

𝑡𝑘𝑠 } (12) 

Next, suppose that to finish this task segment  𝒕𝒌𝑠 , the 

robot can learn from the feature 𝑯𝑫𝑘
𝛿 . We can define a 

mapping method 𝒎𝒑𝑘
𝑠 : 𝑯𝑫𝑘

𝛿 → 𝒕𝒌𝑠
𝛿 , such that the relative 

transformation saved in 𝑯𝑫𝑘
𝛿  can be scaled and fitted to the 

task constraints given in 𝒕𝒌𝑠
𝛿 . To obtain this 𝒎𝒑𝑘

𝑠 , the 

translation vector 𝒅𝑡

𝛿𝑗
 of each 𝛿𝑗 in 𝑯𝑫𝑘

𝛿  needs to be aligned 

to  the vector 𝒅𝑡

𝛿𝑖
𝒕𝒌𝑠

 of each 𝛿𝑖
𝒕𝒌𝑠  in 𝒕𝒌𝑠

𝛿. The rotation from 𝒅𝑡

𝛿𝑗
 

to 𝒅𝑡

𝛿𝑖
𝒕𝒌𝑠

can be represented as a unit quaternion: 

𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 = cos (
𝜙𝑯𝑫𝑘

𝒕𝒌𝑠

2
) + 𝒏̂𝑯𝑫𝑘

𝒕𝒌𝑠 sin (
𝜙𝑯𝑫𝑘

𝒕𝒌𝑠

2
) (13) 

where 𝒏̂𝑯𝑫𝑘

𝒕𝒌𝑠 =
𝒅𝑡

𝛿𝑗
×𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|𝒅𝑡

𝛿𝑗
×𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|

 and 𝜙𝑯𝑫𝑘

𝒕𝒌𝑠 = cos−1 𝒅𝑡

𝛿𝑗
⋅𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|𝒅𝑡

𝛿𝑗
||𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|

. 

Therefore, each 𝒅𝑡

𝛿𝑗
 of 𝛿𝑗  in 𝑯𝑫𝑘

𝛿 , 𝑗 = 1,2, … , 𝑚 − 1 can be 

rotated using the quaternion sandwich 𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
. After 

scaling the vector  𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
 with 

|𝒅𝑡
𝛿1|

|𝒅𝑡

𝛿1
𝒕𝒌𝑠

|

. The final 

translation quaternion 𝒅
𝑡𝑗

𝒎𝒑𝑘
𝑠

 that maps the relative translation 

𝒅𝑡
𝛿𝑖 in 𝑯𝑫𝑘 to 𝒕𝒌𝒔 can be obtained as: 

𝒅𝑡𝑗

𝒎𝒑𝑘
𝑠

= (0,
|𝒅𝑡

𝛿1|

|𝒅𝑡

𝛿1
𝒕𝒌𝑠

|

𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
) , 𝑗 = 1,2, … . , 𝑚 − 1(14) 



  

Since the detailed transformation between 𝑐𝑜𝑛𝑖  and 𝑐𝑜𝑛𝑖+1 
are not specified, we can just use all the intermediate 
transformation in 𝛿𝑗 for the transformation between 𝑐𝑜𝑛𝑖 and 

𝑐𝑜𝑛𝑖+1 . Let 𝒅𝑟𝑗

𝒎𝒑𝑘
𝑠

= 𝒅𝑟

𝛿𝑗
, 𝑗 = 1,2, … . , 𝑚 − 1 , the mapping 

𝒎𝒑𝑘
𝑠  can finally be derived as: 

𝒎𝒑𝑘
𝑠 = 𝒅𝑟

𝒎𝒑𝑘
𝑠

+
1

2
𝒅𝑡

𝒎𝒑𝑘
𝑠

⊗ 𝒅𝑟

𝒎𝒑𝑘
𝑠

(15) 

Let 𝑻𝑲 = {𝑡𝑘1, 𝑡𝑘2, … , 𝑡𝑘𝑝} , the final motion plan 𝑴𝑷  in 

task space for 𝑻𝑲  can be determined by 𝑴𝑷 =
{𝒎𝒑𝑘1

1 , 𝒎𝒑𝑘2

2 , … . , 𝒎𝒑𝑘𝑝

𝑝
}, in which for each 𝑞 ∈ {1,2, … , 𝑝}, 

𝑘𝑞 ∈ {1,2, … , ℎ}. In the following subsections, we will discuss 

how to formulate the motion problem into a Markov Decision 
Process (MDP) and obtain this 𝑴𝑷  in 𝑺𝑬(3)  using an RL 
method. 

B. MDP Formulation of the Problem 

To find out the appropriate motion plan 𝑴𝑷 that satisfy all 
task constraints in 𝑻𝑲, one has to go through all subsets of 𝑻𝑲 
and evaluate the corresponding motion plans generated by 
mapping each human demonstrated features in 𝑳𝑩  to 𝑻𝑲 , 
which is a NP-hard problem [13]. Assume that there are 𝑥 
human demonstrations stored and 𝑦 subsets of the new task 
𝑇𝐾, the computational complexity for evaluation of the motion 
plans by searching exhaustively is 𝑂(𝑥𝑦), which would be 
huge if the number of human demonstrations and the 
constraints of the new task is large. To solve this NP-hard 
problem, we formulate the problem into a MDP paradigm 
which is most common framework for RL that models the 
sequential decision making in uncertain environments [14]. 

Before we can apply RL algorithms to obtaining the 
ultimate motion planning policy 𝜋∗, we need to first properly 
define the three key components of MDP, which are𝑠𝑡, 𝑎𝑡 and 
𝑟𝑡 at time step 𝑡. 

Given 𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿}  and 𝑻𝑲 =

{𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛}, the state 𝑠𝑡 is defined as: 

𝑠𝑡 = [𝑪𝑭𝑡 , 𝒕𝒌𝑡] (16) 

where 𝑪𝑭𝑡 is the current configuration of the end-effector at 𝑡, 
𝒕𝒌𝑡 = {𝑐𝑜𝑛𝑗 , 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛}, 𝑗 ∈ {1,2, … , 𝑛}  is the subset 

of 𝑻𝑲 and 𝒕𝒌𝑡
′ = {𝑐𝑜𝑛𝑗, 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑘}, 𝑘 ≤ 𝑛representing 

the current task the robot is going to satisfy. 

The action 𝑎𝑡 can be defined as: 

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡), … , 𝑎ℎ(𝑡)] (17) 

where each 𝑎𝑖(𝑡) is defined as: 

𝑎𝑖(𝑡) = {
𝑘,    if 𝑯𝑫𝑖

𝛿  is mapped to 𝒕𝒌𝑡
′   

0,     otherwise                             
(18) 

which is to identify whether the human demonstrated feature 

𝑯𝑫𝑖
𝛿  is selected to be mapped to the current task 𝒕𝒌𝑡

′ . 

To evaluate the action at 𝑡 , the reward function 𝑟𝑡  is 
defined as: 

𝑟𝑡 =                                                                                                                  

{
−𝑓 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

) , ∀𝛿𝑙
𝒕𝒌𝑡

′

∈ 𝒕𝒌𝑡
′𝛿 , ∃𝛿𝑜 ∈ 𝑯𝑫𝑖

𝛿
→  𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

 ) ≤ ∆𝛼

−∞,                                               otherwise                                       (19)

 

where 𝑓 (𝛿𝑜, 𝛿𝑙
𝒕𝒌𝑡

′

) = ∑ min
𝑜

𝛼 (𝛿𝑜, 𝛿𝑙
𝒕𝒌𝑡

′

 )𝑘
𝑙=𝑗  and 𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

 )  is 

defined as: 

𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

 ) = min {‖𝒅𝑟
𝛿𝑜 − 𝒅𝑟

𝛿𝑙

𝒕𝒌𝑡
′

 ‖ , ‖𝒅𝑟
𝛿𝑜 + 𝒅𝑟

𝛿𝑙

𝒕𝒌𝑡
′

 ‖} (20) 

which is the Euclidean distance [15] between each 𝛿𝑜 in the 

feature 𝑯𝑫𝑖
𝛿  and each feature 𝛿𝑙

𝒕𝒌𝑡
′

 of the current task. ∆𝛼 is a 

tolerance that is set to be 0.5 in this paper. 

C. Applying Q-learning to Obtain the Optimal Motion 

Planning Policy 

The basic idea of Q-learning is that we can define a 
function 𝑄 [14]: 

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋)

𝑠′∈𝑆

(21) 

such that 𝑣(𝑠, 𝜋∗) = max
𝑎

𝑄∗(𝑠, 𝑎). If we know 𝑄∗(𝑠, 𝑎), then 

the optimal policy 𝜋∗ can be found by simply identifying the 
action that maximizes 𝑄∗(𝑠, 𝑎) under the state 𝑠. Starting with 
arbitrary initial values of 𝑄(𝑠, 𝑎), the updating procedure of 
Q-learning is: 

    𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡 , 𝑎𝑡)

+ 𝛼𝑡 [𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡)] 
(22) 

where 𝛼𝑡 ∈ [0,1)  is the learning rate and 𝛾 ∈ (0,1)  is the 
discount factor. The training process is shown in Algorithm 
1. After the training, the ultimate policy 𝜋∗ is determined as: 

𝜋∗(𝑎|𝑠) = {
1, if 𝑎 = arg max

𝑎′∈𝐴(𝑠)
{𝑄(𝑠, 𝑎′)}

0, otherwise
(23) 

where 𝐴(𝑠) is the set of all legal actions at state 𝑠 in the Q-
table 𝑄(𝑠, 𝑎) . The final motion plan 𝑴𝑷  is generated 
following the Algorithm 2.  

Algorithm 1 Training of the RL-based Motion Planner  

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾 

Output: 𝑄(𝑠, 𝑎) 

Initialize 𝑄(𝑠, 𝑎) randomly 

Initialize 𝑡 = 0 

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1 and 𝒕𝒌0 = 𝑻𝑲 

For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0,1, … ,100 do 

        While the last 𝑐𝑜𝑛𝑛 of 𝑻𝑲 is not reached do 

                 Choose 𝑎𝑡=arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡 , 𝑎)using policy                 

                 derived from 𝑄(𝑠, 𝑎) (e.g. 𝜖-greedy) 

                 Take action 𝑎𝑡, observe 𝑟𝑡 

                  Update 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) based on Eqn. (22) 

        End While 

End For 

Output 𝑄(𝑠, 𝑎) 

 

Algorithm 2 Generating Motion Plan in 𝑺𝑬(𝟑)  

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾, 𝑄(𝑠, 𝑎) 

Output: 𝑴𝑷 



  

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1  and 𝒕𝒌0 = 𝑻𝑲  

For 𝑡 = 0,1, … , 𝑇 do 

     Find legal action list 𝐴(𝑠𝑡) from 𝑄(𝑠𝑡, 𝑎) → 𝑎 ∈ 𝐴(𝑠𝑡)  

     Find the optimal action as 𝑎𝑡 = arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡, 𝑎)  

     Map 𝑯𝑫𝑖 to 𝒕𝒌𝑡
′  according to 𝑎𝑡 

    𝑀𝑃𝑡 ← 𝑫𝑛
𝑡𝑘𝑡

′

⊗ 𝒎𝒑𝑖
𝒕∗  

End For 

𝑴𝑷 ← {𝑀𝑃0, 𝑀𝑃1, … , 𝑀𝑃𝑇}  

     Output  𝑴𝑷 

V. CASE STUDY 

In order to validate effectiveness of the proposed method 
in generating motion plans for new tasks, multiple experiments 
are conducted on the UR5e platform. In this case study, two 
performance metrices are considered: (1) The accumulated 
reward of the motion plan in 𝑆𝐸(3); (2) The successful rate of 
applying the motion plan in 𝒥 for new tasks. From the case 
study, two significant results can be concluded: (1) The 
proposed method is effective in combining different features 
of human demonstrations to generate motion plans for the new 
task; (2) The proposed method is effective in requesting 
additional human demonstrations if no features of primitive 
actions are semantically similar to the new task.  

A. Record Primitive actions in 𝒥 

As shown in Fig. 1, three primitive actions are recorded in 
𝒥 through kinesthetic demonstrations, including one screwing 
task, one filling task and one stacking task. 

 

Figure 1. Kinesthetic demonstrations of 3 most common tasks. (a) Screwing 
task. (b) Filling task. (c) Stacking task. 

B. Training the RL-based Motion Planner in SE(3) 

In order to obtain a general motion planning policy in 
𝑆𝐸(3) for the HRC scenario, we implement Algorithm 1 to 
train a Q-table initialized with random Q values in Matlab 
using a 4-core 4.0GHz Intel Core i7 processor. 20 new tasks 
with four critical configurations of each that cover all features 
are used during the training. Positions of these critical 
configurations are randomly generated within a 50 × 50 ×

50 𝑐𝑚3  workspace. Corresponding Euler angles of each 
critical configuration are also randomly selected from a set 
{−𝜋, −π/2,0, π/2, 𝜋}. The total training episode for each new 
task is set to be 100. The total computation time is 1927.42 
seconds.  

To monitor the training process, accumulated rewards for 
each new task are recorded every two iterations. The average 
accumulated reward for all 20 new tasks is shown in Fig. 2. 
Although the training rewards are noisy before 50 episodes, 
the underlying trend is that the rewards are increasing with 
training episodes. It can be observed that the reward reaches a 
steady level after around 50 episodes. This indicates that a 
steady motion planning policy in 𝑆𝐸(3)  that can map 
appropriate features of human demonstrations to new tasks 
with semantically similar features is generated for the 
assemble and loading/unloading scenario. 

 

Figure 2. Training process for motion plans in 𝑆𝐸(3) 

C. Evaluation of the Trained Motion Planning Policy 

To evaluate the performance of the trained motion plan 
policy in 𝑆𝐸(3) for the HRC scenario, two new tasks, namely, 
a filling-and-pouring task and a passing task, are used as 
examples to demonstrate the method. The trained Q-table from 
is used as the input to Algorithm 2 to generate motion plans 
for new unseen tasks in 𝑆𝐸(3). IK is used to calculate the final 
motion plan in ℐ . For each task, 20 experiment trials are 
conducted. For each trial, if the final motion plan in ℐ  is 
collision-free and satisfy all task constraints, such trial would 
be regarded as a successful one. The successful rate for each 
new task is recorded to evaluate the motion planning policy. 

Filling-and-Pouring Task: In this task, the end-effector is 
required to fill water to the blue cup (shown in Fig. 3), then 
reach a goal position above the white cup (shown in Fig. 3), 
and finally pour water to the white cup. The location of the 
white cup is on the surface of a desk within a workspace of 
20 × 20 𝑐𝑚2. We can specify 4 critical configurations based 
on the described task. Sample critical configurations from 
𝑐𝑜𝑛1  to 𝑐𝑜𝑛4  are presented in Table 8, where −𝜋 ≤ 𝛾 ≤ 𝜋, 
−0.5 ≤ 𝑥 ≤ 0.7 , −0.2 ≤ 𝑦 ≤ 0  for different trials. For 20 
experiment trials, a successful rate of 80% is observed. We use 
the final motion plan in ℐ for one trial as an example as shown 
in Fig. 3 to illustrate the result. It is noticed that the features of 
3 human demonstrated tasks, namely filling, stacking, and 
screwing, are learned and mapped to the segment between 
𝑐𝑜𝑛1 and 𝑐𝑜𝑛2, the segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3, and the 
segment between 𝑐𝑜𝑛3  and 𝑐𝑜𝑛4 , respectively. In this 
experiment, the proposed method can identify and compose 
the appropriate features of primitive actions to perform a new 
task. 

TABLE I.  CRITICAL CONFIGURATIONS OF THE FILLING-AND-
POURING TASK 

(a)                                                       (b) 

(c) 



  

 

 

Figure 3. Final motion plan for the filling-and-pouring task. 

Passing Task: In this task, the end-effector is required to 
pass the screw driver to the human in a specific orientation. By 
applying the same trained general motion plan policy, a zero 
successful rate is observed in the experiment, which indicates 
additional human demonstrations are needed. A closer 
examination reveals that none of the three features of primitive 
actions is semantically similar to the feature of the task 
segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3, which requires a 90-degree 
rotation about its body-fixed x-axis clockwise. Therefore, 
additional human demonstration is requested for this feature.  

TABLE II.  CRITICAL CONFIGURATIONS OF THE PASSING TASK 

 

With this additional human demonstrated primitive action 
shown in Fig. 4 (a) added, the motion planning policy is 
retrained using Algorithm 1 with the Q-table trained in section 
6.2. As shown in Fig. 4 (b), the accumulated reward reaches a 
steady value after around only 8 iterations. Then by applying 
the newly trained policy, the motion plan is generated as 
shown in Fig. 4 (c). All 20 trials are witnessed successful. The 
result shows that the features of the human demonstrated 
screwing task is learned and mapped to the task segment 
between 𝑐𝑜𝑛1  and 𝑐𝑜𝑛2 . The feature of the newly added 
human demonstration is learned and mapped to the task 
segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3.  

VI. CONCLUSION AND FUTURE WORK 

In this paper, we present a method for incorporating human 
demonstrations in RL-based motion planning. By learning 
from human demonstrated features of primitive actions, the 
task-space RL-based motion planner can effectively generate 
motion plans for new tasks or request additional human 
demonstrations for tasks if the features of all primitive actions 
are insufficient to finish the task. Using inverse kinematics 
(IK), motion plans in the joint space can be obtained and 
successful trials are able to be achieved in real-world 
experiments. In future work, we plan to extend our proposed 
method to mobile manipulators. We also plan to integrate with 
the human motion perception, recognition, and prediction for 
realistic implementation.   

 

Figure 4. Outline for the passing task. (a) Additional human demonstration. 
(b) Training process with newly added human demonstration. (c) Final 

motion plan for the pass task. 
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