

Abstract—Robots are good at performing repetitive tasks in

modern manufacturing industries. However, robot motions are

mostly planned and preprogramed with a notable lack of

adaptivity to task changes. Even for slightly changed tasks, the

whole system must be reprogrammed by robotics experts.

Therefore, it is highly desirable to have a flexible motion

planning method, with which robots can adapt to certain task

changes in unstructured environments, such as production

systems or warehouses, with little or no intervention needed

from non-expert personnel. In this paper, we propose a user-

guided motion planning algorithm in combination with

reinforcement learning (RL) method to enable robots to

automatically generate their motion plans for new tasks by

learning from a few common tasks saved as primitive actions by

kinesthetic human demonstrations. Features of these primitive

actions are captured through screw transformation of the end-

effector during the task. A mapping method is developed to

convert features of primitive actions to new task segments and

further used to construct the reward function in RL. A Q-

learning algorithm is applied to train the motion planning policy,

following which an adaptive motion plan for the new task can be

generated or a request for additional primitive actions will be

returned if current primitive actions are insufficient for

satisfying new task constraints. Multiple experiments conducted

on common tasks and scenarios demonstrate that the proposed

RL-based motion planning method is effective.

I. INTRODUCTION

In today’s manufacturing systems, robot manipulators are
usually required to finish repeatable tasks from a starting
configuration to a goal configuration while maintaining
specific constraints on positions and orientations during the
task. However, when task instances change, reprogramming
work for robots to satisfy new task constraints is time-
consuming and incapable for non-expert human workers
especially when the number of robots in human-robot-
collaboration (HRC) is large. With the development of
Industry 4.0, there’s an increasing demand of robots working
adaptively and smartly with humans in recent years [1].
Therefore, how to enable robots to collaborate with non-expert
humans and automatically plan motions facing different tasks
leave significant challenges to today’s smart manufacturing.

To overcome these challenges, we involve both user
demonstrations and robot motion planning to generate motion
plans for tasks characterized by specific constraints. The use
of user demonstration to teach a robot has been studied under
the name of Learning from Demonstration (LfD). There is a

T. Yu is with Department of Mechanical and Aerospace Engineering,

University of Virginia, Charlottesville, VA, 22903 USA
(ty2yy@virginia.edu).

substantial body of literature on LfD that can be classified
based on the method of acquiring the demonstration such as
using haptic gloves, image-based sensors, and kinesthetic
demonstrations [2]. In this paper, we take advantage of
kinesthetic demonstrations since there is no correspondence
problem between the kinematic structure of the demonstrating
system and the follower robot [3].

There have been a significant number of literatures on LfD
that are useful for learning from kinesthetic demonstrations.
Some researches use spline functions to decompose
demonstrated trajectories to generate new trajectories for
manipulation tasks [4]. However, they do not take care of noise
in the demonstration which may be significant, especially
when the motion information is obtained through human
demonstrations. Some nonlinear regression techniques use
statistical techniques to incorporate the uncertainty of sensing
in the estimation. For instance, a Hidden Markov Model
combined with Non-Uniform Rational B-Splines is used in [5]
for trajectory approximation. A data-driven approach using
Gaussian Mixture Model is adopted in [6]. However, these
statistical approaches require multiple similar demonstrations
for only one trajectories of the new task. This inefficient usage
of user demonstrations would increase the labor of human
operators in HRC. The dynamical systems based approach, or
dynamical motion primitives (DMPs), on the other hand, can
learn from single examples [7]. However, most works assume
that there is a dynamical system modeling each degree-of-
freedom (DoF) of the end-effector, which is not clear when
both the position and orientation of the end-effector are
relevant to the task. In addition, methods mentioned above are
data-driven. The underlying kinetic transformations between
each configuration in the user demonstration are not well
utilized during the process of LfD.

For robot motion planning, existing algorithms can be
divided into joint-space based approaches and task-space
based approaches [8], [9]. For a robot manipulator, the joint
space or configuration space is the set of all angles the joints
can reach. The task space is the set of all end effector
configurations of the robot manipulator. Joint space-based
motion planning approaches have the advantage that they are
(probabilistically or resolution) complete. Thus, in principle,
they are guaranteed to give a feasible solution given enough
time. However, in practice, they may not return a solution in
reasonable time and a non-robotics expert will not be able to
handle the situation. On the other hand, task-space based
approaches handle task constraints more naturally, but they do

Q. Chang* is with Department of Mechanical and Aerospace Engineering

and Department of Engineering Systems and Environment, University of
Virginia, Charlottesville, VA, 22903 USA (qc9nq@virginia.edu)

* Corresponding author

Motion Planning for Human-Robot Collaboration based on

Reinforcement Learning

Tian Yu, Student Member, IEEE, and Qing Chang, Member, IEEE

mailto:ty2yy@virginia.edu
mailto:qc9nq@virginia.edu

not have any completeness guarantees in the presence of
obstacles. Recently, Chakraborty et al. [10] develop a user-
guided motion planning method in the task space that learns
from only one human demonstration to generate motion plans
for semantically similar task instances by using the imitated
the human demonstration as a guidance given the new goal
position. However, task constraints before the current pose
blending into the imitated human demonstration are not
guaranteed. In addition, the only explicit task constraint
considered is the goal position. Other explicit task constraints
like positions and orientations of some other configurations
during the task are not considered, which makes it brittle to the
change of task.

In this paper, to enable the robot to work with non-expert
humans in certain HRC environment and reduce
reprogramming when tasks change, we develop an RL-based
motion planning method that can enable the robot to learn from
one or multiple human demonstrated primitive actions to
generate adaptive motion plans for new tasks in such HRC
environment. First, primitive actions are recorded in the joint
space through kinesthetic demonstrations based on some
common tasks such as stacking a block, twisting a screw driver
and filling a cup of water. Next, features of these primitive
actions are captured by calculating screw transformations
throughout demonstrations. Given new task constraints, we
formulate the motion planning problem in the task space into
a Markov Decision Process (MDP) framework and use the Q-
learning method to train a motion planning policy to generate
adaptive motion plans in the task space for the new task.
Finally, inverse kinematics (IK) is used to calculate
corresponding motion plans in the joint space to control the
robot to execute learned motion plans.

The main contributions of this paper can be listed as: (1)
Propose a method to abstract features of primitive actions; (2)
Develop a method that can map features of primitive actions
to the new task; (3) Formulate the robot manipulator learning
from demonstration and motion planning problem as a
reinforcement learning problem in the Markov Decision
Process framework; (4) Propose a reasonable reward function
based on the evaluation of the deviation between the generated
motion plan and the task constraints.

The reminder of this paper is organized as follows: The
mathematical preliminaries are introduced in Section II. The
learning from demonstration and motion planning problem is
stated in Section III. In Section IV, the learning from
demonstration and motion planning problem is formulated as
an MDP and solved by the Q-learning algorithm. Case studies
and conclusions are provided in Section V and VI respectively.

II. MATHEMATICAL BACKGROUND

In this paper, the joint space or configuration space is
represented by 𝒥, which is the set of all joint angles of the
robot manipulator. 𝑆𝐸(3) denotes the Special Euclidean
group of 3, which represents the task space contains all rigid
body motions (i.e., rotations and translations) [11].

To describe the rigid body rotation and translation in
𝑆𝐸(3) , a dual quaternion representation is adopted in this
paper [12]. A dual quaternion 𝑫 is defined as:

𝑫 = 𝒅𝑟 +
1

2
𝜖𝒅𝑡⨂𝒅𝑟 (1)

where 𝜖 ≠ 0, but 𝜖2 = 0. In this definition, 𝒅𝑡 and 𝒅𝑟 are two
quaternions and ⨂ is the product of two quaternions. The
translation of the rigid body is represented by the quaternion
𝒅𝑡 which is denoted as:

 𝒅𝑡 = (0, 𝒕̂) (2)

where 𝒕̂ = 𝑡𝑥 𝒊̂ + 𝑡𝑦𝒋̂ + 𝑡𝑧𝒌̂ is the translation vector in 𝑆𝐸(3).

The unit quaternion 𝒅𝑟 representing the pure rotation of the
rigid body can also be expressed as:

𝒅𝑟 = cos (
𝜙

2
) + 𝒏̂ sin (

𝜙

2
) (3)

where 𝒏̂ = 𝑛𝑥 𝒊̂ + 𝑛𝑦𝒋̂ + 𝑛𝑧𝒌̂ is a unit vector in 𝑆𝐸(3)

representing the rotation axis, and 𝜙 is the rotation angle.
Using this 𝒅𝑟 , any vector 𝑣̂ can be rotated an angle 𝜙 about
the axis 𝒏̂ by using the quaternion sandwich 𝒅𝑟𝑣̂𝒅𝑟

∗ [36], and
𝒅𝑟

∗ is the conjugate of 𝒅𝑟 . For more quaternion manipulations,
we refer readers to [12].

III. PROBLEM FORMULATION

In this paper, we consider a human-robot collaboration
(HRC) environment, where some common tasks are
demonstrated by human workers and recorded as primitive
actions. Given constraints of new tasks and environment
conditions, e.g., critical configurations of the end-effector and
locations of an obstacle, a robot is required to finish these tasks
by learning from primitive actions in such HRC environment.
We assume that the robot has basic capability to move its end-
effector from one configuration to another in the absence of
any constraints. Our goal is to develop a method to enable the
robot to generate adaptive motion plans for different new tasks
to satisfy explicit and implicit task constraints.

A. Specify Manipulation Tasks for the Robot

In this paper, a manipulation task 𝑻𝑲 is defined as a
sequence of 𝑛 critical configurations based on the task
constraints and environment conditions:

𝑻𝑲 = {𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} (4)

where 𝑐𝑜𝑛𝑖 , 𝑖 = 1, … , 𝑛, is a tuple of two < 𝑷𝑖 , 𝜽𝑖 >. In this
tuple, 𝑷𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖]

𝑇 is a vector in 𝑆𝐸(3) that specifies the
position of 𝑐𝑜𝑛𝑖 , 𝜽𝑖 = [𝜃𝑖1, 𝜃𝑖2, 𝜃𝑖3]𝑇 , is a vector in 𝒥 that
defines Euler angles of 𝑐𝑜𝑛𝑖.

B. Features of Primitive Actions

Some common tasks in HRC environment, e.g., fastening
screws can be regarded as primitive actions for a certain
working scenario. A human can provide a kinesthetic
demonstration of a primitive action by holding the arm of the
robot and demonstrates a trajectory for accomplishing a given
task instance. Throughout this demonstration, the explicit and
implicit task constraints embedded in this human
demonstrated primitive action can be recorded by many
commercial robots such as UR robots in the joint space 𝒥 as a
time sequence of joint angles 𝝋𝑟𝑒𝑐 as:

𝝋𝑟𝑒𝑐 = {𝝋(1), 𝝋(2), … , 𝝋(𝑚)} (5)

where each 𝝋(𝑡𝑟𝑒𝑐) =
[𝜑1(𝑡𝑟𝑒𝑐), 𝜑2(𝑡𝑟𝑒𝑐), … , 𝜑𝑟(𝑡𝑟𝑒𝑐)]𝑇 , 𝑡𝑟𝑒𝑐 = 1, 2, . . . , 𝑚
represents joint angles of the manipulator, 𝑟 is the DOF of the
manipulator, and 𝑡𝑟𝑒𝑐 is the time sequence of the
configurations reached during the motion. Using the forward
kinematics mapping ℱ𝒦: 𝒥 → 𝑆𝐸(3) , the corresponding
human demonstrated primitive action in 𝑆𝐸(3) will be
obtained as 𝑫𝑷 = {𝑫1, 𝑫2, … , 𝑫𝑚} , in which each 𝑫𝑗 is a

dual quaternion denoted as 𝑫𝑗 = 𝒅𝑟𝑗 +
1

2
𝜖𝒅𝑡𝑗⨂𝒅𝑟𝑗 , 𝑗 =

1,2, … , 𝑚.

Starting from 𝑫1 , we compute the relative motion with
respect to the final end effector configuration for each
configuration 𝑫𝑗 . Using the dual quaternion representation,

the transformation 𝛿𝑗 between the final configuration 𝑫𝑚 and

every other configuration 𝑫𝑗 is:

𝛿𝑗 = 𝑫𝑗
∗ ⊗ 𝑫𝑚 , 𝑖 = 1,2, … , 𝑚 − 1 (6)

where 𝑫𝑗
∗ is the conjugate dual quaternion of 𝑫𝑗 and ⊗ is the

product of two dual quaternions. This 𝛿𝑗 is also a dual

quaternion and can be written as: 𝛿𝑗 = 𝒅𝑟

𝛿𝑗
+

1

2
𝜖𝒅𝑡

𝛿𝑗
⨂𝒅𝑟

𝛿𝑗
.

Since this transformation 𝛿𝑗 represents the relative translation

and rotation of the end-effector between two configurations. It
does not change with respect to the current configuration of
the end-effector. In this way, all implicit task constraints are
embedded in the sequence of 𝛿𝑗 during the motion, which is

referred to as the feature of the human demonstration. As such,

the feature of the 𝑘𝑡ℎ primitive action in the 𝑆𝐸(3) can then
be described as:

𝑯𝑫𝑘
𝛿 = {𝛿1

𝐻𝐷𝑘 , 𝛿2
𝐻𝐷𝑘, … , 𝛿𝑚−1

𝐻𝐷𝑘 } (7)

Suppose that there are ℎ primitive actions in certain HRC
environment, the set stores features of all ℎ primitive actions
can be denoted as:

𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} (8)

Based on the definition of the manipulation task and
features of primitive actions, the problem studied in this paper
can be described as follows: Given a set of primitive action’s

features 𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} and a new task 𝑻𝑲 =

{𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛} in the task space 𝑆𝐸(3) , develop a
method to find motion plan 𝑴𝑷 in the joint space 𝒥 for the
new task by learning from human demonstrations in 𝑳𝑩 such
that the explicit constraints specified in each 𝑐𝑜𝑛𝑖 in 𝑻𝑲 is
satisfied. If no 𝑴𝑷 can be found, then a request for additional
human demonstrations is made to satisfy all task-relevant
constraints in 𝑻𝑲.

IV. OBTAINING MOTION PLANS TROUGH REINFORCEMENT

LEARNING

In order to obtain the motion plan 𝑴𝑷 in 𝒥 given a new
task, we want to find out the motion plan 𝑴𝑷 in 𝑆𝐸(3) first
since the new task and the set of human demonstrated features
have been already established in 𝑆𝐸(3). After the motion plan
𝑴𝑷 in 𝑆𝐸(3) is generated, IK can be applied to convert the
motion plan in 𝑆𝐸(3) to the motion plan in 𝒥.

A. Map human demonstrated features to the new task

Since the new task 𝑻𝑲 is specified only on some critical
configurations 𝑐𝑜𝑛𝑖, we want to develop a method that learns
from human demonstrated primitive tasks to generate an
intermediate motion plan between two critical configurations
of the new task. The final motion plan 𝑴𝑷 in 𝑆𝐸(3) can
consequently be obtained as a sequence of such intermediate
motion plans.

First, let 𝒕𝒌𝑠 ⊆ 𝑻𝑲 be a subset or the entire new task 𝑻𝑲
that can be defined as:

𝒕𝒌𝑠 = {𝑐𝑜𝑛𝑖 , 𝑐𝑜𝑛𝑖+1, … , 𝑐𝑜𝑛𝑣}, 𝑖 ≥ 1, 𝑖 ≤ 𝑣 ≤ 𝑛 (9)

Using the dual quaternion representation, the 𝑖𝑡ℎ configuration
of the task 𝒕𝒌𝑠 can be written as:

𝑫𝑖
𝑡𝑘𝑠 = 𝒅𝑟𝑖

𝑡𝑘𝑠 +
1

2
𝜖𝒅𝑡𝑖

𝑡𝑘𝑠 ⊗ 𝒅𝑟𝑖
𝑡𝑘𝑠 , 𝑖 = 1,2, … , 𝑛 (10)

The transformation, 𝛿𝑖
𝑡𝑘𝑠 , between the last critical

configuration 𝑐𝑜𝑛𝑛 and any other critical configuration 𝑐𝑜𝑛𝑖
is defined as:

𝛿𝑖
𝑡𝑘𝑠 = 𝑫𝑖

𝑡𝑘𝑠
∗

⊗ 𝑫𝑛
𝑡𝑘𝑠 , 𝑖 = 1, … , 𝑛 − 1 (11)

which can also be written as: 𝛿𝑖
𝑡𝑘𝑠 = 𝒅𝑟

𝛿𝑖
𝑡𝑘𝑠

+
1

2
𝜖𝒅𝑡

𝛿𝑖
𝑡𝑘𝑠

⨂𝒅𝑟

𝛿𝑖
𝑡𝑘𝑠

.

Therefore, features of the task 𝒕𝒌𝑠 can be represented as:

𝒕𝒌𝑠
𝛿 = {𝛿1

𝑡𝑘𝑠 , 𝛿2
𝑡𝑘𝑠 , … , 𝛿𝑛−1

𝑡𝑘𝑠 } (12)

Next, suppose that to finish this task segment 𝒕𝒌𝑠 , the

robot can learn from the feature 𝑯𝑫𝑘
𝛿 . We can define a

mapping method 𝒎𝒑𝑘
𝑠 : 𝑯𝑫𝑘

𝛿 → 𝒕𝒌𝑠
𝛿 , such that the relative

transformation saved in 𝑯𝑫𝑘
𝛿 can be scaled and fitted to the

task constraints given in 𝒕𝒌𝑠
𝛿 . To obtain this 𝒎𝒑𝑘

𝑠 , the

translation vector 𝒅𝑡

𝛿𝑗
 of each 𝛿𝑗 in 𝑯𝑫𝑘

𝛿 needs to be aligned

to the vector 𝒅𝑡

𝛿𝑖
𝒕𝒌𝑠

 of each 𝛿𝑖
𝒕𝒌𝑠 in 𝒕𝒌𝑠

𝛿. The rotation from 𝒅𝑡

𝛿𝑗

to 𝒅𝑡

𝛿𝑖
𝒕𝒌𝑠

can be represented as a unit quaternion:

𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 = cos (
𝜙𝑯𝑫𝑘

𝒕𝒌𝑠

2
) + 𝒏̂𝑯𝑫𝑘

𝒕𝒌𝑠 sin (
𝜙𝑯𝑫𝑘

𝒕𝒌𝑠

2
) (13)

where 𝒏̂𝑯𝑫𝑘

𝒕𝒌𝑠 =
𝒅𝑡

𝛿𝑗
×𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|𝒅𝑡

𝛿𝑗
×𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|

 and 𝜙𝑯𝑫𝑘

𝒕𝒌𝑠 = cos−1 𝒅𝑡

𝛿𝑗
⋅𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|𝒅𝑡

𝛿𝑗
||𝒅𝑡

𝛿
𝑖
𝒕𝒌𝑠

|

.

Therefore, each 𝒅𝑡

𝛿𝑗
 of 𝛿𝑗 in 𝑯𝑫𝑘

𝛿 , 𝑗 = 1,2, … , 𝑚 − 1 can be

rotated using the quaternion sandwich 𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
. After

scaling the vector 𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
 with

|𝒅𝑡
𝛿1|

|𝒅𝑡

𝛿1
𝒕𝒌𝑠

|

. The final

translation quaternion 𝒅
𝑡𝑗

𝒎𝒑𝑘
𝑠

 that maps the relative translation

𝒅𝑡
𝛿𝑖 in 𝑯𝑫𝑘 to 𝒕𝒌𝒔 can be obtained as:

𝒅𝑡𝑗

𝒎𝒑𝑘
𝑠

= (0,
|𝒅𝑡

𝛿1|

|𝒅𝑡

𝛿1
𝒕𝒌𝑠

|

𝒅𝑯𝑫𝑘

𝒕𝒌𝑠 𝒅𝑡

𝛿𝑗
𝒅𝑯𝑫𝑘

𝒕𝒌𝑠∗
) , 𝑗 = 1,2, … . , 𝑚 − 1(14)

Since the detailed transformation between 𝑐𝑜𝑛𝑖 and 𝑐𝑜𝑛𝑖+1
are not specified, we can just use all the intermediate
transformation in 𝛿𝑗 for the transformation between 𝑐𝑜𝑛𝑖 and

𝑐𝑜𝑛𝑖+1 . Let 𝒅𝑟𝑗

𝒎𝒑𝑘
𝑠

= 𝒅𝑟

𝛿𝑗
, 𝑗 = 1,2, … . , 𝑚 − 1 , the mapping

𝒎𝒑𝑘
𝑠 can finally be derived as:

𝒎𝒑𝑘
𝑠 = 𝒅𝑟

𝒎𝒑𝑘
𝑠

+
1

2
𝒅𝑡

𝒎𝒑𝑘
𝑠

⊗ 𝒅𝑟

𝒎𝒑𝑘
𝑠

(15)

Let 𝑻𝑲 = {𝑡𝑘1, 𝑡𝑘2, … , 𝑡𝑘𝑝} , the final motion plan 𝑴𝑷 in

task space for 𝑻𝑲 can be determined by 𝑴𝑷 =
{𝒎𝒑𝑘1

1 , 𝒎𝒑𝑘2

2 , … . , 𝒎𝒑𝑘𝑝

𝑝
}, in which for each 𝑞 ∈ {1,2, … , 𝑝},

𝑘𝑞 ∈ {1,2, … , ℎ}. In the following subsections, we will discuss

how to formulate the motion problem into a Markov Decision
Process (MDP) and obtain this 𝑴𝑷 in 𝑺𝑬(3) using an RL
method.

B. MDP Formulation of the Problem

To find out the appropriate motion plan 𝑴𝑷 that satisfy all
task constraints in 𝑻𝑲, one has to go through all subsets of 𝑻𝑲
and evaluate the corresponding motion plans generated by
mapping each human demonstrated features in 𝑳𝑩 to 𝑻𝑲 ,
which is a NP-hard problem [13]. Assume that there are 𝑥
human demonstrations stored and 𝑦 subsets of the new task
𝑇𝐾, the computational complexity for evaluation of the motion
plans by searching exhaustively is 𝑂(𝑥𝑦), which would be
huge if the number of human demonstrations and the
constraints of the new task is large. To solve this NP-hard
problem, we formulate the problem into a MDP paradigm
which is most common framework for RL that models the
sequential decision making in uncertain environments [14].

Before we can apply RL algorithms to obtaining the
ultimate motion planning policy 𝜋∗, we need to first properly
define the three key components of MDP, which are𝑠𝑡, 𝑎𝑡 and
𝑟𝑡 at time step 𝑡.

Given 𝑳𝑩 = {𝑯𝑫1
𝛿 , 𝑯𝑫2

𝛿 , … , 𝑯𝑫ℎ
𝛿} and 𝑻𝑲 =

{𝑐𝑜𝑛1, 𝑐𝑜𝑛2, … , 𝑐𝑜𝑛𝑛}, the state 𝑠𝑡 is defined as:

𝑠𝑡 = [𝑪𝑭𝑡 , 𝒕𝒌𝑡] (16)

where 𝑪𝑭𝑡 is the current configuration of the end-effector at 𝑡,
𝒕𝒌𝑡 = {𝑐𝑜𝑛𝑗 , 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑛}, 𝑗 ∈ {1,2, … , 𝑛} is the subset

of 𝑻𝑲 and 𝒕𝒌𝑡
′ = {𝑐𝑜𝑛𝑗, 𝑐𝑜𝑛𝑗+1, … , 𝑐𝑜𝑛𝑘}, 𝑘 ≤ 𝑛representing

the current task the robot is going to satisfy.

The action 𝑎𝑡 can be defined as:

𝑎𝑡 = [𝑎1(𝑡), 𝑎2(𝑡), … , 𝑎ℎ(𝑡)] (17)

where each 𝑎𝑖(𝑡) is defined as:

𝑎𝑖(𝑡) = {
𝑘, if 𝑯𝑫𝑖

𝛿 is mapped to 𝒕𝒌𝑡
′

0, otherwise
(18)

which is to identify whether the human demonstrated feature

𝑯𝑫𝑖
𝛿 is selected to be mapped to the current task 𝒕𝒌𝑡

′ .

To evaluate the action at 𝑡 , the reward function 𝑟𝑡 is
defined as:

𝑟𝑡 =

{
−𝑓 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

) , ∀𝛿𝑙
𝒕𝒌𝑡

′

∈ 𝒕𝒌𝑡
′𝛿 , ∃𝛿𝑜 ∈ 𝑯𝑫𝑖

𝛿
→ 𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

) ≤ ∆𝛼

−∞, otherwise (19)

where 𝑓 (𝛿𝑜, 𝛿𝑙
𝒕𝒌𝑡

′

) = ∑ min
𝑜

𝛼 (𝛿𝑜, 𝛿𝑙
𝒕𝒌𝑡

′

)𝑘
𝑙=𝑗 and 𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

) is

defined as:

𝛼 (𝛿𝑜, 𝛿𝑙

𝒕𝒌𝑡
′

) = min {‖𝒅𝑟
𝛿𝑜 − 𝒅𝑟

𝛿𝑙

𝒕𝒌𝑡
′

 ‖ , ‖𝒅𝑟
𝛿𝑜 + 𝒅𝑟

𝛿𝑙

𝒕𝒌𝑡
′

 ‖} (20)

which is the Euclidean distance [15] between each 𝛿𝑜 in the

feature 𝑯𝑫𝑖
𝛿 and each feature 𝛿𝑙

𝒕𝒌𝑡
′

 of the current task. ∆𝛼 is a

tolerance that is set to be 0.5 in this paper.

C. Applying Q-learning to Obtain the Optimal Motion

Planning Policy

The basic idea of Q-learning is that we can define a
function 𝑄 [14]:

𝑄(𝑠, 𝑎) = 𝑟(𝑠, 𝑎) + 𝛾 ∑ 𝑝(𝑠′|𝑠, 𝑎)𝑣(𝑠′, 𝜋)

𝑠′∈𝑆

(21)

such that 𝑣(𝑠, 𝜋∗) = max
𝑎

𝑄∗(𝑠, 𝑎). If we know 𝑄∗(𝑠, 𝑎), then

the optimal policy 𝜋∗ can be found by simply identifying the
action that maximizes 𝑄∗(𝑠, 𝑎) under the state 𝑠. Starting with
arbitrary initial values of 𝑄(𝑠, 𝑎), the updating procedure of
Q-learning is:

 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) = (1 − 𝛼𝑡)𝑄𝑡(𝑠𝑡 , 𝑎𝑡)

+ 𝛼𝑡 [𝑟𝑡 + 𝛾 max
𝑎

𝑄𝑡(𝑠𝑡+1, 𝑎𝑡)]
(22)

where 𝛼𝑡 ∈ [0,1) is the learning rate and 𝛾 ∈ (0,1) is the
discount factor. The training process is shown in Algorithm
1. After the training, the ultimate policy 𝜋∗ is determined as:

𝜋∗(𝑎|𝑠) = {
1, if 𝑎 = arg max

𝑎′∈𝐴(𝑠)
{𝑄(𝑠, 𝑎′)}

0, otherwise
(23)

where 𝐴(𝑠) is the set of all legal actions at state 𝑠 in the Q-
table 𝑄(𝑠, 𝑎) . The final motion plan 𝑴𝑷 is generated
following the Algorithm 2.

Algorithm 1 Training of the RL-based Motion Planner

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾

Output: 𝑄(𝑠, 𝑎)

Initialize 𝑄(𝑠, 𝑎) randomly

Initialize 𝑡 = 0

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1 and 𝒕𝒌0 = 𝑻𝑲

For 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 = 0,1, … ,100 do

 While the last 𝑐𝑜𝑛𝑛 of 𝑻𝑲 is not reached do

 Choose 𝑎𝑡=arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡 , 𝑎)using policy

 derived from 𝑄(𝑠, 𝑎) (e.g. 𝜖-greedy)

 Take action 𝑎𝑡, observe 𝑟𝑡

 Update 𝑄𝑡+1(𝑠𝑡 , 𝑎𝑡) based on Eqn. (22)

 End While

End For

Output 𝑄(𝑠, 𝑎)

Algorithm 2 Generating Motion Plan in 𝑺𝑬(𝟑)

Input: 𝑻𝑲, 𝑳𝑩, 𝜖, 𝛾, 𝑄(𝑠, 𝑎)

Output: 𝑴𝑷

Initialize 𝑠0 with 𝑪𝑭0 = 𝑫1
𝑡𝑘1 and 𝒕𝒌0 = 𝑻𝑲

For 𝑡 = 0,1, … , 𝑇 do

 Find legal action list 𝐴(𝑠𝑡) from 𝑄(𝑠𝑡, 𝑎) → 𝑎 ∈ 𝐴(𝑠𝑡)

 Find the optimal action as 𝑎𝑡 = arg max
𝑎∈𝐴(𝑠𝑡)

𝑄(𝑠𝑡, 𝑎)

 Map 𝑯𝑫𝑖 to 𝒕𝒌𝑡
′ according to 𝑎𝑡

 𝑀𝑃𝑡 ← 𝑫𝑛
𝑡𝑘𝑡

′

⊗ 𝒎𝒑𝑖
𝒕∗

End For

𝑴𝑷 ← {𝑀𝑃0, 𝑀𝑃1, … , 𝑀𝑃𝑇}

 Output 𝑴𝑷

V. CASE STUDY

In order to validate effectiveness of the proposed method
in generating motion plans for new tasks, multiple experiments
are conducted on the UR5e platform. In this case study, two
performance metrices are considered: (1) The accumulated
reward of the motion plan in 𝑆𝐸(3); (2) The successful rate of
applying the motion plan in 𝒥 for new tasks. From the case
study, two significant results can be concluded: (1) The
proposed method is effective in combining different features
of human demonstrations to generate motion plans for the new
task; (2) The proposed method is effective in requesting
additional human demonstrations if no features of primitive
actions are semantically similar to the new task.

A. Record Primitive actions in 𝒥

As shown in Fig. 1, three primitive actions are recorded in
𝒥 through kinesthetic demonstrations, including one screwing
task, one filling task and one stacking task.

Figure 1. Kinesthetic demonstrations of 3 most common tasks. (a) Screwing
task. (b) Filling task. (c) Stacking task.

B. Training the RL-based Motion Planner in SE(3)

In order to obtain a general motion planning policy in
𝑆𝐸(3) for the HRC scenario, we implement Algorithm 1 to
train a Q-table initialized with random Q values in Matlab
using a 4-core 4.0GHz Intel Core i7 processor. 20 new tasks
with four critical configurations of each that cover all features
are used during the training. Positions of these critical
configurations are randomly generated within a 50 × 50 ×

50 𝑐𝑚3 workspace. Corresponding Euler angles of each
critical configuration are also randomly selected from a set
{−𝜋, −π/2,0, π/2, 𝜋}. The total training episode for each new
task is set to be 100. The total computation time is 1927.42
seconds.

To monitor the training process, accumulated rewards for
each new task are recorded every two iterations. The average
accumulated reward for all 20 new tasks is shown in Fig. 2.
Although the training rewards are noisy before 50 episodes,
the underlying trend is that the rewards are increasing with
training episodes. It can be observed that the reward reaches a
steady level after around 50 episodes. This indicates that a
steady motion planning policy in 𝑆𝐸(3) that can map
appropriate features of human demonstrations to new tasks
with semantically similar features is generated for the
assemble and loading/unloading scenario.

Figure 2. Training process for motion plans in 𝑆𝐸(3)

C. Evaluation of the Trained Motion Planning Policy

To evaluate the performance of the trained motion plan
policy in 𝑆𝐸(3) for the HRC scenario, two new tasks, namely,
a filling-and-pouring task and a passing task, are used as
examples to demonstrate the method. The trained Q-table from
is used as the input to Algorithm 2 to generate motion plans
for new unseen tasks in 𝑆𝐸(3). IK is used to calculate the final
motion plan in ℐ . For each task, 20 experiment trials are
conducted. For each trial, if the final motion plan in ℐ is
collision-free and satisfy all task constraints, such trial would
be regarded as a successful one. The successful rate for each
new task is recorded to evaluate the motion planning policy.

Filling-and-Pouring Task: In this task, the end-effector is
required to fill water to the blue cup (shown in Fig. 3), then
reach a goal position above the white cup (shown in Fig. 3),
and finally pour water to the white cup. The location of the
white cup is on the surface of a desk within a workspace of
20 × 20 𝑐𝑚2. We can specify 4 critical configurations based
on the described task. Sample critical configurations from
𝑐𝑜𝑛1 to 𝑐𝑜𝑛4 are presented in Table 8, where −𝜋 ≤ 𝛾 ≤ 𝜋,
−0.5 ≤ 𝑥 ≤ 0.7 , −0.2 ≤ 𝑦 ≤ 0 for different trials. For 20
experiment trials, a successful rate of 80% is observed. We use
the final motion plan in ℐ for one trial as an example as shown
in Fig. 3 to illustrate the result. It is noticed that the features of
3 human demonstrated tasks, namely filling, stacking, and
screwing, are learned and mapped to the segment between
𝑐𝑜𝑛1 and 𝑐𝑜𝑛2, the segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3, and the
segment between 𝑐𝑜𝑛3 and 𝑐𝑜𝑛4 , respectively. In this
experiment, the proposed method can identify and compose
the appropriate features of primitive actions to perform a new
task.

TABLE I. CRITICAL CONFIGURATIONS OF THE FILLING-AND-
POURING TASK

(a) (b)

(c)

Figure 3. Final motion plan for the filling-and-pouring task.

Passing Task: In this task, the end-effector is required to
pass the screw driver to the human in a specific orientation. By
applying the same trained general motion plan policy, a zero
successful rate is observed in the experiment, which indicates
additional human demonstrations are needed. A closer
examination reveals that none of the three features of primitive
actions is semantically similar to the feature of the task
segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3, which requires a 90-degree
rotation about its body-fixed x-axis clockwise. Therefore,
additional human demonstration is requested for this feature.

TABLE II. CRITICAL CONFIGURATIONS OF THE PASSING TASK

With this additional human demonstrated primitive action
shown in Fig. 4 (a) added, the motion planning policy is
retrained using Algorithm 1 with the Q-table trained in section
6.2. As shown in Fig. 4 (b), the accumulated reward reaches a
steady value after around only 8 iterations. Then by applying
the newly trained policy, the motion plan is generated as
shown in Fig. 4 (c). All 20 trials are witnessed successful. The
result shows that the features of the human demonstrated
screwing task is learned and mapped to the task segment
between 𝑐𝑜𝑛1 and 𝑐𝑜𝑛2 . The feature of the newly added
human demonstration is learned and mapped to the task
segment between 𝑐𝑜𝑛2 and 𝑐𝑜𝑛3.

VI. CONCLUSION AND FUTURE WORK

In this paper, we present a method for incorporating human
demonstrations in RL-based motion planning. By learning
from human demonstrated features of primitive actions, the
task-space RL-based motion planner can effectively generate
motion plans for new tasks or request additional human
demonstrations for tasks if the features of all primitive actions
are insufficient to finish the task. Using inverse kinematics
(IK), motion plans in the joint space can be obtained and
successful trials are able to be achieved in real-world
experiments. In future work, we plan to extend our proposed
method to mobile manipulators. We also plan to integrate with
the human motion perception, recognition, and prediction for
realistic implementation.

Figure 4. Outline for the passing task. (a) Additional human demonstration.
(b) Training process with newly added human demonstration. (c) Final

motion plan for the pass task.

ACKNOWLEDGMENT

This work was supported by the U.S. National Science
Foundation (NSF) Grant. CMMI1853454.

REFERENCES

[1] S. El Zaatari, M. Marei, W. Li, and Z. Usman, “Cobot programming

for collaborative industrial tasks: An overview,” Rob. Auton. Syst.,
vol. 116, pp. 162–180, 2019.

[2] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of

robot learning from demonstration,” Rob. Auton. Syst., vol. 57, no. 5,
pp. 469–483, 2009.

[3] Z. Zhu and H. Hu, “Robot learning from demonstration in robotic

assembly: A survey,” Robotics, vol. 7, no. 2, p. 17, 2018.
[4] J.-H. Hwang, R. C. Arkin, and D.-S. Kwon, “Mobile robots at your

fingertip: Bezier curve on-line trajectory generation for supervisory

control,” in Proceedings 2003 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS 2003)(Cat. No. 03CH37453),

2003, vol. 2, pp. 1444–1449.

[5] J. Aleotti and S. Caselli, “Robust trajectory learning and
approximation for robot programming by demonstration,” Rob. Auton.

Syst., vol. 54, no. 5, pp. 409–413, 2006.

[6] S. Calinon, F. Guenter, and A. Billard, “On learning, representing, and
generalizing a task in a humanoid robot,” IEEE Trans. Syst. Man,

Cybern. Part B, vol. 37, no. 2, pp. 286–298, 2007.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal,
“Dynamical movement primitives: learning attractor models for motor

behaviors,” Neural Comput., vol. 25, no. 2, pp. 328–373, 2013.

[8] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars,
“Probabilistic roadmaps for path planning in high-dimensional

configuration spaces,” IEEE Trans. Robot. Autom., vol. 12, no. 4, pp.
566–580, 1996.

[9] O. Khatib, “A unified approach for motion and force control of robot

manipulators: The operational space formulation,” IEEE J. Robot.
Autom., vol. 3, no. 1, pp. 43–53, 1987.

[10] R. Laha, A. Rao, L. F. C. Figueredo, Q. Chang, S. Haddadin, and N.

Chakraborty, “Point-to-point path planning based on user guidance
and screw linear interpolation,” in International Design Engineering

Technical Conferences and Computers and Information in

Engineering Conference, 2021, vol. 85451, p. V08BT08A010.
[11] J. M. Selig, Geometric fundamentals of robotics, vol. 128. Springer,

2005.

[12] L. F. da C. Figueredo, “Kinematic control based on dual quaternion
algebra and its application to robot manipulators,” 2016.

[13] D. P. Bovet, P. Crescenzi, and D. Bovet, Introduction to the Theory of

Complexity, vol. 7. Prentice Hall London, 1994.
[14] D. Silver, “Reinforcement Learning and Simulation-Based Search,”

2009.

[15] L. Kavan, S. Collins, C. O’Sullivan, and J. Zara, “Dual quaternions for
rigid transformation blending,” Trinity Coll. Dublin, Tech. Rep. TCD-

CS-2006-46, 2006.

(a) (b)

(c)

