
Journal of Parallel and Distributed Computing 164 (2022) 12–27

Contents lists available at ScienceDirect

Journal of Parallel and Distributed Computing

www.elsevier.com/locate/jpdc

SimGQ+: Simultaneously evaluating iterative point-to-all and

point-to-point graph queries

Chengshuo Xu ∗, Abbas Mazloumi, Xiaolin Jiang, Rajiv Gupta

University of California Riverside, Computer Science Department, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 14 June 2021
Received in revised form 30 September
2021
Accepted 19 January 2022
Available online 1 February 2022

Keywords:
Batch of queries
Sharing computation
Amortizing overhead
Power-law graphs
Graph analytics

Graph processing frameworks are typically designed to optimize the evaluation of a single graph query.
However, in practice, we often need to respond to multiple graph queries, either from different users
or from a single user performing a complex analytics task. Therefore in this paper we develop SimGQ+,
a system that optimizes simultaneous evaluation of a group of vertex queries that originate at different
source vertices (e.g., multiple shortest path queries originating at different source vertices) and delivers
substantial speedups over a conventional framework that evaluates and responds to queries one by one.
Our work considers both point-to-all and point-to-point queries. The performance benefits are achieved
via batching and sharing. Batching fully utilizes system resources to evaluate a batch of queries and
amortizes runtime overheads incurred due to fetching vertices and edge lists, synchronizing threads,
and maintaining computation frontiers. Sharing dynamically identifies shared queries that substantially
represent subcomputations in the evaluation of different queries in a batch, evaluates the shared queries,
and then uses their results to accelerate the evaluation of all queries in the batch. With four input power-
law graphs and four graph algorithms SimGQ+ achieves speedups of up to 45.67× with batch sizes of up
to 512 queries over the baseline implementation that evaluates the queries one by one using the state of
the art Ligra system. Moreover, both batching and sharing contribute substantially to the speedups.

© 2022 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Graph analytics is employed in many domains (e.g., social net-
works, web graphs, internet topology, brain networks etc.) to un-
cover insights by analyzing high volumes of connected data. An
iterative algorithm updates vertex property values of active ver-
tices in each iteration driving them towards their final stable so-
lution. When the solution values of all vertices become stable,
the algorithm terminates. It has been seen that real world graphs
are often large with millions of vertices and billions of edges.
Moreover, iterative graph analytics requires repeated passes over
the graph till the algorithm converges to a stable solution. As a
result, in practice, iterative graph analytics workloads are data-
intensive and often compute-intensive. Therefore, there has been
a great deal of interest in developing scalable graph analytics sys-
tems like Pregel [14], GraphLab [13], GraphIt [32], PowerGraph [5],
Galois [18], GraphChi [10], Ligra [22], ASPIRE [26].

While the performance of graph analytics has improved greatly
due to advances introduced by the above systems, much of this

* Corresponding author.
E-mail address: cxu009@ucr.edu (C. Xu).
https://doi.org/10.1016/j.jpdc.2022.01.007
0743-7315/© 2022 The Authors. Published by Elsevier Inc. This is an open access article
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
research has focused on developing highly parallel algorithms for
solving a single iterative graph analytic query (e.g., SSSP(s) query
computes shortest paths from a single source s to all other ver-
tices in the graph) on different computing platforms including
shared-memory systems, distributed clusters, and systems with
accelerators like GPUs. However, in practice the following two
scenarios involve multiple queries: (a) Single-User scenario as in
Quegel [30], where the authors developed an analyzer for on-
line shopping platform that frequently computes shortest-paths
between some important shoppers in a large network extracted
from online shopping data; and (b) Multi-User scenarios as in Con-
gra [17] and [24] where the same data set is queried by many
users. In both scenarios, machine resources can be fully utilized
delivering higher throughput by simultaneously evaluating multi-
ple queries on a modern server with many cores and substantial
memory resources.

In this paper we develop a graph analytics system named
SimGQ+, an extension of SimGQ [28], aimed at evaluating a batch
of point-to-all and point-to-point queries received from users for
different source vertices of a large graph. A point-to-all query has
a single source vertex and has all other vertices as its destinations
while a point-to-point query has a single destination. For example,
for SSSP algorithm, we may be faced with the following batch of
 under the CC BY-NC-ND license

https://doi.org/10.1016/j.jpdc.2022.01.007
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jpdc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jpdc.2022.01.007&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:cxu009@ucr.edu
https://doi.org/10.1016/j.jpdc.2022.01.007
http://creativecommons.org/licenses/by-nc-nd/4.0/

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
point-to-all queries: S S S P (s1), S S S P (s2), · · · · · · S S S P (sn). Many
other important algorithms belong to this category [11,7,6] etc.
Our overall approach is as follows. Given an input graph and batch
of vertex queries, we synergistically perform simultaneous evalu-
ation of all queries in a batch to deliver results of all queries in
a greatly reduced time. Essentially the synergy in evaluation of
queries, that exists due to the substantial overlap between com-
putations and graph traversals for different queries, is exploited to
amortize the runtime overhead and computation costs across the
simultaneously evaluated queries. Two techniques, batching and
online sharing, are employed to simultaneously and efficiently eval-
uate a set of queries.

(a) Batching for Resource Utilization and Amortizing Overheads. Bat-
ching takes a group of queries, forming the batch, and simulta-
neously processes these queries to achieve higher throughput
by fully utilizing system resources and amortizing runtime
overhead (e.g., synchronization) costs across queries. Some
prior works [30,24] process multiple queries simultaneously.
In [24] authors process multiple queries but the solution is
optimized specifically for BFS queries. Quegel [30] pipelines
execution of a few queries delivering limited performance en-
hancement as shown in [15]. MultiLyra [15] performs batching
on distributed systems and thus mainly derives benefits from
amortizing cost of communication between machines. In con-
trast, SimGQ+ is capable of evaluating large batches (up to
512 queries) of a general class of queries on a shared-memory
system for high throughputs.

(b) Online Sharing. To amortize computation costs, we develop a
novel strategy that dynamically identifies shared queries whose
computations substantially overlap with the computations per-
formed by multiple queries in the batch, evaluates the shared
queries, and then uses their results to accelerate the evaluation
of all the queries in the batch. The shared subcomputations
are essentially query evaluations for a small set of high degree
source vertices, different from the source vertices of queries in
the batch, such that they can be used to accelerate the evalu-
ation of all queries in the batch.

Online sharing has multiple advantages over classical global
indexing methods for optimizing evaluation of queries. First, in-
dexing entails heavy weight precomputation used to build a large
index that can be used to accelerate all future queries (e.g.,
Quegel [30] uses Hub-Accelerator based indexing). Second, as soon
as the graph changes, precomputed indexing/profiling informa-
tion becomes invalid. The online sharing as performed by SimGQ+
involves no precomputation and thus eliminates its high cost
while also accommodating changes to the graph between different
batches of queries. Thus, our approach applies to streaming/evolv-
ing graphs.

In SimGQ+, the evaluation of the batch of queries is carried out
as follows. We partially evaluate the queries in the batch for a few
iterations till some high degree vertices enter the frontiers of the
queries in the batch. We pause the evaluation of the batch queries
and select a small set of high degree vertices encountered. Treat-
ing selected vertices as source vertices of queries, we construct a
batch of shared queries and then evaluate this batch. The results of
shared queries are then used to quickly update the solutions of all
queries in the original batch and hence accelerate their advance
towards the final stable solution. Finally, we resume the paused
evaluation of original batch till their stable solutions have been
found. By simultaneously evaluating queries we also amortize the
runtime overheads incurred, such as costs of accessing vertices and
edges, synchronization costs, and maintaining frontiers as multiple
queries traverse the same regions of the graph.
13
While conventional point-to-all queries have been widely stud-
ied, recent works on Quegel [30] and PnP [29] focus on point-to-
point iterative graph queries (e.g., shortest path from a source ver-
tex s to a destination vertex d), which is another type of important
graph query. Both Quegel and PnP evaluate point-to-point queries
one by one. In this work, we also extend SimGQ+ to efficiently
evaluate a batch of point-to-point queries. In addition to batching,
we propose query aggregation, an optimization which merges mul-
tiple point-to-point queries sharing the same source vertex into a
coarse-grained one-to-many query with a single source vertex and
multiple destination vertices. Similarly we may aggregate point-
to-point queries sharing the same destination vertex into many-
to-one queries. Query aggregation eliminates the shared computa-
tion among point-to-point queries and thus delivers better perfor-
mance. In addition, we generalize pruning and direction prediction,
two optimizations proposed in PnP, from the single point-to-point
query scenario to the aggregated one-to-many query scenario to
further improve performance of batched evaluation.

We implemented SimGQ+ by modifying the state-of-the-art
Ligra [22] system. Our experiments with multiple input power-law
graphs and multiple graph algorithms demonstrate best speedups
ranging from 1.53× to 45.67× with batch sizes ranging up to
512 queries over the baseline implementation that evaluates the
queries one by one using the state of the art Ligra system. More-
over, we show that both batching and sharing techniques con-
tribute substantially to the speedups.

This paper makes the following contributions:

• A batching algorithm that amortizes the run-time overhead
across a batch of iterative graph queries.

• A sharing algorithm and a heuristic for shared query selection
to amortize the computation cost across a batch of point-to-all
graph queries.

• A query aggregation algorithm and a direction prediction
heuristic for efficient batched evaluation of point-to-point
graph queries.

• A shared-memory implementation of three optimizations –
batching, sharing, and query aggregation – as an extension
of the Ligra framework, and thorough experiments that shows
the performance gain from these optimizations.

The remainder of the paper is organized as follows. In sec-
tion 2 we first provide an overview of SimGQ+ and then present
our algorithms in detail. In section 3 we present a batching strat-
egy for evaluating point-to-point queries. In section 4 we evaluate
SimGQ+. In section 5 we discuss related work. Finally, we conclude
in section 6.

2. SimGQ+: evaluating a batch of queries

When a group of iterative graph queries are evaluated as a
batch, following opportunities for speeding up their evaluation
arise that are ignored when evaluating the queries one by one.
First, it is easy to see that during batched evaluation, we can
share the iteration overhead across the queries. This overhead in-
cludes the cost of iterating over the loop, synchronizing threads
at the barrier, as well as fetching vertex values and edge lists of
active vertices to update vertex values and the computation fron-
tier. Second, synergy or overlap between computations performed
by the queries can be exploited to reduce the overall computa-
tion performed. In particular, we can identify and evaluate shared
queries whose results can be used to accelerate the evaluation of
all the queries in the batch. The computation performed by the
shared queries substantially represent subcomputations that are
performed by many queries in the batch. This is because different
queries typically traverse the majority of the graph and conse-

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Fig. 1. Overview of Sharing Among a Batch of Queries.
quently present an opportunity to share a subcomputation across
multiple queries. By evaluating the shared queries once, we can
speedup the evaluation of the entire batch of queries. Note that
the shared queries must be identified dynamically because they
may vary from one batch to another.

2.1. Overview of SimGQ+

Next we provide an overview of SimGQ+ via an illustrating
example. Fig. 1 shows how a batch of two queries can be syn-
ergistically evaluated by identifying and evaluating shared queries
first. While in the example we use a directed graph, our approach
works equally well for undirected graphs with a minor adjustment.
As in other works, each undirected edge is represented by a pair
of directed edges with equal weight.

Initialization Step. Since all queries in a given batch are to be
evaluated simultaneously, each vertex is assigned a vector to hold
data values for all queries in the batch – each position in the vector
corresponds to a specific query in the batch. In Fig. 1a we aim to
solve a batch of two SSSP queries for source vertices A and B
marked in red. Each node is annotated with a pair of initial values
for the two queries, A first and then B. Initial value 0 is assigned
14
to source vertices and value ∞ to all non-source vertices for each
of the SSSP queries.

Phase I: Identifying Shared Queries. Simultaneously starting from
the source vertices, we start traversing the graph updating the
shortest path lengths for the processed vertices along the frontier
as shown in red in Fig. 1b. The evaluation of the batch contin-
ues and once good candidate vertices for shared queries SSET are
found, the evaluation of the batch is paused. Let us assume that
after one iteration we identify SSSP(C) (C marked in green) as a
good shared query candidate for the two queries in the batch in
our example. Thus, we pause the evaluation of the batch queries
and proceed to the next step to process the identified shared
queries.

Phase II. Accelerating Batch Queries Using Shared Queries. In this
step we evaluate the shared queries first, that is we evaluate them
till their stable results have been computed. For example, in Fig. 1c
we evaluate the shared query SSSP(C). Once the shared queries
have been evaluated, their results are used to rapidly update the
partial results of all the original batch queries as shown in Fig. 1d.
Note that at this point the results of all vertices except B and E
have already reached their final stable values. That is, the evalua-
tion of batch queries has greatly advanced or accelerated.

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
Phase III. Completing the Evaluation of Batch Queries. In this final
step we resume the evaluation of batch queries from the fron-
tier at which the evaluation was paused earlier. In our example,
the resumption of evaluation takes place at vertices B and E and
finally the algorithm terminates after updating the results at ver-
tices E and H. Note that if the acceleration performed in Phase II
is effective, the combined cost of Phase I and Phase III would be
significantly less than the cost of evaluating the batch without em-
ploying sharing affected via Phase II.

While the above example provides an overview of our ap-
proach, many algorithm details and heuristic criteria need to be
developed. For example, there are different ways to select shared
queries (queries on vertices with high centrality or high degree,
queries on vertices that are reachable by most source vertices in
the batch etc.). Since our work focuses on power-law graphs that
have small diameter and skewed degree distribution, high degree
vertices are the best candidates for global queries that in general
traverse nearly the entire graph. Our algorithm first marks a set
of high degree vertices as potential shared vertices. At runtime, a
heuristic is used to select a small subset of shared vertices that
are not only marked, but also have been encountered more fre-
quently during partial evaluation of batch queries. After evaluating
the shared queries, we use the results to quickly update the results
of all batch queries. In subsequent subsections we present a push-
style evaluation of a batch of queries assisted by our idea of using
shared queries.

2.2. Push-style batch evaluation with sharing

Now we present a detailed algorithm that evaluates a batch of
vertex queries, employing both batching and sharing, using Push
model (a similar algorithm can be easily designed for the Pull
model). In Algorithm 1, function evaluateBatch (line 3) simul-
taneously evaluates a batch of vertex queries for source vertices
s1, s2, ..., sk , over a directed graph G (V , E). The algorithm uses
M ⊂ V as a set of marked high degree vertices from which a small
number of vertices are selected to form shared queries; different
batches of queries yield different shared queries. In our exper-
iments |M| is set to 100 to provide choices that suit different
batches, while up to 5 shared queries are selected to limit the
overhead of sharing (i.e., SSET size is 5). The algorithm maintains
an Active vertex set, the combined frontier for all queries in the
batch. Although Active tells which vertices are active, it cannot tell
which queries are associated with each active vertex. Therefore, in
addition to Active, our algorithm maintains two fine-grained ac-
tive lists, CurrTrack and NextTrack, to indicate for each active
vertex all the queries whose frontier the active vertex belongs to.
While CurrTrack is the information for active set being processed,
NextTrack is the corresponding information for the active set be-
ing formed for the next super step of the algorithm. The ResultT

maintains the results of all the queries for each vertex, and at ter-
mination the results of all queries can be found in it.

Following the initialization step (lines 4-7), in each super itera-
tion (lines 9-22), the vertices in Active vertex set are processed in
parallel by calling function processBatch (lines 25-37). This func-
tion updates the value of out-neighbors of active vertices in Push
style fashion and generates newActive containing the active ver-
tices for next iteration which it returns to evaluateBatch at the
end. The work performed by the loop at line 9 executes the three
phases of our algorithm. The first p iterations form Phase I, follow-
ing which, next in Phase II first shared queries SSET are identified
by calling selectSharedQs (line 15) and then the queries in SSET

are evaluated (line 17). Finally, the evaluation of original batch of
queries is accelerated by updating their results in ResultT using
the results of SSET queries in SharedT (line 19). Finally in Phase
III the computation of batch queries is resumed and completed
15
Algorithm 1 Batched Evaluation With Sharing.
1: Given: Directed graph G(V , E); High Degree Set M ⊂ V of Marked Vertices
2: Goal: Evaluate a Batch of Queries, QueryBatch ← { Q 1(s1), Q 2(s2), ..., Q k(sk)

}

3: function evaluateBatch(QueryBatch)
4: � [Initialization Step]
5: Initialize ResultT for QueryBatch

6: Active ← { s1, s2, ..., sk }; NextTrack ← φ; Iter ← 0
7: CurrTrack ← { (si , Q i) : Q i(si) ∈ QueryBatch }
8: � Iterate till Convergence
9: while Active �= φ do

10: � [Phase I: Iteration ≤ p] [Phase III: Iteration > p]
11: � Process Active Vertices
12: Active ← processBatch (Active, Iter, CurrTrack,

NextTrack,
ResultT)

13: if Iter = p then � [Phase II]
14: � Identify #SSET as the Most Frequently Visited

Vertices from M as the source of Shared Queries
15: SSET ← selectSharedQs (M , Visits, #SSET)
16: � Evaluate Shared Queries with Sources in SSET

17: SharedT ← evaluateBatch (SSET)
18: � Update ResultT using SharedT

19: shareUpdateBatch (SSET, SharedT, ResultT)
20: end if
21: CurrTrack ← NextTrack; NextTrack ← φ; Iter++
22: end while
23: return ResultT

24: end function

25: function processBatch (Active, Iter, CurrTrack, NextTrack, ResultT)
26: newActive ← φ

27: for all v ∈ Active in parallel do
28: for all e ∈ G.outEdges(v) in parallel do
29: � Apply conventional Update on e.dest
30: changed ← edgeFuncBatch (e, CurrTrack, NextTrack, ResultT)
31: if (Iter ≤ p) and (e.dest ∈ M) then Visits[e.dest]++ end if
32: � Update Active Vertex Set for next Iteration
33: if changed then newActive ← newActive ∪ {e.dest} end if
34: end forall
35: end forall
36: return newActive

37: end function

Algorithm 2 Batched Edge Update Function.
1: function edgeFuncBatch (e, CurrTrack, NextTrack, ResultT)
2: � Initialize retValue to false.
3: � Set to true if value of e.dest is changed.
4: retValue ← false
5: for all Q i(si) ∈ QueryBatch do
6: � Only Attemp Update for Queries activated e.source
7: if (e.source, Q i) ∈ CurrTrack then
8: � Perform Update via e
9: if updateFunc(e, Q i , ResultT) == true then

10: � Schedule e.dest for next Iteration
11: retValue ← true
12: NextTrack ← NextTrack ∪ {(e.dest, Q i)}
13: end if
14: end if
15: end for
16: return retValue

17: end function

in remaining iterations of the while loop. During Phase I the al-
gorithm maintains a count of number of visits to each vertex in
M (line 31). These counts are used for selecting vertices to form
SSET, more visits implies greater relevance to queries in the origi-
nal batch and hence higher priority for inclusion in SSET. Following
the call to processBatch in the pth iteration (1st in our experi-
ments), we enter Phase II at which point SSET is built. The details
of SSET construction are presented in Algorithm 3.

Function processBatch loops over each outedge e of every ac-
tive vertex, and calls function edgeFuncBatch (Algorithm 2) to at-
tempt update of e.dest by relaxing edge e using conventional edge

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
Algorithm 3 Identify Shared Queries from M .
1: Given: High Degree Set M ⊂ V of Marked Vertices
2: Vector Visits: Number of Visits of All Vertices ∈ M
3: Constant #SSET: # of Shared Vertices Selected
4: Goal: Select #SSET most frequently visited Vertices in M

5: function selectSharedQs (M , Visits, #SSET)
6: � Init: Set of Source Vertices for Shared Queries
7: SSET ← φ

8: � Init: Set of (vertex, vertex visits number) pairs
9: VertVisitsPairs ← φ

10: for all v ∈ M do
11: VertVisitsPairs←VertVisitsPairs∪{v ,Visits[v]}
12: end for
13: � Sort Vertices subject to Number of Visits
14: Sort (VertVisitsPairs, moreVisits())
15: � Select most frequently visited Marked Vertices
16: for #SSET top {v , Visits[v]} ∈ VertVisitsPairs do
17: SSET ← SSET ∪ {v}
18: end for
19: return SSET

20: end function

Table 1
Conventional Updates for Five Algorithms.

Alg ResultT[si][e.dest] ← updateFunc (e, Q i , ResultT)

SSWP casMax(ResultT[si][e.dest], min(ResultT[si][e.src], e.w)))
Viterbi casMax(ResultT[si][e.dest], ResultT[si][e.src] / e.w)
BFS casMin(ResultT[si][e.dest], ResultT[si][e.src] + 1)
SSSP casMin(ResultT[si][e.dest], ResultT[si][e.src] + e.w)
TopkSSSP kSmallest({ResultT[si][e.dest]} ∪ {ResultT[si][e.src] + e.w})

Table 2
Directed Graphs: shareUpdateFunc for Five Algorithms.

Alg ResultT[si][d] ← shareUpdateFunc(d,r,Q i , SharedT,ResultT)

SSWP casMax(ResultT[si][d], min(ResultT[si][r], SharedT[r][d]))
Viterbi casMax(ResultT[si][d], ResultT[si][r] * SharedT[r][d])
BFS casMin(ResultT[si][d], ResultT[si][r] + SharedT[r][d])
SSSP casMin(ResultT[si][d], ResultT[si][r] + SharedT[r][d])
TopkSSSP kSmallest({ResultT[si][e.dest]} ∪ {ResultT[si][r] + SharedT[r][d]})

update function updateFunc. If the relaxation is successful, i.e. the
value of e.dest is changed, e.dest becomes an active vertex for next
iteration. Note that function edgeFuncBatch does not blindly relax
e for all queries. Instead it looks up CurrTrack to check which
queries activated e.source in the previous iteration, and only at-
tempts update of value of e.dest for corresponding queries.

If lines 13-20 are eliminated, the algorithm will not perform
sharing and thus its execution will revert to simple batched evalu-
ation. The conventional edge update function updateFunc for four
algorithms is given in Table 1. Here casMin(a, b) sets a = b if b < a
atomically using compare-and-swap); and casMax(a, b) sets a = b
if b > a atomically using compare-and-swap).

Finally, Algorithm 4 shows how we accelerate the convergence
of the solution of the original batch of queries in ResultT using the
results of the shared queries in SharedT. Since the cost for looping
over all vertices and applying share updates is significant, we limit
the number of shared vertices with which each query is used to
speed up convergence of property values by choosing a small SSET

size. Let us see how the result of a shared query with source vertex
r can benefit a batch query suppose the reachability is known to
be true. Given a vertex d, its value in query Q i can take advantage
of the shared result of subquery on vertex r in SharedT as follows:
shareUpdateFunc(d, r, Q i , SharedT, ResultT). The above function
for four benchmarks is given in Table 2. For example, for SSSP,

ResultT[si][r] + SharedT[r][d]

16
Algorithm 4 Accelerate Batch Queries Using Shared Queries From
SSET.

1: function shareUpdateBatch (SSET, SharedT, ResultT)
2: for all Q i(si) ∈ QueryBatch do
3: for r ∈ SSET do
4: � Update using r only if r is reachable from si

5: if ResultT[si][r] �= −1 then
6: for d ∈ AllVertices do
7: � Attempt Update if d is reachable from r
8: if SharedT[r][d] �= −1 then
9: � Update d for Query i using r

10: shareUpdateFunc (d, r , Q i , SharedT, ResultT)
11: end if
12: end for
13: end if
14: end for
15: end for
16: end function

is a safe approximation of the shortest path value from source ver-
tex of qi to d via r, and we can use the estimation to accelerate
the convergence of the value of d.

For undirected graphs, when applying update using result of
shared queries, we can benefit from a more accurate measurement
of the property value from source vertex to shared vertex. Take
SSSP as an example. Given an undirected graph, SharedT[r][si]
can be used as the accurate measurement of the distance from
si to r. Compared with ResultT[si][r] used in Table 2, which is
an approximation value, SharedT[r][si] can be used to compute a
better estimation of the distance between si and d and therefore
give better acceleration on the evaluation of original batch queries.

2.3. Applicability

Our sharing algorithm can be applied to batched iterative graph
algorithms where each query in the batch begins at single source
vertex and the property values from these sources to all other
vertices are computed. Sharing of results of subqueries is effec-
tive because they represent overlapping subcomputations. Graph
problems with dynamic programming solutions have the opportu-
nity to benefit from our sharing algorithm because of the optimal
substructure property of dynamic programming. Examples include
monotonic computations like SSWP, Viterbi, TopkSSSP, and BFS
used in our evaluation as well as other non-monotonic algorithms
like Personalized Page Rank (PPR) [6] used by recommender ser-
vices like twitter and Single-Source SimRank (SimRank) [7] queries
that are evaluated to compute similarities of graph nodes. It does
not apply to algorithms with a global solution, i.e. not originating
at source-vertex (e.g., Connected Components). Sharing will work
less effectively for local queries like 2-Hop queries due to low over-
lap between them; however, local queries are inexpensive and can
be processed efficiently with batching alone. Sharing works well
on power-law graphs as they contain high centrality nodes but it
is less effective for high-diameter graphs like road-networks. Only
when source vertices are in proximity of each other can there be
significant reuse in high-diameter graphs.

3. PTP in SimGQ+: evaluation of a batch of point-to-point queries

In the previous section, we have discussed how to optimize the
batched evaluation of a group of one-to-all graph queries. In addi-
tion to one-to-all queries, point-to-point query (e.g., a query that
computes the shortest path distance between a pair of vertices) is
another important category of graph queries which has many ap-
plications such as road routing and network analysis [30]. While
prior works [30,29] are focused on accelerating a single point-to-
point query, typically the use scenarios require multiple queries
to be evaluated for a given analytic task. In this section, we pro-

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
Table 3
Relationship between Execution Time and Number of Queries.

Aggregation Point-To-Point One-To-Many Many-To-One

of Queries 50 38 13
Time w/o Batching 21.83s 16.90s 5.58s
Time w/ Batching 4.62s 3.89s 1.66s

pose an algorithm that efficiently evaluates multiple point-to-point
queries.

3.1. Query aggregation - exploit shared computation

When a group of point-to-point queries are evaluated simul-
taneously, new opportunities for optimization arise. First of all,
we may apply batching for better resource utilization and cache
locality, just like what we did for point-to-all queries in the pre-
vious section. Moreover, we can develop optimizations specific
to multiple point-to-point queries. In this work, we are particu-
larly interested in eliminating shared computations across batch
queries. We consider forward-aggregation which combines multi-
ple point-to-point queries that share the same source vertex into
one point-to-many query which has one source vertex and multi-
ple destination vertex. Similarly we consider backward-aggregation
which combines the point-to-point queries that share the same
destination vertex into a many-to-point query with one destina-
tion vertex and multiple source vertices. Such query aggregation
reduces the number of queries and can further reduce the compu-
tation overhead because it reduces the number of distinct frontiers
we need to maintain.

To illustrate the performance benefit from query aggregation,
we conducted the following motivating experiment. Fifty point-to-
point shortest path queries are selected such that many of them
share source vertex or destination vertex. The input graph is soc-
LiveJournal [12] with 4847571 vertices and 68993773 edges. In
Table 3, we compare the total running times under three different
aggregation policies. Point-to-Point is the baseline without aggre-
gation. One-to-many is the result of forward aggregation. Many-
to-one is the result of backward aggregation. As we can see, both
one-to-many and many-to-one generate fewer queries than point-
to-point and also run faster than point-to-point which shows that
query aggregation is effective and leads to less query time. In ad-
dition, by comparing the running time with and without batching,
we observe that batching is effective for aggregated queries. Thus
batching and sharing can be applied together for better perfor-
mance.

3.2. Adapt pruning to multiple one-to-many query scenario

In our prior work PnP [29], we introduced an online pruning
optimization to accelerate point-to-point iterative graph algorithms
by eliminating the wasteful propagation which are determined not
to contribute to the final answer. Pruning is achieved by comparing
the new value of an active vertex v (i.e., v.value) with the current
value of the destination vertex d (i.e., d.value). For instance, in the
case of the shortest path algorithm, we can safely prune out ver-
tex v from the active vertex frontier if v.value ≥ d.value. Pruning
reduces the amount of vertex propagation and leads to early ter-
mination compared with standard iterative graph algorithms.

We can adapt pruning from the scenario of a single point-
to-point query to the scenario with a single one-to-many query.
Suppose we have an one-to-many query with a single source ver-
tex s and k destination vertices d1, d2, . . . , dk . We can safely
prune out vertex v from the active vertex frontier if v.value can-
not contribute to any of the k point-to-point queries which include
s → d1, s → d2, . . . , s → dk . In the case of the shortest path prob-
17
Fig. 2. Full-Mapping Queries.

lem, we can prune out v if v.value ≥ max(di .value) where i ≥ 1
and i ≤ k.

We can further generalize pruning from the scenario with a sin-
gle one-to-many query to the scenario with multiple concurrent
one-to-many queries. Let us see how pruning can be combined
with batching. Suppose we have l one-to-many queries which orig-
inate from source vertices s1, s2, . . ., sl . Each one-to-many query
has k destinations. Let Q i denote the ith one-to-many query which
originates from si . Let Threshold[Q i] denote the pruning thresh-
old for query Q i . Then Threshold[Q i] = max(ResultT[Q i][d j]) for
all j ∈ [1, k] where ResultT[Q i][d j] is the tentative shortest path
value from si to d j . The pruning condition for vertex v in the mul-
tiple query scenario will be v.value >= max(Threshold[Q i]) for
i ∈ [1, l].

3.3. Discussion of full-mapping workload - breaking tie between
forward and backward aggregation using direction prediction

Yan et al. [30] observed that many applications on large graphs
simply require computing point-to-point variants of heavyweight
computations. As an example, when analyzing a graph that rep-
resents online shopping history of shoppers, a business may be
interested in all point-to-point queries over an important set of
shoppers. Therefore in this work we focus on this kind of full-
mapping workload. Moreover, we identify high degree vertices in
the input graph as vertices of interest because high degree vertices
are usually important vertices in power-law graphs.

Under this workload, the set of input point-to-point queries
can be represented as a full mapping from a set of source ver-
tices to a set of destination vertices (see Fig. 2). As a result, for-
ward/backward aggregation generate a minimal number of one-to-
many/many-to-one queries. In other words, there is a tie between
the forward and backward aggregation. Then the question comes
which direction to be chosen for aggregation: forward or back-
ward?

Inspired by the direction prediction heuristic developed in
PnP [29], we developed a heuristic for predicting the faster direc-
tion for a batch of point-to-point queries based on the estimation
of work. While in PnP direction prediction is conducted dynami-
cally after a bidirectional phase one execution by comparing the
frontier sizes from different directions, in this work we predict the
direction for a given batch of point-to-point queries statically be-
fore iterative computation starts. We make this design choice be-
cause we observe that the computation for point-to-point queries
between high-degree vertices usually finishes in a few iterations
making the dynamic direction selection overhead high relative to
the small overall work.

Here is the direction prediction heuristic that we employ. For
each point-to-point query in the input batch, we assume the query
is forward-fast if the outdegree of the source vertex is greater than
the indegree of the destination vertex and similarly assume the
query is backward-fast otherwise. If there are more forward-fast

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
queries in the batch, we predict the forward direction is faster and
run the whole batch in the forward direction starting from the
source vertices over the original graph. Otherwise we predict the
backward direction to be the faster direction, and run the whole
batch in the backward direction starting from the destination ver-
tices over the edge-reversed graph.

An alternative direction prediction heuristic for a batch is to
compare the sum of outdegrees of all source vertices and the sum
of the indegrees of all destination vertices and select the direc-
tion with smaller total degree. However, we found that this metric
does not reflect the relative amount of work in different direc-
tions as accurate as the first approach because this alternative
approach may over-emphasize the importance of a single point-
to-point query in the batch and consequently misleadingly hide
the impact of other batch queries. For instance, among 16 point-
to-point queries in a batch, 15 queries are forward-fast and only
1 query is backward-fast; however the backward-fast query has a
source with very high outdegree and a destination with very small
indegree and dominate the overall prediction.

3.4. Push style batched evaluation of full-mapping point-to-point
queries

Now we present a detailed algorithm that computes the pair-
wise property values between each pair of vertices from a set of
important vertices using the Push model. In Algorithm 5, func-
tion evaluatePairwise works as follows. First, function Predict

(line 5) applies one of the static degree-based heuristics (discussed
in Section 3.3) to predict the faster direction for the given input
query on the given input graph. For k query vertices, there are k2

corresponding point-to-point queries. Based on the prediction re-
sult, the algorithm decides how to aggregate these point-to-point
queries into more coarse-grained queries. If the predicted direc-
tion is forward, k2 point-to-point queries are aggregated in the
forward direction into k one-to-many queries each of which has a
single source vertex and k destination vertices (line 10-13). If the
predicted direction is backward, point-to-point queries are aggre-
gated in the backward direction into k many-to-one queries each
of which has a single destination vertex and k source vertices (line
15-18). After generating the aggregated queries, function evaluate-

BatchedOneToMany is called to evaluate the aggregated queries
as a batch (lines 13 and 18). To benefit from a unified interface
for evaluating one-to-many queries and many-to-one queries, the
evaluation of many-to-one queries is conducted as follows. We first
convert many-to-one queries into one-to-many queries by calling
the function reverse (e.g., many-to-one query ({s1, s2, ..., sk}, si) is
reversed to an one-to-many (si, {s1, s2, . . ., sk})). After the conver-
sion, we can get the result of the original many-to-one query by
evaluating the reversed one-to-many queries on the edge-reversed
graph Ĝ (line 18).

Let us dive into function evaluateBatchedOneToMany which
simultaneously evaluates a batch of one-to-many queries over a
directed graph G (V , E) where the ith query originates at source
vertex si and has k destination vertices s1, s2, ..., sk . The function
is explained in Algorithm 6. It is similar to the simple batching al-
gorithm for point-to-all queries (Algorithm 1 without lines 13-20).
The algorithm maintains an Active vertex set, the combined fron-
tier for all queries in the batch as well as two fine-grained active
lists, CurrTrack and NextTrack, that provides information about
which vertex is activated by which query. The ResultT maintains
the results of all the queries for each vertex. What makes a dif-
ference is pruning (line 18). After each iteration of propagation,
Threshold[Q i] for pruning is updated for each one-to-many query
Q i from QueryBatch using the tentative query results by applying
an aggregation for loose boundary (line 14-16). For instance, ag-

gregateLoose is max in the case of shortest path and BFS while it
18
Algorithm 5 Pairwise Evaluation between a Group of Vertices.

1: Given: Directed Graph: G(V , E); The Edge-Reverse Graph: Ĝ(V , ̂E); and Vertex
set QueryVertices which contains a group of k vertices

2: Goal: Compute point-to-point values between each pair of vertices in
QueryVertices

3: function evaluatePairwise(QueryVertices(s1, s2, s3, ..sk), G , Ĝ)
4: � Predict faster Direction
5: Prediction ← predict(QueryVertices, G)
6: � Generate Point-to-Point Queries from Input Vertex Set
7: PTPQueries ← genPTPQueries(QueryVertices);
8: � Aggregate Point-To-Point Queries and Evaluate in the Predicted Direction
9: if Prediction = Forward then

10: � Aggregate Point-To-Point Queries into One-To-Many Queries
11: OneToManyQueries ← fwdAggregate(PTPQueries)
12: � Evaluate aggregated Queries
13: evaluateBatchedOneToMany(OneToManyQueries, G)
14: else
15: � Aggregate Point-To-Point Queries into Many-To-One Queries
16: ManyToOneQueries ← bwdAggregate(PTPQueries)
17: � Evaluate aggregated Queries
18: evaluateBatchedOneToMany(reverse(ManyToOneQueries), Ĝ)
19: end if
20: end function

Algorithm 6 Batched Evaluation of One-To-Many Queries.
1: Given: Directed Graph Graph(V, E); QueryBatch which is set of k

One-To-Many queries: Q 1(s1, {s1, s2, s3, ..sk}), Q 2(s2, {s1, s2, s3, ..sk}),
· · · Q k(sk, {s1, s2, s3, ..sk})

2: Goal: Evaluate the given batch of One-To-Many queries

3: function evaluateBatchedOneToMany(QueryBatch)
4: � Initialization Step
5: Initialize ResultT for QueryBatch
6: Active ← { s1, s2, ..., sk }; NextTrack ← φ;
7: CurrTrack ← { (si , Q i) : Q i(si) ∈ QueryBatch }
8: Initialize Threshold[] for pruning for each Q i in QueryBatch
9: � Iterate till Convergence

10: while Active �= φ do
11: � Process Active Vertices
12: Active ← processBatch (Active, CurrTrack,NextTrack, ResultT)
13: � Update the Pruning Threshold for each One-To-Many Query in the

Batch
14: for all (si , {s1, s2, ..sk}) ∈ QueryBatch in parallel do
15: Threshold[Q i] ← aggregateLoose(ResultT[Q i][s j]) for j = 1..k
16: end forall
17: � Prune active frontier using pruning threshold
18: Active ← pruneActive(Active, NextTrack, Threshold, ResultT)

19: CurrTrack ← NextTrack; NextTrack ← φ;
20: end while
21: return ResultT

22: end function

is min in the case of widest path and Viterbi algorithm. Pruning
threshold is computed as loose boundary rather than tight bound-
ary because we cannot prune a vertex v for a one-to-many query
as long as the new value of v may contribute to the value of any
(rather than all) destination vertices. With the updated Thresh-

old, the active vertex frontier is pruned by calling the function
pruneActive (line 18). Function pruneActive is described in detail
in Algorithm 7. An active vertex v cannot be pruned from the ac-
tive vertex set if at least one of the queries does not want to prune
it (line 6-7). Function donotPrune (line 6) varies from benchmark
to benchmark. For instance, in the case of shortest path problem,
donotPrune returns true if and only if ResultT[Q i][v] < Thresh-

old[Q i].

4. Experimental evaluation

4.1. Evaluation of SimGQ+

4.1.1. Experimental setup for SimGQ+
For evaluation we implemented our SimGQ+ framework using

Ligra [22] which uses the Bulk Synchronous Model [25] and pro-

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
Algorithm 7 Prune Active Vertex Frontier using Threshold.
1: function pruneActive(Active, NextTrack, Threshold, ResultT)
2: NewActive ← φ

3: for all v ∈ Active in parallel do
4: for all Q i ∈ QueryBatch do in parallel
5: � v cannot be pruned if any query needs propagation of new value

of v
6: if donotPrune(v , Q i) then
7: NewActive ← newActive ∪ {v}
8: else
9: NextTrack ← NextTrack \ {(v , Q i)}

10: end if
11: end forall
12: end forall
13: return NewActive

14: end function

Table 4
Input graphs used in experiments.

Graphs #Edges #Vertices

Twitter (TT) [3] 2.0B 52.6M
Twitter (TTW) [9] 1.5B 41.7M
LiveJournal (LJ) [2] 69M 4.8M
PokeC (PK) [23] 31M 1.6M

Table 5
BASELINE – Total Execution Times for Evaluating Randomly Selected Queries One by
One in Seconds on the Ligra [22] System. For first 3 benchmarks 512 queries are
used and for TopkSSSP we use 64 queries.

Graph SSWP Viterbi BFS Top 2 & 1 SSSP

TTW 2,989s 3,737s 2,574s 4,073s 2,337s
TT 3,949s 4,902s 3,538s 2,768s 1,574s
LJ 134s 258s 102s 389s 226s
PK 63s 116s 55s 232s 123s

vides a shared memory abstraction for vertex algorithms which is
particularly good for graph traversal. We evaluate our techniques
for evaluation of batches of queries using four benchmark appli-
cations (SSWP – Single Source Widest Path, Viterbi [11], BFS –
Breadth First Search, and TopkSSSP – Top k Single Source Short-
est Paths). We used four real world power-law graphs shown in
Table 4 in these experiments – TT [3] and TTW [9] are large
graphs with 2.0 and 1.5 billion edges respectively; and LJ [2] and
PK [23] are smaller graphs with 69 and 31 million edges respec-
tively. Benchmarks are implemented using the PUSH model on a
machine with 32 cores (2 sockets, each with 16 cores) with Intel
Xeon Processor E5-2683 v4 processors, 512 GB memory, and run-
ning CentOS Linux 7.

For each combination of benchmark application and input
graph, we used 512 randomly generated queries to carry out the
evaluation, except for TopkSSSP for which we use 64 queries be-
cause of runtime cost. The baseline total execution times when the
queries are evaluated one by one is given in Table 5. Because TTW
and TT are far bigger in size than LJ and PK, the execution times
for TT and TTW are higher.

4.1.2. Benefits of sharing and batching in SimGQ+
In this section we present the results of our algorithm, we re-

fer to them as Batch+Share. In addition, we also collect execution
times of algorithm that uses batching but no sharing, we refer to
this algorithm as Batch. Since the batch size is an important pa-
rameter in this evaluation, we vary batch sizes from 4 queries (the
smallest) to a very large number of 512 queries. For TTW and TT
the maximum batch size was limited to 256 because our machine
did not have sufficient memory to run 512 queries for very large
graphs. For TopkSSSP maximum batch size is limited to 64 due to
its high runtimes.
19
The results of running the above algorithms are presented in
Table 6 and Fig. 3. While Table 6 presents the total execution
times for 512 queries for batch sizes (number in parentheses)
that yielded the highest speedup for each of the algorithms, Fig. 3
presents average per query execution times for all batch sizes for
TT the largest graph.

The data in this Table 6 shows that our algorithms yield
speedups of up to 45.67× over the baseline that executes the
queries one by one using the state of the art Ligra system. For
the first two benchmarks of SSWP and Viterbi the Batch+Share
algorithm delivers speedups ranging from 22.11× to 45.67×. In
contrast, for the last two benchmarks of BFS and TopkSSSP the
highest speedups observed range from 1.53× to 6.63×.

The sharing algorithm is more profitable if the result values of
queries fall in a narrow range and hence often overlap. Like the
result of SSWP query is usually an integer between 17 and 25, and
the answer of Viterbi is between 0 and 1. In these cases, sharing
produces lots of stable values and reduces the number of iterations
because vertices made stable by sharing will never be activated
again. Sharing is also effective when the vertex update function
is expensive even if it produces few stable values – TopkSSSP is
a representative graph algorithm from this category. Here sharing
reduces the number of updates by 34% but produces few stable
values. BFS does not fall into any of these two categories and thus,
as expected, does not benefit much from sharing.

Let us consider results in Figs. 3 that present the average per
query execution times for varying batch sizes. The trends for the first
three benchmarks show that performance continues to improve
with increasing batch sizes. For Batch the improvement is due to
greater amortization of runtime overheads while for Batch+Share
the improvement is greater due to additional benefits of sharing.
Further, we observe that on our machine, once we cross the batch
size of 64, the improvements in performance are relatively small
although the best performances reported in Table 6 are for batch
sizes of 256 and 512 for majority of the cases (i.e., different graphs
and benchmarks). Based upon the trends observed in Fig. 3, for
a larger machine with more memory and number of cores, per-
formance can be expected to scale further with batch size. For
TopkSSSP while there is less variation with batch size the differ-
ence between Batch and Batch+Share is substantial.

4.1.3. Contributions of sharing vs. batching in SimGQ+
We observed that for SSWP and Viterbi both sharing and batch-

ing are responsible for delivering high performance while for
TopkSSSP batching does not provide benefit, and for BFS sharing
does not deliver additional performance improvement. We analyze
the cost and benefit of sharing to show that for first three bench-
marks the benefit far outweighs the cost while for BFS the benefit
is smaller than the cost incurred.

Using the execution times of Batch, which is essentially a
shared-memory version of MultiLyra, as baseline, Table 7 presents
the speedups achieved by Batch+Share. As we can see from the
results, for benchmarks of SSWP and Viterbi, the speedups range
from 5.14× to 12.64× demonstrating that sharing delivers sub-
stantial additional speedups over batching alone for these bench-
marks. For benchmark of TopkSSSP, the benefit from sharing is
less, but there are still descent speedups of up to 2.16× due to
sharing. On the other hand, for benchmark of BFS there is even
some slowdown.

The Cost and Benefit of sharing are also shown explaining the
above results. The Cost is the time spent in Phase II while Benefit
is reduction in total time spent on Phase I + Phase III due to shar-
ing based updates performed by Phase II. Both the Cost and Benefit
are presented as fraction of execution times of corresponding Batch
algorithms. Thus, the Speedups are related to the Cost and Bene-
fit as follows: Speedup = 1/(1 + Cost − Benef it). For SSWP, Viterbi,

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Table 6
Best Batching+Sharing and Batching Execution Times in Seconds for all Queries and Corresponding (Batch Sizes)
and Speedup Over No-Batching Baseline times from Table 5.

Algorithm SSWP (512 Queries) Viterbi (512 Queries) BFS (512 Queries)

TTW

Batch+Share 71 (256) 42.37× 86 (256) 43.42× 440 (128) 5.84×
Batch 629 (256) 4.75× 729 (256) 5.13× 388 (256) 6.63×

TT

Batch+Share 90 (256) 43.96× 107 (256) 45.67× 723 (128) 4.90×
Batch 1034 (64) 3.82× 1274 (64) 3.85× 692 (128) 5.12×

LJ

Batch+Share 6 (512) 22.11× 12 (128) 22.27× 23 (256) 4.36×
Batch 37 (256) 3.63× 59 (256) 4.34× 18 (256) 5.63×

PK

Batch+Share 2 (512) 28.38× 4 (128) 28.97× 11 (512) 5.01×
Batch 20 (512) 3.24× 30 (256) 3.89× 9 (512) 6.40×

Algorithm Top 2 & 1 SSSP (64 Queries)

TTW

Batch+Share 2671 1260 (32) (32) 1.53× 1.86×
Batch 3652 1876 (32) (8) 1.12× 1.25×

TT

Batch+Share 1605 858 (8) (8) 1.73× 1.84×
Batch 2768 1574 (1) (1) 1.00× 1.00×

LJ

Batch+Share 237 135 (64) (64) 1.64× 1.67×
Batch 375 190 (32) (32) 1.04× 1.19×

PK

Batch+Share 119 58 (64) (64) 1.95× 2.13×
Batch 196 98 (16) (16) 1.19× 1.26×
and TopkSSSP, the Benefit far exceeds the Cost while for BFS, the
Cost exceeds the Benefit hence the observed speedup results. Fi-
nally, Table 8 summarizes how the overall speedups achieved for
SSWP and Viterbi can be factored between batching and sharing
showing the importance of employing both batching and sharing
techniques.

The cost of sharing is reasonable because overheads of sharing
come from three sources and all of them are low. First, we need to
maintain a counter of the number of visits for each marked high
degree vertex in Phase I. This overhead is negligible because we
only mark a very small amount of high degree vertices (e.g., 100
out of millions in the current setting) and Phase I is very short
(e.g., 1 iteration) and thus has relatively small frontier sizes. Sec-
ond, we need to solve the shared queries in Phase II. Given that it
only computes a small number of shared queries (e.g., only 5 from
100) while the batch size for original queries can be much larger
(up to 512), the cost is amortized well across all queries in a batch
and thus it has little impact on each individual query. Third, we in-
troduce extra computation cost when applying the result of shared
queries to accelerate the convergence of original query. Since this
step is a linear scan of the array, it leads to better cache perfor-
mance due to spatial locality compared with the usual updates for
a query which can be randomly scattered across the value array
in Ligra. Besides, our sharing algorithm only allows each query to
reuse the result of one shared query and only once, keeping the
reuse cost low.

To better understand the effectiveness of sharing, we also col-
lected the stable value percentages – this is the percentage of
vertices reachable from the source vertex whose vertex values con-
verge as a result of performing share updates. We collected this
data for the Batch+Share configuration. Since we pause the original
computation only after the first iteration (i.e., p = 1), the percent-
age of vertices that are stable prior to sharing updates is negligible
20
(less than 0.01%). The percentages of values that are stable fol-
lowing sharing updates are presented in Table 9. As shown in the
table, sharing greatly benefits SSWP and Viterbi as it causes nearly
all the values (> 99%) to converge. To explain the phenomenon
that Top2SSSP and Top1SSSP has lower stable percentage than
BFS but sharing delivers much more speedups for the former than
the latter, we collected the reduction in number of vertex up-
dates resulting from sharing. It turns out that the reduction for
Top2SSSP and Top1SSSP (34%) is much higher than the reduction
for BFS (7%).

4.1.4. Sensitivity of SimGQ+ performance to the p value
All our preceding experiments were performed for p value of

1, i.e. Phase I lasted one iteration following which Phase II was
performed and then the updates from Phase II results optimized
the remainder of time spent in Phase III till convergence. We var-
ied the p value from 1 to 3 and compared the speedups that were
obtained by sharing over batching alone. The results in Table 10
show that p value 1 delivers best overall speedups and the trend
is that speedup falls as p value is increased. The only exceptions
are LJ::Viterbi and PK::Viterbi where p value of 2 slightly outper-
forms p value of 1 (5.48× v.s. 5.14×, 8.57× v.s. 8.22×). There is a
performance tradeoff in selecting p value. A smaller p enables an
earlier reuse which leads to earlier convergence of queries. How-
ever, if p is small, limited number of marked high degree vertices
may be visited and considered as candidates for sharing. We con-
clude the following from this experiment. First, executing Phase I
for one iteration is sufficient as high quality SSET nodes have al-
ready been encountered. Second, executing Phase II early has the
added benefit that greater fraction of overall iterations is optimized
by the updates performed from the results of Phase II. We observe
that p value of 1 causes sharing to deliver much higher speedups
than p value of 2 for SSWP and Viterbi on large graphs than small

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Fig. 3. Average Per Query Execution Times of Batch vs. Batch+Share.
graphs. For example, for the TT graph on Viterbi benchmark, the
speedup over batching alone for p value of 1 is 12.64× while for
the second best p value of 2, is much smaller 6.36×.

4.1.5. Dynamic selection of SSET in SimGQ+
One of the key characteristics of our algorithm is that the ver-

tices in SSET are selected dynamically during the evaluation of a
batch of queries. This has two main advantages. First, the selec-
tion of SSET vertices is customized to the batch of queries being
evaluated. This is important that different batches may contain
queries that are close to, in terms of number of hops, different
high degree vertices and selection of closer high degree vertices
offers greater opportunities of sharing. Second, our technique can
be used to speedup the evaluation even when only a single batch
of queries is to be evaluated. Note that alternatively techniques can
be devised to profile executions of batches to identify SSET vertices
and then use them to implement sharing in future batches. How-
ever, such an approach would lose both of the advantages of our
approach mentioned above.

We next confirm that dynamic custom selection of SSET ver-
tices for each batch does indeed lead to selection of different high
degree vertices which deliver better speedups. We performed an
experiment in which we split 256 queries for the two large graphs
TTW and TT into four batches of 64 queries each. We identified the
SSET vertices using the first batch and used it to perform sharing
in the other three batches. Table 11 presents batch running time
as follows: time using a single dynamically selected SSET vertex
for the batch → time using a single dynamically selected SSET

vertex in the first batch. The results show that for TTW::SSWP,
TTW::Viterbi, and TT::SSWP custom/dynamic selection of SSET ver-
21
tices for the last three batches delivers better performance (i.e.,
lower execution times) than the speedups that result from us-
ing SSET vertices identified using the first batch. For TTW::Viterbi
batches 1 and 4 selected the same vertex and hence there is no
change in execution time. For TT::Viterbi the nodes selected give
nearly the same performance.

Finally, we examined the identities of selected SSET vertices for
various batches to study the diversity of SSET vertices. In Table 12
we present actual number of distinct vertices included in SSETs
versus the minimum number (size of SSET) and maximum num-
ber (number of batches × the size of SSET) of distinct vertices
that can be observed. We found that the number of distinct SSET

vertices selected are well above the minimum, i.e. during evalu-
ation of different batches often different vertices are selected as
SSET vertices.

4.2. Evaluation of point-to-point queries in SimGQ+

4.2.1. Experimental setup
For evaluating a batch of point-to-point (PTP) queries, we

reused the batching interface from SimGQ and on top of that
we implemented optimizations for batched processing of point-
to-point queries including query aggregation, dynamic pruning,
and direction prediction. We evaluated our techniques using four
benchmark applications – SSWP, Viterbi, BFS, and SSSP. We once
again used as input the four power-law graphs in Table 4. Bench-
marks are implemented using the PUSH model. Experiments are
conducted on a machine with 32 cores and 512 GB memory as
described in Section 4.1.1.

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Table 7
Batch+Share Over Batch Alone: Cost of Phase II, Benefit of Phase II, Speedup Due to Batch+Share Over Batch
Alone. Speedups computed for best Batch+Share configurations for all Queries.

SSWP (512 queries) Viterbi (512 Queries) BFS (512 Queries)

TTW

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.08 0.97 8.92× 0.09 0.97 8.47× 0.15 0.07 0.93×
TT

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.06 0.98 12.26× 0.06 0.98 12.64× 0.11 0.07 0.96×
LJ

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.12 0.96 6.43× 0.12 0.92 5.14× 0.26 -0.03 0.77×
PK

Cost Benefit Speedup Cost Benefit Speedup Cost Benefit Speedup

0.09 0.98 8.76× 0.08 0.96 8.22× 0.20 -0.08 0.78×
Top 2 & 1 SSSP (64 Queries)

TTW

Cost Benefit Speedup

0.04 0.04 0.31 0.41 1.37× 1.60×
TT

Cost Benefit Speedup

0.09 0.09 0.63 0.62 2.16× 2.12×
LJ

Cost Benefit Speedup

0.02 0.02 0.43 0.39 1.69× 1.58×
PK

Cost Benefit Speedup

0.02 0.02 0.50 0.50 1.94× 1.94×
Table 8
Factoring Speedups: Batching × Sharing = Total Speedup.

SSWP Viterbi

TTW

4.75 × 8.92 = 42.37× 5.13 × 8.47 = 43.42×
TT

3.58 × 12.26 = 43.96× 3.61 × 12.64 = 45.67×
LJ

3.44 × 6.43 = 22.11× 4.33 × 5.14 = 22.27×
PK

3.24 × 8.76 = 28.38× 3.52 × 8.22 = 28.97×

For each combination of benchmark application and input
graph, we evaluate the point-to-point property values between
each pair of vertices from a set of query vertices which are the
vertices with highest total degrees from the input graph and with
both indegree and outdegree above a set default threshold of 500.

Since number of query vertices is an important parameter in
this evaluation, in the experiments we vary this number from 4
vertices (i.e., 16 point-to-point queries) to 128 vertices (i.e., 16,384
point-to-point queries). The maximum number of query vertices
is set to 64 (i.e., 4,096 point-to-point queries) for TTW graph and
32 (i.e., 1,024 point-to-point queries) for TT graph because of high
execution times due to large sizes of these graphs.
22
4.2.2. Effectiveness of aggregation and batching
In this section we present the results of our algorithms to eval-

uate the effectiveness of both query aggregation and batching. We
present the performance of three algorithms for comparison. We
refer to the algorithm that employs both query aggregation and
batching as Aggregate+Batch. In addition, we also collect the exe-
cution time of the algorithm with query aggregation but no batch-
ing where we refer to this algorithm as Aggregate. The baseline
algorithm evaluates point-to-point queries (with pruning) one by
one, we refer to this algorithm as PTP-OneByOne. For all three
algorithms, we present the data for the largest number of query
vertices for each graph (i.e., 128 for LJ and PK, 64 for TTW, and
32 for TT).

First, let us consider the results of the algorithms for the for-
ward direction. Table 13 presents the total execution time of the
baseline algorithm while Table 14 gives the execution times of Ag-
gregate and Aggregate+Batch algorithms as well as their speedups
over the baseline algorithm. As we can see, both query aggregation
and batching contribute to the speedup significantly. Query aggre-
gation alone gives speedups ranging from 16.46× (SSWP on TT)
to 48.64×(SSSP on PK). When batching is combined with aggre-
gation, the speedups are further boosted to 28.81× (SSSP on TT)
to 166.27× (SSWP on PK).

We also present the speedups of Aggregate and Aggregate+Batch
over the baseline using algorithms running in the backward direc-
tion over the edge-reverse graph and compare the results of back-
ward execution with that of forward execution. Table 15 shows the
speedup that can be achieved by selecting the faster direction over

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Table 9
Percentage of Vertex Values that become Stable due to Sharing Updates.

Graph Batch Sizes SSWP Viterbi BFS Top 2 & 1 SSSP

TTW 4 99.99 99.99 28.95 6.93 - 6.93
8 99.99 99.99 25.14 7.38 - 7.41
16 99.99 99.99 22.07 5.21 - 5.25

TT 4 99.99 99.99 23.71 16.65 - 16.78
8 99.99 99.99 20.57 19.85 - 20.03
16 99.99 99.99 18.14 13.61 - 13.82

LJ 4 99.99 99.64 7.64 2.21 - 1.03
8 99.99 99.64 6.56 2.01 - 1.20
16 99.99 99.64 5.61 2.53 - 1.40

PK 4 99.99 99.63 6.26 0.88 - 1.92
8 99.99 99.63 6.11 1.01 - 2.03
16 99.99 99.63 5.38 3.24 - 4.35

Average 99.99 99.80 12.87 6.10 - 6.18

Table 10
Sensitivity to p Value: Cost of Phase II, Benefit of Phase II, Speedup of Sharing Over Batching
Alone on 256 Queries.

p SSWP Viterbi

TTW

Cost Benefit Speedup Cost Benefit Speedup

1 0.08 0.97 8.92× 0.09 0.97 8.47×
2 0.08 0.81 3.74× 0.07 0.84 4.21×
3 0.08 0.49 1.70× 0.08 0.50 1.72×

TT

Cost Benefit Speedup Cost Benefit Speedup

1 0.06 0.98 12.26× 0.06 0.98 12.64×
2 0.06 0.88 5.61× 0.05 0.89 6.39×
3 0.06 0.57 2.05× 0.06 0.59 2.17×

LJ

Cost Benefit Speedup Cost Benefit Speedup

1 0.12 0.96 6.43× 0.12 0.92 5.14×
2 0.13 0.94 5.26× 0.09 0.91 5.48×
3 0.12 0.88 4.19× 0.10 0.85 3.89×

PK

Cost Benefit Speedup Cost Benefit Speedup

1 0.09 0.98 8.76× 0.08 0.96 8.22×
2 0.09 0.95 7.25× 0.07 0.95 8.57×
3 0.09 0.83 3.91× 0.08 0.87 4.68×
Table 11
Changes in Batch Execution Time (seconds): Dynamically Selected → From Other
Batch.

Graph::Alg. Batch 2 Batch 3 Batch 4

TTW::SSWP 14.1 → 14.4 12.9 → 14.1 12.3 → 13.3
TTW::Viterbi 15.1 → 16.4 13.4 → 14.5 14.4 → 14.4
TT::SSWP 17.5 → 18.6 16.2 → 17.5 16.2 → 17.3
TT::Viterbi 18.6 → 18.5 17.5 → 17.6 17.1 → 17.3

Table 12
Number of Unique Shared Vertices Selected Over Four Batches: Min < Actual <
Max.

Graph::Alg. |S S ET | = 1 |S S ET | = 3 |S S ET | = 5

TTW::SSWP 1 <3 <4 3 <7 <12 5 <9 <20
TTW::Viterbi 1 <3 <4 3 <7 <12 5 <9 <20
TT::SSWP 1 <2 <4 3 <8 <12 5 <9 <20
TT::Viterbi 1 <2 <4 3 <8 <12 5 <9 <20

the slower direction. As we can see, the difference between for-
ward and backward execution is more significant for large graphs
with fewer query vertices (i.e., TTW with 32 query vertices and
23
Table 13
Running Time (Seconds) of Baseline in Forward Direction. Number of Query Ver-
tices: 128 for LJ and PK, 64 for TTW, 32 for TT.

Graph SSWP Viterbi BFS SSSP

TTW 2180 2306 1001 3351
TT 202 229 126 243
LJ 350 413 144 469
PK 625 613 151 567

TT with 32 query vertices) while the difference between two di-
rections is smaller for smaller input graphs with larger number of
query vertices (i.e., LJ and PK with 128 queries). A possible rea-
son for the difference between TTW/TT and LJ/PK is the difference
in their graph structure. In particular, the difference between out-
degrees and indegrees of the query vertices of TTW/TT is much
larger than that of LJ/PK.

4.2.3. Sensitivity to number of query vertices
Fig. 4 presents execution times for varying number of query

vertices for LJ. The general trend is that speedup increases as
the number of query vertices increases. This is because greater

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Table 14
Running Time and Speedup of Aggregate and Aggregate+Batch over baseline PTP-OneByOne. In each cell, the Left Number is Execution Time in Seconds while the Right
Number is Speedup over Baseline.

Algorithm SSWP Viterbi BFS SSSP

TTW

Aggregate 106 20.62× 117 19.70× 25 40.29× 159 21.05×
Aggregate+Batch 25 86.17× 28 83.85× 17 60.58× 38 88.36×

TT

Aggregate 12 16.46× 13 17.68× 5 24.18× 15 16.66×
Aggregate+Batch 7 30.82× 7 31.41× 3 41.99× 8 28.81×

LJ

Aggregate 10 34.03× 13 32.40× 4 33.00× 16 30.16×
Aggregate+Batch 3 121.54× 3 118.12× 2 84.56× 4 118.35×

PK

Aggregate 14 46.32× 14 44.56× 3 45.31× 12 48.64×
Aggregate+Batch 4 166.27× 4 158.36× 1 134.17× 4 159.00×

Fig. 4. Total Query Execution Times of PTP-OneByOne vs. Aggregate vs. Aggregate+Batch.
amounts of redundant computation can be eliminated via query
aggregation and greater amount of runtime overhead is amor-
tized via batching. This is reflected in Fig. 4 as the gaps between
the baseline and Aggregate (for aggregation) and between Aggre-
gate and Aggregate+Batch (for batching) increase as the number of
query vertices increases. For instance, as shown in Table 16, in the
case of SSWP on LJ, the speedup from aggregation and speedup
from batching is 2.34× and 1.55× respectively for 4 query ver-
tices. The corresponding speedups grow to 19.18× and 3.57× as
the number of query vertices increases to 64.

4.2.4. Accuracy for direction prediction
As shown in Table 15, the running time of Aggregate+Batch can

differ a lot when evaluating in different directions. Thus it is im-
portant to figure out the faster direction. Since we observe that
the number of iterations can be as small as a few iterations for
24
our workload, we decide to use static direction prediction heuris-
tic in the beginning before the iterative computation starts.

We evaluated the following two degree-based heuristics. The
underlying assumption is that lower degree indicates less work to
do which has been verified in prior work PnP [29]. In the discus-
sion below, k denotes the number of query vertices.

In the first heuristic, for each of the k query vertices we com-
pare their outdegree and indegree. If outdegree is less than inde-
gree, the vote for forward execution increases by one. Otherwise,
the vote for backward execution increases by one. After examining
every query vertex, the direction with more votes will be selected
as the desired direction.

In the second heuristic, for each of the k2 point-to-point queries
we compare the outdegree of the source vertex and the indegree
of the destination vertex. If the former is less than the latter, the
vote for forward execution increases by one. Otherwise, the vote

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
Table 15
Speedup of Faster Direction over Slower Direction using Aggregate+Batch.

Algorithm SSWP Viterbi BFS SSSP

TTW

PTP-OneByOne 2.81× 2.75× 2.56× 3.28×
Aggregate 3.35× 3.35× 2.32× 3.61×
Aggregate+Batch 2.24× 2.32× 2.22× 2.25×

TT

PTP-OneByOne 3.51× 3.43× 3.38× 3.80×
Aggregate 5.20× 4.80× 3.59× 5.29×
Aggregate+Batch 2.97× 3.04× 2.68× 3.04×

LJ

PTP-OneByOne 1.19× 1.11× 1.11× 1.21×
Aggregate 1.27× 1.13× 1.02× 1.13×
Aggregate+Batch 1.18× 1.02× 1.01× 1.07×

PK

PTP-OneByOne 1.02× 1.02× 1.00× 1.08×
Aggregate 1.01× 1.04× 1.02× 1.08×
Aggregate+Batch 1.02× 1.04× 1.01× 1.05×

Table 16
Execution Times (Seconds) of SSWP on LJ for Varying # of Query Vertices.

Query Vertices 4 8 16 32 64 128

PTP-OneByOne 0.19 1.09 2.86 23.62 113.74 350.38
Aggregate 0.08 0.21 0.31 2.72 5.93 10.29
Aggregate+Batch 0.05 0.11 0.13 0.91 1.59 2.88

Table 17
Prediction Rate - First Heuristic.

Graph SSWP Viterbi BFS SSSP

TTW 100.00% 100.00% 100.00% 100.00%
TT 100.00% 100.00% 100.00% 100.00%
LJ 66.67% 100.00% 50.00% 83.33%
PokeC 50.00% 50.00% 33.33% 50.00%

for backward execution increases by one. After examining all the
point-to-point queries, the direction with more votes will be pre-
dicted as the faster direction.

For each combination of benchmark application and input
graph, we compute the prediction rate based on the overall re-
sults on different numbers of query vertices. For instance, in the
case of SSWP on LJ, the prediction rate is based on six data points
which are collected for six different numbers of query vertices 4,
8, 16, 32, 64, and 128.

Tables 17 and 18 present the prediction rates for the two
heuristics. Both prediction heuristics give very good results for
TTW and TT and reasonably good results for LJ and PK. When pre-
diction heuristics work less efficiently, the forward and backward
execution times are usually close to each other (e.g., Viterbi on
PokeC for which the plots of running time in different directions
are shown in Fig. 5). In contrast, the difference between execution
times in forward and backward is usually much more significant
when the prediction rate is more accurate (e.g., SSWP on TTW, for
which difference between directions is shown in Fig. 5). Therefore,
with our prediction heuristics, even with misdirection, we still get
good performance in the end.

5. Related works

Multi Query Frameworks. Recently, MultiLyra [15] and its ex-
tensions in BEAD [16] were developed to simultaneously evaluate
a batch of iterative graph queries. There are important differ-
ences between the algorithms developed in this paper and Mul-
tiLyra/BEAD. First, MultiLyra and BEAD are frameworks for dis-
25
Table 18
Prediction Rate - Second Heuristic.

Graph SSWP Viterbi BFS SSSP

TTW 100.00% 100.00% 100.00% 100.00%
TT 100.00% 100.00% 100.00% 100.00%
LJ 66.67% 100.00% 50.00% 83.33%
PokeC 66.67% 33.33% 83.33% 100.00%

tributed systems and hence its emphasis is on amortizing commu-
nication costs between machines of a cluster while in this paper
we show how batching can be deployed on a single multicore
shared-memory machine to amortize overhead costs. Second, we
show how to dynamically identify shared queries and exploit them
to amortize computation costs of queries in a single batch. Mul-
tiLyra presents a limited algorithm that profiles multiple batches
to find fixed shared queries that it uses to help speedup future
batches. Thus, it cannot be used to speedup a single batch of
queries and it cannot select shared queries that are customized to
the batch being evaluated. Also in [24] authors show that a batch
of BFS queries starting from different source vertices can be simul-
taneously evaluated efficiently. In [8] authors group vertices into
multiple batches to reduce message passing and remote memory
access in computing pruned landmark labels. However, they do not
exploit sharing and are aimed at a specific application.

Congra [17] schedules a group of concurrent queries to fully
utilize the memory bandwidth while preventing contention be-
tween different queries. It relies upon offline profiling with dif-
ferent number of threads to determine the scalability and memory
bandwidth consumption of different graph algorithms on different
input graphs. Multiple queries are processed by creating different
processes for different queries where each process has suitable
number of threads. This approach thus exploits available system
resources fully. In contrast, SimGQ+ does not require offline profil-
ing but is entirely online, lightweight, and enjoys additional ben-
efits from sharing and batching because it does not use multiple
processes. Unlike our sharing of computation across queries, Con-
gra does not exploit shared computations across multiple queries
in a batch and thus it does not reduce the amount of computa-
tion in terms of number of updates or active vertices scheduled. As
for batching, we group the updates from different queries on the
same vertex together to achieve better cache performance, while
Congra cannot do so as execution of each query is decoupled from
other queries. Other works on concurrent query processing include
CGraph [31] that merely studies the opportunity to share the graph
in the context of out-of-core system and Seraph [27] that studies
the opportunity to share the graph and emphasizes its capability
to help in fault tolerance rather than performance.

Recent works that address the problem of evaluating multiple
point-to-point graph queries are Quegel [30] and PnP [29]. Quegel
achieves higher throughput by simultaneous evaluating multiple
queries in a pipelined fashion on a distributed system. In com-
parison, the batching and aggregation scheme we propose exploits
much greater level of parallelism and exploits new optimizations
some of which are inspired by PnP [29]. Note that PnP evaluates
queries one by one. Finally, Wonderland [33] supports both general
and point-to-point queries; however, it does not support sharing.

Graph Databases and Query Systems. There has been a great
deal of work on graph based query languages (e.g., Gremlin [21])
and query support in graph databases (e.g., Neo4J and DEX [4,1])
that enable graph traversals and joins via lower-level graph primi-
tives (e.g., vertices, edges, etc.). However, they are not efficient for
iterative graph algorithms over large graphs. For example, although
Neo4J supports shortest path queries, as shown in [30], Neo4J runs
out of memory for large graphs (e.g., TT used in this paper) and al-
though it can handle smaller graphs (e.g., LJ used in this paper) it
runs extremely slowly taking tens of thousands of seconds in com-

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27

Fig. 5. Aggregate+Batch (Forward) vs. Aggregate+Batch (Backward) Running Times.
parison to just few seconds required by our system. The strength of
above systems lies in their ability to program wide range of queries
especially neighborhood queries [19,20]. In [34] authors present
SPath, an indexing method which leverages decomposed shortest
paths around neighborhood of each vertex as basic indexing unit,
to accelerate subgraph matching queries. SPath performs very large
amounts of precomputation (to enable the optimization) before it
can begin to answer queries. In fact the overhead is substantial –
comparable to solving a very large number of queries. SimGQ+ re-
quires no precomputation, rather it identifies shared computation
for a batch of queries such that performing it once leads to net
reduction in execution time.

6. Conclusions

We developed techniques for simultaneous evaluation of large
batches of iterative point-to-all and point-to-point graph queries.
By employing batching, the overhead costs of query evaluation are
amortized across the queries. By employing sharing for point-to-
all queries and query aggregation for point-to-point queries, the
cost of computations involving shared queries are amortized across
the original batch of queries. Our experiments show that batching,
sharing, and aggregation contribute to the substantial speedups.

Declaration of competing interest

The authors declare the following financial interests/personal
relationships which may be considered as potential competing in-
terests: Rajiv Gupta reports financial support was provided by Na-
tional Science Foundation.

Acknowledgments

This work is supported by NSF grants CCF-2002554, CCF-
1813173, and CCF-2028714 to the Univ. of California Riverside.

References

[1] A.B. Ammar, Query optimization techniques in graph databases, Int. J. Database
Manag. Syst. 8 (4) (August 2016).

[2] L. Backstrom, D. Huttenlocher, J. Kleinberg, X. Lan, Group formation in large
social networks: membership, growth, and evolution, KDD (2006) 44–54.

[3] M. Cha, H. Haddadi, F. Benevenuto, P.K. Gummadi, Measuring user influence in
twitter: the million follower fallacy, Intl. AAAI Conf. Web Soc. Media 10 (10–17)
(2010) 30.

[4] Developers, Neo4J, Graph NoSQL Database, 2012.
[5] J.E. Gonzalez, Y. Low, H. Gu, D. Bickson, C. Guestrin, Powergraph: distributed

graph-parallel computation on natural graphs, in: OSDI’12.
[6] P. Gupta, A. Goel, J. Lin, A. Sharma, D. Wang, R. Zadeh Wtf, The who to follow

service at twitter, in: WWW, 2013, pp. 505–514.
26
[7] G. He, H. Feng, C. Li, H. Chen, Parallel simrank computation on large graphs
with iterative aggregation, in: KDD, 2010, pp. 543–552.

[8] R. Jin, Z. Peng, W. Wu, F. Dragan, G. Agrawal, B. Ren, Parallelizing pruned land-
mark labeling: dealing with dependencies in graph algorithms, ACM ICS 11
(2020) 1–13.

[9] H. Kwak, C. Lee, H. Park, S. Moon, What is Twitter, a social network or a news
media?, in: WWW, 2010, pp. 591–600.

[10] A. Kyrola, G. Blelloch, C. Guestrin, GraphChi: large-scale graph computation on
just a PC, in: USENIX OSDI, pp. 31–46, 2012.

[11] J. Lember, D. Gasbarra, A. Koloydenko, K. Kuljus, Estimation of Viterbi path in
Bayesian hidden Markov models, arXiv:1802 .01630, Feb. 2018, pp. 1–27.

[12] J. Leskovec, Stanford large network dataset collection, http://snap .stanford .edu /
data /index .html, 2011.

[13] Y. Low, D. Bickson, J. Gonzalez, C. Guestrin, A. Kyrola, J.M. Hellerstein, Dis-
tributed GraphLab: a framework for machine learning and data mining in the
cloud, Proc. VLDB Endow. 5 (2012) 8.

[14] G. Malewicz, M.H. Austern, A.J.C. Bik, J.C. Dehnert, I. Horn, N. Leiser, G. Cza-
jkowski, Pregel: a system for large-scale graph processing, in: ACM SIGMOD
Int. Conf. on Management of Data, 2010.

[15] A. Mazloumi, X. Jiang, R. Gupta MultiLyra, Scalable distributed evaluation of
batches of iterative graph queries, in: IEEE International Conference on Big
Data, Dec. 2019, pp. 349–358.

[16] A. Mazloumi, C. Xu, Z. Zhao, R. Gupta BEAD, Batched evaluation of iterative
GraphQueries with evolving analytics demands, in: IEEE International Confer-
ence on Big Data, Dec. 2020.

[17] P. Pan, C.Li. Congra, Towards efficient processing of concurrent graph queries
on shared-memory machines, in: IEEE ICCD, 2017.

[18] D. Nguyen, A. Lenharth, K. Pingali, A lightweight infrastructure for graph ana-
lytics, in: ACM SOSP, 2013, pp. 456–471.

[19] M. Potamias, F. Bonchi, A. Gionis, G. Kollios, k-nearest neighbors in uncertain
graphs, Proc. VLDB Endow. (2010).

[20] A. Quamar, A. Deshpande, J. Lin, NScale: neighborhood-centric analytics on
large graphs, VLDB J. 7 (13) (2014) 1673–1676.

[21] M.A. Rodriguez, The gremlin graph traversal machine and language (invited
talk), in: Symp. on Database Prog. Languages, 2015, pp. 1–10.

[22] J. Shun, G. Blelloch, Ligra: a lightweight graph processing framework for shared
memory, in: ACM PPoPP, 2013, pp. 135–146.

[23] L. Takac, M. Zabovsky, Data analysis in public social networks, in: International
Scientific Conference and International Workshop Present Day Trends of Inno-
vations, 2012, pp. 1–6.

[24] M. Then, M. Kaufmann, F. Chirigati, T-A. Hoang-Vu, K. Pham, A. Kemper, T. Neu-
mann, H.T. Vo, The more the merrier: efficient multi-source graph traversal,
Proc. VLDB Endow. (2015).

[25] L.G. Valiant, A bridging model for parallel computation, Commun. ACM 33 (8)
(1990) 103–111.

[26] K. Vora, S-C. Koduru, R. Gupta ASPIRE, Exploiting asynchronous parallelism in
iterative algorithms using a relaxed consistency based DSM, in: SIGPLAN OOP-
SLA, October 2014, pp. 861–878.

[27] J. Xue, Z. Yang, Z. Qu, S. Hou, Y. Dai, Seraph: an efficient, low-cost system for
concurrent graph processing, in: HPDC, 2014.

[28] C. Xu, A. Mazloumi, X. Jiang, R. Gupta SimGQ, Simultaneously evaluating itera-
tive graph queries, in: IEEE HiPC, 2020.

[29] C. Xu, K. Vora, R. Gupta PnP, Pruning and prediction for point-to-point iterative
graph analytics, in: ACM ASPLOS, 2019.

[30] D. Yan, J. Cheng, M.T. Ozsu, F. Yang, Y. Lu, J.C.S. Lui, Q. Zheng, W. Ng, A general-
purpose query-centric framework for querying big graphs, Proc. VLDB Endow.
9 (7) (2016) 564–575.

[31] Y. Zhang, X. Liao, H. Jin, L. Gu, L. He, B. He, H. Liu, Cgraph: a correlations-aware
approach for efficient concurrent iterative graph processing, in: USENIX ATC,
2018.

http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4F40F18EB49B77E18FF971E97B850A2Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4F40F18EB49B77E18FF971E97B850A2Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib667083D27188509B9800C762E237D5BCs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib667083D27188509B9800C762E237D5BCs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibA44A800185D6CE26E5463F65DAE164E6s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibA44A800185D6CE26E5463F65DAE164E6s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibA44A800185D6CE26E5463F65DAE164E6s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib60EA78FA63AC6F820C0B0E23F1266639s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib60EA78FA63AC6F820C0B0E23F1266639s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib39BA9528613D4685DCFB82835DD9543Es1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib39BA9528613D4685DCFB82835DD9543Es1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib050761D8D3202128B4990287D187F09As1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib050761D8D3202128B4990287D187F09As1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib050761D8D3202128B4990287D187F09As1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9473EBA24174F9D2519529A789131DF7s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9473EBA24174F9D2519529A789131DF7s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib97436674BAA5DBE8EE681C82FD700B0Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib97436674BAA5DBE8EE681C82FD700B0Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib6889D9B20F38BE25581EA940D0BA453Bs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib6889D9B20F38BE25581EA940D0BA453Bs1
http://snap.stanford.edu/data/index.html
http://snap.stanford.edu/data/index.html
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibAC2B3DB685C50C1AB655F5A079ABFC6Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibAC2B3DB685C50C1AB655F5A079ABFC6Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibAC2B3DB685C50C1AB655F5A079ABFC6Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9D4CCD95DC49FC994BA58769ED5D5F3Es1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9D4CCD95DC49FC994BA58769ED5D5F3Es1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9D4CCD95DC49FC994BA58769ED5D5F3Es1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC34F10E186CDDFE14E79A9E6E497B81Ds1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC34F10E186CDDFE14E79A9E6E497B81Ds1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC34F10E186CDDFE14E79A9E6E497B81Ds1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1E35B4E981872F05934549527FCB07EAs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1E35B4E981872F05934549527FCB07EAs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1E35B4E981872F05934549527FCB07EAs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib8E21D3BBFC10456F5BCFDC3B7EB34F04s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib8E21D3BBFC10456F5BCFDC3B7EB34F04s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib8EE794922D6A06AC6916CFDD1356321Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib8EE794922D6A06AC6916CFDD1356321Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib83DE0FFD56B65D92A104F9FC3EA40CA1s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib83DE0FFD56B65D92A104F9FC3EA40CA1s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1CC31DDAB4CFB12A2F40A922F4FC43E3s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1CC31DDAB4CFB12A2F40A922F4FC43E3s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibE212D3AB26C4BD9E6D65109EC84C9245s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibE212D3AB26C4BD9E6D65109EC84C9245s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib469D49E73B5C2F41E08C7394825922ECs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib469D49E73B5C2F41E08C7394825922ECs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib0AF8A8323231B7CD07FB20F4D710CB34s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib0AF8A8323231B7CD07FB20F4D710CB34s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib0AF8A8323231B7CD07FB20F4D710CB34s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibADDEC426932E71323700AFA1911F8F1Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibADDEC426932E71323700AFA1911F8F1Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibADDEC426932E71323700AFA1911F8F1Cs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib3C247CE3B763BFA0225F15C27BBBC328s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib3C247CE3B763BFA0225F15C27BBBC328s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9C1A77F6939326BAFF08F64002B5E585s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9C1A77F6939326BAFF08F64002B5E585s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib9C1A77F6939326BAFF08F64002B5E585s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1CD5A57E4283705E6519C904DC4E11A2s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib1CD5A57E4283705E6519C904DC4E11A2s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib72D05F95A1D2831FE1CB3E01DF3E873Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib72D05F95A1D2831FE1CB3E01DF3E873Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibE8315CAA4EB8C2A2625D4E97DBBA100As1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibE8315CAA4EB8C2A2625D4E97DBBA100As1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib5F188800386933201CA7C12C0ECFCD6Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib5F188800386933201CA7C12C0ECFCD6Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib5F188800386933201CA7C12C0ECFCD6Fs1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC51FD962A2B4153E87D1F7FC14387A23s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC51FD962A2B4153E87D1F7FC14387A23s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bibC51FD962A2B4153E87D1F7FC14387A23s1

C. Xu, A. Mazloumi, X. Jiang et al. Journal of Parallel and Distributed Computing 164 (2022) 12–27
[32] Y. Zhang, M. Yang, R. Baghdadi, S. Kamil, J. Shun, S. Amarasinghe, GraphIt: a
high-performance graph DSL, in: PACM 2, OOPSLA, 2018.

[33] M. Zhang, Y. Wu, Y. Zhuo, X. Qian, C. Huan, K. Chen, Wonderland: a novel
abstraction-based out-of-core graph processing system, in: ACM ASPLOS, 2018,
pp. 608–621.

[34] P. Zhao, J. Han, On graph query optimization in large networks, Proc. VLDB
Endow. 3 (1–2) (2010) 340–351.

Chengshuo Xu received a PhD degree in computer
science from University of California, Riverside, River-
side, USA, in 2021. Prior to that, he received a BS
degree in computer science from the University of
Macau, Macao SAR, in 2016. His research interests in-
clude high-performance computing, graph analytics,
and AI accelerators.

Abbas Mazloumi received the BS degree in com-
puter engineering from the University of Mazandaran,
Babolsar, Iran, in 2009, and the MS degree in com-
puter architecture from the University of Tehran,
Tehran, Iran, in 2014. He is currently working toward
the Ph.D. degree in the Department of Computer Sci-
ence and Engineering at the University of California,
Riverside, California, USA. His research interests in-
clude computer architecture, networks-on-chip, high-

performance computing, graph analytics, and graph AI.
27
Xiaolin Jiang received a bachelor’s degree in com-
puter science and technology from Shandong Univer-
sity, Jinan, China. She is currently working toward the
PhD degree with the CSE Department at the Univer-
sity of California, Riverside. Her research interests in-
clude graph processing, and are broadly in the area of
parallel computing, and systems.

Rajiv is a Distinguished Professor and the Amrik
Singh Poonian Chair in Computer Science at the Uni-
versity of California, Riverside. His research interests
include Compilers, Architectures, and Runtimes for
Parallel Systems. He has supervised PhD dissertations
of 35 students including two winners of the ACM
SIGPLAN Outstanding Doctoral Dissertation Award. Pa-
pers coauthored by Rajiv with his students have been
selected for: inclusion in 20 Years of PLDI (1979-

1999), a best paper award in PACT 2010, and a distinguished paper award
in ICSE 2003. Rajiv is a Fellow of the IEEE (2008), ACM (2009), and
AAAS (2011). He received the NSF Presidential Young Investigator Award
(1991) and UCR Doctoral Dissertation Advisor/Mentor Award (2012). He
has chaired several major conferences including FCRC, PLDI, HPCA, ASPLOS,
PPoPP, CGO, CC, HiPEAC, and LCTES. Rajiv served as a member of a tech-
nical advisory group on networking and information technology created
by US President’s Council of Advisors on Science and Technology (PCAST)
(2006-2007).

http://refhub.elsevier.com/S0743-7315(22)00012-0/bib3B27502D553ED9480CAD6FAC050137E4s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib3B27502D553ED9480CAD6FAC050137E4s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4CECAFF2B30BBE75CE7322109164CFB5s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4CECAFF2B30BBE75CE7322109164CFB5s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4CECAFF2B30BBE75CE7322109164CFB5s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4F436FBC96EFC01B36B72232C05593F7s1
http://refhub.elsevier.com/S0743-7315(22)00012-0/bib4F436FBC96EFC01B36B72232C05593F7s1

	SimGQ+: Simultaneously evaluating iterative point-to-all and point-to-point graph queries
	1 Introduction
	2 SimGQ+: evaluating a batch of queries
	2.1 Overview of SimGQ+
	2.2 Push-style batch evaluation with sharing
	2.3 Applicability

	3 PTP in SimGQ+: evaluation of a batch of point-to-point queries
	3.1 Query aggregation - exploit shared computation
	3.2 Adapt pruning to multiple one-to-many query scenario
	3.3 Discussion of full-mapping workload - breaking tie between forward and backward aggregation using direction prediction
	3.4 Push style batched evaluation of full-mapping point-to-point queries

	4 Experimental evaluation
	4.1 Evaluation of SimGQ+
	4.1.1 Experimental setup for SimGQ+
	4.1.2 Benefits of sharing and batching in SimGQ+
	4.1.3 Contributions of sharing vs. batching in SimGQ+
	4.1.4 Sensitivity of SimGQ+ performance to the p value
	4.1.5 Dynamic selection of SSET in SimGQ+

	4.2 Evaluation of point-to-point queries in SimGQ+
	4.2.1 Experimental setup
	4.2.2 Effectiveness of aggregation and batching
	4.2.3 Sensitivity to number of query vertices
	4.2.4 Accuracy for direction prediction

	5 Related works
	6 Conclusions
	Declaration of competing interest
	Acknowledgments
	References

