20

21

VCNet: A Generative Model for Volume Completion
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Abstract

We present VCNet, a new deep learning approach for volume completion by synthesizing missing subvolumes. Our solution
leverages a generative adversarial network (GAN) that learns to complete volumes using the adversarial and volumetric losses. The
core design of VCNet features dilated residual block and long-term connection. During training, VCNet first randomly masks basic
subvolumes (e.g., cuboids, slices) from complete volumes and learns to recover them. Moreover, we design a two-stage algorithm
for stabilizing and accelerating network optimization. Once trained, VCNet takes an incomplete volume as input and automatically
identifies and fills in the missing subvolumes with high quality. We quantitatively and qualitatively test VCNet with volumetric data
sets of various characteristics to demonstrate its effectiveness. We also compare VCNet against a diffusion-based solution and two

GAN-based solutions.
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1. Introduction 22

23
With the astounding advance of machine learning techniques,,

visualization researchers have proposed various deep learning-
based data generation solutions for scientific visualization, such ,,
as super-resolution creation (in the spatial and temporal do- ,,
mains), ensemble generation, and variable translation. How-
ever, the task of volume completion is still unexplored. Vol-
ume completion aims to recover the damaged, deteriorating, or |
missing parts of a volume so that the complete volume can be
presented. An example is shown in Figure 1. The potential ap- ,
plications of volume completion include recovering data when
they are partially damaged and reducing data through only stor- ,
ing a part of voxels. For example, scientific simulations need to
save data to disk for post-processing. However, such data may
not be completely saved to local storage during transmission ,
due to I/O suspension or network outage. Our approach can re-
cover the incomplete data without rerunning the simulations if

this scenario happens. 0
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(b) VCNet 48

49

Figure 1: (a) shows the incomplete volume of the argon bubble data set where
the cuboid missing subvolume is displayed on the side (same for other figures 50
in the paper). (b) shows our VCNet completion results. 51
52

Recovering missing subvolumes poses four key challenges. s
First, unlike super-resolution and ensemble generation, where s
full information of volumes is provided (even at a low resolu- ss
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tion), incomplete volumes only offer partial information. Us-
ing traditional convolutions (Convs) with a small receptive field
will not complete the missing subvolumes, while a large re-
ceptive field will lead to high computational cost and memory
demand. Second, only applying a series of Convs may not
handle complex data sets whose distributions are composited
(e.g., Gaussian+long-tail). This is because using only one gra-
dient path will prevent the network from converging. Third,
the coherence between the completed subvolume and its sur-
roundings needs to be considered. Only discerning the com-
pleted subvolume can result in low visual quality, leading to
pronounced boundary artifacts. Fourth, in image completion,
the mask can be easily detected through visualization. How-
ever, in volume completion, due to the transfer function and
viewpoint involved, it is difficult to generate such a mask via
rendering. However, having such a mask is necessary for vol-
ume completion since it offers prior knowledge about which
voxels are missing, making the completion task accurate.

To respond, we propose a novel deep learning solution, vol-
ume completion network (VCNet), to fill in missing subvolumes
for volumetric data analysis and visualization. We leverage a
generative adversarial network (GAN) consisting of a gener-
ator and a discriminator. The generator learns how to synthe-
size the missing subvolume via “seeing” the content from the
ground-truth subvolume, and the discriminator scores the real-
ness of the completed subvolume. The core of the generator lies
in dilated Conv [1] (which provides a large receptive field with-
out requiring additional computational cost) and long-term con-
nection [2, 3] (which promotes loss into minimum and prevents
the generator from falling into unexpected behaviors). The dis-
criminator also judges the coherence between the completed
subvolume and its surroundings, and the realness between the
completed and ground-truth subvolumes. The training data are
from volumes without missing voxels. During inference, given
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an incomplete volume as input, VCNet first generates a maskios
based on the Wasserstein distance between complete and in-11o
complete subvolumes and then recovers the input. 111

We quantitatively and qualitatively test VCNet on severali2
data sets with various characteristics to demonstrate its effec-113
tiveness. Furthermore, we compare VCNet against three base-114
lines: gradient vector flow [4], context encoder [5], and globalis
and local completion [6]. Our results show that VCNet achievesiis
the best quality using the data-level metric peak signal-to-noise7
ratio (PSNR), image-level metric mean opinion score (MOS),11s
and feature-level metric isosurface similarity (IS) [7]. Our con-11s
tribution is three-fold. First, we propose VCNet, a new gener-izo
ative model that can synthesize missing subvolumes for volu-rz
metric data. Second, we design a mask detection algorithm toize
identify the missing voxels automatically. Third, we performizs
a comprehensive study to demonstrate the effectiveness of VC-124
Net and investigate its impacting factors. 125

126

2. Related work

127
2.1. Deep Learning for Volume Visualization

Researchers have investigated deep learning techniques for'
solving volume visualization problems. Such examples includeszs

complex structure depiction [8], rendering pipeline replacement 9,
10], ambient occlusion [11], representative time step selection [ 2],

and similarity prediction [13, 14]. Other researchers developedis
deep learning solutions for creating volumetric scalar and vec-1ss
tor data or rendering images in the spatial [15, 16, 17, 18], tem-,,
poral [19, 20, 21], spatiotemporal [22, 23], image [24, 25, 26],55
and variable [27, 28] domains. Our work differs from the above,
works. Instead of focusing on data generation [17, 19, 22, 27],
we leverage deep learning solutions to solve the volume com-
pletion problem.

2.2. Data Completion

The data completion problem has been studied for more
than two decades, which includes two directions: traditional
and learning-based solutions. Traditional solutions can be sep-
arated into diffusion-based and patch-based approaches. For
diffusion-based approaches, Xu and Prince [4] introduced gra-
dient vector flow that estimates the missing voxels by minimiz-
ing the Laplacian over the whole data. Ballester et al. [29] pro-
posed a data completion algorithm that jointly interpolates the
image’s gray levels and gradient directions, then smoothly ex-
tends the isophotelines to fill in missing data. Levin et al. [30]
built an exponential family distribution over training images to
complete image holes. For patch-based approaches, Drori et al.
[31] iteratively approximated the unknown regions and com-
posited adaptive image fragments into the image. Barnes et
al. [32] proposed PathMatch, a randomized corresponding al-
gorithm that randomly samples some good patch matches and™
propagates these matches to surrounding areas to keep natu-1%
ral coherence. Huang et al. [33] applied planar structure guid-14
ance to estimate planar projection parameters, softly segment
the known region into planes, and discover translational regu-14
larity within these planes for image completion.

For learning-based solutions, Pathak et al. [S] proposed a
context encoder for completing images only for the central re-
gions. lizuka et al. [6] built a globally and locally consistent
image completion framework for arbitrary region completion,
where two discriminators were used to guarantee local and global
consistency. Liu et al. [34] established partial convolution (PConv)
that incorporates a visibility mask into convolutional operation
for irregular hole completion. Wang et al. [35] conducted a gen-
erative multi-column CNN (GMCNN), which simultaneously
processes an incomplete image through three CNNs with dif-
ferent kernel sizes. Yu et al. [36] designed gated convolution
(GConv), giving a learnable dynamic feature selection solution
for free-form completion.

Our work belongs to the learning-based solution. Unlike the
above works, which focus on image completion, we propose
a generative model for volume completion and design a mask
detection algorithm to discover the missing voxels for accurate
inference.

3. VCNet

3.1. Notation

Let us denote V€ = {VIC, <, Ve and V= (VI ... V! Vas
the complete and incomplete volumetric data sets, respectively,
where n and m are the respective numbers of data samples. For
VCNet, V€ is the training set and V' is the inference set. V§, =
{Vf/“, cee Vg,l’n} is an incomplete volumetric data set generated
by V€ through random masking. M¢ = {M¢, ... M} is a bi-
nary volumetric mask set of V¢,, where Mf[v] =lif VfM[v] is
missing at voxel v; otherwise, M?[v] =0.M' ={M!,--- M}
is a binary volumetric mask set of V.

m Conv (kernel=4, stride=2)
{J] Conv (kernel=3, stride=1)

m dilated RB (kernel=3, stride=1) m VS (kernel=3, stride=1)
dilated Conv (kernel=3, stride=1) GAP

—> long-term connection

[ tanh activation —> data flow

C

vM,i
SES e
‘/}L A —
h g =
V1 o

Figure 2: VCNet includes a generator G and a discriminator D. G takes incom-
plete volumes and synthesizes the missing subvolumes. D accepts the com-
pleted volumes as input and determines their realness. Note that D is used
during training only.

3.2. Overview

Our VCNet design is adapted from 3D U-Net [37], a popu-
lar neural network for image generation and segmentation tasks.
Given a volume sample VI.C € V€, VCNet first randomly masks
a subvolume to obtain an incomplete volume me .~ Then taking
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Vf,” as input, VCNet learns to synthesize the missing subvol-
ume and calculates the error between the synthesized one and
GT. To capture the coherence between the synthesized subvol-
ume and its surroundings, we leverage a discriminator to score
the volume’s realness. During inference, VCNet accepts V/ as
input, estimates the missing voxels, and fills them with high
quality. In the following, we introduce the architecture of VC-
Net, including the generator, discriminator, and design criteria.
Then, we provide optimization and inference details for VCNet.

Table 1: Network architecture parameter details for G and D. “ker”, “dil”,
“str”, and “out chs” stand for the kernel, dilation, stride, and output channels,
respectively.

G D

ker out ker out
type size  dil str chs  type size  dil str chs
input N/A NA NA 1 input N/A NA NA 1
Conv+ReLU 4 1 2 32 Conv+ReLU 4 1 2 32 182
Conv+ReLU 3 1 1 32 Conv+ReLU 4 1 2 64
Conv+ReLU 4 1 2 64 Conv+ReLU 4 1 2 128 183
Conv+ReLU 3 1 1 64 Conv+ReLU 4 1 2 1 184
Conv+ReLU 4 1 2 128 GAP N/A NA NA 1
Conv+ReLU 3 1 1 128 185
Conv+ReLU 4 1 2 256 186
Conv+ReLU 3 1 1 256
dilated RB 3 2 1 256 187
dilated RB 3 4 1 256
dilated RB 308 1 256 188
VS+Conv+ReLU 3 1 1 128 189
VS+Conv+ReLU 3 1 1 64
VS+Conv+ReLU 3 1 1 2 190
VS+Conv+Tanh 3 1 1 1 191

192

193

3.3. Network Architecture 104
Generator. The architecture of the generator (G) is sketched,es
in Figure 2. The input to G is an incomplete volume, and the,q
output is a complete one. The core of VCNet lies in applying,s,
dilated Conv [1] and long-term connection (LTC) [2, 3]. The,q
design of G follows an encoder-decoder structure. The encoderq,
decreases the input resolution several times to reduce memory,g,
storage and computational cost. The decoder restores the deep.y
features to the original resolution of the input using voxel shuf-,,
fle (VS) [19]. Followed by lizuka et al. [6], Conv with a stride,
of two is applied to decrease the resolution in the encoder. We,,
do not use max-pooling since it could lead to blurred texture in,s
the missing subvolumes. We reduce the resolution four times,
in the encoder. After four rounds of downsizing, three residualy,;,
blocks (RB) [38] with dilated Conv are applied to provide large,s
receptive fields. Different dilations are utilized in these RBs.
In the decoder, we apply four VS layers to upscale the features,;,
back to the original resolution. LTC is utilized to bridge the,,
features from the encoder and the decoder. ReLU [39] is ap-,:.
plied after each Conv in both the encoder and the decoder. They;
parameter setting of G is listed in Table 1. 214
Why dilated Conv? Dilated Conv is a variant of Conv op-,s
erations, which has been used in image segmentation [1]. As,e
shown in Figure 3, unlike traditional Conv, dilated Conv cap-x;
tures a larger receptive field by applying spread-out kernels withyg
the same number of parameters. Providing a large receptive,
field is vital for our volume completion task because it allows,,,
the network to see a larger subvolume rather than only focus-
ing on the missing subvolume’s neighborhoods. Note that de-
formable Conv [40] can also support a large receptive field, but

kernel

R
N
[\l
N
\

) :
= I
missing ]
subvolume % M
(a) traditional Conv (b) dilated Conv (c) LTC

Figure 3: (a) and (b) 2D illustrations of the receptive fields of different Conv
operations. (c) adding three LTCs (i.e., the red, blue, and orange lines) increases
the number of gradient paths to four. The dashed line means the corresponding
Conv is not involved in backpropagation.

it requires additional parameters to determine the correspond-
ing voxels involved in the Conv computation. We also use de-
formable Conv to replace dilated Conv, but no significant im-
provement is observed. Therefore, we decide to use dilated
Conv for designing VCNet.

Why LTC? LTC is a popular technique used in image clas-
sification [3] and segmentation [2]. It bridges feature maps be-
tween two Conv layers to alleviate the gradient vanishing prob-
lem. Adding one LTC, we can rely on two independent paths for
gradient computation: one with LTC and another without LTC.
If the gradient on one path is zero during backpropagation, the
network can still update its trainable parameters by propagating
gradient on another path from the later to previous layers. An
example is shown in Figure 3 (c). By adding three LTCs in a
network with five Conv layers, we increase the gradient paths
to four. Without LTC, there is only one computation path (i.e.,
the black one). Leveraging LTC in the volume completion task
is essential since it can promote minimal loss and prevent the
network from falling into unexpected behaviors [41].

Discriminator. The discriminator (D) is designed for dis-
cerning whether a volume has been completed. The network
is based on a fully convolutional network that compresses the
volume into a feature vector and predicts a value in [0, 1] to
indicate the input’s realness. An overview of the network is
shown in Figure 2. Specifically, D takes the completed volume
as input and utilizes four Conv layers and one global average
pooling (GAP) [42] layer to output a single 1D vector. All
Conv layers employ a kernel size of four and a stride of two
to downsize the volume resolution while increasing the number
of feature maps. After four Conv operations, GAP transforms
the input into a value, representing the realness probability of
the input. The parameter setting of D is listed in Table 1.

Loss function. To guarantee the completed subvolume is
realistic and coherent with its surroundings, we consider two
loss functions: a weighted mean squared error (WMSE) loss
for closeness to ground truth and an adversarial loss [43] for
closeness to realism. These two loss functions have been used
in image completion [6, 5], which can stabilize the training pro-
cess and improve network performance.

The WMSE loss only takes into account the completed sub-
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volume for loss computation. It is defined as

1 n
L=~ > IMS 0 GV ) = V. ()
=1
where © is the voxel-wise multiplication, || - ||, is L norm, and

n is the number of training samples.
The adversarial losses of G and D are defined as

n

L0 = ! Z[log DMS oGV )+ (1 -MH V)L, (2)

adv n 4
J=1

1 n
Li=- Zl[l"g D(V)]
=

1 n
- Z[log(l —-DMS 0 GV ) + (1 -MH o V).
]:1 256

(3)257

Intuitively, D can only discern the completed subvolume; how-**

ever, this ignores incoherence between the completed subvol-**
ume and its surrounding subvolumes. Therefore, in our design,*
D considers the coherence between the completed subvolume®
and its surroundings. 2

Overall, the total loss of G is defined by

1

263
264

(4)2s

266

G G
L= /lrec-grec + /ladv-ﬁadv,

G

where A and A,q, control the importance of LY and L

267
268

3.4. Optimization 269

Missing subvolumes. We consider four basic missing sub-
volumes as either an internal cuboid or a whole x-, y-, or z-stack
of slices. VCNet learns to synthesize these missing subvolumes
during training. In particular, at each training iteration, VCNet
randomly chooses one missing subvolume type from the above
four groups, then randomly masks the data as input. During in-
ference, it can complete missing subvolumes with various sizes
and shapes (e.g., cuboid, cylinder, hyperboloid, sphere, tetra-
hedron, and ring). Note that if we only consider an internal
cuboid as a missing subvolume during training, VCNet will not
complete missing subvolumes with different forms, e.g., a sub-
volume with a whole x-, y-, or z-stack of slices.

Training procedure. As reported in lizuka et al. [6] and
Han et al. [27], training a GAN model is expensive since the
training process needs to go through two networks (G and D)
and update gradients of G and D, respectively. Therefore, fol-»,
lowed Wang et al. [44], we leverage a two-stage training al-
gorithm (pre-train+fine-tune) to significantly reduce the train-
ing cost without sacrificing the performance. The algorithm is
shown in Algorithm 1. At the first stage, we treat VCNet as
an auto-encoder and only utilize £, to optimize VCNet for
Tp epochs. At this pre-train stage, VCNet can learn to fill in the
missing subvolume, which is close to ground truth but may lacka
realism. Then, at the second stage, D is added into the train-zr
ing process, and G and D are jointly optimized for Tr epochs.

Algorithm 1 VCNet training algorithm

Require: Initial parameters 6 and 6p; numbers of training epochs Tp and Tr
for pre-train and fine-tune, respectively; and learning rates ¢ and ap for G
and D, respectively.
forj=1---Tpdo

Sample a set of volumes V¢ from training pool
Randomly generate masks MC and incomplete volumes Vg/[
Update 6 using M€ and V€ (Equation 1)
end for
forj=1---Tr do
Sample a set of volumes V€ from training pool
Randomly generate masks MC and incomplete volumes V%
Freeze 0
Update 6p using M€, V%, and V¢ (Equation 3)
Freeze 0p and activate 0g
Update g using M€ and V€ (Equation 4)
Activate 6p
end for

At this fine-tune stage, with the judgment of D, G can refine
the results produced from the pre-train stage toward realism.
With the original GAN training algorithm [43], gradients of D
can quickly explode because G cannot follow the evolution of
D due to random initialization of G and D. This initialization
could let G give up generating meaningful results if D evolves
much faster than G after several training epochs. Such an im-
balanced evolution is due to the disparity between the tasks of
G and D (i.e., D is a classification task while G is a genera-
tion task). However, with this two-stage training algorithm, G
already has a good initialization that can generate meaningful
results through the first stage training. It can refine the results
with the feedback from D rather than random initialization from
scratch. Moreover, it reduces the training cost since the number
of optimization of D is decreased.

Algorithm 2 Mask detection algorithm

Require: An incomplete volume V;; a complete volume V/C; and a threshold
€.
Initialize an empty mask M
for each voxel v in Vli do
Sample two K X K x K subvolumes Vj, , and VIC.V where the centers are
located at voxel v in Vli and V]C., respectively
Compute the Wasserstein distance d between V’/. , and V/Cv
if d > € then '
M j[v] «— 1
end if
end for

return M

3.5. Inference

Once the training of VCNet converges, we can directly feed

V! to VCNet to synthesize the missing subvolumes following
the equation

M oGVhH+1-MHoe V. (5)

Note that only V’ is given, and M is unknown. Therefore,

we propose a mask detection algorithm to identify the missing
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voxels and produce the corresponding masks M/. The algo-so
rithm is based on the following assumption: given an incom-so
plete volume V’ and a complete volume V¢, the data distribu-se
tions should exhibit a similar pattern at a voxel v’s surroundingaos
subvolume if both V/ and va are complete. If V% is incom-ous

plete and ijv is complete, then the distributions should be dif-30s
ferent. To verify this assumption, we plot density maps withs3os
respect to a local subvolume around a selected voxel, as shownso
in Figure 4. As we can observe, both maps show a Gaussian

distribution for the complete voxels; the only difference is that®
the mean and variance could vary. However, for the incompletesos
voxels, the distributions differ from the complete ones. For ex-s1o
ample, the maps could exhibit an almost straight pattern. The .
Wasserstein distance is computed to indicate whether the voxel_,
is incomplete. We summarize the mask detection algorithm in_
Algorithm 2. For each voxel v, we sample two local subvolumes

(we set K to 5) of v from V§ and VJC, respectively, and computes
the Wasserstein distance (d) between these two subvolumes tosis
judge whether v is missing. Once looping through all voxels,sts
the algorithm will return a binary mask M;, indicating whichs
voxels need to be completed. a1
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Figure 4: The density maps with respect to a local subvolume around a com-334
plete voxel (left) and an incomplete voxel (right) for the solar plume (top row),,.

and vortex (bottom row) data sets.
336

337

Table 2: The data set, variable, dimension, and training epochs. 538

339

data set variable dimension (x Xy xXzxn) Tp Tr
argon bubble  intensity 320 x 128 x 128 x 100 200 50 %40
five jets intensity 128 x 128 x 128 x 100 400 50 341
solar plume  velocity magnitude 128 X 128 X 512 x 28 200 50,
supernova entropy 128 x 128 x 128 x 60 800 100
vortex vorticity magnitude 128 x 128 x 128 x 90 400 50 %
344
345
346
4. Results and Discussion a7

348

4.1. Data Sets and Network Training st0
We tested VCNet using the time-varying data sets given inas
Table 2. The volume samples were randomly drawn from thess
sequence. We used 35% of data for training. The remainingss

65% of data are for inference. We trained and inferred VCNetsss

5

using an NVIDIA TESLA V100 GPU with 32GB video mem-
ory. PyTorch was used for implementation. In terms of opti-
mization, we initialized VCNet parameters following He et al.
[45] and leveraged the Adam optimizer [46] to update param-
eters. We used one training sample for each mini-batch. The
learning rates for G and D are 10™* with 8; = 0.9, 8, = 0.999,
Ay = 1073, and Ao = 1. All these parameters are empirically
decided through experiments.

4.2. Results

Baselines. To evaluate VCNet, we implement three base-
line solutions for comparison:

e Gradient vector flow (GVF) [4]: As a diffusion-based
method, GVF completes missing subvolumes by mini-
mizing the Laplacian over the whole data.

o Context encoder (CE) [5]: CE is a deep learning solu-
tion for image completion. Its architecture includes an
encoder and a decoder. The encoder includes five Conv
layers followed by leaky ReLLU and one Conv layer to
yield a feature representation with 4,000 neurons. The
decoder includes several deconvolutional (DeConv) lay-
ers, followed by ReL.U for upscaling. WMSE and adver-
sarial losses are leveraged for optimization.

e Global and local completion (GLC) [6]: GLC is a fully
convolutional network that includes 11 Conv, four dilated
Conv, and two DeConv layers. In addition, it has two
discriminators to guarantee local and global consistency,
respectively.

We used the same training settings for CE, GLC, and VCNet,
namely, the training epochs, optimizer, learning rate, and loss
functions (i.e., WMSE and adversarial losses). The only differ-
ence between these three deep learning solutions is architecture
design.

We also tried PConv [34], GConv [36], and GMCNN [35]

as the baselines. However, these solutions are rather deep (PConv),

multi-stage (GConv), or multi-column (GMCNN). Applying
them to 3D volumetric data sets is difficult due to the limited
GPU memory. We tried to reduce the depths, stages, or columns
to adapt them into 3D data sets, but the performance was unsat-
isfactory. Therefore, we only chose CE and GLC as our deep
learning baselines.

Unless otherwise mentioned, all visualization results pre-
sented for volumes synthesized by VCNet are the inferred re-
sults, which are not seen by the network during training. For
the same data set, all visualizations follow the same setting for
lighting, viewing, transfer function (for volume rendering), and
isovalue (for isosurface rendering). In reference to the ground
truth (GT) results, we compare our VCNet results against GVF,
CE, and GLC. The supplementary video provides the frame-to-
frame comparison results.

Evaluation metrics. We compute the data-level PSNR,
image-level MOS, and feature-level IS, between the recovered
data and GT for quantitative evaluation. We do not use SSIM
for image quality assessment because this metric may not dif-
ferentiate well different methods when the missing subvolumes
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are small (in this case, all methods will achieve similarly high
SSIM values). Note that only the missing subvolumes are in-
volved in the PSNR and IS computation.

Quantitative analysis. Table 3 reports the average PSNR
values for GVF, CE, GLC, and VCNet. VCNet leads to the
best PSNR values except for the vortex data set (where the gap
between VCNet and CE is only 0.11). Table 3 also gives the av-
erage training time per epoch and model size for CE, GLC, and
VCNet. Itis clear that GLC takes the longest training time since
it includes three networks (i.e., one generator and two discrim-
inators) and only downsamples the input twice, while there is
no significant difference in the inference time. VCNet requires
120MB to store the model. Although CE is a fully convolu-
tional network, the model size depends on the data set’s reso-
lution. It needs to compress the data into a 4, 000-dimensional
vector and upscale to the original resolution, which requires a
different number of DeConv layers in the decoder based on the
input’s resolution. Table 4 reports the average IS values for
GVF, CE, GLC, and VCNet. Again, VCNet achieves the high-sss
est IS value for all data sets. 386

Qualitative analysis. Figure 5 shows volume renderingss
results from the volumes completed by GVF, CE, GLC, andsss
VCNet. For the argon bubble and solar plume data sets, VC-aso
Net achieves the best completion quality. For example, VCNetas
completes the argon bubble and solar plume’s missing subvol-s
umes. GVF fills in nearly constant values. In contrast, both CEss2
and GLC do not fill in any missing subvolumes (i.e., the vol-sss
ume rendering results are identical to those of the incompletess
input volumes). For the five jets data set, GVF cannot repairss
the missing subvolume, and CE does not synthesize the subvol-ass
ume with sufficient details. Both GLC and VCNet produce sim-ss

6

(e) VCNet

@GLC

Figure 5: Comparison of volume rendering results. Top to bottom: argon bubble, five jets, solar plume, and vortex.

Table 3: Average PSNR (dB), training time per epoch (in seconds), and model
size (MB). The best ones are highlighted in bold (same for other tables in the
paper).

data set method PSNR train model size
GVF 13.88 — —

argon bubble CE 23.45 211.61 1,392.64
GLC 23.45 2,291.34 719
VCNet  37.98 166.88 120
GVF 19.71 — —

five jets CE 39.55 71.04 1,146.88
GLC 43.77 927.68 71.9
VCNet  44.64 34.32 120
GVF 13.96 — —

solar plume CE 20.35 215.34 2,140.16
GLC 20.37 3,072.68 719
VCNet  41.80 206.73 120
GVF 1246  — —

vortex CE 33.85 62.02 1,146.88
GLC 31.98 817.58 71.9
VCNet  33.74 30.54 120

ilar results, but taking a close comparison, VCNet synthesizes
finer details for the green part (refer to the blue arrows), com-
pared with GT. For the vortex data set, GVF does not complete
the missing subvolume, while CE, GLC, and VCNet recover all
the missing voxels. However, taking a close comparison, we
observe that the result produced by CE includes noises and ar-
tifacts, and the result synthesized by GLC lacks coherence with
its surrounding subvolumes (refer to the green arrows).

Figure 6 shows isosurface rendering results from the vol-
umes completed by GVF, CE, GLC, and VCNet. For each data
set, we pick one data sample and one isovalue to genereate the
isosurface. VCNet performs the best for the argon bubble and
solar plume data sets. For the five jets data set, VCNet and GLC
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Figure 6: Comparison of isosurface rendering results. Top to bottom: argon bubble, five jets, solar plume, and vortex. The chosen isovalues are —0.25, —0.1, —0.4,

and 0.1, respectively.

Table 4: Average IS values at selected isovalues.

data set (isovalue) GVF CE GLC  VCNet
argon bubble (v = -0.25) 0.03 0 0 0.82
five jets (v = —0.1) 0.05 083 0.89 0.92
solar plume (v = —0.4) 0.02 0 0 0.88
supernova (v = 0) 0.01 0.58 0.64 0.67
vortex (v = 0.1) 0.06 085 0.83 0.90

produce similar results while CE completes the isosurface with
some noises and artifacts (see the specular highlights), and GVF
only recovers a partial subvolume. As for the vortex data set,
VCNet generates more details and preserves better coherence
between the incomplete subvolume and its surrounding.

Table 5: Average MOS given by the ten participants.

volume rendering isosurface rendering

data set CE GLC VCNet CE GLC  VCNet

five jets 0.50 0.71 0.76 0.66 0.73  0.76 409
supernova  0.63  0.69  0.80 044 0.53 0.56 410
vortex 0.54 0.60 0.71 056 074  0.79 11

412

User evaluation. To evaluate the perceptual quality of syn-,,,

thesized volumes, we conducted a user study with volume and,,,

isosurface rendering images generated by CE, GLC, and VC-,;

Net, compared with GT images. For each rendering option, we,;

chose three data sets for comparison. For each data set, we se-,;,
lected six different volume samples. In total, we collected 108

(a) CE

(b) GLC (c) VCNet (d) GT

Figure 7: Highlighted differences from the participants. Top: volume rendering
for supernova. Bottom: isosurface rendering for vortex.

(3 X2 x3x6)image tuples for comparison. For each tuple, we
set the left image as rendered from incomplete data, the middle
image as synthesized by one of the three methods (CE, GLC,
or VCNet with the order randomly shuffled), and the right im-
age as rendered from the GT data. Ten Ph.D. students were
recruited to complete the study. All of them major in computer
science and have visualization-related backgrounds. These par-
ticipants were asked to compare the middle image’s completion
quality with that of the right image by giving a score ranging
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(a) input
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Figure 8: Volume rendering results under different missing ratios. (a) and (c) show 25% and 50% missing ratios, respectively. Top to bottom: argon bubble, five
jets, solar plume, and vortex.

Table 6: Average number of highlights given by participants.

volume rendering isosurface rendering

437

data set CE GLC VCNet CE GLC  VCNet

five jets 271 196 1.83 242 217 2.03 48
supernova 2.08 1.88  1.08 292 2838  2.67 439
vortex 3.04 279 2.54 292 213 1.71 440

441

442
from 0.0 (most dissimilar) to 1.0 (most similar). Furthermore,,,,

they were also asked to highlight, in the middle image, the dif-,,,
ferences between the middle and right images. We requested,,,
up to five differences for each tuple. Sample highlighting re-,,
sults from the participants are shown in Figure 7. Participants,,,
were allowed to update the scores during the evaluation, espe-,,,
cially at the beginning, when the score calibration is needed.,,q
We reminded them that various factors, such as the overall im-,g,
pression, visible content shift, local color consistency, shape,,
preservation, noise level, and coherence between the completed,,
subvolume and its surroundings, should be considered in the,,
evaluation. It took a participant around two hours to complete,,
the study, and each received $20 as compensation. We report,,,
the average MOS in Table 5 and average number of highlights,g,
in Table 6. As we can see, VCNet achieves the highest MOS,,,
and lowest number of highlights for all these three data sets.

Evaluation of missing ratio. To investigate the capability,,,
of VCNet in completing different missing ratios, we evaluate,,,

VCNet on four different ratios: 12.5%, 25%, 37.5%, and 50%.
As shown in Figures 8 and 9, under the missing ratio of 25%,
the completed subvolumes are close to the GT for each data
set. However, under the missing ratio of 50%, we can observe
the differences clearly. For example, the argon bubble’s head
is inconsistent with the GT. The texture of the five jets’ cap is
not preserved well. The tail of the solar plume contains some
artifacts. The sizes of several red components of the vortex are
not consistent with those of GT. Furthermore, in Figure 10, we
compare average PSNR values under different missing ratios
with different methods. VCNet outperforms CE and GLC for
most cases. In addition, when the missing ratio gets larger, the
more benefit VCNet can bring. Therefore, depending on the
quality need, the maximum missing ratio that VCNet can han-
dle could range from 25% to 50%.

Baseline analysis. As shown in Figures 5 and 6, we observe
that (1) GVF does not recover the missing subvolumes for all
data sets; (2) the rendering results generated by CE contain no-
ticeable noises and artifacts, while those produced by GLC and
VCNet are not that evident; (3) CE and GLC work well for the
vortex and five jets data sets but fail for the argon bubble and
solar plume data sets. The explanations for these three observa-
tions are as follows.

GVF does not complete volumetric data sets with large in-
complete subvolumes because it only linearly interpolates the
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Figure 10: Average PSNR values under different missing ratios. o
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missing voxels by aggregating their neighborhoods. When the
missing subvolume becomes large, the neighborhoods can no**
longer provide enough information for GVF to recover. s

The noises and artifacts generated by CE are due to the*®

use of DeConv layers [17]. In CE, it upscales deep features*”
478

9

(c) input

©GT

(d) VCNet

Figure 9: Isosurface rendering results under different missing ratios. (a) and (c) show 25% and 50% missing ratios, respectively. Top to bottom: argon bubble, five
jets, solar plume, and vortex. The chosen isovalues are —0.5, 0.4, —0.2, and —0.05, respectively.

-1.00 -0.75 —0.50 -0.25 0.00 025 050 075 1.00
Value

~1.00 -0.75 -050 —0.25 0.00 025 050
lu Value

(b) five jets

0.75  1.00

(a) argon bubble

Figure 11: Density maps of different volumetric data sets.

through several DeConv layers but not subsequent Conv layers
after each DeConv layer. Without these subsequent Conv lay-
ers, the upscaled features are not refined and denoised since the
DeConv operation will introduce the checkerboard-like artifact.

As for CE and GLC'’s failures on the argon bubble and solar
plume data sets, we speculate that it is due to gradient vanish-
ing. To verify this, we compute the average gradient values
at different Conv layers in CE, GLC, and VCNet. The aver-
age gradients are given in Table 7. For the argon bubble data
set, the gradients from Conv 3 to Conv 5 are always 0 for CE
and GLC, while VCNet still preserves a small gradient at each
Conv layer. As for the five jets data set, all three methods have
a non-zero gradient at each Conv layer. These gradient values
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Table 7: Average gradient values at different Conv layers under different archi-
tectures.

gradient gradient
layer method  (argon bubble)  (five jets)
CE 0 —7.27x1078
Conv3 GLC 0 1.15%x 1076
VCNet 124 %107 -3.72%x 1078
CE 0 3.72%x 1077
Conv4 GLC 0 -1.64x 1078
VCNet  1.31x 107 -4.84 %1078
CE 0 7.25x 107
Conv5 GLC 0 1.15x 1076
VCNet  2.58 x 1077 8.19x 107°

confirm our speculation since the learnable parameters in CE
and GLC are no longer updated for the argon bubble data set,
which leads to the failure. Still, we wonder about the differ-
ence between these four data sets. To understand this, we plot
their density maps, as shown in Figure 11. It is clear that both
five jets exhibit a nearly symmetric distribution, which means
if one subvolume is missing, the network can quickly learn to
fill in through searching the symmetric counterpart. However,
this is not the case for argon bubble. It shows a composed dis-
tribution: a Gaussian distribution plus a long-tail distribution.
That is, using a forward path in the network is not enough to
capture such distributions. Adding multiple forward paths can
help the network see more “globally” and merge the results to
synthesize the missing subvolume, which is the exact role LTC
is playing in VCNet.

Comparison with lossy compression. One potential appli-
cation of VCNet is volumetric data reduction. Therefore, we
compare our solution against a lossy compression (LC) algo-
rithm [47]. We cull away half of the original volume and utilize
VCNet to fill the culled part. We set the same PSNR value (i.e.,
44 dB) for both methods for comparison. As displayed in Fig-
ure 12, both approaches can recover the overall shape of the
supernova, while LC produces more artifacts and noises.

(a) LC

(b) VCNet (¢) GT
Figure 12: Comparison of volume rendering results with VCNet and LC using

the supernova data set.

Robustness evaluation. To study VCNet’s robustness in
completing different missing subvolumes, we test VCNet for

various missing subvolumes (e.g., cuboid, cylinder, hyperboloid,

sphere, tetrahedron, and ring) using different data sets. Volume
and isosurface rendering results are shown in Figures 13 and 14.
The results show that VCNet can handle different missing sub-
volumes. It can also work well when the input volumes have
multiple missing subvolumes.

(b) VCNet (d) VCNet

Figure 13: Volume rendering results under various missing subvolumes. Top to
bottom: argon bubble, five jets, solar plume, supernova, and vortex.

(a) input

(c) input

o

(a) input

(b) VCN et

(d) VCNet

Figure 14: Isosurface rendering results under various missing subvolumes. Top
to bottom: argon bubble, five jets, solar plume, supernova, and vortex. The
chosen isovalues are —0.2, 0.25, —0.8, 0.0, and —0.1, respectively.

(c) input
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Figure 15: Volume rendering results with and without LTC using the solar™>®

plume data set. 540
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Figure 16: Zoom-in volume rendering results with and without dilated Conv

using the vortex data set. 548
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Figure 17: A subpar case of VCNet with the supernova data set. 558
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4.3. Ablation Study 561

562
For the ablation study, we investigate the impact of long-g,

term connection and dilated Conv. To investigate the impactses
of LTC in VCNet, we train VCNet with and without LTC. As%®
shown in Figure 15, without LTC, VCNet cannot recover theZZj
missing subvolume for the solar plume data set. These resultssg,
confirm the effectiveness of LTC in VCNet. To study the use-sss
fulness of dilated Conv, we apply traditional Conv to replace®”
dilated Conv in VCNet. As shown in Figure 16, with dilated::;
Conv, the recovered volume of the vortex data set can preserves;
a better coherence with its surroundings (refer to the green ar-57

rows). 578
576

577
4.4. Discussion 578

While VCNet can complete volumes with various missing’”

subvolumes, it may not satisfactorily synthesize fine details ongg,
some specific subvolumes. One example with the supernovassz
data set is shown in Figure 17 where the missing subvolume®:
corresponds to the supernova’s center. We can see that VCNetZ:;
does not generate high-fidelity rendering results, even thoughss,
the overall shape is well recovered. This is because the sur-se
rounding subvolumes may exhibit different structures than the®®
center. Thus, leveraging the surroundings’ information does notzzj
help fill in the supernova’s center seamlessly. 591

11

5. Conclusions and Future Work

We have presented VCNet, a novel deep learning frame-
work that synthesizes missing subvolumes for analyzing and
visualizing 3D volumetric data sets. Leveraging GAN, VCNet
completes different missing subvolumes with varying missing
ratios. In terms of volume rendering and isosurface rendering,
VCNet achieves better visual quality than GVF and two other
solutions based on deep learning (i.e., CE and GLC). In addition
to qualitative comparison, quantitative evaluation results using
PSNR, MOS, and IS also confirm the effectiveness of VCNet.
In the future, we will consider the information of neighboring
time steps for preserving temporal coherence. We will also use
VCNet to complete large volumetric data sets through multiple
GPUs and model parallel.
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