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Abstract—Comprehensively evaluating and comparing researchers’ academic performance is complicated due to the intrinsic
complexity of scholarly data. Different scholarly evaluation tasks often require the publication and citation data to be investigated in
various manners. In this paper, we present an interactive visualization framework, SD2, to enable flexible data partition and
composition to support various analysis requirements within a single system. SD? features the hierarchical histogram, a novel visual
representation for flexibly slicing and dicing the data, allowing different aspects of scholarly performance to be studied and compared.
We also leverage the state-of-the-art set visualization technique to select individual researchers or combine multiple scholars for
comprehensive visual comparison. We conduct multiple rounds of expert evaluation to study the effectiveness and usability of SD2? and
revise the design and system implementation accordingly. The effectiveness of SD? is demonstrated via multiple usage scenarios with

each aiming to answer a specific, commonly raised question.

Index Terms—Scholarly performance, publication, citation, hierarchical histogram, visual analytics.

1 INTRODUCTION

Accurately assessing the scholarly performance of a
researcher plays a vital role in many important decision-
making tasks, such as hiring a postdoctoral researcher or
a tenure-track faculty member, evaluating a candidate for
tenure promotion, and comparing a researcher’s perfor-
mance against his/her peers. Nowadays, many colleges
and universities rely on publicly available online resources
such as DBLP and Google Scholar (GS) when checking a
candidate’s scholarly credentials.

DBLP shows researchers’ scholarly output majorly in
textural format. Besides this, GS can also make basic statisti-
cal analyses, such as the individual’s total citation count, h-
index, and ¢10-index. These metrics can reflect the research
outcome or impact in a specific aspect. However, the re-
quirements of evaluating scholarly performance are much
diverse and complicated, and these tools become limited as
they may not facilitate the discovery of interactions among
multiple factors. For example, when hiring a tenure-track
faculty, other than the number of papers and citations,
we may also consider the quality of his citations, such as
whether his paper receives citations from the top venues. We
may be interested in his independent academic performance
as well. In this case, analyzing the papers that are not co-
authored with his advisors may be desired. For another
example, when searching for an academic advisor, a student
may want to investigate the scholarly performance of the
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potential advisors’ students, which may require groups of
researchers to be compared. These questions can not be
answered by the popular tools (e.g., DBLP and GS).

Different roles and analysis purposes may result in a
variety of requirements in evaluating the scholarly perfor-
mance, or various granularity to investigate the publication
and citation data for details. Our research goal is to provide
a visual analytic tool that provides sufficient flexibility to
slice and dice the scholarly data to satisfy users’ evalua-
tion and comparison needs. The research challenges are as
follows: First, how to design a tool that can interactively
breakdown the information using the desired attributes to
an appropriate level to answer various kinds of questions?
Second, how to provide intuitive visualization for users
to view and visually compare the information to glean
insights? Third, how to automatically collect the rich set
of publication and citation data that is required to support
comprehensive evaluation?

To address these challenges, We present SD2?, a visual
analytics framework for interactive evaluation of scholarly
performance. The development of SD? stems from the fa-
miliar yet unaddressed needs of objectively and compre-
hensively evaluating the scholarly output and impact of re-
searchers. To fully understand the evaluation requirements,
we collect the opinions from recruitment committees of
multiple departments at top research universities, graduate
students, visual analytic experts, and data scientists. Our
design and contributions are as follows:

Our major contribution is the problem formulation. We unify
the broad spectrum of questions regarding the scholarly
data into a problem of exploring multiple paper sets with at-
tributes. With this unified formulation, the research outcome
becomes the set of papers, and the research impact becomes
the set of citations. The relations among researchers or even
researcher groups can be flexibly modeled by using set oper-
ations to combine the corresponding sets. The investigation
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Fig. 1: SD? consists of three coordinated views: (a) scholar view, (b) publication view, and (c) hierarchical histogram view.
The example shows a 2019 ACM Turing Award winner Yoshua Bengio’s papers with his co-authors Ian Goodfellow or
Aaron Courville. In (c), the upper histogram shows papers authored by Goodfellow or Courville and the lower histogram

shows papers authored by Bengio and Courville.

of different factors can be performed by subdividing the sets
based on the attributes of elements.

Our second contribution is the visual representation closely
intertwined with the problem formulation. Specifically, we de-
sign a new visual representation called the hierarchical his-
togram to support the flexibly slicing and dicing of scholarly
data and enable easy observation and comparison of the
hierarchies of data. This representation provides features
useful in our scenario that are not available in similar
designs (Section 6.3).

We also contribute to the data preparation for egocentric
exploration of scholarly data. We combine Microsoft Academic
Graph (MAG, a freely available bibliography database) for
data acquisition and Google Scholar for resolving ambiguity.
This minimizes the need for data cleaning, which is often
costly in understanding scholarly data and allows the data
to be crawled on the fly during the interaction. The source
code is provided for public access.

2 RELATED WORK

In this section, we review related work in scholarly data
visualization and general information visualization tech-
niques used in our design. The scholarly data visualization
techniques are studied as they target the same domain prob-
lems as our approach. The visual comparison of hierarchies
and the egocentric exploration techniques are studied as our
tool also follows similar design principals.

Scholarly data visualization. Scholarly data has been
extensively studied in the past decades [20]. The existing
research investigated different aspects of the scholarly data.
Some research focused on the citation network. These ap-
proaches often design specific graphs or tree visual repre-
sentations to show citation relationships. van Liere and de

Leeuw [31] proposed GraphSplatting that converted the ci-
tation graph into a density field to highlight the central top-
ics. Zhang et al. [38] visualized the paper-reference matrices
using Frequent Pattern trees (FP-trees). FP-tree emphasizes
co-citation relationships by placing the papers that are cited
together close to each other. Shi et al. [25] proposed VEGAS
that aggregates papers as nodes to summarize the citation
network. Maguire et al. [22] visualized the paper based on
its reference and the papers citing it. This visualization aims
to demonstrate the impact of individual papers instead of
the entire network. Shin et al. [26] presented impact flower,
an egocentric visualization depicting the citations between
an academic entity and others.

Some research aimed at discovering the evolution pat-
tern of topics. These approaches feature multiple views
for multi-faceted information regarding time, scholars, and
topics. For example, Lee et al. [14] designed PaperLens,
which shows the research trend of popular topics with bar
charts and top-cited papers and authors as a grid of squares.
Rind et al. [24] presented PubViz, which also shows the
research trend using bar charts. It further highlights paper
types, authors, and keywords in the corresponding year,
when one of the bars is selected. Heimerl et al. [10] designed
CiteRivers that visualizes paper clusters and the corre-
sponding keywords as a streamgraph to study the research
trend. Wang et al. [33] designed VISPubComPAS that shows
topics of IEEE VIS papers of affiliations and authors. It
visually compares two groups of scholars’ research interest
evolution through multiple bar charts, each corresponding
to a topic. Keshif [37], although not specially designed for
scholarly data, is similar to these techniques as it employs
multiple views to present data from multiple dimensions.
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Dork et al. [5] presented PivotPaths that visualizes authors,
papers, and keywords as nodes in three disjoint regions and
allows their connections to be interactively explored.

Some research studied the collaboration and impact of
scholars. These approaches often adopt an egocentric de-
sign. Wu et al. [35] presented PathWay to visualize the career
paths of researchers. The numbers of papers, collaborations,
and challengers over years are shown by line charts and
glyphs. It also supports comparison among researchers.
Wang et al. [32] presented ImpactVis that adopts a matrix-
based design to visualize the paper and citation of a re-
searcher. Wu et al. [36] designed egoSlider, an egocentric
interface to study the evolution of collaboration networks
of scholars. The networks of individual scholars can be
summarized by several pie charts over time, and expanded
to a graph on demand.

Our SD? shares similarity with the previous work in
many aspects. For example, it reveals information along
multiple axes, similar to PaperLens [14] and Keshif [37], and
it adopts an egocentric design and supports comparison,
similar to ImpactVis [32] and egoSlider [36]. However, our
SD? also differs from the above work in multiple ways. First,
the most notable difference is its diversity and flexibility.
For example, when publication year is used to build the
hierarchical histogram, it can be used to demonstrate the
research trend; and, when venue rank is considered, it can
facilitate the analysis of publication and citation quality. SD?
also enables flexible combination of multiple researchers to
study their collaboration patterns. Second, SD? can reveal
the interactions among multiple factors. By changing the or-
der of the factors in constructing the hierarchical histograms,
users can switch the focus of factors and understand its
relationships to other factors. ImpactVis [32] supports two
factors (publication and citation years), but it does not allow
the interactions among other factors to be discovered. Please
refer to Section 9 for a detailed comparison of SD? with other
techniques.

Visual comparison of hierarchies. We model the schol-
arly performance as papers and citations. Visual comparing
the paper sets in a hierarchical manner is essential to com-
prehensively understand and compare the paper sets. While
well-known information visualization techniques such as
hyperbolic tree [13], treemap [27], and sunburst [28] enable
the visualization of a large data hierarchy, they do not usu-
ally support a direct comparison of two different hierarchies.
Further techniques are developed for visually comparing
hierarchies. Examples include TreeJuxtaposer [23], contrast
treemap [29], CandidTree [15], TreeVersity [9], nested icicle
plot [2], PhenoBlocks [8], aggregated dendrograms [21], and
BarcodeTree [18].

Most of the existing comparative techniques are built
on top of the well-known hierarchy visualization, such as
hyperbolic tree [13], treemap [27], and sunburst [28]. Our
hierarchical histogram is similar to the icicle plot [12]. But
instead of mapping the size of a node to the width of a block,
we use a uniform width for all leaf nodes and represent the
size of a leaf node using the height of a bar. In this way, both
the numbers of children of internal nodes and the sizes of
leaf nodes are visually encoded. Please refer to Section 6.3
for a detailed design choice discussion.

Egocentric exploration techniques. Instead of giving an

3

overview, SD? focuses on personal visualization using an
egocentric approach: users select researchers of interest and
compare their scholarly performances. Examples of ego-
centric visualization include Episogram [3], egoSlider [36],
EgoLines [39], egoComp [19], and LikeMeDonuts [6]. Fung
et al. [7] presented a comparative study on personal visu-
alizations of bibliographic data using three designs: node-
link diagrams, adjacency matrices, and botanical trees. They
found that node-link diagrams are good at revealing over
distributions, adjacency matrices can convey more informa-
tion with less clutter, and botanical trees provide the best at
a glance characterization. To allow egocentric visualization
and facilitate direct comparison, we prefer a timeline-based
design over a node-link diagram or radial layout. Our
simple design leverages the familiar form of bar charts to
effectively convey aligned information.

3 TASK ANALYSIS

A motivating example is that when evaluating an applicant
for a professorship or promoting a tenure-track professor,
the searching committee always wants to evaluate the can-
didate from multiple perspectives.

The searching committee would first ask these questions:
is the researcher still actively publishing, where does the researcher
publish, and what are the research fields or topics of interest of the
researcher over time? The quantity of papers indicates the pro-
ductivity and activeness of a researcher, and the publication
venues reflect the quality of research to a certain degree.
Thus, the first task to evaluate a researcher’s performance
is to investigate his/her publication records by attributes
(T1).

The citation record of a researcher is a major indicator
of his/her research impact. The total number of citations is
often used to evaluate the overall impact of a researcher,
but a single highly-cited paper could skew it. The h-index is
more robust as it considers both the numbers of citations
and papers. However, it still lacks the fine granularity
of information for critical decision-making for hiring new
faculty members. For example, the searching committee
would want to reveal information related to temporal in-
fluence patterns (e.g., does the citation number increase or
decrease over the years?), domain-specific influence (e.g., what
are the major research fields that cite the researcher?), and
the quality of citation (e.g., is the researcher cited by high-
impact papers at top venues?). Indeed, the traditional met-
rics will fail to answer more complicated questions like is
the researcher getting more high-impact citations in a specific
field? This information can be crucial in identifying active
and/or influential faculty candidates in a targeted research
field. Thus, the second derived task is to understand a
researcher’s citation record by attributes (T2).

Independence is essential for a mature researcher after
his/her Ph.D. graduation. It indicates that the researcher
can perform research independently without relying on
others. Usually, the searching committee would compare
one’s publication and citation records with specific collabo-
rators (e.g., one’s advisor) against the records without them.
For example, how many papers are published by the researcher
without his/her advisor, and how many citations come from these
papers? Additionally, breakdown information over time and
research topics should also be provided to understand the
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record from desired aspects. For example, the committee
wants to know does the researcher rely on certain collaborators
to publish on a specific topic, and do the researcher’s papers have
a similar impact without these collaborators? Thus, the third
task can be summarized as evaluate the independence of a
researcher (T3).

The searching committee usually has a list of candidates.
Peer comparison provides contextual information to evalu-
ate one’s scholarly performance and predict one’s potential
impact. Comparing two researchers in the same field at a
similar career stage provides the most direct answers to these
questions: does one researcher publish more papers than the other,
is one more independent or influential than the other, and does
one demonstrate a more promising trend in terms of papers and
citations than the other? When more references are needed,
it is also common to compare two researchers in related fields
at a similar career stage. So, the difference between the fields
should be addressed by the tool. Additionally, to predict
one’s future impact, it will be beneficial to compare a junior
researcher against a senior one in the same field. We want to
know whether the junior one has comparable performance
as that of the senior one during his/her early career, or
whether the junior has a comparable trajectory as that of
the senior. Thus, the fourth task is compare individual
researchers (T4).

When the candidates have their research groups, search
committees may also be interested in the research outcome
of their groups. Besides, when evaluating two senior re-
searchers” advising records, the committee may compare
their previously graduated students as groups. For example,
they may ask questions: whose students have more papers
and citations during their graduate study, whose students have
a better aggregate record after graduation, and whose students
are more independent after graduation? Thus, the task can be
summarized as compare two groups of researchers (T5).

Furthermore, these tasks may also apply in other scenar-
ios. For example, when a prospective student is searching
for an academic advisor, she may want to know is this
professor is still active (T1), do the students of this professor
have a good publication and citation record (T1 and T2), and
do the students of this professor outperform the students of that
professor (T5)? Similar questions may be asked when electing
fellows or searching for collaborators, and these tasks will
help answer the questions.

4 DESIGN REQUIREMENTS

We aim to design a visual analytics tool to support the tasks
mentioned above under two design principles: lightweight
and flexible. On the one hand, “lightweight” indicates that
the tool should be efficient with a minimum amount of
computation involved. Instead of mining and analyzing
the entire academic network, we target the local anal-
ysis of user-specified researchers, including investigating
individual researchers, understanding their collaboration,
and comparing multiple researchers. On the other hand,
“lightweight” indicates that the tool should use simple and
common visual representations requiring minimum learn-
ing effort from users. By “flexible”, we mean that the tool
should be customizable to answer all questions raised in
Section 3 in a unified way. Under these two principals, we
elaborate on our design requirements as follows:
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RO. Hierarchical exploration with visual scent cues.
The tool should provide information on multiple levels of
detail, allowing users to drill down to the desired publica-
tion (T1) and citation (T2) information gradually. At each
level, additional information should be provided as visual
cues to guide further navigation, as inspired by scented
widgets [34]. The specific tasks to be performed at each level
(coarsest, intermediate and finest) and the visual scents to
be presented will be explained in further detail in the later
requirements.

R1. Specifying researchers of interest and generating
overview. At the coarsest level, users should be able to
specify researchers for investigation, and the tool should
generate an overview of their papers (T1 and T2) and
collaboration record (T3). The overview should provide the
high-level information of a researcher, e.g., who are the most
frequent collaborators of the researcher, and how many papers
does the researcher publish with each collaborator, respectively?
The overview will assist users in selecting additional re-
searchers or specify how the information of existing re-
searchers should be combined for further investigation.

R2. Combining of record from multiple researchers
and revealing relationship. At the intermediate level, users
should be able to combine the record of existing researchers
to reveal the desired relationships (T4). For example, con-
sider two researchers, A and B. Users should be able to
generate the record with both A and B to examine their collab-
oration (T3), the record with A but without B to evaluate the
independence of A (T3), and the record with either A or B to
investigate their combined impact (T5). Similar rules should be
allowed to combine more researchers. At this level, the tool
should provide temporal patterns of the combined record
(e.g., the paper numbers over the years) for users to verify
that the combination is indeed meaningful.

R3. Partitioning the information in multiple ways and
showing the details. At the finest level, users should be able
to slice and dice the information so that different aspects of
the publication and citation record can be revealed and stud-
ied (T1 and T2). For example, when a collection of papers is
first partitioned by the topics and then by the publication
years, we may find out how the research interest of the
corresponding researchers changes over time (T1). When
a collection of citations is first partitioned by the topics
of citing papers and then by their citation years, we may
find out how the corresponding researchers” influence on
different topics evolves (T2). When a collection of citations is
first partitioned by the venue ranks of reference and then by
the ranks of citing papers, we may verify whether the papers
published at better venues receive more citations from top
venues (T2), etc. Leveraging the rich information associated
with the papers, we should be able to answer questions from
diverse aspects.

R4. Aligning partitioned data for comparison. The com-
parison between two collections of papers should be per-
formed at the finest level using the partitioned information.
Individual comparison is supported when each collection is
produced from a single researcher (T4), and group compar-
ison is enabled when each collection corresponds to a group
of researchers (T5). The visual representation should allow
the information to be aligned so that the corresponding
parts can be easily compared. Both automatic and manual
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alignment should be provided. Automatic alignment should
coordinate the same items in the two collections, while
manual alignment should allow users to customize the
alignment to match items carrying similar meanings. For
example, to address the difference between different career
stages, users should be able to dynamically align the time
axes of two researchers.

5 DATA PROCESSING AND HANDLING

Obtaining a comprehensive data set of cleaned publication
reference is challenging due to the inherently noisy citation
data. To address this issue, manually labeling or correction
might be involved in previous work [11], [32]. However,
this may limit the size of data that can be processed. For
example, vispubdata.org [11] opts to limit the citation
relation to the IEEE VIS conference only.

Our data come from Microsoft Academic Graph (MAG)
and Google Scholar (GS). MAG is a knowledge graph
updated weekly. The version we use contains more than
164 million papers and one billion citation relationships.
Each paper has its ID, title, keywords, abstract, authors
and their institutions, venue name, topics, and fields of
study. Each citation relationship is a pair of the reference
paper ID and the citing paper ID. However, although MAG
contains rich information, it provides limited power to
distinguish researchers of the same name. In contrast, GS
also maintains comprehensive citation records but suffers
less from author name ambiguity as many authors retain
their own paper lists. However, GS does not make its data
open, which makes it impractical for large-scale analysis. In
our experiment, we mostly rely on MAG for the publication
and citation information. We convert all data in MAG into
a SQL database for efficient retrieval. We only use GS to
mitigate name ambiguity.

Author name disambiguation. We rely on GS to identify
the list of papers authored by a specific researcher. Although
GS is not entirely error-free, it is by far one of the most
accurate data sources for this purpose. For each researcher
to be examined, we crawl his/her paper list from GS. Then,
we query the SQL database to obtain the information of
each paper (including the papers citing this work and their
information) from MAG. This avoids frequent queries to GS,
which is prohibited by Google, but still connects the authors
to their papers with reasonable accuracy.

Venue name disambiguation. The ambiguity among
venue names mostly comes from editing errors and different
styles of venue names. Levenshtein’s edit distance [16] is
often used to identify two names of the same venue [11].
This may be effective against small editing errors with a few
characters, but it could be less capable of handling different
styles. For example, “IEEE Transactions on Visualization
and Computer Graphics”, “Visualization and Computer
Graphics, IEEE Transactions on”, “IEEE Trans. Vis. Comput.
Graph.”, “IEEE TVCG”, and “TVCG” all refer to the same
journal, but the edit distance between them can be large.
Since this paper does not target at resolving the ambiguity,
we rely on Google to identify the correspondence among
different names. We search the venue name in DBLP using
Google and consider the names returning the same DBLP
link to be the same venue. In the given TVCG journal
example, all the five names point to the same link in DBLP.
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Venue classification. For publication/citation venues,
we follow the list of computer science conferences and
journals recommended by China Computer Federation
(CCF) [4]. The CCF recommendation list classifies 571 major
venues into ten categories: system and architecture, net-
works, security, database and mining, software engineering,
theory, computer graphics, artificial intelligence, human-
computer interaction, and interdisciplinary. For each cate-
gory, the venues are further divided into three ranks from
A to C with rank A venues being the most prestigious
ones. During exploration, we use the categories and ranks
as additional attributes to group the venues.

Implementation. Our implementation consists of four
major components: a MySQL database, a C++ connector, a
Python server, and a web interface. The MySQL database
stores the entire MAG data and responses to the C++
connector upon request. The C++ connector is implemented
as a Python plugin. It connects the MySQL database and the
Python server. It requests the MAG data from the MySQL
database upon requests from the Python server. It caches the
data under investigation, and it is responsible for processing
the cached data (e.g., grouping based on attributes, counting
the number of papers or citations, and computing h-indices,
etc.). It avoids redundant access to the MySQL database if
the requested data is already cached. The C++ connector
deals with the computation-intensive requests to provide
interactive performance. This performance is not available
with a Python server when the amount of requested papers
is large, which is often the case when we group the citation
papers. The Python server is implemented based on Flask. It
prepares data for the web interface. It crawls the GS website
if the GS data is needed, and it calls the functions in the C++
connector if the MAG data is needed. The web interface is
implemented based on D3. It interacts with users and sends
requests to the Python server. Our source code is available
at https:/ /github.com/zhichunguo/SD2.

6 SD?: VISUALIZATION DESIGN

SD? follows the interaction model for large graph explo-
ration: “search, show context, expand on demand” [30]. As
shown in Figure 1, the interface of SD? consists of three
tightly-coupled views, each of which corresponds to one
step in the interaction model (R0). Namely, the three views
are: (a) the scholar view (“search”), (b) the publication view
(“show context”), and (c) the hierarchical histogram view (“ex-
pand on demand”). Typically, users will start by adding
scholars of interest in the scholar view (R1), as shown in Fig-
ure 1 (a). They may further specify set operations to combine
the papers of the existing scholars (R2) so that the desired
relationships can be studied. Then, in the publication view,
users can see how the number of papers changes over time
for each paper set, as shown in Figure 1 (b). Finally, users
can add the paper sets of interest to the hierarchical his-
togram view for detail exploration, as shown in Figure 1 (c).
They can customize the hierarchical histogram by specifying
attributes at each level to reveal the information of their
interest (R3). Users can add two paper sets for detailed
comparison as well (R4).

Notations. We define a paper to be a k-tuple of its
attributes, ie., p = (a1,...,a;...,ax), where a; is the i-
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th attribute of a paper, and & is the number of attributes. In
this paper, we consider the following attributes for a paper:
title, venue, publication year, number of citation received,
and h-index. The h-index of a paper is computed from all
papers citing this one (i.e., the h-index of the collection of
citing papers), serving as an alternative indicator of impact
other than the citation count. For simplicity, we may refer to
an attribute a; of a paper p as p(7).

A citation relationship is a link between two papers.
Similarly, we represent a citation link using a 2k-tuple, i.e.,
the k attributes of the citing paper together with the %
attributes of the cited one. This allows citation relationships
and papers to be handled in the same manner.

We denote a scholar as the set of papers authored by
him/her, i.e., S = {p1,...,pm}. In this way, the papers of a
scholar S; without another scholar S; is denoted as S; — S,
the papers co-authored by S; and S; is denoted as S; N’ S;,
and the papers authored by either S; or S; is denoted as
S;US;.

Next, we describe the scholar view and the hierarchical
histogram view in detail. We omit the discussion of the
publication view, as its visual representation and interaction
are relatively straightforward.

6.1 Scholar View

The scholar view is used to select scholars as paper sets and
specify the set operations to “combine” these paper sets.
The design of this view is inspired by UpSet [17]. The upper
panel of this view shows the scholars under exploration
(left) and the co-authors of the scholar of focus (right), as
shown in Figure 1 (a). The ordered list of co-authors is
obtained from the author’s Google Scholar profile. The bar
charts show the number of papers authored by each scholar.
For each of the co-authors, we further display an orange
bar to indicate the number of co-authored papers with the
scholar of focus. For the example given in Figure 1 (a), the
orange bars indicate that more than half of Pascal Vincent’s
papers are co-authored with Yoshua Bengio, and Yoshua
Bengio also collaborates with Aaron Courville frequently.
Users can click on any scholar under exploration to switch
the focus, so that his/her co-authors will be displayed on
the right. Users can click on any co-author to add them to
the selected list as well.

To add a paper set for further examination, users can
combine the scholars using set operations provided in the
lower panel, as shown in Figure 1 (a). This panel supports
four operators for each scholar: namely, “not”, “ignore”
“and”, and “or”. The design is similar to UpSet but with
an additional “or” operator to allow the union of scholars,
which is essential for studying the combined research out-
put. The default operator for a scholar is “ignore”, meaning
that the scholar is irrelevant to the paper set being gener-
ated. Users can specify any other operator to get a scholar
involved. A textual description of the resulting paper set
will be updated whenever an operator is changed.

The paper set produced by this panel is the papers
authored by any scholars labeled by “or” intersected by the
papers co-authored by all scholars labeled by “and” exclud-
ing the papers authored by any scholars labeled by “not”.
For the example given in Figure 1, from top to bottom, the
three histograms shown in the publication view represent
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“Bengio N Courville” (which can also be denoted as “Bengio
+ Courville”), “Goodfellow U Courville” (which can also
be denoted as “Goodfellow | Courville”), and “Bengio —
Goodfellow — Courville”, respectively. Note that our format
does not support all possible forms of equations using set
operations, but it can facilitate answering any questions
raised in Section 3.

6.2 Hierarchical Histogram View

The hierarchical histogram view allows users to break down
a set of papers or citations into a hierarchy of bars to answer
specific questions. Without loss of generality, we describe
our approach using paper sets. The interface of the hierar-
chical histogram view is shown in Figure 1 (c). Up to two
paper sets can be added in this view as diverging bar charts
for efficient comparison: one will be mapped to the upper
histogram and the other to the lower histogram. Unlike the
traditional bar charts, which list all bars of a histogram at a
single level, the hierarchical histogram features a multilevel
design: several levels of horizontal bars at the intermediate
levels of the hierarchy where the width of each bar indicates
the corresponding number of leaf nodes, followed by one
level of vertical bars at the finest (i.e., leaf) level of the
hierarchy where the height of each bar can indicate the
number of papers, the total number of citations received
by the papers, or the h-index of the papers.

To construct the hierarchy of a paper set, users can
specify a series of attributes to partition the original set. At
each level, an attribute will be applied to further partition
the existing bars at this level into multiple smaller ones. For-
mally, consider a bar containing n papers P = {p1,...,p,}
and an attribute a; for partitioning. The partitioning process
will create multiple smaller paper sets whose union equals
the original set, i.e., P = UP;, where each partitioned set
P; consists of papers with the same value v of aj, ie,
P; = {pk|px(j) = v}. In our implementation, we restrict the
maximum partition level to four, as the interactions among
more than four attributes will be difficult to understand.

We provide a series of publication attributes and an extra
set of attributes for their citations. The publication attributes
include citation counts, publication years, venues, CCF
ranks, and titles (for distinguishing individual papers), and
citation attributes are provided similarly. On the interface,
the publication attributes and citation attributes are denoted
using the “P.” and “C.” prefixes, respectively. An attribute
can be changed or deleted when clicked on. Users can also
swap the partition order of the paper set by dragging an
attribute up or down.

For example, in Figure 2, the publication CCF rank (“P.
CCF Rank”, first level) and the publication year (“P. Year”,
second level) are used to partition Huamin Qu’s publication
data. Figure 2 (a) shows his publication trend in venues of
different ranks by visualizing the number of papers in each
bar. A clear increasing trend of his papers in the CCF rank
A and non-ranked venues can be observed. Note that many
venues are not ranked because they are relatively young,
or they are not in the computer science field. Figure 2 (b)
reveals the temporal citation pattern by showing the number
of citations. The number of citations is visualized using the
same partitioning attributes. Clearly, the papers published
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Fig. 2: Hierarchical histograms visualizing Huamin Qu’s
(a) publication and (b) citation data organized by their
publication years and CCF Ranks.

in the CCF rank A venues receive more citations, and the
papers published from 2007 to 2011 are highly cited.

Bar grouping. We provide the bar grouping feature,
which allows users to manually group the bars to further
reduce visual complexity. Figure 1 (c) illustrates such an
example. Users can brush the histogram of the “P. Year”
attribute to create periods of years. In the resulting hierar-
chical histogram, each period, instead of each year, forms
a bar. Once a bar group is formed, users can also remove
it (acting as a filter). For example, users can update the “P.
CCF Rank” attribute to form bar groups and remove the
one containing papers that are not in CCF rank A, leaving
only CCF rank A papers to be shown and explored in the
hierarchical histogram. To remove a group, users can either
rename the group as “ignore” or simply click the button
with a minus sign at the upper left corner of the group.

Before 2010 # Papers

After 2010
P. Venue
P. CCF Rank

2293

Bar alignment
disabled

#Papers

(@) (b)
Fig. 3: Visual comparison of Huamin Qu'’s paper numbers
at different venues before and after 2010. (a) shows the
histograms without bar alignment and (b) shows the his-
tograms with bar alignment. The aligned upper histogram
shows the publication data before and after 2010.

Bar alignment
enabled

Attribute lock and bar alignment. To facilitate efficient
comparison of the upper and lower histograms, we further
provide two features to coordinate the two histograms:
attribute lock and bar alignment. The attribute lock feature
aims to synchronize the attributes used to partition the data
for the two histograms, so that the change of attributes in
one histogram will be applied to the other automatically.
The bar alignment feature aims to align the horizontal bars
at the coarsest level in the two histograms. By default, each
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Fig. 4: Alternative designs for visualizing hierarchical data.
(a) to (e) show our hierarchical histogram, radial tree, circle
packing plot, sunburst diagram, squarified treemap, and
slice-and-dice treemap, respectively.

histogram shows a compact view of bars, where there is
no space left between the bars. When bar alignment is
enabled, the bars corresponding to the same attributes will
be vertically aligned by inserting empty bars. In addition, all
the bars will be displayed on the upper side, and the shorter
bars will be overlayed on top of the corresponding taller
bars. This design allow easier comparison of the quantity
differences. Please refer to Section 8.5 for detailed design
choice.

For example, Figure 3 compares Huamin Qu’s paper
numbers at different venues before 2010 and after 2010. In
Figure 3 (a), without bar alignment, we can easily compare
the number of publication venues, but it is difficult to
identify where the differences are. In Figure 3 (b), with
bar alignment, we can now easily compare the quantity
difference in each venue.

Description of the paper set. Textual hints are provide to
remind users the content displayed in the upper histogram
and lower histogram. The descriptions of the two paper sets
are placed in the uppermost and lowermost parts of the
window, respectively, as shown in Figure 1 (c). When bar
alignment is enabled, the two description will be combined
into one and shown on the top of upper histogram. The
combined description is composed of three parts: the de-
scription of the upper paper set in red, the description of
the lower paper set in blue, and a term “VS” in gray that
connects the two descriptions.

Mini-map. We provide users with a mini-map for easier
navigation of the bars. This feature will be useful when a
large amount of bars are displayed at the top layer leading to
small width of each bar. The mini-map is equipped with two
operations: horizontal scaling and scrolling. The horizontal
scaling allows users to adjust the width of bars, and the
scrolling allows users to specify a range of bars for detailed
exploration.

When both the attribute lock and alignment are disabled,
the two mini-maps can be used independently to scale and
scroll the corresponding histograms. When the attribute
lock is enabled, the bars in both histograms carry similar
meaning. Therefore, we link the scaling operation of both
histograms to enforce the same width for all the bars at the
top level. When the alignment is enabled, we further link the
scrolling of the two histograms, meaning that scrolling one
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histogram will move the other histogram simultaneously.

6.3 Alternative Design Choices

Our interface should support two core features: using set
operations to combine the research outcome of multiple researchers
(R2) and visually exploring and comparing the paper sets with
hierarchies (R3 and R4).

Why UpSet [17]? For the set operations (R2), we opt
to use UpSet [17] for SD? as it is scalable in terms of the
number of sets. Users only need to select a single operation
for each scholar to specify how his/her paper set would be
combined with others’. This design reduces visual complex-
ity and interaction effort, while still maintaining the ability
to produce the combinations to fulfill the requirements
stated in Section 4.

Why hierarchical histogram? For visualization and com-
parison of hierarchical paper sets (R3 and R4), we compare
our hierarchical histogram against other alternatives using
a paper set with three grouping levels in Figure 4. First,
hierarchical histograms use a 1D subdivision for a straight
layout similar to icicle plots [12], which better preserve the
order of elements and groups (e.g., P. Year in Figure 4). Sun-
burst diagram [28] and radial tree also preserve the order
along a circle, but the starting and ending years are more
difficult to be identified. Slice-and-dice treemap preserves
the order in alternating dimensions. Therefore, users have to
switch from row and column pictures to identify the groups
at different levels. Circle packing and squarified treemap do
not preserve the order. Squarified treemap seems to be less
effective in visualizing multiple levels of hierarchies. For
example, it is difficult to tell how many subgroups exist in
the brown group in Figure 4 (e). In addition, the straight
layout of hierarchical histograms allows effective alignment
of elements and groups for upper-lower comparison. Cir-
cle packing and sunburst diagram use circular layouts,
where different layers vary in arc-lengths. This renders it
less compelling to map two paper sets on different layers
for comparison. Slice-and-dice treemap switches the order
alternatively, making it challenging to align groups with
varying numbers of elements or subgroups. Circle packing
and squarified treemap do not list the elements and groups
in a certain order, which is even more difficult to be aligned
and compared.

Second, hierarchical histograms visualize the number
of elements in each group or subgroup (using its width)
together with the sizes of individual elements (using the
height of the bars). The alternatives do not encode both
of these properties explicitly. Radial tree only shows the
number of elements using the arc-lengths. In contrast, circle
packing, sunburst diagram, and treemaps only show the
elements’ sizes using the circles’ sizes, arc-lengths, and rect-
angles’ sizes, respectively. The bar plot design of hierarchical
histograms allows more efficient comparison of element
sizes. For example, in Figure 4 (a), it is easier to identify
the paper with the most citations or the papers with over
900 citations using hierarchical histograms than using other
alternatives.

Why upper-lower layout? For comparison, we choose
a upper-lower layout instead of using clustered bars (as
Keshif [37] and VisPubComPAS [33]) and stacked bars for
the following reasons. First, clustered bars and stacked
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bars may need to use the color channel for visual encod-
ing, which may increase visual complexity. We currently
use red and blue colors to build connections between the
publication view and the hierarchical histograms and use
orange color to highlight mouse-hover bars. Using colors
to encode additional information may lead to inconsistency.
Second, clustered bars are similar to creating another at-
tribute for different paper sets in our current hierarchical
histograms. This may further increase the hierarchical his-
togram’s width, leading to a high aspect ratio and inefficient
use of screen space, especially when multiple attributes
exist. Third, stacked bars are similar to our design, which
divides the bars vertically. It may be useful to extend our
comparison to multiple (groups of) scholars without the
high aspect ratio problem. However, stacked bars may be
less effective for a detailed comparison, as it lacks a unified
baseline to align different categories. In contrast, our hierar-
chical histogram aligns two bars in the middle and use the
reflection to show the difference.

7 USAGE SCENARIOS

In this section, we demonstrate the effectiveness and usabil-
ity of SD? using several usage scenarios. We identify schol-
ars in visualization, human-computer interaction (HCI), and
data mining fields based on the Most Influential Scholar
Annual List provided by AMiner [1]. In 2018, the winners
were among the most-cited scholars whose papers were
published in the top venues of their respective subject
fields between 2007 and 2017. Recipients are automatically
determined by a computer algorithm deployed in AMiner
that tracks and ranks scholars based on citation counts col-
lected by top-venue papers. As there are many interactions
involved in the usage, we strongly encourage readers to
watch the supplemental video for a more comprehensive
understanding.

7.1 Scenario 1: Investigating Individual Researchers

This usage scenario mainly covers the following tasks T1,
T2, T3, and T4 stated in Section 3. We provide two mini-
studies with each aiming to answer a specific question.

7.1.1  Who should I recruit or collaborate with?

When searching for a faculty candidate, it is not always the
best strategy to recruit the one with more papers or citations.
It is also important to study their independence, collabora-
tion patterns, citation patterns, and their research interests
from their prior record. Here, we examine two professors
at their early career stage: Yingcai Wu and Nan Cao. Both
of them graduated under the supervision of Huamin Qu
and became professors at top research universities in China
afterward. We first study the overview of their publication
records with and without their advisor Qu (T1), as shown
in Figure 5 (a). We can see that both of them have similar
numbers of collaborated papers with Qu in recent years,
but Cao has more independent papers (54) published than
Wu (22) in general. However, by considering the citation
records, we find that their performances are close: Wu's
independent work has slightly more citations (257 against
241) and a slightly lower h-index (7 against 9). Therefore, to
accurately evaluate their outcome without Qu, we need to
investigate their profile details.
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Fig. 5: Yingcan Wu and Nan Cao’s independent and joint
work with their PhD advisor Huamin Qu. (a) shows the
numbers of papers of Wu over years in the first column,
and those of Cao in the second. The first row shows the
publication records without Qu and the second row shows
those with Qu. (b) shows the numbers of citations of indi-
vidual papers grouped by publication years and venues. (c)
shows the numbers of citations of publication venues over
citation years.

In Figure 5 (b), we use the hierarchical histogram to
compare the publication and citation records of Wu without
Qu (the upper histogram) and those of Cao without Qu (the
lower histogram) (T3 and T4). The heights of the bars repre-
sent the numbers of citations received by individual papers.
The papers are further grouped by the citation venues and
publication years. We find that both Wu and Cao published
at top venues. But the papers of Wu focused more on the
visualization or HCI. He had four papers that appeared
in TVCG (as highlighted in orange), two in CGF, and one
in CHI, TVC (The Visual Computer), and JVIS (Journal of
Visualization). In contrast, Cao published in a broader range
of venues. Other than the visualization and HCI, he also
published in data mining and knowledge discovery venues,
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such as CIKM, ICDE, SDM, and WWW. In terms of citations,
although the total numbers of citations for Wu and Cao are
similar, the citation distributions are quite different. Wu had
three papers with high citations and four with moderate
citations, while Cao had one paper with high citations and
eight with medium citations. Note that these are also the
papers that contribute to the h-indexes of their independent
work. In addition, Cao seems to receive more citations for
his data mining papers.

We further study the temporal distribution of the cita-
tions over the publication venues (T2), as shown in Fig-
ure 5 (c). We can see that Wu’s citations were mostly ob-
tained for his papers in TVCG, CHI, and TVC, which did not
change much over the years. But the number of citations in-
creases steadily, especially for his TVCG papers. In contrast,
Cao’s citations concentrated on his work in ICDE from 2009
to 2014, and then gradually spread out to various venues in
later years. These findings show that scholars may work in
different styles and excel in diverse ways. According to the
data we collected, Wu made steady progress in one direction
and gradually built up his reputation in one field, while
Cao adopted a different strategy. He tended to publish more
papers in various fields, which may potentially increase his
visibility and impact in the long term. For faculty hiring, the
recruiters may need to evaluate the profiles of candidates
comprehensively and make hiring decisions according to
their ultimate expectations for the candidates.
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Fig. 6: This figure shows the detailed information of the
papers published by Julian McAuley with (bottom) and
without (top) Jure Leskovec, grouping by “Individual Pa-
per”, “P. Venue”, “P. CCF Rank”, and “P. Year”. The red
dashed-line rectangle highlights the period when McAuley
was a postdoctoral researcher of Leskovec.

7.1.2  WIill this advisor boost my career?

When seeking for a postdoctoral researcher position, one
may wonder whether a potential advisor will boost his/her
career (T3). To answer this question, it is often important
to study the record of the advisor’s former postdoctoral
researchers, whenever available. Here, we investigate the
record of Julian McAuley, who worked as a postdoctoral
researcher under Jure Leskovec’s supervision from late
2011 to 2014. We explore the detail of the two paper sets
“McAuley — Leskovec” and “McAuley + Leskovec”, as
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shown in Figure 6. The hierarchical histogram reveals the
citations of individual papers successively grouped by pub-
lication years, venue ranks, and venue names. The upper
histogram (“McAuley — Leskovec”) shows that, without
Leskovec’s collaboration, McAuley still had a decent num-
ber of papers appearing at the top venues every year,
such as NIPS, TPAMI, CVPR, and WWW), etc. His papers
without Leskovec is roughly at the same level as their
joint papers. What makes a difference is the number of
citations. We find that their co-authored papers generally
received more citations, as indicated by the taller bars in the
lower histogram. Even within the paper set “McAuley —
Leskovec” (upper histogram), we can see that three of the
five most highly-cited papers were published after McAuley
started his postdoctoral researcher position. Considering the
significantly less time to accumulate citations, we speculate
that McAuley’s postdoctoral researcher experience grants
him more chances to be cited, either due to the better
visibility or more influential topics he is working on.
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Fig. 7: Comparing two groups of researchers. (a) shows
the numbers of papers for Jiawei Han’s group in the first
column and Christos Faloutsos” group in the second col-
umn. The first row shows the students’ record independent
of their respective advisors, and the second row shows
the students’ joint work with their respective advisors. (b)
shows the numbers of papers grouped by the citation counts
and CCF ranks in the red dashed-line rectangle, and the
numbers of citations grouped by the citation counts and
CCF ranks in the blue dashed-line rectangle. (c) shows the
numbers of papers published in different venues, where two
top venues (KDD and WWW) are highlighted in the red
dashed-line rectang]les.

10
7.2 Scenario 2: Investigating Groups of Researchers

This usage scenario mainly covers the following tasks T1,
T2, T3, and T5 stated in Section 3. The success of senior
professors does not only rely on the scholarly outcome of
themselves but also on the success of their students. In this
case, we would need to investigate the combined perfor-
mance of several scholars as a group, and also factor in their
collaboration with their advisors. Here, we use the two most
influential scholars in the data mining field: Jiawei Han and
Christos Faloutsos. Both of them have been working in the
academy for more than twenty years and have graduated
tens of PhD students. For concise analysis, we pick three
representative alumni from each group for the study. The
representative alumni are selected following three criteria:
first, they are active in the academy; second, they are top co-
authors of their advisors; third, they graduated in a similar
range of time. We finally select Xifeng Yan (graduated in
2006), Deng Cai (2009), and Yizhou Sun (2012) from Han's
previous students, Jimeng Sun (2007), Jure Leskovec (2008),
and Hanghang Tong (2009) from Faloutsos’ previous stu-
dents. All these six scholars are listed among the top six
co-authors in their respective advisors” Google Scholar(GS)
profiles (accessed March 2019), and all of them currently
hold tenure-track or tenured positions at top universities,
fulfilling our selection criteria. For simplicity, in this section,
we refer the papers authored by Han's students without
Han as (“Han—") and with Han as (“Han+”), and the
papers authored by Faloutsos’s students without him as
(“Faloutsos—") and with him as (“Faloutsos+").

General observations. We first compare their publica-
tion records (T1 and T5). Figure 7 (a) shows that the overall
patterns of paper numbers of “Han—" and “Faloutsos—"
over the years are similar. This may due to the similar grad-
uation time of the scholars being studied. For both groups
of researchers, the numbers of papers started increasing
to another level around 2010, which is approximately two
years after their average graduation time. By grouping all
the bars in the hierarchical histogram, we find that the
total numbers of papers are close (346 for “Han—", and
387 for “Faloutsos—"). Figure 7 (b) further decomposes the
papers into several groups according to their citation counts
and CCF ranks for detail investigation, as highlighted by
the red dashed-line rectangle. The histograms show that
“Han—" had slightly more papers published in rank A
venues, while “Faloutsos—" had more highly-cited papers
with the numbers of citations larger than 50. But the overall
papers’ qualities are somewhat similar.

We then compare their citations (T2 and T5). We find
that the number of total citations of “Faloutsos—" (17897)
is higher than that of “Han—" (7677), and the h-index
indicates the same trend. By further grouping the citing
papers according to their citation counts and CCF ranks, as
shown in the blue dashed-line rectangle in Figure 7 (b), we
find that “Faloutsos—" have more citations from the highly-
cited papers and rank A papers as well, due to the larger
number of total citations.

Publication patterns over venues. Finally, we compare
their publication tendencies (T1 and T5). Figure 7 (c) shows
that the two groups of researchers share a large portion of
their publication venues in common. This is not surprising
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as their primary research areas are similar. For example,
both groups published most papers in two leading venues
KDD and WWW. But we also notice that “Faloutsos—" was
more focused on a relatively smaller number of venues, such
as KDD, WWW, ICDM, and WSDM, while “Han—" had a
more balanced distribution over the venues. Other than the
appealingness of topics, publishing extensively in the same
venue may be one potential factor to increase the citations
as well, as this may help researchers gain extra visibility
and possibly lead to more citations. But currently, we do not
have more results to confirm this assumption as our tool is
designed for supporting localized exploration.

In short, these usage scenarios demonstrate the capa-
bility of our approach for solving the practical questions
through supporting the exploratory tasks of T1 - T5. In the
next section, we demonstrate the usability and effectiveness
of our proposed method by the evaluation from domain
experts.

8 EVALUATION

The evaluation of SD? is performed in multiple rounds in
various phase. In the development phase, two rounds of
pivotal expert evaluations and a user study are conducted.
In the revision phase, an empirical expert evaluation is used
to examine the effectiveness of SD? with case studies and
an additional round of user study is conducted to justify
specific design choices. In general, the expert evaluations
are used for in-depth interview regarding the effectiveness
and overarching design principals, while the user studies
examines usability of specific visual components and justify
the detailed design choices.

The pivotal expert evaluation was performed with two
visual analytics experts (postdoctoral researchers), one se-
nior applied scientist at Microsoft research with years of
experience in analyzing MAG, and a senior faculty running
a bioinformatics research group of more than twenty grad-
uate students and postdocs. These four experts evaluated
SD? in various aspects, including visualization and inter-
action design, data analysis, and end-users’ perspective.
The user study recruited graduate students in computer
science on their satisfaction with using SD? to complete
the required tasks. Several revisions were made to address
issues identified in the pivot expert evaluation, user study,
and comments from the anonymous reviewers. Please refer
to Section 8.4 in the main text for the user study, and
Sections 1, and 2 in the Appendix for detail of the pivot
expert evaluation and a complete history of tool revision,
respectively.

After the revisions, we performed the second expert
evaluation with two senior faculty members. Although re-
searchers at different career stages may be potential users,
we chose to evaluate the tool with senior faculty members
for their broader view to analyze the data comprehensively.
This evaluation was performed with three sessions. The
evaluation started with a tutorial and a guided exploration
using the usage scenarios in Section 7. Each of these two
sessions took around 30 minutes. Then, the experts per-
formed free-form explorations, which took each of them
slightly more than an hour. We recorded their operations
and conducted interviews with them. In this section, we
present their operations and findings in the exploration and
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discuss the lessons learned. We omit the names of scholars
studied at the experts’ requests.
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Fig. 8: Career path analysis results from Expert E1 to
compare the independent work of two scholars S1 and S3.
(a) compares the numbers of citations received by S1 — 53
and S3 — S1 over the citation years. (b) compares the
numbers of citations received by S1 — S3 and 53 — S1 over
the publication years. (c) shows the numbers of citations
received by each paper of S1—53 over the publication years.
(d) compares the numbers of citations received by S1 — 53
and S3 — S1 in each year over their publication years.

8.1 Career Path Analysis from Expert E'1

Expert E1 is an established researcher in data science,
whose research has received over 20 million dollars funding
and more than 30,000 citations. E'1 selected a scholar S1 at
his mid-career stage for investigation. E'1 first studied the
performance of S1 with respect to S1’s advisor S2 (T3). He
formed two paper sets S1+ .52 and S1 — 52 and compared
them using hierarchical histograms. He found only one
paper received high citations in S1 + 52, then he removed
S1+ 52 from the hierarchical histogram and added 52 — 51
for comparison with S1 — 52. The relative performance of
a scholar with respect to his advisor reduces the difference
among research fields and topics. He used “P. Year” and
“Individual Paper” as grouping criteria, but found that the
hierarchies were difficult to compare as S2 had a much
longer career. He tried to select papers over a ten-year
period from 2005 to 2015 for comparison, as the MAG data
used in our implementation contained papers up to 2017.
He did not consider papers in 2016 and 2017 as these papers
did not have enough time to demonstrate their impact. He
found that selecting this period in the publication view
would require an extra step to add them to the hierarchical
histogram. Therefore, he opted to ignore the other years
using the grouping function of the hierarchical histogram.
He found the resulting visualization demonstrated a much
clearer pattern that S1 published more high citation papers
than S2. To study the general citation trend over recent
years, he removed “Individual Paper” and found that the
number of citations in each year received by S1 was higher
than S2 as well. He commented that this indicated that S1
had become a successful independent researcher.

E1 then studied the performance of S1 with respect to
S1’s department chair S3 (T4), as this reduced the differ-
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ence in the working environment. He formed two paper
sets S1 — S3 and S3 — S1 over the period from 2005
to 2015. This time, he specified the years of selection in
the publication view before adding the paper sets to the
hierarchical histogram. He used “C. Year” to see the citations
received by the individual work of each scholar over the
years. He found that although S3 — S1 received many more
citations over the earlier years, the numbers of citations
were similar after 2015, as shown in Figure 8 (a). He then
used “P. Year” to see the citations received by each year’s
papers. He found that S3’s papers published in earlier years
had more citations, but starting from 2010, S1’s papers
outperformed S3’s (except for 2013) in terms of citation
numbers, as shown in Figure 8 (b). He commented that
this trend could not be found in Google Scholar(GS), as we
could only view the numbers of citations received each year.
He added an extra attribute “C. Year” to see the interaction
of these two factors, as shown in Figure 8 (d). He found
that the turning point was indeed 2009 instead of 2010, as
highlighted in the red dashed-line rectangle. Although S1’s
papers in 2009 received fewer citations than S3’s over the
entire period, they started getting more citations from 2012.
He commented that SD? was powerful to reveal the career
path of rising stars in a department. However, during the
evaluation, E'1 did not study why 2009 became the turning
point. By showing the citation numbers of individual pa-
pers, our post-analysis showed that S1 published his first
highly-cited paper this year, as shown in Figure 8 (c).

E1 was interested in S1’s advising ability and studied
the performance of S1’s students S4 and S5. He studied
S1 4+ S4 and S1 4 S5 and found that they had similar
performance in terms of citation counts over the years. He
stated that as S5 had several years of research experience
before working with S1 while S4 did not, SD? was helpful
to constrain the comparison scope to their collaboration
with S1. E1 would like to explore their career development
after graduation. However, as both S4 and S5 graduated
after 2017, their publication data after graduation was not
included in our data set. This is a limitation of our current
tool.

S6 + (S8 S9) # Citations

S6 - S8 - 89

# Papers

P. CCF Rank
®00>®00

P. CCF Rank
1054-1999 20002017 P- Year

(a) (b)
Fig. 9: Scholarly data studied by Expert E2. (a) shows the
citations received by 56 with his advisors (S64(58|59)) and
without his advisors (56 — S8 — S9) with two attributes “P.
CCF Rank” and “P. Year”. (b) shows the number of papers
of 510 by their “P. CCF Rank” during two periods.

8.2 Publication Tendency Analysis from Expert £2

Expert E2 is a professor and the chief scientist at a super-
computer center, leading a research group of more than
twenty graduate students and ten engineers. He was in-
terested in the publication preference of scholars in the

12

high-performance computing (HPC) area. He selected a
young scholar S6 and another scholar S7 at his mid-career
stage. He first studied S7’s highly-cited papers (T1). He
grouped the papers by “P. Citation” and “Individual Paper”
attributes. He hovered the papers in the high-citation group
and found that the papers showed diverse topics. He added
an extra level of grouping using “P. CCF Rank” between
these two levels. He found that only one of his eight high-
citation papers was published in a Rank A venue. E2
commented that Rank A venues did not guarantee higher
numbers of citations. He removed the grouping levels other
than “P. CCF Rank” and found that S7 received 402 citations
from 33 Rank A papers, and 580 citations from 37 Rank B
papers, leading to a lower average number of citations for
Rank A papers than Rank B papers.

Then, E2 added S6 to the hierarchical histogram for
comparison with S7 (T4). He found that S6, a young
Chinese scholar, had a higher tendency to publish in Rank
A venues (11 out of 28) than the currently more estab-
lished scholar S7 (33 out of 175). He commented that this
might demonstrate the impact of government policies as
publishing in Rank A venues was more rewarding in China.
He further studied the publication tendency of S6 with
and without his co-advisors (S8 and S9) by comparing
56+ (S58]59) and S6 — S8 — 59 (T3). He applied alignment
to enhance visual comparison. E2 found that both paper
sets had a similar number of papers of Rank A. However,
starting from 2011 (which was only two years after his first
paper), S6 received more citations from his independent
work than from collaborated works with his advisors, as
shown in Figure 9 (a).

E2 was interested in the publication tendency difference
between China and other countries. He added one of the
most distinguished scholars in HPC (S10 from the United
States) for further verification (T1). He found that S10 only
had 42 out of 357 papers published in Rank A venues.
Nevertheless, when he studied the tendency over the years,
he found that S10 did publish more Rank A papers after
2000 (36 out of 235) than before (6 out of 122), as shown in
Figure 9 (b).

8.3 Discussion and Lessons Learned

Overall, we found that the two experts could form mean-
ingful combinations of scholars and partition the data using
appropriate attributes to support their analysis. But the
learning curve seemed to vary across these two experts.
E'1 was able to manipulate this graphical tool quickly, even
for those relatively complicated functions. For example,
it was to our surprise that he used grouping to remove
undesired periods instead of brushing in the publication
view. E'2 seemed to experience a steeper learning curve to
use the interface. For example, we observed once that he
could formulate the combinations of scholars appropriately.
It took him some time to find the button to add the paper
set into the publication view. This situation improved dur-
ing the evaluation as he could perform the most desired
functions smoothly. The user study with graduate students
also indicated that the learning effort was reasonable. After
a brief introduction and initial exploration, most students
could answer complicated questions using the tool with
high accuracy (97%).
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However, we should note that while the flexibility sup-
ports more tasks, it also leads to confusion of users as they
have too many choices. For example, E'1 missed the oppor-
tunity to discover why the year 2009 became a turning point
for S1 in Figure 8 (d). He suspected that S1 was already fa-
mous in 2012, which brought more citations to his previous
papers. But S1’s papers published before 2009 might benefit
less from this. However, by replacing the top attribute with
“Individual Paper”, we found that most papers published
by S1 in 2009 received fewer citations than S1’s 2008 papers.
This fact was ignored by E1 during the evaluation. E2
suggested that we might develop a recommendation system
to automatically suggest interesting operations for users or
provide templates to combine scholars.

Other limitations of our current implementation were
also identified. For example, E'1 pointed out that our data
lacked the papers in the most recent three years. £2 was
willing to explore the topics of papers authored by S7, but
SD? did not incorporate this attribute. He also found the
average number of citations interesting in some cases, but
SD? could only demonstrate the numbers of papers or cita-
tions. These issues are mostly related to the data set instead
of our tool’s design, and they have not been addressed
yet. Some suggestions are related to the interactions. For
example, E'1 suggested that users should be able to change
the operators to combine scholars in the publication view,
and E2 suggested that users should be able to determine the
criteria for high/medium/low citations. We have already
incorporated the first feature and will add the second in the
future.

Overall effectiveness Effectiveness of each function

Usability User interface design

B el gl el gl els gl
. I I L& I il o o o L HE

Fig. 10: The rating scores (1-5) received in the first user
study. The height of a bar encodes the average score for a
corresponding rating question, and the error bar shows the
95% confidence interval.

8.4 First Round User Study

After the revision of SD? based on feedback from the pivotal
expert evaluation, we recruited ten graduate students in
computer science and performed a user study to evaluate
its effectiveness.

Experimental procedure. The first user study started
with an introduction session where participants were given
a briefing of the basic usage and core functions of SD?,
including adding scholars, adding paper sets for selection,
selecting paper sets for investigation, and operating the
hierarchical histogram. After the introduction, participants
took a practice session so that they would get familiar with
the SD? interface and interactions. After that, the main study
commenced. Participants were asked to perform a list of
tasks and answer ten questions. The tasks require them
to create paper sets of Jiawei Han and his two students
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(Yizhou Sun and Xifeng Yan), Christos Faloutsos, and his
two students (Jure Leskovec and Hanghang Tong), for sub-
sequent exploration and investigation using the hierarchical
histogram. To answer the questions correctly, participants
needed to leverage several essential functions designed for
the hierarchical histogram (e.g., changing and reordering
grouping attributes, enabling bar alignment, and perform-
ing bar grouping). In the end, participants completed a
questionnaire. The questionnaire asked them to rate SD?
on a five-point Likert scale (1: strongly disagree; 2: disagree;
3: neutral; 4: agree; and 5: strongly agree) under four cate-
gories: overall effectiveness, individual functions, usability, and
user interface design. It also asked open questions soliciting
detailed comments regarding SD? and suggestions for im-
provement. The entire study took approximately one hour
for most participants, and each participant was paid $15 as
compensation.

Results and discussion. The participants achieved very
high accuracy (97%) in answering the task questions: seven
participants answered all questions correctly, and three
participants had only one wrong answer. Considering that
most tasks required three to five operations to perform, the
accuracy is beyond our expectations. This demonstrated that
SD? was effective and could be learned in a reasonable amount of
time (around half an hour).

Then, we examined the rating questions. The average
score and 95% confidence of intervals are shown in Fig-
ure 10. We can see that the participants provided positive
ratings for all rating questions. For effectiveness, we found
that the overall effectiveness had higher average ratings
(ranging from 4.7 to 5 indicated by the orange bars) than
that of the individual functions (ranging from 4.6 to 4.8
indicated by the green bars). But for usability, the trend
was different. The overall usability received a lower average
rating (4.3 indicated by the first light blue bar) than that of
the individual functions (ranging from 4.5 to 4.8 indicated
by the other blue bars). A possible explanation is that
although SD? can perform the tasks effectively as a whole,
none of the individual functions can be used to complete
the tasks on their own. Although each of the individual
functions was easy to learn, understanding the entire system
was more difficult. But given the confidence interval, the
difference may not be significant.

For the “user interface design”, we find that most scores
are close to 5, and the only exception is the statement
“the fonts (including color and size) are appropriate to
distinguish among different items” (with an average score
of 4.2 indicated by the second gray bar). Two participants
provided a neutral rating for this statement, and one of
them stated in her answer to the open question, “what one
change to SD? would you suggest” that the fonts may be
used to distinguish citation attributes and paper attributes
in the attribute list.

The comments for the open questions are positive as
well. Typical comments includes “easy to understand and use”,
“flexible”, “intuitive”, “user friendly”, and “runs fast”. One
participant mentioned that she ”"do find the tool requires
some learning effort, but it only takes a few minutes.”
For the question regarding the most useful function, the
participants seemed to have different choices. The most pop-
ular candidates were the hierarchical histograms (chosen by
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three participants) and the set operations (chosen by two
participants). For the “one change to recommend”, most
suggestions were related to the interface design, includ-
ing distinguishing citation/publication attributes, providing
more tooltips, and providing a manual. These suggestions
were adopted and reflected in a later version of SD?, before
the pivotal expert evaluation is performed.

C. Year

S P Year

S00Z  S00Z
9002 9002
2002 | 2002
8002 8002
6002 6002
0Lz  oLoz
oz 1oz
20z zi0z
€0z €L0Z
yL0Z | ¥L0Z
4

2 P. Year
@

C. Year

# Citations

(a)
C. Year
8 8 8 8 8 N N 8 8N NN
& 8 8 8 8 3 g REEREIR P
8 8 8 8 8 8 8 8 8 188 [ vear
& 8 < 8 8 3 = s s 2@
C. Year
# Citations
C. Year
8 8 8 8 8 8 8 8 8 8 8 PYear
8 8 < 8 8 3 2 N s 2 a
8 8 8 8 88
& § g g & 3 2 8 3 3 @ PYer
C. Year
# Citations
(©
C. Year
N 8 N N N N N N 5 BB PYe
& g g g g 3 = SRR

Fig. 11: Design alternatives for the bar alignment examined
in the second user study. (a) shows the original two-sided
design with solid color filling (TSO+SL). (b) shows the two-
sided design with stripped color filling (TSO+SP). (c) shows
the two-sided design with shorter bars removed and solid
color filling (TSC+SL). (d) shows the one-sided design with
solid color filling (OS+SL).

8.5 Second Round User Study

The second user study was conducted specifically to im-
prove the design of bar alignment and test the effectiveness
of the bar grouping feature. For bar alignment, we created
six design alternatives for the participants to identify the
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one that was most effective and easiest to understand. Two
design factors are considered in the alignment: bar place-
ment and color filling. For the bar placement, three options
are given: the original two-sided design (TSO), which flips
the shorter bar to the other side and overlaying with the
aligned longer bar; the two-sided design with cutoff (TSC),
which flips the shorter bar to the other side as the TSO
does, but removes the shorter bar; the one-sided design
(OS), which places all bars on the upper histogram with the
shorter ones on the top of the corresponding longer ones.
We do not consider the clustered histogram layout in this
study, because it may not use the horizontal space efficiently.
Please refer to Section 6.3 for a detailed discussion. For the
color filling, we offer two options: solid filling (SL), which
fills the shorter bar with solid color; and stripped filling
(SP), which fills the shorter bar with strips to indicates that
the bars are overlaying instead of stacked. Please note that
for all alternatives, we enforce a minimum height for each
bar, so that it can be read as a very small number.

Experimental procedure. The second user study was
conducted in two stages. The first stage was a pivotal study
that identified the two most promising candidates from the
six design choices. Then, a formal study was performed
to identify the final design choice from the two candidates
based on the same tasks in the first round of user study.

The pivotal study was used to avoid the overwhelming
choices in performing the tasks. We recruited thirteen grad-
uate students as participants for the pivotal study. After a
brief introduction to the hierarchical histogram, the partic-
ipants simply read the screenshots of each design choice
and rated different factors on a five-point Likert scale in
two aspects: clarity (clear to understand) and readability
(easy to read). In addition, they were asked to list the three
most effective design choices in order. The introduction was
given onsite, while the questionnaire was filled online with
an anonymous voting system.

For the formal study, we recruited the ten graduate
students who participated in the first round user study.
They were asked to repeat the tasks in the first study using
the two design choices identified in the pivotal study. They
were informed that the accuracy and timing would not be
recorded. After performing the tasks, they were asked to
rate the two choices in terms of clarity and readability. To
avoid bias, the statements were provided in two opposite
manner: the first stated in the form that “A is better than
B” and the second stated in the form that “B is better than
A”. The scores were then converted in a consistent manner.
In addition, four questions were asked to rate the recent
changes for the grouping function.

Rank 1

Rank 2 ®mRank 3

Clear to understand Easy to read

STI N ITE P T

TSO TSC OS TSO TSC 0OS SL SP SL SP TSO+SL TSO+SP TSC+SL TSC+SP OS+SL  OS+SP

(a) (b)
Fig. 12: The results of the pivotal study in the second round
user study. (a) shows the rating results, and (b) shows the
ranking results.

Results and discussion. For the pivotal study, the rat-
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ing and ranking showed consistent results, as shown in
Figure 12. In terms of the color filling design, SL received
higher scores than SP with smaller confidence intervals in
both clarity and readability. The ranking results showed a
similar trend that the SL received higher ranks than the
corresponding SP with the same placement design. In terms
of the bar placement, TSC received the lowest scores with
the largest confidence interval in both clarity and readability.
This reflected a more diverse opinion against TSC than the
other two placement designs. The ranking results also indi-
cated that TSC was least favored, with only two first-choice
votes and twelve votes in the top three. In comparison, TSO
received seven votes as the first choice and twelve votes in
the top three, and OS received five votes as the first choice
and fifteen votes in the top three. Overall, the results showed
that TSO and TSC were favored over TSC, and SL was
favored over SP. Therefore, we used TSO+SL and OS+SL
in the formal study:.
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Fig. 13: The results of the formal study in the second round
user study. (a) shows the rating scores comparing TSO+SL
and OS+SL. (b) shows the rating scores for the updated
grouping feature.

In the formal study, OS was slightly favored over TSO
in both clarity and readability, although the difference was
marginal, as shown in Figure 13 (a). For clarity, OS was
considered to outperform TSO with an average score of 3.8
and a relatively large confidence interval. For readability,
the difference is even smaller with an average score of 3.4.
The participants supporting OS stated that it allowed the
numbers to be read on one side, which was easier to track
the trends of both the upper and lower histograms. Besides,
they mentioned that TSO might be confusing as the red and
blue bars appeared on both sides. On the other hand, the
main reason for the participants supporting TSO was that it
was more consistent with the unaligned view. Investigating
into the detailed scores, we found that while eight scores
strongly supported OS (with a score of 5), only one strongly
supported TSO (with a score of 1). In addition, twelve scores
favored OS (with a score of 4 or 5), while only seven scores
favor TSO (with a score of 1 or 2). Therefore, although
participants with both the two different opinions provided
reasonable arguments, we used OS+SL in our final version
of SD? based on the rating scores.

For the grouping function, most participants stated that
it was easy to understand (4.4) and convenient to use (4.9).
All participants stated in an open question that they did
use the grouping function performing the tasks. The most
common task for them to apply the grouping is the com-
parison of the scholarly outcomes in two periods of time.
One participant also mentioned that she used the grouping
function to reduce the visual complexity. However, for the
newly added “ignore” button, the rating was slightly lower
(4.1). The participants stated that the tasks might not neces-
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sarily require a group to be ignored. Instead, as the grouping
already provided a relatively concise visualization, they
could often simply focused on the other groups without
explicitly removing a specific one.

9 COMPARISON WITH EXISTING TECHNIQUES

We compare our SD? with several existing techniques based
on the core requirements in Section 4: R2, R3, and R4. We
do not consider R0 and R1 in this comparison, as these two
requirements specify that visual hints should be provided
to select attributes and scholars, which are less relevant to
the core tasks. We compare SD? with three recent egocen-
tric techniques (i.e., ImpactVis [32], Influence Flower [26],
and VisPubComPAS [33]), a cross-filtering design (ie.,
Keshif [37]), and a popular website (i.e., AMiner [1]).

For the combination of scholars, we compare these
techniques based on their supported combination opera-
tions and the number of scholars to combine. These two
factors largely decide what kind of relationships among
scholars can be analyzed. ImpactVis and AMiner show the
number of collaborated papers of a scholar and each of her
top coauthors. Influence Flower allows an institution to be
studied as an entity. But it does not allow users to freely
specify scholars to form a group as VisPubComPAS does.
The techniques mentioned above only provide a single way
to combine scholars. Therefore, they only allow a specific
relationship (e.g., coauthorships) to be discovered. Both
Keshif and SD? support three set operations (i.e., “and”,
“or”, and “not”) to flexibly combine the scholars and derive
various kinds of relationships.

For information partition and organization, we com-
pare these techniques based on the number of maximum
partition levels and whether the attributes used for partition
can be customized. These two factors determine the inter-
actions among which attributes can be discovered. Most
of these techniques except Influence Flower and AMiner
support information partition. ImpactVis uses a three-level
partition using three fixed attributes (publication and ci-
tation year, paper types). But for the coauthors, ImpactVis
only partitions the collaborated papers by their topics. Vis-
PubComPAS provides a one-level partition using a single
fixed attribute. Keshif allows the data to be partitioned
using a user-specified attribute (e.g., venues and authors).
Keshif further employs cross-filtering to investigate the re-
lationships among multiple attributes. But we should note
that cross-filtering does not provide a full picture of the
interactions among all attributes immediately. Users need
to interact with the histograms to discover details. SD?
provides the maximum partitioning flexibility among these
techniques, as it allows users to freely select any number of
attributes for partition.

For comparison, most of these techniques, except Im-
pactVis and AMiner, allows the data from two (groups of)
scholars to be visually compared. Influence Flower uses
a node-link diagram representation and displays an over-
laid background diagram for comparison. VisPubComPAS,
Keshif, and our SD? are based on bar charts, and they align
the corresponding bars for comparison. More specifically,
VisPubComPAS and Keshif use clustered bars which is scal-
able to more than two entities. Our SD? aligns upper-lower
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hierarchical histograms, which cannot support comparisons
of more than two entities.

Overall, our SD? is the most appropriate one to support
our tasks as it fulfills all requirements. Other techniques
might not be able to perform some tasks when they fail to
meet certain requirements.

10 CONCLUSIONS AND FUTURE WORK

We have presented SD?, a visual analytics tool for visualiz-
ing and comparing scholarly performance using papers and
citations. SD? addresses the need for objectively and com-
prehensively evaluating the scholarly output and impact
of researchers. It allows users to understand a researcher’s
scholarly performance via publication and citation records,
evaluate the independence of a researcher, compare indi-
vidual researchers or groups of researchers. Following the
interaction model of “search, show context, expand on demand”,
SD? provides a suite of user interactions that target real-
world scenarios where the evaluators or recruiters know
who to search or compare. We demonstrate the effectiveness
of SD? with several case studies that are driven by common
needs of scholarly performance evaluation. SD? has also
been assessed via expert evaluations, followed by a user
study. In the future, we will seek to expand the data used by
SD? from CS-related fields to other science and engineering
fields.

Generalization.The exploration scheme and the hier-
archical histogram introduced in SD? are not limited to
visualizing scholarly data. They can be generalized and
applied to other faceted, categorical data. Toward this end,
the core tasks can be abstracted as: set combination, infor-
mation partitioning, and comparison. The set combination
task allows users to combine multiple sets of elements
(e.g., belonging to different categories or related to different
subjects, etc.) in their desired manner. The information
partitioning task slices and dices the data according to
their attributes and visualizes the results in a hierarchical
histogram. The comparison task allows users to visually
compare two hierarchical histograms. This may help to an-
swer questions that are not limited to science and engineer-
ing fields. For example, when archaeologists study cultural
relics discovered in different ruins, they may be interested
in: what are the relics found at this site but not at that one (set
combination), how many relics are found of each type, how the
size of relics distributes of each type (information partitioning),
and how the relics different from two sites (comparison)? Our
workflow may help to answer these questions and facili-
tate the understanding of different cultures. Similarly, the
exploration scheme can be applied to other types of data
where labels are available to group elements into sets. For
example, the posts on social media are often associated with
attributes such as users, time, locations, lengths, and tags.
We can use the same scheme to build hierarchical sets from
the social media data and explore the interactions among
different attributes by visually comparing the sets.
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APPENDIX
1 FEEDBACK FROM PIVOTAL EXPERT EVALUA-
TION

We evaluated the prototype of SD? with four experts. Two
experts (E3 and E4) are postdoctoral researchers special-
izing in visual analytics. Both of them have more than
five years of experience and publish multiple papers at top
venues, such as TVCG, VAST, and CHI. Expert E5 is a senior
applied scientist at Microsoft Research. His research focuses
on social and information networks and data mining, with
years of experience in analyzing MAG, which is a major data
source of SD?. Expert E6 is a full professor of computer
science specializing in bioinformatics, whose department
has over a hundred faculty members. He is experienced
in recruiting faculty members and postdoctoral researchers.
The pivotal expert evaluation was performed in the form
of interviews, including a brief introductory section and
a free exploration section. The interview took around one
hour each, and the experts were asked to provide textual
feedback after that. Based on their feedback, we revised
our tool accordingly. The feedback and revision procedure
repeats in multiple rounds, and the details are reported in
Section 2 of the Appendix.

Overall sentiment. The feedback received is generally
favorable. The experts confirm that SD? is intuitive and
useful. E£6 commented that “SD? shows different aspects of
scholar data clearly, and it is easy to interpret.” and E4 stated
that “I believe it is useful for evaluating the scholars’ publication
records in depth. From the recruiting perspective, it would be
especially useful.” The experts were particularly interested in
our functions that combine scholars for comparative investi-
gation. £3 commented that “I really like the set-operation based
filtering, which is quite intuitive and useful.” and F'4 said that
“The powerful function of the tool is the flexible logical combina-
tion for customized filtering and comparing. Normal tools don’t
support that. And viewing the records from publication/citation
perspectives also bring new insights.”

Key comments. The experts also made the following
comments in terms of tool functionality, scalability, and gen-
eralization. For comparing the performance of two scholars,
E3 commented that “the comparison shows exciting results.
The bar alignment is especially useful, which makes the difference
much easier to perceive.” For interactive filtering functions, £4
commented that “If possible, period selection for citation years
can be added, it can enable one to drill down to specific years.” and
“If individual records’ citation details can also be shown, it would
be perfect.” We can handle the filtering through grouping
in our current implementation. However, we admit that it
is not convenient, and a better strategy should be sought.
For using the tool to analyze large-scale effects or general
trends in a field, E5 commented that “I would like to use
this tool to explore recent trends in my area. For example, using
this tool to study whether the researchers in the data mining
fields are citing more machine learning papers than database
papers nowadays.” E'6 mentioned the desire to “analyzing a
larger scope of the academic network by automatically including
more related scholars and papers.” These comments show the
willingness of the experts in using SD? for various purposes,
which is quite encouraging. Further development effort is
needed to enable the tool to handle larger graph structures.

1

For tool deployment and generalization, /5 commented
that “It would be very useful to make the tool publicly available.”
E6 (the expert in bioinformatics) added that “It might be
generalized to deal with the relationships between proteins and
genes in biomedical engineering as well.” These comments also
indicate that the experts are very interested in the tool.

Finally, we excerpt additional comments from the ex-
perts as follows. E3: “I think this tool would be very helpful for
many people, including students who want to find a suitable ad-
visor, researchers who want to find suitable collaborators, as well
as university administrators who want to recruit new faculties
and evaluating the performance of the current faculties, etc.” “It
takes some time to learn how to use the tool, especially the detailed
interactions of those buttons [in the histogram view], but overall
it is easy to use and quite flexible.” “The case study of Julian
McAuley is quite interesting. It definitely shows the usefulness
of the tool. Jure is famous in the field of graph mining and
graph neural networks, etc. This case may provide support for the
empirical observation that a well-established/famous co-author can
boost the paper citation, probably due to their good reputation.”
F4: “Individual researchers will be interested in his/her own
records. I believe it can provide some new insights. With the tool,
people can find their ‘majority audience’ and communities; even
maybe some they didn't notice. For example, in this case, Jian
Zhao may [want to] be involved more in the IUI conference, if he
didn’t do it before.” E5: “The way to combine multiple scholars
is inspiring.” “The interaction is very smooth, especially when all
data are loaded.” E6: “The tool performs the proposed tasks well,
especially in terms of evaluating the independence of a researcher.
This can be very helpful when recruiting new faculty members.”
“What 1 find more interesting is the attributes of citation data.
This assists in the evaluation of citation quality, which is critical
to evaluate one’s research quality. It is important to know whether
a young researcher is recognized by renowned experts in high-
quality papers.” “I feel the tool is flexible to be extended in more
scenarios. For example, analyzing a larger scope of the academic
network by automatically including more related scholars and
papers.”

2 TooL REVISION

We revise our tools in multiple passes by addressing the
issues identified from the pivotal expert evaluation and user
study, and the ones raised from the previous review cycle.
The interview was conducted two or three times for each
expert to confirm that their concerns are addressed.

First, the original version of SD? provided a simple
slider for users to pan the hierarchical histogram back
and forth along the horizontal direction. The revision im-
plements a mini-map feature (refer to Figure 1). With the
mini-map, users can specify a range and drag the resulting
time window back and forth for more convenient temporal
exploration of the hierarchical histogram, while keeping the
entire period insight.

Second, besides the standard linear scale provided for
displaying the vertical bars showing the corresponding
quantities in the hierarchical histogram, we add the square
root and logarithmic scales for users to choose. These two
new scales are useful for visual comparison of different bars
showing a mix of rather high and rather low quantities.

Third, initially, we used the same gray color for showing
the vertical bars in both the upper and lower histograms.
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With such a uniform color scheme, experts raised a concern
that it is not easy to observe bar alignments. Therefore, we
switch to a pink vs. blue color scheme that shows the upper
and lower histograms for easy alignment and clear contrast.
In addition, we further overlay the shorter bar on top of
the corresponding taller bar, so that their difference can be
easily evaluated visually (refer to, for example, Figure 3 (b)).

Fourth, our earlier version does not provide a visual
correspondence between the paper sets in the publication
view and the hierarchical histograms. A user needs to use
the text description to identify the correspondence. An
expert pointed out that this may lead to extra effort for
users to identify paper sets for investigation. We address this
issue by color coding: the paper sets used in the hierarchical
histogram view are colored according to the histogram color
(i.e., pink or blue), and the other paper sets are colored in
green.

Fifth, we also make some minor revisions according
to the feedback received from the participants of the user
study. These revisions include adding a manual for the
interface (which can be accessed by clicking the “help?”
button at the top-right corner), adding tooltips to provide
operational hints, adding a separation line between the
publication and citation attributes, and polishing the style
of the buttons.

Sixth, the alternative design choices for bar alignment
were studied with an additional round of user study. The
study suggested that the original design which duplicated
the shorter bars on both sides might not be optimal. After
the study, we made a revision to align all bars on the
upper side, which received the most positive rating from
the participants.

We point out that there are helpful comments that have
not been fully implemented yet. First, the expert from the
MAG project suggested we use the Azure Academic Knowl-
edge (AAK) API to avoid the issues caused by the anti-
crawling mechanism of GS. However, as scholars maintain
the publication data at GS, we still consider it to be more
reliable for small-scale analysis (such as the case studies in
this paper). For the tool to be publicly useful, we believe
AAK API will be a more practical solution. Second, an
anonymous reviewer suggested that using the tooltip to
select an attribute might be prone to misoperations (such as
accidentally moving the mouse out of the tooltip). As we do
not find an appropriate alternative that is more robust and
still maintains the compactness of the interface, we enlarge
the detection area of the tooltip, so that it will only disappear
when the mouse is a certain distance away.
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