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Abstract. With the advent of large-scale quantum computers, factoring
and discrete logarithm problems could be solved using the polynomial-
time quantum algorithms. To ensure public-key security, a transition to
quantum-resistant cryptographic protocols is required. Performance of
hardware accelerators targeting different platforms and diverse applica-
tion goals plays an important role in PQC candidates’ differentiation.
Hardware accelerators based on FPGAs and ASICs also provide higher
flexibility to create a very low area or ultra-high performance implemen-
tations at the high cost of the other. While the hardware/software co-
design development of PQC schemes has already received an increasing
research effort, a cost analysis of efficient pure hardware implementation
is still lacking. On the other hand, since FPGA has various types of hard-
ware resources, evaluating and making the accurate and fair comparison
of hardware-based implementations against each other is very challeng-
ing. Without a common foundation, apples are compared to oranges.
This paper demonstrates a pure hardware architecture for Kyber as one
of the finalists in the third round of the NIST post-quantum cryptog-
raphy standardization process. To enable real, realistic, and comparable
evaluations in PQC schemes over hardware platforms, we compare our
architecture over the ASIC platform as a common foundation showing
that it outperforms the previous works in the literature.

Keywords: ASIC · Hardware architecture · Kyber · Lattice-based
cryptography · NTT · Post-quantum cryptography

1 Introduction

The hard problems of traditional public-key cryptosystems, e.g., RSA and ECC,
can be easily solved using Shor’s algorithm [1], so current cryptographic algo-
rithms cannot be secure anymore against quantum attacks. To prepare for
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security concerns caused by building large-scale quantum computers, in 2016,
the National Institute of Standards and Technology (NIST) started the post-
quantum cryptography (PQC) standardization process for the quantum-safe
cryptographic algorithm. After several rounds, NIST announced finalist can-
didates in July 2020, including four key encapsulation mechanisms (KEM), i.e.,
Classic-McEliece, Kyber, NTRU, and Saber. The majority of the finalists are
based on lattice-based cryptography offering a high-performance scheme and rel-
atively small ciphertext and key sizes. Kyber KEM [2] is one of the PQC finalists,
which is constructed on the hardness of the module learning-with-errors problem
(M-LWE) in module lattices [3].

Performance of hardware accelerators plays an important role in the NIST
standardization process because the overall complexity of the winner schemes will
have to be minimal to be implemented in widely-deployed cryptosystems [4]. As
a consequence, hardware benchmarking of PQC candidates is crucial considering
the advantages of hardware-based designs to exploit parallelism, which leads to
improvements in the efficiency of the overall system. While software (SW) imple-
mentations for embedded systems have more flexibility than hardware-based
approaches, they have a lower performance. Hardware/Software (HW/SW) co-
design approaches increase the performance but keeping the flexibility of a SW
solution to cope with embedded constraints. Although the HW/SW approach
offers flexibility and a shorter design cycle than pure HW schemes, they may not
lead to the best performance. Simultaneously, pure hardware implementation of
PQC schemes is extremely challenging due to their high algorithmic complexity,
considering both algorithmic and architectural alternatives, and also the lack of
hardware description language libraries for the basic building blocks.

An accurate and fair comparison between hardware accelerators is very chal-
lenging. One of the main challenges is they target different optimization per-
spectives, including performance, required resources, power consumption, and
energy usage. To address this challenge, one can consider efficiency as an area-
time product for a comprehensive comparison. Additionally, another challenge
for a fair comparison is that most HW/SW designs proposed a unified core for
several schemes [5–7]. Therefore, there appear to be very few hardware imple-
mentations that focus only on a specific scheme and make the best of all its
features. Moreover, the comparisons are too complicated and cannot indicate
the advantage of one architecture over another, especially when they do not
belong to the same platform. NIST’s recommendation to use the Xilinx Artix-7
FPGA family for hardware prototyping is in an effort to improve the accuracy of
comparison in the same chip architecture family. Nevertheless, the effect of dif-
ferent resources, e.g., DSPs and BRAMs, has not been taken into consideration
in the calculation of the total area. Consequently, ASIC results can be chosen
as a benchmark to have a fair comparison with existing implementations with
respect to efficiency.

In this paper, we propose a monolithic hardware implementation, including
polynomial sampling, NTT, and point-wise multiplication, that is parallelized
by virtue of the Kyber algorithm that is naturally parallelizable to accelerate
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Fig. 1. Performance (in log10) and resource utilization comparison in three different
Kyber-512 implementation approaches: software (SW), hardware/software (HW/SW),
and hardware (HW). Kyber architecture is breakdown into three main cores, includ-
ing Keccak (hashing and sampling), NTT (polynomial multiplication), and Control
(controller and all other required functions).

lattice-based PQC exploiting fewer resources. The efficiency of our proposed
PQC implementation has performance levels comparable to or even significantly
better than ECC-based schemes [8–10].

The first hardware implementation of Kyber was proposed in [11] employing
the high-level synthesis (HLS) approach. In this work, the authors designed
a map of high-level C specifications of round 2 candidates into FPGA and
ASIC implementations. Although some dedicated optimizations, particularly for
Kyber, are applied, the results are significantly less efficient from other hardware-
based implementations. The authors in [5] presented a configurable core based on
RISC-V architecture over ASIC targeting power consumption optimization. To
provide FPGA results, the authors extended their work in [12]. In [6], another
RISC-V accelerator called RISQ-V was introduced synthesized for an FPGA
prototype and an ASIC. The authors in [7] proposed a lightweight design for
NewHope and Kyber based on the RISC-V processor integrated with a finite
field multiplier for FPGA. A vector processor was proposed in [13] for ASIC
implementations targeting a high-performance architecture. The first pure hard-
ware implementation of Kyber is reported in [14] based on RTL methodology
in FPGA. The work of [15] also presented a pure hardware approach for Kyber.
However, this design heavily relies on memory units between components. More-
over, a compact architecture was proposed in [16] to reduce the required block
RAMs. In [17], the authors proposed a highly optimized NTT core to achieve
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significant speedup for Kyber KEM. The hardware architecture for polynomial
multiplication targeting Kyber parameters has been studied by several imple-
mentations [18–21]; however, these architectures cannot perform the complete
Kyber protocols.

Figure 1 illustrates the comparison between different development approaches,
i.e., SW, HW/SW, and HW implementations of Kyber KEM based on the required
time and resources. The reported cycle counts for SW implementation in [22–24]
show 60–80% of the overall computation time is spent on hashing and sampling.
Thus, Keccak is the most performance-critical part of SW implementation. How-
ever, this core can be accelerated in a hardware architecture since Keccak is a
hardware-friendly design of SHA. For HW/SW co-design approach, a wide range
of results was reported for polynomial multiplication. While the work of [13] occu-
pied 55% of the total area for vectorized NTT core, in [6], only 12% of resources
were utilized for NTT. Additionally, implementing a software-based processor,
e.g., RISC-V architecture, increases the occupied resources for the controller in
HW/SW compared to the HW approach. For example, the controller requires
31% and 71% of total resources in [5] and [6], respectively. However, in pure HW
implementation of lattice-based PQC, the controller cost was reduced to 5% [25].
Accordingly, the pure HW can significantly accelerate the Kyber KEM by par-
allelizing NTT and hiding the Keccak latency on the one hand, and reduces the
required resources compared to HW/SW approach on the other hand.

1.1 Contributions

Polynomial multiplication computations take a significant portion of Kyber
KEM latency on hardware implementation. To improve the efficiency of Kyber,
one should increase efficiency on the NTT core, providing higher through-
put using fewer hardware resources. This paper proposes an efficient hardware
implementation of the module lattice-based post-quantum KEM CRYSTALS-
Kyber on the application-specific integrated circuit (ASIC) platform. Our pro-
posed architecture provides a monolithic hardware implementation to accelerate
lattice-based PQC exploiting compact resources. The contributions of this paper
are itemized in the following:

1. We propose a compact hardware architecture for NTT and INTT, support-
ing both decimation-in-frequency (DIF) and decimation-in-time (DIT) NTT
algorithms. Our proposed reconfigurable architecture avoids utilizing addi-
tional resources for the same computations while reduces the pre-processing
cost of NTT and post-processing cost of INTT. The proposed architecture sig-
nificantly reduces the overall area and memory consumption with no impact
on performance.

2. We highly parallelize the operations in polynomial sampling cores through
tightly coupling with Keccak core to decrease the required cycles. The per-
formance of proposed parallel scheduling for binomial sampler indicates a sig-
nificant improvement, while our rejection sampler latency can be completely
absorbed by the Keccak core.
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3. We propose a high-performance coprocessor architecture for lattice-based
public-key cryptography with Kyber KEM as a case study. Our result utilizes
the proposed high-speed NTT core and outperforms all reported implemen-
tations by reducing the total time.

The rest of the paper is organized as follows. In Sect. 2, we discuss the prelimi-
naries of lattice-based cryptography and the relevant mathematical background
based on the Kyber algorithm. In Sect. 3, our proposed algorithms and archi-
tectures for implementing a high-performance Kyber KEM are discussed. We
discuss our results and compare them to the counterparts in Sect. 4. Finally, we
conclude the paper in Sect. 5.

2 Preliminaries

In this section, employed notation, Kyber protocols and relevant mathematical
background are briefly described.

2.1 Symbol Definition

In this paper, to make the paper more readable, regular font lower-case letters (a)
shows polynomials, bold lower-case letters (a) determines vectors of polynomials,
bold upper-case letters (A) indicates matrices of polynomials, and their NTT-
domain representation are referred by (â), (â) and (Â), respectively. For a vector
a (or matrix A), its transpose is aT (or AT ). Also, the lower-case Greek letters ρ,
σ, and μ stand for random bit-strings. The polynomial ring Rq = Zq[X]/(Xn+1)
is defined over the field of Zq = Z/qZ in which n is the dimension and q is the
prime modulo. Let a and b be polynomial vectors in Rq, we denote point-wise
multiplication by a ◦ b ∈ Rq. The ◦ product between a matrix and a vector is
the natural generalization of point-wise multiplication between their polynomial
vectors.

2.2 The Kyber Protocol

Kyber is an IND-CCA secure KEM [26], including three algorithms, i.e., key
generation, encryption, and decryption. In key generation, a matrix A and a
secret key s are sampled from a uniform and binomial distribution, respectively.
Then a public key is computed by multiplication between A and s in the NTT
domain and adding noise to the product. In encryption, a message m should be
added to the product of the public key and a sampled random r in the normal
domain to generate a vector v. Additionally, another polynomial multiplication
is performed between r and uniform distribution matrix Â to compute matrix
u. The encryption output, called ciphertext ct, is composed of compression of u
and v, while the message can then be decrypted by recovering an approximation
of v by computing the product of secret key and u.
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Table 1. Parameter sets for Kyber Implementation [2]

Algorithm NIST-Level Parameters Size (in Bytes)

n k q (η1, η2) (du, dv) Secret
key (sk)

Public
key (pk)

Ciphertext
(ct)

Kyber-512 1 (AES-128) 256 2 3,329 (3, 2) (10, 3) 1,632 800 768

Kyber-768 3 (AES-192) 256 3 3,329 (2, 2) (10, 4) 2,400 1,184 1,088

Kyber-1024 5 (AES-256) 256 4 3,329 (2, 2) (11, 5) 3,168 1,568 1,568

All polynomials in the Kyber scheme have 256 coefficients over k-dimensional
vectors, where k = 2, 3, 4 indicates the three different post-quantum security lev-
els. Kyber parameter sets corresponding to these levels are reported in Table 1 to
construct a Chosen Plaintext Attack (CPA) secure public-key encryption scheme.
Moreover, a CCA-secure Kyber KEM can be constructed using an adapted
Fujisaki-Okamoto transformation [27]. For details, we refer interested readers
to [2].

2.3 Polynomial Multiplication

The most important operation in lattice-based cryptography is polynomial multi-
plication, which can be performed using different methods, e.g., NTT or school-
book polynomial multiplication algorithm. Polynomial multiplication in NTT
domain can be computed efficiently over a polynomial ring Zq[X]/ 〈Xn + 1〉
when the modulus provides m-th primitive roots of unity for a sufficiently high
power of two m (ideally, m = 2n or m = n). The NTT is defined as a fast
Fourier transform (FFT) in a finite field. Let f be a polynomial of degree n,
where f =

∑n−1
i=0 fiX

i and fi ∈ Zq, and ωn be n-th primitive root of unity such
that ωn

n = 1 mod q. The forward NTT is defined by f̂ = NTT (f), such that:

f̂i =
n−1∑

j=0

fjω
ij
n mod q (1)

The inverse NTT, shown by INTT, as a back transformation form NTT
domain to normal domain is shown by f = INTT (f̂), such that:

fi = n−1
n−1∑

j=0

f̂jω
−ij
n mod q (2)

Accordingly, a polynomial multiplication between polynomial vectors f and g
employing NTT and INTT results in a polynomial vector which can be performed
such that:

f · g = INTT(NTT(f) ◦ NTT(g)) (3)

To avoid the overhead of zero padding in the polynomial multiplication over
Zq[X]/ 〈Xn + 1〉, the negative wrapped convolution (NWC) was proposed in
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[28] at the cost of pre-processing of NTT and post-processing of INTT. Let
ψ =

√
ωn be a primitive 2n-th root of unity. Pre-processing of NTT includes

multiplication between the coefficients of the input polynomials and ψi, while
the post-processing of INTT is multiplication between the coefficients of the
output polynomial and ψ−i.

However, the work of [29] merged the pre-processing of NTT into butterfly
operations. The work of [30] presented an algorithm to avoid the post-processing
overhead of INTT. The KRED reduction algorithm was proposed in [31] to accel-
erate the NTT and reduce the post-processing overhead of INTT. NTT computa-
tion can be implemented by Cooley-Turkey (CT) [32] or Gentleman-Sande (GS)
[33] butterfly configuration. Employing the CT as NTT and the GS as INTT
[31,34] is a well-known trick in the literature to avoid the bit-reverse permutation.

Algorithm 1 presents the NTT computation. Figure 2 illustrates an 8-point
NTT-based multiplication employing both CT and GS butterfly operations. The
matrix-vector multiplication Â ◦ ŝ in NTT domain for Kyber-512 is shown in (4).

Â ◦ ŝ =
[
Â00 Â01

Â10 Â11

]

◦
[
ŝ0
ŝ1

]

=
[
Â00 ◦ ŝ0 + Â01 ◦ ŝ1

Â10 ◦ ŝ0 + Â11 ◦ ŝ1

]

(4)

A point-wise multiplication includes 128 multiplications of polynomial of
degree 2 modulo X2 − ζ2br7(i)+1. For example, multiplication between two coef-
ficients Âj,i ◦ ŝi can be performed as shown in (5) where ζ = 17 is the first
primitive 256-th root of unity modulo q, and br7 is the bit reversal function.

(âj,2i + âj,2i+1X) · (ŝ2i + ŝ2i+1X)

= (âj,2iŝ2i + âj,2i+1ŝ2i+1ζ
2br7(i)+1)

+ (âj,2iŝ2i+1 + âj,2i+1ŝ2i)X (mod X2 − ζ2br7(i)+1) (5)

3 Proposed Architecture

In this section, the proposed components to design a high-performance and effi-
cient Kyber KEM are described.

3.1 Keccak Core

Keccak core is required in KEM to compute four different functions, including
two hash functions SHA3-256 and SHA3-512, SHAKE-128 as an extendable out-
put function (XOF), and SHAKE-256 as a pseudo random function (PRF) and
key-derivation function (KDF). Keccak is a hardware-oriented design based on
bit-oriented operations. Since we compute 24 rounds for Keccak-f [1600], various
architectures can be employed considering different optimization perspectives,
i.e., high-performance, lightweight, or anything in between. In our proposed high-
performance core, we slightly modify the implementation of the high-speed core
by the Keccak team [36] by designing a serial-in parallel-out (SIPO) buffer in
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Algorithm 1. Iterative In-Place NTT Algorithm Based on Cooley-Tukey But-
terfly [35]
Input: a polynomial a(x) ∈ Zq[X]/(Xn + 1), n-th primitive root of unity ωn ∈ Zq,
n = 2l

Output: â(x) = NTTωn(a) ∈ Zq[X]/(Xn + 1)
1: â ← bit-reverse(a)
2: for (i = 1; i < l; i + +) do
3: m = 2l−i

4: ωm ← ω
n/m
n

5: for (j = 0; j < n; j = j + m) do
6: ω ← 1
7: for (k = 0; k < m/2; k + +) do
8: T ← ω · â[k + j + m/2] mod q
9: U ← â[k + j]

10: â[k + j] = U + T mod q
11: â[k + j + m/2] = U − T mod q
12: ω ← ω · ωm mod q
13: end for
14: end for
15: end for
16: return â(x)

Table 2. Failure probabilities in Kyber rejection sampling for performing different
Keccak rounds

Total
round

Keccak
outputs (bit)

Total
samples

Required
valid sample

Failure
probability

3 4,032 336 256 0.0083

4 5,376 448 256 2.2E−32

5 6,720 560 256 2.3E−79

input and parallel-in serial-out (PISO) buffer for accelerating the data transition
with this core. The serial data width for these buffers is set to 64-bit, and the
parallel line is 1344-bit. A maximum of 21 cycles is needed to read/write to/from
these buffers in serial mode, while the Keccak sponge function takes 24 cycles.
Therefore, data transforming can be hidden by simultaneously performing Kec-
cak computation without resource conflict and data dependency to reduce clock
cycles.

3.2 Rejection Sampling

This unit takes 64-bit data from the output of SHAKE-128 stored in a PISO
buffer. The required cycles for this unit are variable due to the non-deterministic
pattern of rejection sampling. Since the public key computed by rejection sam-
pling is not secret, the SCA countermeasure against timing attack is not required.
Nevertheless, since most SCA evaluation methods, e.g., t-test, can be performed
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Fig. 2. An 8-point NTT-based polynomial multiplication. Dataflow graph includes
CT butterfly-based NTT, point-wise multiplication, and GS butterfly-based INTT.
Polynomial â is in NTT domain and s and t are in normal domain.

on a constant-time design, we perform constant rounds of SHAKE-128 to form a
constant-time implementation. While 112 samples can be evaluated by rejection
unit for each round of Keccak core, the failure probability that 256 valid coef-
ficients can be sampled by performing different rounds of SHAKE-128 is listed
in Table 2. As a result, four rounds are performed for each required vector of
A while the failure probability is negligible. In our optimized architecture, this
unit works in parallel with the Keccak core. Therefore, the latency for rejection
sampling is completely absorbed within the latency for a concurrently running
Keccak core. An alternative approach is to sample directly on the Keccak state;
however, this approach increases the complexity of hardware-based architecture.

3.3 Binomial Sampling

There are two different configurations for binomial sampling unit correspond-
ing to η = 2 and η = 3. We propose an optimized configurable architecture
that can compute the Hamming weight for both values of η. To support both
architectures, the data from PISO is buffered in a 96-bit register, of which only
64-bit is utilized in η = 2. The results are in [−η, η] are presented in 13-bit
signed representation to simplify the addressing. Our proposed binomial sam-
pling architecture for two first sampled data is depicted in Fig. 3.

3.4 Configurable Butterfly Core

To avoid the bit-reverse cost in polynomial multiplication, two different butterfly
configurations, i.e., CT and GS, are required for NTT and INTT, respectively.
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In our proposed architecture, a configurable butterfly core is proposed to support
both CT and GS operations and reduce required hardware resources. In order
to design a high-performance architecture, the resource sharing technique from
[5,37] is extended by using compact storage for pre-computed twiddle factors
from [35] and doubled bandwidth scheme from [18,30].

Since CT configuration is used in NTT, we assume that the input poly-
nomials are in normal order, while the public and secret keys are in bit-reverse
order. Hence, the point-wise multiplication works in bit-reverse order in the NTT
domain, and the results are transformed back to the normal domain with normal
order employing GS configuration. We take advantage of the NTT definition in
the Kyber scheme to perform two independent NTT computations for odd and
even coefficients based on (6) and (7).

â2i =
127∑

j=0

a2jζ
(2i+1)j (6)

â2i+1 =
127∑

j=0

a2j+1ζ
(2i+1)j (7)

Two butterfly cores are employed in parallel for NTT computation to reduce
execution time to N

2 log2
N
4 . Each line of RAM block stores two consecutive

coefficients, i.e., si,2j and si,2j+1, in two columns to feed both butterfly cores.
Reading from two addresses of memory provides four coefficients, i.e., si,2j and
si,2j+1 from address j, and si,2k and si,2k+1from address k of memory. The lower
columns storing the even coefficients, i.e., si,2j and si,2k, are used for the first
butterfly, while the higher columns including the odd coefficients, i.e., si,2j+1

and si,2k+1, are fed into the second core. The results should be stored similarly
in the second RAM.

Our proposed NTT architecture includes five different main modules: two
RAM blocks, an address generator (working in three modes for NTT, INTT,
and point-wise multiplication), a pre-computed twiddle factor ROM, and an
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arithmetic unit. The dual-port capabilities of the RAM blocks are exploited in
our proposed design to increase efficiency. Moreover, the address generator com-
putes the two read and write addresses to load and store the required coefficients
as well as the corresponding address for the twiddle factor in each operation.

The arithmetic unit consists of a multiplier, a modular reduction, an addi-
tion, and a subtraction, while there are also some registers to balance the
pipeline latency in different configurations. The proposed architecture is depicted
in Fig. 4. Different reduction units have been studied in the literature. While
Barrett reduction works in the normal domain, Montgomery reduction needs
more resources and latency to perform the transformation into and out of the
Montgomery domain. The proposed architecture employing Barrett reduction is
implemented in a pipelined fashion to increase the throughput to 1 output per
cycle.

3.5 Area/Performance Trade-Offs

The main goal of the proposed architecture is to achieve high-speed compu-
tation employing small area requirements. However, we can target different
area/performance trade-offs by increasing the number of butterfly cores, taking
advantage of polynomial vector structure in the Kyber algorithm. For example,
in Kyber-512 having 2 polynomial vectors, increasing the number of implemented
butterfly core from 2 to 4 can drastically reduce to a half of NTT/INTT latency.
Nevertheless, implementing more arithmetic units needs higher bandwidth. In
this case, the number of occupied RAM blocks will be doubled while they are
implemented in parallel to provide the required bandwidth.
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Table 3. Implementation results for Kyber KEM on 65-nm ASIC

Protocol Area Freq [MHz] Cycles Total

time† [µs]Logic gates

[kGE]

SRAM

[kB]

KeyGen

[CCs]

Encaps

[CCs]

Decaps

[CCs]

Kyber-512 95 10 200 4,267 6,769 10,015 83.9

Kyber-768 93 22 200 6,641 9,683 13,569 116.3

Kyber-1024 104 24 200 9,971 13,278 17,676 154.8
† Total time includes Encaps + Decaps, as the key generation can be done offline.
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Fig. 5. Area breakdown (left) and time breakdown (right) during encapsulation of
Kyber-512.

4 Implementation Results And Comparisons

Our proposed architecture is synthesized using a 65-nm TSMC cell library [38] to
show the required area. VHDL has been used as the design entry to the Synopsys
Design Compiler [38]. In addition, using the area of a NAND gate in the utilized
65-nm library, which is 1.35 µm2, we have provided the gate equivalent (GE)
so that area comparisons among different technologies are meaningful. Although
similar to the previous work presented in [13], we have not fabricated a chip on
silicon, our detailed results are intended for benchmarking the metrics for the
previous and proposed research works. All the designs are synthesized with a 5
ns clock period.

Table 3 reports the required hardware resources and latency specifications for
our proposed architecture in three different security levels. The total time is the
summation of key encapsulation and key decapsulation (Encaps + Decaps), as
the key generation can be done offline. We implement 2, 3, and 4 of our proposed
NTT architecture for security levels 1, 3, and 5, respectively. As one can see,
for NIST level 1 security, our proposed architecture occupies 95 kGE, and 10
kB SRAM. It also runs at 200 MHz and performs the whole Kyber protocol in
83.9µs.

The area breakdown of our design and the latency breakdown in encapsula-
tion of Kyber-512 is illustrated in Fig. 5. Our proposed Keccak, butterfly, and
sampling units utilize 4%, 25%, and 13% of the total area. For reporting latency
breakdown, when the butterfly is parallel with other units, the latency is consid-
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Table 4. Comparisons with existing hardware-based implementations of NTT for
Kyber KEM.

Work Platform Tech
[nm]

Freq
[MHz]

NTT
[CCs]

INTT
[CCs]

Point-wise
Mult. [CCs]

Karabulut et al. [19] Virtex-7 – NA 43,756 NA NA

Alkim et al. [7] Artix-7 – 59 6,868 6,367 2,395

Chen et al. [18] Artix-7 – 130 2,055 NA 7,197

Huang et al. [15] Artix-7 – 155 1,834 NA NA

Bisheh-Niasar et al. [17] Artix-7 – 222 324 324 NA

Fritzmann et al. [21] ASIC 65 25 2,056 NA NA

Fritzmann et al. [6] ASIC 65 45 1,935 1,930 NA

Banerjee et al. [5] ASIC 40 72 1,289 NA NA

Xin et al. [13] ASIC 28 300 41 NA NA

This work ASIC 65 200 474 602 1,289

ered for NTT or point-wise multiplication. As one can see, the more expensive
operation from a resource utilization point of view in Kyber KEM is Keccak
core. However, using the compact version of Keccak core results in more delay
in sampling units which reduces the total efficiency. In the timing breakdown, the
point-wise multiplication and NTT are the first two time-consuming operations.
It should be noted that although Kyber reduces the number of required stages
for NTT computation from 8 stages to 7, the special form of multiplication in
this scheme increases the computation overhead in point-wise multiplication.

Table 4 reports area and latency specifications for our NTT architecture
which works in three different modes, i.e., NTT and INTT, and point-wise mul-
tiplication. Other state-of-the-art NTT designs for the Kyber scheme over hard-
ware platforms are also listed. We report the results for both Kyber parameters
in the previous rounds and round-3, i.e., q = 3329 and q = 7681, respectively.

Our results show a significant improvement requiring only 474, 602, and
1,289 clock cycles for NTT, INTT, and point-wise multiplication, respectively.
We presented a highly optimized FPGA-based NTT core in our previous work
[17] which shows 31% NTT performance improvement at the cost of occupying
a 2 × 2 butterfly units. The work in [6] optimized an NTT core based on hard-
ware/software approach over RISC-V architecture, while it works at 45 MHz on
the ASIC platform. Our architecture results in 4× and 18× speedup in terms of
required cycles and time for NTT computation, respectively. The works in [19]
and [7] also presented an NTT architecture over RISC-V, which requires con-
siderably greater cycle count, while our optimized design achieves 92× and 49×
speedup, respectively. The FPGA-based design was proposed in [15] employing
Montgomery reduction; however, our design reduces the required cycles achiev-
ing a speedup factor of 3.9. Our design also improves almost 6.7× and 8.6×
the required latency for NTT and point-wise multiplication, respectively. In [5],
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Fig. 6. Comparisons with other software implementations of Kyber-512.

a RISC-V-based architecture proposed working at 72 MHz over a 40-nm ASIC
platform. Our proposed architecture achieves 7.5× better timing results com-
pared to this work. The work of [13] employed the vectorized architecture at
the cost of utilizing 521 kGE. Although the proposed architecture in [13] shows
17.3× speedup, it consumes 137× more resources compared to our design.

Figure 6 depicts the comparison of timing results for our proposed architec-
ture and software implementations of Kyber on a mainstream desktop Intel Core
i7 CPU with the optimization of AVX2 and an embedding Cortex-M4 CPU. The
Core i7 CPU works at 3,492 MHz, while the results for the Discovery board are
reported in 24 MHz. As one can see, our proposed ASIC architecture is 2.8×
slower than Intel core [2]. However, ours achieves more than 600× speedup com-
pared to [22]. Nevertheless, this speedup is not surprising since HW significantly
reduces total time compared to SW employing parallel computation.

Table 5 lists the detailed resource consumption and performance results (fre-
quency, required cycles, and execution time) of Kyber coprocessor designs for
all NIST security levels. There are several hardware/software implementations
targeting Kyber KEM in the literature. However, a direct comparison is not pos-
sible between the listed hardware implementations due to the varying techniques
of different platforms, targeting different optimization goals, and using different
design methodologies. The work in [5] implemented a configurable coproces-
sor based on a RISC-V architecture that can be used for multiple lattice-based
schemes, including Kyber. Its architecture performs almost 263 KEM per second
for Kyber-512, which is 45× slower than our design. In [6], another RISC-V-
based architecture was proposed to accelerate NTT-based schemes. This design
requires 23× more cycles for encapsulation and decapsulation while consuming
2.8× more resources. Additionally, in [13], a high-performance hardware archi-
tecture was proposed based on RISC-V. Nevertheless, our design achieves 5×
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Table 5. ASIC Implementation results for Kyber KEM and comparison with state-of-
the-art.

Work Tech

[nm]

Area Total

Area†
[kGE]

Freq

[MHz]

Latency Total

Time‡
[μs]

A × T

[GE×s]Logic gates

[kGE]

SRAM

[kB]

KeyGen

[kCCs]

Encaps

[kCCs]

Decaps

[kCCs]

Kyber-512

Basu et al. [11] 65 1,341 – 3,531 200 – – 43 – –

Fritzmann et al. [6] 65 170 465§ 635 45 150 193 205 8,844 5,615

Banerjee et al. [5] 40 106 40.25 547 72 75 132 142 3,806 2,081

Xin et al. [13] 28 979 12 1,131 300 19 46 80 420 475

This work 65 95 10 222 200 4 7 10 84 18

Kyber-768

Fritzmann et al. [6] 65 170 465§ 635 45 273 326 340 14,800 9,398

Banerjee et al. [5] 40 106 40.25 547 72 112 178 191 5,125 2,803

This work 65 93 22 372 200 7 10 14 116 43

Kyber-1024

Fritzmann et al. [6] 65 170 465§ 635 45 350 405 425 18,444 11,711

Banerjee et al. [5] 40 106 40.25 547 72 149 223 241 6,444 3,524

Xin et al. [13] 28 979 12 1,131 300 40 82 136 727 822

This work 65 104 24 409 200 10 14 18 155 63

† The total area is calculated based on the reported fabric dimension corresponding to their technology.

For non-fabricated results, a rough estimation of 55% area overhead is considered for implementing SRAM

similar to [39].
‡ Total time includes Encaps + Decaps, as the key generation can be done offline.
§ The reported numbers are in kGE.

faster KEM and improves 80% resource utilization while occupying 5× fewer
area compared to [13]. An HLS evaluation was proposed in [11] for Kyber-512
employing different implementations for encapsulation and decapsulation. How-
ever, this approach comes at a considerably far larger area consumption. Hence,
our design achieves almost 16 and 4.3 times better are and timing results com-
pared to HLS-based implementation. For the other security level, the same trend
can be seen.

We also illustrated a summary of comparison with other ASIC implemen-
tation of Kyber-512 in Fig. 7. For different implementations, the total time (T )
and the equivalent area (A), including the required logic gates and SRAM are
shown. The efficiency in terms of A × T is also computed. As one can see, our
proposed design achieves better latency using significantly fewer resources. Fur-
thermore, the proposed Kyber-512 implementation improves 312×, 116×, and
26× efficiency compared to [5,6] and [13], respectively.

The experimental result shows that taking advantage of the proposed NTT
architecture to implement lattice-based KEM schemes as full-hardware architec-
ture results in high-speed and efficient design. For Kyber KEM, our coproces-
sor architecture outperforms the reported implementations in the literature in
terms of efficiency. Furthermore, although one of the drawbacks of various post-
quantum cryptosystems is requiring larger key sizes and more computational
power than the current pre-quantum algorithms, the efficiency of our proposed
implementation already has performance levels comparable to or even signifi-
cantly better than pre-quantum algorithms [8,9,40].
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Table 6. Comparisons with existing FPGA-based PQC implementations of CCA-
secure KEM schemes in NIST security level 1.

Protocol Platform Area (Gates Equivalent) or

(LUTs/FFs/Slices/DSPs/BRAMs)

Freq [MHz] Time [us]

SIKEp434 [43] Virtex-7 12,818/18,271/5,527/195/32 249.6 8,800

Frodo-640 [44]† Artix-7 6,881/5,081/1,947/16/12.5 149 2,621

LightSaber [45] ASIC 742 kGE‡ 400 5

Kyber-512 [This work] ASIC 222 kGE 200 84
† Different architectures for Encaps and Decaps are used.
‡ The reported area is 0.38 mm2 in 40 nm process.

Several performance optimizations of other PQC schemes were proposed
recently [41–45]. Table 6 lists other PQC scheme results implemented on the
hardware platform for NIST security level 1. Elkhatib et al. in [43] implemented
a supersingular isogeny-based KEM performed in 8.8 ms. Howe et al. [44] pre-
sented a flexible FrodoKEM architecture that performs 825 and 710 encapsu-
lations and decapsulation. The work of [45] proposed an energy-efficient archi-
tecture for Saber employing 8-level hierarchical Karatsuba, which consumes 859
and 1,075 clock cycles for encapsulation and decapsulation, respectively.

5 Conclusion

This paper proposed a high-performance and efficient architecture for NTT-
based polynomial multiplication and lattice-based public-key cryptography
coprocessor with Kyber KEM as a case study. We optimize the implementation
of the NTT core by creating a configurable butterfly core. Besides, we propose
a coprocessor architecture that can perform all KEM operations for Kyber. The
proposed Kyber coprocessor architecture performs key generation, encapsula-
tion, and decapsulation in 21.3, 33.8, and 50µs for a security level comparable
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to AES-128 respectively, by consuming only 95 kGE and 10 kB SRAM, on an
65-nm ASIC platform.
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