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A B S T R A C T 

We present the results of nine simulations of radiatively inefficient magnetically arrested discs (MADs) across different values 

of the black hole spin parameter a ∗: −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9. Each simulation was run up to 

t � 100 000 GM/c 3 to ensure disc inflow equilibrium out to large radii. We find that the saturated magnetic flux level, and 

consequently also jet power, of MAD discs depends strongly on the black hole spin, confirming previous results. Prograde discs 

saturate at a much higher relative magnetic flux and have more powerful jets than their retrograde counterparts. MADs with 

spinning black holes naturally launch jets with generalized parabolic profiles whose widths vary as a power of distance from 

the black hole. For distances up to 100 GM / c 2 , the power-law index is k ≈ 0.27–0.42. There is a strong correlation between the 

disc–jet geometry and the dimensionless magnetic flux, resulting in prograde systems displaying thinner equatorial accretion 

flows near the black hole and wider jets, compared to retrograde systems. Prograde and retrograde MADs also exhibit different 

trends in disc variability: accretion rate variability increases with increasing spin for a ∗ > 0 and remains almost constant for a ∗ � 

0, while magnetic flux v ariability sho ws the opposite trend. Jets in the MAD state remo v e more angular momentum from black 

holes than is accreted, ef fecti vely spinning do wn the black hole. If po werful jets from MAD systems in Nature are persistent, 

this loss of angular momentum will notably reduce the black hole spin o v er cosmic time. 

Key words: accretion, accretion discs – black hole physics – MHD. 

1  I N T RO D U C T I O N  

Hot accretion flows are common in astrophysical black holes (BHs) 

such as those found in low-luminosity active galactic nuclei (AGNs) 

and hard-state BH X-ray binaries (see Yuan & Narayan 2014 , for 

a re vie w). Man y of these BH systems e xhibit relativistic jets (e.g. 

Fender 2001 ; The Event Horizon Telescope Collaboration 2019a ). 

Understanding how these jets are powered is important, both because 

the underlying physics is intrinsically of interest, and because AGN 

jets often interact with galactic gas and inject energy into the 

interstellar medium, a process thought to be pivotal to AGN feedback 

(e.g. Harrison et al. 2018 , and references therein). 

Over the past two decades, general relativistic magnetohydro- 

dynamic (GRMHD) simulations have become a popular tool to 

model hot accretion flows (previously called advection-dominated 

accretion flows, cf. Narayan & Yi 1994 , 1995 , or radiatively in- 

efficient accretion flows). The GRMHD equations account for the 

dynamical evolution of magnetized plasma in the framework of 

general relativity, both for spinning and non-spinning BHs, and have 

been used e xtensiv ely to predict observables, particularly in jetted BH 

systems. Simulations have shown that one can produce relativistic 

jets naturally without any substantial tuning of the initial conditions 

� E-mail: angelo.ricarte@cfa.harvard.edu 

† NASA Hubble Fellowship Program, Einstein Fellow. 

(e.g. McKinney & Gammie 2004 ; De Villiers et al. 2005 ). As gas 

spirals in towards the BH, poloidal magnetic field loops are dragged 

in with the disc gas and are twisted by the BH’s frame-dragging 

effect, enabling an outward pressure that launches a relativistic jet. 

Since frame dragging is associated with BH rotation, one expects 

the BH spin to play a key role in determining the power in the 

jet. 

A ke y dev elopment in accretion theory was the recognition of 

the importance of magnetically dominated accretion flows. Using 

MHD simulations, Igumenshchev, Narayan & Abramowicz ( 2003 , 

see also Igumenshchev 2008 ) found that, given the right initial 

conditions, magnetic fields can become dynamically important in 

BH accretion flows, to the extent that they impede the inward motion 

of gas and create a ‘magnetically arrested disc’ (MAD; Narayan, 

Igumenshche v & Abramo wicz 2003 , see also Bisnov atyi-Kogan & 

Ruzmaikin 1974 , 1976 ). Hot accretion flows in the MAD regime can 

launch powerful jets, with power at times exceeding the accretion 

energy at the event horizon. In a pioneering study, Tchekhovsk o y, 

Narayan & McKinney ( 2011 ) demonstrated that a three-dimensional 

(3D) GRMHD simulation of a BH with an extreme spin, a ∗ ≡ a / M = 

0.99 ( M is the BH mass), and accreting in the MAD state, produced 

a jet with power P jet ≈ 1 . 4 Ṁ 0 c 
2 , where Ṁ 0 is the mass accretion 

rate. Since the jet in this simulation carried away more energy than 

the entire rest mass energy of the accreted gas, it could not be 

powered purely by accretion. The only explanation is that the jet 

extracts rotational energy from the BH via the Blandford–Znajek 
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(BZ; Blandford & Znajek 1977 ) process, a magnetic analogue of the 

Penrose (Penrose 1969 ) process (see Lasota et al. 2014 ). 

While initially it appeared that the MAD state may require special 

initial conditions, e.g. a strong coherent vertical field, it has become 

increasingly clear that MAD configurations arise even under less 

extreme conditions. In important work, Liska, Tchekhovsk o y & 

Quataert ( 2020 ) showed that a simulation initialized with a pure 

toroidal field, self-consistently generated poloidal fields and reached 

the MAD state after it was run with sufficiently high spatial resolution 

and for a long enough time. Since the durations of even ‘long’ 

simulations are a tiny fraction of actual accretion time-scales in 

Nature, this suggests that most hot accretion flows in the Universe 

might be in the MAD state. For example, Ressler et al. ( 2020b ) 

naturally obtain an MAD final state with no fine-tuning of initial 

conditions in their GRMHD simulation of the accretion flow in 

Sagittarius A 
∗, when they fuel the disc via weakly magnetized 

stellar winds from distant Wolf–Rayet stars (Ressler, Quataert & 

Stone 2020a ). Independently, high angular resolution polarization 

observations of M87 ∗ by the Event Horizon Telescope indicate that 

the accretion flow in this system is likely to be in the MAD state 

(Event Horizon Telescope Collaboration 2021 ). Other arguments 

in fa v our of MAD configurations in Nature can be found in, e.g. 

Zamaninasab et al. ( 2014 ) and Nemmen & Tchekhovsk o y ( 2015 ). 

Since the source of the energy for jets in MAD systems is the BH 

spin, one expects the energy efficiency η of the jet to be a function 

of the spin parameter a ∗. In this paper, we analyse MAD GRMHD 

simulations that co v er a range of spin values, both prograde and 

retrograde, and we explore how η and other parameters of the jet 

depend on the BH spin. 

While a BH accreting from a prograde disc gains angular mo- 

mentum from the accreting gas, it loses angular momentum in the 

process of powering a jet. Which process dominates? In an early 

discussion, Gammie, Shapiro & McKinney ( 2004 ) considered a 

particular sequence of simulations and concluded that, for their 

sequence, the BH spins down with time if a ∗ > 0.94 and spins 

up for lower values of a ∗. However, that result was specific to their 

initial conditions. Since MAD systems produce especially powerful 

jets, spin-down ought to be strongest in such models. With this 

expectation in mind, we quantify spin-up/spin-down for a range of 

BH spin values, considering both prograde and retrograde discs. 

These analyses are similar to previous work by Tchekhovskoy, 

McKinney & Narayan ( 2012 ) and Tchekhovsk o y & McKinney 

( 2012 ), 1 and are an update and validation of their results. 

In addition, we consider yet other jet and disc properties and study 

ho w they v ary with BH spin and with the sense of rotation (prograde 

or retrograde) of the accretion disc. We find substantial differences 

in the shape of the jet, the radial profiles of some gas parameters in 

the disc, and the time variability of the mass accretion rate. 

We caution that this work is limited to radiatively inefficient 

(technically non-radiative, since no cooling is included) hot accretion 

flows in the MAD state. Hot SANE (‘standard and normal evolution’; 

Narayan et al. 2012 ) accretion flows are not co v ered, nor are thin 

accretion discs or super-Eddington accretion flows. We also note 

that the results presented here refer to average properties of systems 

in steady state. A given system could, at a particular instant, have 

significant transient deviations. 

In Section 2, we describe our numerical code and the initial 

conditions we use for the simulations. We also discuss common 

1 And also the ‘thinner disc TNM11’ class of models in McKinney, 

Tchekhovsk o y & Blandford ( 2012 ). 

diagnostics for GRMHD simulations, namely the time dependence 

of the accretion rate and the magnetic flux at the event horizon. In 

Section 3, we discuss our simulation results in several subsections, 

focusing on the time-averaged behaviour of the horizon magnetic 

flux, the jet power, the disc and jet structure, and the spin-down of 

the BH. We also study the time variability of rele v ant quantities. In 

Section 4, we discuss the correlation between the MAD magnetic 

flux saturation level and the disc and jet geometry, and also the effect 

of spin-down on the BH spin evolution. Finally, we summarize our 

main findings in Section 5. 

2  SI MULATI ONS  

2.1 The KORAL code and GRMHD equations 

The simulations described in this paper were run using the GRMHD 

code KORAL (S ądowski et al. 2013a , 2014 ). KORAL is designed to 

simulate BH accretion and outflow across a wide parameter space, 

and includes several physical effects that go beyond the assumptions 

of standard GRMHD. KORAL was initially developed to evolve 

radiation as well as magnetized gas in accretion flows (S ądowski 

et al. 2013a ). It was then extended to evolve separate electron and 

ion entropies in a two-temperature plasma (S ądowski et al. 2017 ), 

and even to evolve a full distribution of relativistic electrons in 

addition to the usual thermal population (Chael, Narayan & S ądowski 

2017 ). In this work, since we are interested in radiatively inefficient 

accretion flows, we only consider standard GRMHD; this version 

of KORAL has been benchmarked and validated against a number 

of other GRMHD codes in simulations of both low-magnetic-flux 

SANE accretion discs (Porth et al. 2019 ) and high-magnetic-flux 

MAD systems (Oli v ares et al., in preparation). 

KORAL evolves magnetized gas in the Kerr metric. In standard 

GRMHD, using gravitational units where G = c = 1, the energy 

momentum tensor takes the form: 

T μν = 
(

ρ + u + p + b 2 
)

u 
μu ν + 

(

p + 
1 

2 
b 2 
)

δμ
ν − b μb ν . (1) 

The quantities in T μν evolved by a GRMHD code include the rest 

mass density ρ, fluid internal energy u , four-velocity u μ, and the 

lab frame magnetic field three-vector B 
i , from which we compute 

the magnetic four-vector b μ (see e.g. Gammie, McKinney & T ́oth 

2003 ; McKinney 2006 ). KORAL also evolves the gas entropy s as a 

passive scalar; the latter is used as a backup quantity for computing 

the gas energy density if the normal inversion procedure from the 

simulation conserved variables fails. In the simulations reported here, 

we set the gas adiabatic index to � = 13/9, which lies in between 

the usual 5/3 for a monatomic non-relativistic gas and 4/3 for an 

ultra-relativistic gas. For this choice of �, the gas pressure is p = ( � 

− 1) u = (4/9) u . In Appendix A, we compare results for our a ∗ = 

0 model with the fiducial � = 13/9 to simulations with the same 

grid and initial conditions but with adiabatic indices set to � = 4/3 

and � = 5/3. The adiabatic index does not seem to influence the 

results. 

The simulations here evolve only the equations of ideal GRMHD 

and neglect effects such as plasma resistivity (e.g. Ripperda et al. 

2019 ), radiative cooling and feedback (e.g. McKinney et al. 2014 ; 

S ądo wski et al. 2014 ; S ądo wski & Narayan 2016 ; Morales Teixeira, 

Avara & McKinney 2018 ; Ryan et al. 2018 ; Chael, Narayan & 

Johnson 2019 ; Yao et al. 2021 ), and two-temperature evolution 

of separate electron and ion populations (e.g. Ressler et al. 2015 ; 

S ądowski et al. 2017 ; Dexter et al. 2020 ). In particular, radiative 

cooling can become important in determining temperatures and 
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potentially disc structures for hot accretion flows with accretion 

rates Ṁ � 10 −6 Ṁ Edd (where Ṁ Edd is the Eddington rate), as in the 

case of the supermassive BH in M87 (Event Horizon Telescope 

Collaboration 2021 ). 

We frequently make use of the plasma- β parameter, β = 2 p / b 2 

(in dimensionless code units), to characterize the ratio of the thermal 

pressure to the magnetic pressure, and the magnetization parameter, 

σ M = b 2 / ρ, to characterize the ratio of the magnetic energy density 

to the rest mass energy density. Throughout, we use the gravitational 

time-scale t g = GM / c 3 and distance scale r g = GM / c 2 to scale 

quantities. Both are equal to the BH mass M in natural units with 

G = c = 1. 

2.2 Simulation set-up 

We have run simulations for nine dif ferent v alues of the BH spin 

parameter: a ∗ = 0.9, 0.7, 0.5, 0.3, 0, −0.3, −0.5, −0.7, −0.9. The 

coordinate grid is modified from standard Kerr–Schild coordinates 

so as to concentrate resolution in both the jet region close to the 

polar axis and the disc region near the equatorial plane. To achieve 

this, we use the coordinate transformation from spatial simulation 

‘code coordinates’ ( x 1 , x 2 , x 3 ) to Kerr–Schild grid coordinates ( r , θ , 

φ) introduced in Ressler et al. ( 2017 ). The simulation grid grows 

exponentially in radius r and is uniform in azimuthal angle φ, while 

the polar angle θ is a complicated function of both x 1 and x 2 , designed 

to concentrate resolution in the jet and disc regions. Each simulation 

has a resolution of 288 × 192 × 144 cells in the r , θ , and φ directions, 

respectively. The inner radial boundary r min was chosen to ensure 

that there were six radial cells inside the BH horizon, and the outer 

boundary was fixed at 10 5 r g . 

We set the following parameters for the azimuthal grid, where 

we use the same notation as in Ressler et al. ( 2017 , Appendix B). 

The hyperexponential break radius is r br = 5000 r g , the collimation 

radii are r coll,jet = 1000 r g , r coll,disc = 20 r + , the decollimation radii 

are r decoll,jet = r decoll,disc = 2 r + . The power-law indices are α1 = 1, 

α2 = 0.25. The fraction of the angular resolution concentrated in 

the jet and disc are f jet = 0.3, f disc = 0.4. We ‘cylindrify’ angular 

cells close to the axis at small radius by expanding their size in θ

(Tchekhovsk o y et al. 2011 ; Ressler et al. 2017 ); the cylindrification 

radius r cyl = 30 r g and n cyl = 1. The polar angle code coordinate x 2 
extends from x 2,min = 10 −5 to x 2,max = 1–10 −5 , where x 2 = 0 and 1 

correspond to the two polar axes. 

In Fig. 1 , we show a poloidal slice of the time- and azimuth- 

averaged gas density in the spin a ∗ = 0 simulation, along with 

gridlines indicating the shape of the simulation grid in the poloidal 

plane. 

All nine simulations described here were run for long durations, 

t � 100 000 t g . This is nearly an order of magnitude longer than many 

other simulations reported in the literature (e.g. Porth et al. 2019 , 

though there are a few that are significantly longer (e.g. Narayan 

et al. 2012 ; S ądowski et al. 2013b ; White, Quataert & Gammie 

2020 ). Long-duration simulations require the initial gas supply to be 

sufficiently large such that there is enough gas for vigorous accretion 

on to the BH even at late times. 

We initialized the present simulations with spatially extended 

Fishbone & Moncrief ( 1976 ) geometrically thick equilibrium tori. 

This torus solution is fixed by four parameters: the inner edge of 

the torus in the equatorial plane r in , the location of the pressure 

maximum (also in the equatorial plane) r max , the adiabatic index of 

the fluid �, and the maximum density ρmax . The location of the torus 

outer edge is sensitive to the choice of a ∗, r in , r max , and �. In the 

present simulations, we set the inner edge of the initial torus for all 

Figure 1. Time- and azimuth-averaged gas density in the poloidal plane of 

the zero spin a ∗ = 0 simulation. The time-averaging was carried out between 

50 000 and 100 000 t g . The blue lines show the simulation grid, which uses a 

coordinate transformation introduced by Ressler et al. ( 2017 ) to concentrate 

resolution in the jet and disc regions near the BH. For clarity, we show the 

grid coarse-grained by a factor of 2. The cyan contour marks the surface 

where the magnetization σM = 1. 

the simulations at r in = 20 r g and adjusted the radius of the pressure 

maximum r max in the range ∼ 42 –43 r g (depending on a ∗) such that 

the outer edge of the torus was at r out ≈ 10 4 r g . We set ρmax = 1, as 

the density normalization in GRMHD is arbitrary. The parameters of 

the initial tori are listed in Table 1 . 

To build up magnetic field around the BH to its saturation value, 

such that the accretion flow becomes magnetically arrested, we 

initialized the torus with a single large magnetic field loop centred 

around r ≈ 350 r g . The loop is defined by the poloidal vector 

potential A φ : 

A φ = Max [ 0 , q ] , 

q = 

[ 
(

ρ

ρmax 

)(

r 

r in 

)3 

e −r/r mag sin 3 θ

] 

− A φ, cut . (2) 

For all the simulations in this paper, we set r mag = 400 r g and 

A φ, cut = 0.2. After determining the field components via the vector 

potential in equation (2), we normalized the initial magnetic field 

strength in the disc, following Porth et al. ( 2019 ), such that the 

maximum gas pressure and maximum magnetic pressure in the torus 

(which do not necessarily occur at the same location) satisfy βmax ≡
( p gas ) max /( p mag ) max = 100. 

KORAL solves the equations of GRMHD (e.g. Gammie et al. 2003 ) 

by advecting conserved quantities across cell walls using a finite 

volume method and applying geometrical source terms that encode 

the effects of the BH’s metric at cell centres. The fluxes at the 

cell walls are computed using the second-order piecewise parabolic 

method (PPM; Colella & Woodward 1984 ). We use outflowing 

boundary conditions at the inner and outer radial boundaries, and 

reflecting boundary conditions at the polar axes. With the latter, fluid 

flow across the poles can sometimes create numerical instability; we 

control this by replacing u θ in the innermost two cells closest to the 

polar axis with a value interpolated between the value in the third 

cell and zero. 
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Table 1. Parameters determining the initial Fishbone & Moncrief ( 1976 ) tori and the poloidal magnetic field loop 

set by the vector potential A φ in equation (2). 

Model r in r max ρmax � r mag A φ, cut β−1 
max 

BH spin a ∗ ( r g ) ( r g ) (arb. units) ( r g ) (arb. units) 

0.9 20 41 .96 1 13/9 400 0.2 100 

0.7 20 42 .05 1 13/9 400 0.2 100 

0.5 20 42 .15 1 13/9 400 0.2 100 

0.3 20 42 .25 1 13/9 400 0.2 100 

0 20 42 .43 1 13/9 400 0.2 100 

−0.3 20 42 .62 1 13/9 400 0.2 100 

−0.5 20 42 .75 1 13/9 400 0.2 100 

−0.7 20 42 .9 1 13/9 400 0.2 100 

−0.9 20 43 .06 1 13/9 400 0.2 100 

GRMHD simulations tend to fail in highly magnetized regions, 

where the gas internal energy u is very small compared to other 

terms in the energy–momentum tensor, especially b 2 (see equation 1). 

While the code conserves total energy–momentum to machine preci- 

sion, in these regions small numerical errors can push the gas part of 

the energy–momentum tensor into an unphysical configuration, caus- 

ing the simulation to fail when the code attempts to invert the energy 

momentum tensor to find the fluid velocity and gas density. To ensure 

numerical stability, whenever the gas becomes too highly magnetized 

in any region, we artificially inject gas density there in the zero an- 

gular momentum observer (ZAMO) frame 2 (McKinney et al. 2012 ) 

so as to bring the magnetization back to a ceiling value σ M = 100. 

2.3 Accretion rate and horizon magnetic flux 

An MAD system intrinsically has a large ratio of the magnetic flux 


 through the horizon to the square root of the rest mass accretion 

rate Ṁ 0 (Tchekhovsk o y et al. 2011 ). We compute the accretion rate 

as the integral of ρu r over the horizon at r = r H : 

Ṁ 0 ( t) = −
∫ 

θ

∫ 

φ

[

ρu 
r 
]

r= r H 

√ 
−g d θ d φ, (3) 

where g is the metric determinant, and the ne gativ e sign is to 

ensure that Ṁ 0 is positive when mass flows into the BH. Given 

Ṁ 0 , the dimensionless magnetic flux parameter φBH , is defined to be 

(Tchekhovsk o y et al. 2011 ) 3 

φBH ( t ) = 

√ 
4 π

2 
√ 

Ṁ 0 ( t ) 

∫ 

θ

∫ 

φ

| B 
r | r= r H 

√ 
−g d θ d φ. (4) 

Note that we have explicitly included a factor of 
√ 

4 π to translate our 

magnetic field strength B 
r from Heaviside–Lorentz units to Gaussian 

units. Under this definition, the saturation value of φBH that marks 

the MAD state is typically φBH ≈ 50. 

Fig. 2 shows the time evolution of Ṁ 0 (equation 3) for two 

representative simulations: a prograde simulation with a ∗ = 0.7, 

and a retrograde simulation with a ∗ = −0.7. In both simulations, 

2 Ressler et al. ( 2017 ) note that adding gas in the ZAMO frame can introduce 

an artificial drag which might affect the power in the jet. However, the effect 

is quite small since the density floor is acti v ated only in regions where the 

density and internal energy are very low, and these regions are often near the 

stagnation point where the gas hardly mo v es. 
3 We use the instantaneous accretion rate Ṁ 0 ( t) when computing φBH ( t ), but 

we note that others (e.g. Tchekhovsk o y et al. 2011 ; McKinney et al. 2012 ) 

prefer to use a running time-averaged value of Ṁ 0 . In our experience, the 

results are similar. 

by t = 10 000 t g , the accretion rate (shown by the black curves) 

has reached a maximum. Following the peak, there is a slow secular 

decline in Ṁ 0 until the end of the simulation. This decline is the result 

of both mass-depletion of the gas reservoir and radial expansion of 

the initial torus from angular momentum redistribution. The decline 

is, ho we v er, not v ery e xtreme – both simulations are still accreting 

and producing powerful jets at t = 100 000 t g . Furthermore, we 

normalize all our primary physical quantities by the instantaneous 

Ṁ 0 , so any slow variation of Ṁ 0 with time has no effect on the results. 

Fig. 2 also shows the time evolution of the magnetic flux parameter 

φBH . As defined in equation 4, φBH is dimensionless and measures 

the strength of the magnetic field relative to the mass accretion rate. 

In both the a ∗ = + 0.7 simulation and a ∗ = −0.7 simulation, φBH 

(shown by the red curves) reaches a saturation value φBH ∼ 50 by 

around t ∼ 10 000 t g . Notably, φBH saturates at a larger value ( ∼60) 

for the prograde simulation than for the retrograde simulation ( ∼30). 

This is a general trend across our sequence of simulations (noted first 

in Tchekhovsk o y et al. 2012 ), and we comment more on it below. 

2.4 Conser v ed flux radial profiles 

To characterize the inward flow of energy and angular momentum in 

the simulations as a function of radius and time, we define the energy 

flux Ė and angular momentum flux J̇ : 

Ė ( r, t) = 

∫ 

θ

∫ 

φ

T r t 
√ 

−g d θ d φ, (5) 

J̇ ( r, t) = −
∫ 

θ

∫ 

φ

T r φ
√ 

−g d θ d φ. (6) 

The signs have been chosen such that, in each equation, the quantity 

measures the corresponding flux into the BH. Because the units of the 

density ρ are arbitrary in our pure GRMHD simulations, we define 

a specific energy flux e ( r , t ) and specific angular momentum flux j ( r , 

t ), each normalized by the rest mass energy flux Ṁ 0 ( r, t): 

e( r , t) = 
Ė ( r , t) 

Ṁ 0 ( r , t) 
, j ( r , t) = 

J̇ ( r , t) 

Ṁ 0 ( r , t) 
. (7) 

Note that in our definitions of the energy flux Ė and specific energy 

flux e , we include the flux of rest mass energy (i.e. we do not subtract 

out ρu r from T r t in the abo v e definitions). Ho we ver, in analysing the 

energy flow in the simulations, we are most interested in the ratio of 

the ‘output’ energy that flows out to infinity via a jet or wind to the 

‘input’ flow of rest-mass energy. A physically useful dimensionless 

quantity to assess this factor is 

η( r, t) = 1 − e = 
P out 

Ṁ 0 c 2 
, (8) 
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Figure 2. Top: Rest mass accretion rate Ṁ 0 into the BH (equation 3, black curve) and dimensionless magnetic flux parameter φBH at the BH horizon (equation 4, 

red) as a function of time for a simulation with a ∗ = 0.7. The absolute units of Ṁ 0 in GRMHD simulations are arbitrary; here, they are scaled up by a factor of 

8 from the units used in the simulation to visually distinguish the Ṁ 0 and φBH curves. Bottom: Corresponding results for a simulation with a ∗ = −0.7. For the 

a ∗ = 0.7 simulation, the output was saved with a cadence of 10 M until t = 40 000 M and with a cadence of 50 M beyond this time. For the a ∗ = −0.7 simulation, 

the break in the cadence is at 30 000 M . 

which measures the power P out that escapes to infinity normalized 

by the rate of accretion of rest mass energy Ṁ 0 c 
2 . In principle, 

one should make a distinction between the total outflowing power 

P out and the power in a relativistic jet P jet . Ho we ver, for the MAD 

systems that we are studying in this paper, nearly all the energy 

goes into the jet, and only a small fraction of the outflowing energy 

goes into a non-relativistic wind, as shown by the work of S ądowski 

et al. ( 2013b , see their figs 9–11). 4 The only exception is the spin 

a ∗ = 0 model, which has no jet. In what follows, we will refer 

to P out as the jet power and the quantity η as the jet efficiency, 

without subtracting out the small contribution from non-relativistic 

outflows. 

In Fig. 3 , we show radial profiles of the accretion rate 

Ṁ 0 ( r), the specific angular momentum flux j ( r ), and the en- 

ergy outflo w ef ficienc y η( r ), av eraged in time o v er four time 

windows: from 15 000 to 20 000 t g , from 20 000 to 30 000 t g , from 

30 000 to 50 000 t g , and from 50 000 to 100 000 t g . In each of these 

time windows, all three fluxes are constant in radius out to some 

radius r eq ; the region r < r eq where the fluxes are constant is 

considered the region of inflow equilibrium for the given time 

window. As expected, r eq increases with time and reaches its largest 

value, r eq ≈ 100 r g , in the last time window, which ends at 100 000 t g . 

4 S ądowski et al. ( 2013b ) defined the jet-wind boundary by the condition 

that the Bernoulli parameter μ = 0.05, which corresponds to an asymptotic 

outflow velocity at infinity of 0.3 c . With this definition, their jet powers were 

an order of magnitude (or more) larger than the wind powers. McKinney et al. 

( 2012 ) defined the jet–wind boundary by the condition b 2 / ρ = 1, and found 

somewhat larger fractional wind power. Howev er, ev en with their definition, 

the jet power was always significantly larger than the wind power, except 

when a ∗ = 0 (there is no jet in this case). 

An advantage of the long runtime of our simulations is that it gives 

us stable flux profiles and converged simulation properties in the 

disc and jet out to such relatively large radii (for other long-duration 

simulations, see e.g. Narayan et al. 2012 ; S ądowski et al. 2013b ; 

White et al. 2020 ). In the later figures in this paper, we focus primarily 

on the last time window from t = 50 000 –100 000 t g . 

3  RESULTS  

3.1 The MAD limit and jet efficiency 

The magnetically arrested state sets in when we have a quasi- 

equilibrium between the inward ram pressure of the accreting gas 

and the outward pressure of the confined magnetic field (Narayan 

et al. 2003 ). When this equilibrium is reached, the magnetic flux 

at the BH event horizon reaches a saturation value. Tchekhovsk o y 

et al. ( 2011 ) showed that a geometrically thick accretion disc around 

a rapidly rotating BH achieves a maximum value of φBH ∼ 50 in 

the MAD limit. If φBH temporarily exceeds the saturation value, 

magnetic flux tubes escape from the BH magnetosphere outwards 

into the disc, carrying away some magnetic flux, resulting in a drop 

in φBH . Such flux eruptions are behind some of the larger excursions 

in φBH in Fig. 2 . 

The left panel of Fig. 4 shows the results we obtain for the 

mean φBH , time-averaged between t = 50 000 –100 000 t g , for the 

nine simulations described in this paper. For positive values of a ∗, 

i.e. models in which the BH rotates in the same sense as the accretion 

flow, we find that φBH is roughly ∼60, reducing to ∼50 for a ∗ = 0. 

Interestingly, φBH continues to decline for a ∗ < 0 (counter-rotating 

discs), falling to as low as ∼25 for a ∗ = −0.9. This variation of 

φBH as a function of spin a ∗ is very similar to the results reported 
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Figure 3. Left: Radial profiles of the rest mass flux Ṁ 0 ( r) (arbitrary units) into the BH, the energy outflo w ef ficiency η( r ), and the angular momentum flux 

into the BH j ( r ), for a simulation with a ∗ = 0.7, averaged over four time windows: 15 000 –20 000 t g (green curves), 20 000 –30 000 t g (red), 30 000 –50 000 t g 
(cyan), 50 000 –100 000 t g (black). In regions where the accretion flow has reached inflow equilibrium, the three fluxes are nearly independent of r . The final time 

window (black curves) has achieved inflow equilibrium out to almost r ≈ 100 r g . Note that the angular momentum flux into the BH is ne gativ e in this model, i.e. 

the BH loses angular momentum, while the energy outflow efficiency is quite large, η ∼ 0.71. Right: Corresponding results for a ∗ = −0.7. Here, the angular 

momentum flux into the BH is positive, and the outflow efficiency is smaller, η ∼ 0.13. 

Figure 4. (Left) We show the time-averaged saturated magnetic flux parameter φBH as a function of BH spin a ∗ (black dots) for the nine simulations described 

in this paper. The horizontal dashed line, φBH = 50, is typically taken as the saturation value of the magnetic flux parameter, but note that φBH is substantially 

smaller for counter-rotating discs ( a ∗ < 0). The dashed blue line is a third-order polynomial fit to φBH ( a ∗) (equation 9). (Right) We show the outflow energy 

efficiency factor η = P out / Ṁ 0 c 
2 (black dots). For a ∗ � 0.8, we find η > 1, which means that the jet power exceeds the entire rest mass energy flow Ṁ 0 c 

2 into 

the BH. For a given Ṁ 0 , the jet is much less powerful in the case of a counter-rotating disc. The dotted black line shows the efficiency of a standard Novikov & 

Thorne ( 1973 ) thin accretion disc. The dashed blue line is the BZ6 (equation 10) prediction for the jet power (from Tchekhovsk o y, Narayan & McKinney 2010 ), 

obtained by substituting the fitting function for magnetic flux φfit ( a ∗) from the left-hand panel. The result agrees with the simulations in Tchekhovsk o y et al. 

( 2012 ). 

in Tchekhovsk o y et al. ( 2012 ), although we use a different code and 

measure φBH after evolving the simulation for three times longer 

duration. Thus, the trend of the saturation value of φBH with spin 

shown in Fig. 4 is likely a robust feature of hot MAD discs. To 

quantify the trend, we fit a third-order polynomial (the blue dashed 

line in the left-hand panel of Fig. 4 ): 

φfit ( a ∗) = −20 . 2 a 3 ∗ − 14 . 9 a 2 ∗ + 34 a ∗ + 52 . 6 , ( −1 ≤ a ∗ ≤ 1) . (9) 
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A question one might ask is whether the a ∗ = −0.7 and −0.9 

simulations, which have the lo west v alues of φBH , might have had 

insufficient magnetic flux in the initial torus and whether this is 

why φBH is lower in these models. To answer this question, in 

Appendix B we present a test where we repeat the a ∗ = −0.7 

simulation with a significantly stronger initial magnetic field. We 

find that the saturation level of φBH is unaffected. 

A notable feature of hot accretion flows in the MAD state is that 

they produce relativistic jets with power P out comparable to, or even 

exceeding, the total rate of accreted rest mass energy Ṁ 0 c 
2 . The 

right-hand panel of Fig. 4 shows the time-averaged efficiency η, 

measured at radius 5 r = 5 r g , as a function of BH spin a ∗. We find 

that the jet efficiency is largest for prograde discs around the most 

rapidly spinning BHs and decreases as the spin decreases. 

Fig. 4 further reveals that, whereas high-spin ( a ∗ = 0.9) prograde 

MADs have jet efficiencies η ∼ 130 per cent , similar high-spin 

retrograde MADs produce weaker jets with η only ∼ 20 per cent . It 

is encouraging that this behaviour is qualitatively similar to that seen 

in the MAD simulations of Tchekhovsk o y et al. ( 2012 ). The present 

study used higher resolution and the simulations were run longer, 

so the agreement suggests that the η−a ∗ relationship displayed in 

Fig. 4 is converged at the grid resolution used in present GRMHD 

simulation, which is typical for present-day simulations. Note that, 

for both prograde and retrograde MAD discs, the jet efficiencies are 

much higher than the outflow power from a standard thin accretion 

disc (No viko v & Thorne 1973 ), which is shown by the dotted line in 

Fig. 4 . 

Tchekhovsk o y et al. ( 2010 ) carried out GRMHD simulations of 

magnetized jets confined inside a funnel-shaped rigid wall, and found 

that the energy efficiency was well fitted by the following expression: 

ηBZ6 = 
κ

4 π
φ2 

BH �
2 
H 

[

1 + 1 . 38 �2 
H − 9 . 2 �4 

H 

]

, (10) 

where �H ≡ a ∗/2 r H is the angular velocity of the horizon and κ is a 

constant whose precise value depends on the initial field geometry. 

The jet efficiency expression in equation (10) is an extended version 

of the traditional spin-squared dependence of the jet efficiency, 

ηBZ ∝ a 2 ∗ , in Blandford & Znajek ( 1977 ). The blue dashed line in 

the right-hand panel of Fig. 4 shows the prediction for the energy 

outflo w ef ficiency when we substitute our fitting function for φfit ( a ∗) 

(equation 9) in the BZ6 efficiency formula (equation 10) with κ = 

0.05 (this value corresponds to the split-monopole solution). The 

agreement is very good. 

Since radiatively inefficient accretion flows like those simulated 

here are found only at low-mass accretion rates below about 10 −2 

to 10 −3 of the Eddington rate (Yuan & Narayan 2014 ), the high jet 

efficiencies in Fig. 4 may explain why powerful jets are seen in many 

low-luminosity AGNs and hard-state X-ray binaries. Additionally, 

as also noted in Tchekhovsk o y et al. ( 2010 , 2012 ), the steep 

dependence of jet efficiency on the BH spin, and also the difference 

between retrograde and prograde accretion discs, could explain the 

presence of radio-quiet and radio-loud AGNs. Note, ho we ver, that 

the variation of φBH and η as a function of BH spin, and the relative 

efficiency of prograde versus retrograde discs, as obtained from our 

GRMHD simulations and shown in Fig. 4 , are exactly opposite to 

the proposal in Garofalo ( 2009 ). This point has been emphasized 

by Tchekhovsk o y et al. ( 2012 ) and Tchekhovsk o y & McKinney 

( 2012 ). 

5 Here, and in a few other places, we choose to measure quantities at 5 r g rather 

than at the horizon. This is because GRMHD simulations can sometimes hit 

density floors at smaller radii, which can bias results. 

3.2 Disc and jet structure 

In Figs 5 and 6 , we show distributions in the poloidal plane of 

several quantities of interest, each averaged in time between t = 

50 000 –100 000 t g and o v er azimuth φ (from 0 to 2 π ). Fig. 5 shows 

the rest mass density ρ and poloidal magnetic field lines for the eight 

simulations with non-zero spin. For each simulation, we indicate 

with a cyan line the σ M = 1 contour (computed using the time- 

averaged ρ and time-averaged | B | 2 ), where the magnetic field energy 

density equals the rest mass energy density. We take this contour as 

a proxy for the boundary of the magnetically dominated, relativistic 

jet. We also show the disc scale height h (dashed black contours) as 

a function of radius r . We follow Porth et al. (e.g. 2019 ) and define 

the disc scale height ratio h / r as 

h 

r 
= 

∫ ∫ ∫ 
ρ| π/ 2 − θ | 

√ 
−g d θ d φ d t 

∫ ∫ ∫ 
ρ
√ 

−g d θ d φ d t 
, (11) 

where the time average is taken o v er the window t = 

50 000 –100 000 t g . 

From Fig. 5 , we immediately observe that the jet, defined as the 

region where σ M ≥ 1, is wider in each prograde simulation relative 

to the corresponding retrograde simulation. The difference is most 

apparent for the highest spin simulations, a ∗ = ±0.9. Conversely, 

close to the BH, the disc scale height h / r is smaller in the prograde 

simulations compared to the corresponding retrograde simulations. 

Fig. 6 shows several other time- and azimuth-averaged quantities in 

the poloidal plane for the simulations with a ∗ = −0.7 (left) and + 0.7 

(right). From top to bottom, the quantities shown are the magnetiza- 

tion σ M , the plasma- β, the gas temperature T , and the angular velocity 

� ≡ u φ / u t . For both β and T , the jet boundary, which we define 

by σ M = 1, clearly delineates the transition between an ultra-hot 

magnetically dominated flow in the jet region near the pole to a cooler, 

less magnetized flow in the equatorial disc region. The boundary is 

evident for both prograde and retrograde models. The a ∗ = + 0.7 

model shows some low-temperature regions in the jet close to the 

polar axis. These should not be interpreted as physically meaningful, 

as temperature evolution in high-magnetization regions of GRMHD 

simulations is unreliable and is strongly affected by the choice of 

density floor (e.g. Ressler et al. 2015 ; Chael et al. 2019 ). These 

regions are unlikely to affect the radial profile of temperature in Fig. 7 , 

since the av erage o v er polar angle in these plots is density-weighted. 

In the case of the angular velocity � (bottom panel), the jet 

boundary is not especially significant for the prograde model, but 

is more so in the retrograde model, where the azimuthal velocity 

changes direction (indicated in Fig. 6 by the drop in | �| to near-zero) 

very near the σ M = 1 surface. The jet in retrograde simulations rotates 

in the same sense as the BH, which is opposite to the direction of 

the disc angular momentum at large radii. In both prograde and 

retrograde systems, the boundary layer between the jet and the 

disc/wind tends to be unstable, causing the jet to become mass- 

loaded in fluctuating episodic events. The effect is seen especially 

clearly in the retrograde simulations described in Wong et al. ( 2021 ). 

In Fig. 7 , we present average radial profiles of the density ρ, 

gas temperature T , magnetic field strength | b| ≡
√ 

b 2 , radial infall 

velocity −u r , angular velocity | �| ≡ | u φ / u t | , and scale height ratio 

h / r (equation 11). Since we are most interested here in the behaviour 

of these quantities in the equatorial disc, we compute the average of 

each quantity q ∈ ( ρ, T , | b | , −u r , | �| ) weighted by density: 

〈 q〉 ( r) = 

∫ ∫ ∫ 
q ρ

√ 
−g d θ d φ d t 

∫ ∫ ∫ 
ρ
√ 

−g d θ d φ d t 
. (12) 
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Figure 5. Time- and azimuth-a veraged distrib utions of gas density in the poloidal plane for the eight simulations with non-zero BH spin. The absolute value of 

the spin increases from 0.3 in the top row to 0.9 in the bottom row; the left side of each ro w sho ws the retrograde (ne gativ e spin) case and the right side shows 

the prograde (positive spin) case. In each panel, the time- and azimuth-averaged poloidal magnetic field lines are indicated with the white contours. The black 

dashed contour indicates the disc scale height, and the cyan contour indicates the σM = 1 surface, the nominal boundary of the jet. For all values of the BH spin, 

the jet width in the prograde simulation is noticeably larger than in the corresponding retrograde simulation. Correspondingly, the disc scale height is smaller. 
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Figure 6. Time- and azimuth-averaged profiles of several quantities for the a ∗ = −0.7 retrograde simulation (left) and the a ∗ = 0.7 prograde simulation (right). 

From top to bottom, the quantities shown are the magnetization σM , the ratio of the gas to the magnetic pressure β, the gas temperature K in Kelvin (assuming 

single-temperature fully ionized hydrogen), and the absolute value of the angular velocity � ≡ u φ / u t . The σM = 1 surface is indicated in each panel by the cyan 

contour. In both simulations, the distributions of σM and β transition from gas-dominated low (high) values in the disc to magnetically dominated high (low) 

values in the jet at approximately the same location; this transition contour (indicated here by σM = 1) is further away from the pole in the prograde simulation 

than in the retrograde case, indicating that the jet is wider in the former case. In the retrograde simulation, the sign of � changes (indicated by the lo w v alues of 

| �| in the lower left panel) at approximately the same location. 
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Figure 7. In the top row we show the radial profiles of the density 〈 ρ〉 , the temperature 〈 T 〉 and the magnetic field strength 〈| b |〉 . The averages of all quantities 

are density-weighted (equation 12) and time-averaged between 50000 and 100000 t g . In the bottom row we show the radial inward velocity 〈−u r 〉 , the angular 

velocity 〈| �|〉 , and the disc scale height ratio h / r (equation 11). Line types and colours are as follows: a ∗ = 0.9 (solid red curve), 0.7 (solid green), 0.5 (solid 

blue), 0.3 (solid magenta), 0 (solid black), −0.3 (dashed magenta), −0.5 (dashed blue), −0.7 (dashed green), −0.9 (dashed red). In the plot of 〈| �|〉 , we indicate 

the angular velocity of the horizon �H ≡ a ∗/2 r H for each simulation by the star marker. 

The top row of Fig. 7 shows radial profiles of the density ρ, the 

temperature T , and the magnetic field strength | b| = 
√ 

b 2 . Each of 

the three quantities in each simulation shows a similar behaviour, an 

approximately broken power-law dropoff with radius, with a steeper 

power law slope at smaller radii r � 5 −10 r g . The most notable 

difference between the simulations is seen in the density profiles for 

r < 10 r g . In general, the retrograde simulations have less gas density 

in the innermost radii than their prograde counterparts. Ho we ver, 

since the y hav e larger radial v elocities and scale heights (see below), 

their net mass accretion rates are not very different. (While the 

absolute density scale of a GRMHD simulation is not physically 

meaningful, each of these simulations was initialized with the same 

peak density in the initial torus, and deviations in the total initial 

torus mass are < 10 per cent, almost all of it concentrated at large 

radii.) 

The bottom row of Fig. 7 shows profiles of the radial inward 

velocity −u r , the angular velocity | �| , and the scale height ratio 

h / r . In general, prograde simulations have a smaller infall velocity 

−u r than retrograde models. The density-weighted angular velocity 

� switches sign in the retrograde simulations between r ∼ 3 −5 r g 
such that gas in the inner few gravitational radii co-rotates with the 

BH. The differences between prograde and retrograde simulations 

are most apparent in the scale height h / r . At large radii r > 10, 

all simulations have similar scale heights, but at radii r < 10 

the prograde simulations all have substantially smaller h / r � 0.1, 

while the retrograde simulations have larger values h / r � 0.2. This 

trend in h / r with spin is also apparent in the poloidal profiles in 

Fig. 5 . 

A notable feature of the profiles shown in Fig. 7 is the absence of 

any hint of the innermost stable circular orbit (ISCO). Particularly 

in the case of thin discs, but also to some extent in radiatively 

inefficient SANE accretion flows, the accreting gas has significant 

angular velocity and the orbital motion provides significant support 

against gravity. The accreting gas is thus sensitive to the loss of stable 

circular orbits at the ISCO, and this introduces visible features in the 

radial profiles of various gas properties (e.g. see Porth et al. 2019 , for 

SANE discs). In contrast, the gas in the MAD systems considered in 

this paper is supported primarily by magnetic pressure, and rotation 

plays a lesser role. As a result, there is no feature at the ISCO in any 

of the profiles in Fig. 7 . Of course, rotation is not totally irrele v ant, 

since it is the sense of rotation that causes the striking differences 

between prograde and retrograde discs discussed earlier. 

Fig. 8 shows the time- and azimuth-averaged jet shape for all the 

simulations. As in Figs 5 and 6 , we define the jet boundary by the 

condition, σ M = 1. Overall, we see that the jets in the retrograde 

spin models are narrower than those in the prograde models, as 

noted before. All jets, prograde and retrograde, exhibit generalized 

parabolic profiles where the width w varies with vertical height z 

as w ∝ z k ; a dependence of this form is commonly assumed when 

measuring the collimation profiles of AGN jets (Asada & Nakamura 

2012 ; Kov ale v et al. 2020 ). In each case, the jet starts out from close 

to the event horizon and expands rapidly and laterally up to a few 
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Figure 8. (Left) Time- and azimuth-averaged jet boundary (in black), defined by magnetization σM = 1, for all simulations; we additionally average the jet 

shape o v er the upper and lower jet. We fit the jet shape assuming a power-law relationship between the jet width w and height z : w ∝ z k (orange-dashed). The 

σM = 1 contour for a ∗ = 0 (blue, lower right panel) collapses on to the grid polar axis at z ≈ 60 r g , indicating the lack of an extended jet. (Right) The best-fitting 

jet shape index k as a function of a ∗. We indicate spin a ∗ = −0.3 with an open circle to indicate that the fit for k is not well constrained. We do not fit for k in 

the case of a ∗ = 0. 

Table 2. Fit parameters for the jet shapes in the left panel of Fig. 8 , log 10 w = 

k 0 + k log 10 z, for the spinning BH models. We fit for the jet profile between 

z = 5 and 100 r g . 

BH spin k 0 k 

0.9 0.837 ± 0.001 0.428 ± 0.001 

0.7 0.890 ± 0.001 0.407 ± 0.001 

0.5 0.918 ± 0.001 0.385 ± 0.001 

0.3 0.954 ± 0.002 0.370 ± 0.001 

−0.3 0.945 ± 0.005 0.273 ± 0.003 

−0.5 0.828 ± 0.003 0.351 ± 0.002 

−0.7 0.723 ± 0.001 0.355 ± 0.001 

−0.9 0.636 ± 0.003 0.418 ± 0.002 

gravitational radii, beyond which the disc and the wind, with their 

substantially larger inertia, collimate the jet. As Fig. 7 shows, h / r is 

large near the BH in the retrograde simulations. A larger disc scale 

height results in stronger collimation, and hence a narrower jet. 

We calculate the collimation profile of the jet in the form, 

log 10 w = k 0 + k log 10 z, using the PYTHON function curve fit , 

where the fit is limited to the range z = 5 –100 r g . Table 2 shows the 

fit results for the parameters k 0 and k for each jet model except the 

BH spin a ∗ = 0 case. In Fig. 8 , the panel on the right shows the best- 

fitting values for the index k for all the simulations with a spinning 

BH. The power-law slope ranges from k ≈ 0.27 to 0.43. These values 

are slightly smaller than those measured for the parsec/kiloparsec- 

scale jets in several AGNs, e.g. k ≈ 0.39 −0.56 for AGNs considered 

in Kov ale v et al. ( 2020 ) and k ≈ 0.39 −1.86 from Boccardi et al. 

( 2021 ). 6 In the case of M87’s jet, the power index is measured to be 

6 Note that some of the values of k were measured near the transition radius 

from a parabolic shape to a conical or wider structure further out. Hence, it 

is possible to have k > 1. 

k = 0.57, transitioning to k = 0.9 at a few 10s of parsecs, which is 

approximately a few × 10 5 r g (Asada & Nakamura 2012 ; Nokhrina 

et al. 2019 ). We expect the value of k to be slightly smaller for 

our simulations compared to observations since the observed radio 

emission in AGN jets originates in the jet sheath (e.g. Kim et al. 

2018 ; Janssen et al. 2021 ), which is likely to be less collimated 

than the σ M = 1 jet boundary that we consider. Modulo this caveat, 

we see from Fig. 8 see that k increases with increasing BH spin 

magnitude | a ∗| for both prograde and retrograde discs, indicating 

that the collimation profile depends directly on the jet power. We 

will discuss trends in the jet width further in Section 4.1. 

A single power-law description for the collimation profile does 

not al w ays w ork, as seen in the case of the a ∗ = −0.3 model, where 

the jet shape seems to require a k value that varies with height. In this 

model, the jet is rather weak: η ∼ 7 . 2 per cent , which is not dissimilar 

to η ∼ 3 . 5 per cent for the spin 0 model that has no extended jet. 

Parabolic jet profiles are less likely for such weak jets. 

3.3 Variability 

Fig. 9 shows the variability of the mass accretion rate Ṁ 0 , the di- 

mensionless magnetic flux parameter φBH , and the horizon magnetic 

flux 
 (this is the integral in equation 4 without the normalizing pre- 

factor), for the nine simulations. The variability is computed o v er the 

time range 50 000 –100 000 t g . We sub-divided this time range into 

50 bins of duration 1000 t g , and for each time bin and each quantity 

q , we calculated the mean μ and its variance around the mean σ 2 as 

follows: 

μ = 
1 

n 

n 
∑ 

i= 1 

q i , σ 2 = 
1 

( n − 1) 

n 
∑ 

i= 1 

( q i − μ) 2 , (13) 

where n is the number of samples in the given time bin. The ratio 

σ / μ, av eraged o v er the 50 bins, provides a dimensionless measure 

of the variability on time-scales shorter than the bin size of 1000 t g . 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
1
/3

/3
7
9
5
/6

5
2
4
2
0
0
 b

y
 H

a
rv

a
rd

 L
ib

ra
ry

 u
s
e
r o

n
 2

8
 A

p
ril 2

0
2
2



3806 R. Narayan et al. 

MNRAS 511, 3795–3813 (2022) 

Figure 9. Variability σ / μ of the mass accretion rate Ṁ 0 (black circles), the 

magnetic flux parameter φBH (blue squares), and horizon magnetic flux 
 

(red stars), plotted as a function of the BH spin a ∗ for the nine simulations. 

The quantities are all calculated at the BH event horizon. The dashed lines 

connect the points at a ∗ = 0 to the points at a ∗ = 0.9 and −0.9, and are meant 

to highlight the trends. 

The black dots in Fig. 9 show the average ‘modulation index’ σ / μ

for Ṁ 0 as a function of BH spin (the values are listed in Table 3 ). 

We see that σ / μ is substantially larger for the models with positive 

a ∗, which also have larger values of φBH (Fig. 4 ), compared to the 

models with a ∗ ≤ 0. Interestingly, the retrograde spin models all 

show similar values of σ / μ. 

The variability in 
 (red stars in Fig. 9 ) exhibits the opposite trend 

as in Ṁ 0 , with modulation index σ / μ increasing with the retrograde 

spin magnitude while remaining largely independent of prograde 

spin. This opposite behaviour suggests that the transports of mass and 

of magnetic flux are mostly uncorrelated. Indeed, a cross-correlation 

analysis of the fluctuations in Ṁ 0 and 
 gives a correlation coefficient 

of only ∼0.2, which is surprisingly small. 

In MAD systems, flux eruptions contribute strongly to the vari- 

ability, for both the accretion rate and the magnetic flux. It is 

possible that the strength and periodicity of flux eruptions depends 

strongly on the BH spin, such that for retrograde spins, eruption 

e vents are inef ficient in pushing gas away but eject out magnetic flux 

quite readily . Additionally , the retrograde models have geometrically 

thicker discs close to the BH, with the disc scale height reaching 

h / r � 0.25. Hence, accretion in retrograde models may continue at 

higher altitudes even as bundles of vertical field lines are ejected 

radially outward in the disc mid-plane. We offer these as speculative 

possibilities. 

Finally, we show the variability of the dimensionless magnetic 

flux parameter φBH in Fig. 9 by the blue squares. In this case, 

σ / μ increases with the spin magnitude | a ∗| for both prograde and 

retrograde systems, and the variability magnitude lies in between the 

σ / μ values of Ṁ 0 and 
 . By cross-correlating φBH with Ṁ 0 and 
 , we 

find that, for positive BH spin, fluctuations in φBH are driven mostly 

by Ṁ 0 variations. For instance, for a ∗ = 0.9, the cross-correlation 

coefficient between φBH and Ṁ 0 is −0.81, whereas the coefficient 

between φBH and 
 is only 0.19. We find the opposite behaviour for 

ne gativ e spin values. For a ∗ = −0.9, the cross-correlation coefficient 

between φBH and Ṁ 0 is −0.41, but the coefficient between φBH and 


 is 0.82. 

We have verified that the above variability results are not sensitive 

to our choice of a window size of 1000 t g . We find similar results 

for 500 t g and 2000 t g . We note that 1000 t g corresponds to 6 h 

in the case of Sgr A ∗ (a half night’s worth of observing), and 

about a year for M87. These two BHs are the primary targets 

for the Event Horizon Telescope (The Event Horizon Telescope 

Collaboration 2019a ). We also note that White & Chrystal ( 2020 ) 

find the variability characteristics of simulations to be somewhat 

sensitive to the numerical resolution employed. The resolution in our 

simulations is fairly high by current standards (though not as high as 

the best currently in the literature, e.g. Ripperda et al. 2022 ), so we 

do not expect resolution to be an issue in our work. 

Note that variability in Ṁ 0 (or 
 or φBH ) does not imme- 

diately translate to variability in the radiative luminosity. The 

latter needs to be investigated separately after including radiation 

physics in the simulation output and post-processing with ray- 

tracing software. Ho we ver, we note that the 230 GHz radiation in 

M87 ∗ originates close to the event horizon (The Event Horizon 

Telescope Collaboration 2019b ; Chael, Johnson & Lupsasca 2021 ), 

and thus, the variability σ / μ of the 230 GHz light curve should 

follow that of Ṁ 0 . Indeed, Chatterjee et al. ( 2021 ) showed that 

the variability amplitude of Ṁ 0 and the ray-traced 230 GHz light 

curve for Sagittarius A ∗ are comparable, with variability amplitude 

σ / μ ∼ 0.24 −0.31. 

3.4 Black hole spin-down 

The jets in the simulations described here receive their power from 

the spin of the BH. We find that in all simulations with a ∗ 
= 0, 

more angular momentum is lost to the jet than is supplied by the 

accretion disc. Consequently, the BHs lose angular momentum o v er 

time. 

Following Shapiro ( 2005 ), we define the spin-up parameter s , 

s ≡
d a ∗

d t 

M 

Ṁ 0 

= 
d a ∗

d M 0 /M 
= j − 2 ea ∗. (14) 

We measure j and e at r = 5 r g . Standard thin accretion disc models 

hav e positiv e spin-up parameters s for all spin values up to a ∗ = 

0.998 (Thorne 1974 ). Hence, counterrotating accretion discs al w ays 

spin the BH down and corotating accretion discs spin the BH up. 

The left-hand panel in Fig. 10 shows the values of s that we find for 

the nine simulations. All the four simulations with corotating discs 

around spinning BHs (the rightmost four points) have negative values 

of s . That is, in all four of these models, the BH spins down as a result 

of powering the jet. Note that these BHs do recei ve positi ve angular 

momentum from the accreting gas. Ho we ver, this contribution is 

o v erwhelmed by the loss of angular momentum via the jet, and so 

the net effect is that the BH spins down. As in the case of our results 

for φBH and η as a function of a ∗, the form of s ( a ∗) we find is similar 

to that found in shorter duration MAD simulations by Tchekhovsk o y 

et al. ( 2012 , see also the ‘thinner disc TNM11’ models in McKinney 

et al. 2012 for additional results). 

For counter-rotating discs, s is positive, i.e. the BH gains positive 

angular momentum (defined with respect to the accretion flow). 

Ho we ver, since these BHs have negative angular momenta ( a ∗ < 0), a 

positive s again corresponds to the spin energy of the BH decreasing 

with time. We thus conclude that, generically, hot accretion flows 

in the MAD state spin down their central BHs. The spin a ∗ = 0 

model is a special case, and shows a weak spin-up as a result of 

the inflowing gas having non-zero angular momentum. Ho we ver, the 

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/5
1
1
/3

/3
7
9
5
/6

5
2
4
2
0
0
 b

y
 H

a
rv

a
rd

 L
ib

ra
ry

 u
s
e
r o

n
 2

8
 A

p
ril 2

0
2
2



Jet power 3807 

MNRAS 511, 3795–3813 (2022) 

Table 3. Summary table of simulation results. For each of the nine simulations we provide the magnetic flux parameter φBH , the jet efficiency η, the spin-up 

parameter s , the modified spin-up parameter s 
′ 
, the variability σ / μ in both the accretion rate Ṁ 0 and φBH , the disc scale height h / r at radius 3 r g , the jet width 

at height z = 10 r g , and the best-fitting power-la w inde x k for the average jet shape. All quantities were computed from time- and azimuth-averaged data o v er 

time range 50 000 t g to 100 000 t g . . 

Model φBH η s s 
′ 

σ / μ σ / μ h / r w jet k 

BH spin a ∗ ( Ṁ 0 ) ( φBH ) ( r = 3 r g ) ( z = 10 r g ) 

0.9 56.2 1 .31 − 8 .88 −6.79 0.342 0.209 0.144 18.2 0.428 

0.7 62.1 0 .711 − 8 .30 −11.7 0.309 0.176 0.119 20.4 0.407 

0.5 63.6 0 .343 − 6 .18 −18.1 0.260 0.160 0.107 20.0 0.385 

0.3 62.3 0 .140 − 3 .87 −27.7 0.216 0.122 0.106 21.3 0.370 

0 50.0 0 .0345 0 .485 – 0.156 0.094 0.173 – –

−0.3 42.2 0 .0718 3 .35 −46.7 0.163 0.104 0.207 17.5 0.273 

−0.5 35.6 0 .104 3 .99 −38.2 0.167 0.129 0.242 14.5 0.351 

−0.7 27.9 0 .126 4 .25 −33.8 0.149 0.158 0.300 11.9 0.355 

−0.9 24.5 0 .187 4 .65 −24.8 0.179 0.176 0.315 11.6 0.418 

Figure 10. Left: The spin-up parameter s (equation 14) as a function of the BH spin a ∗ for the nine simulations described in this paper. The blue curve is a 

fifth degree polynomial fit to these values. The dashed black line shows for comparison the corresponding result for a standard thin accretion disc (Shapiro 

2005 ). Unlike a thin disc, an MAD corotating disc ( a ∗ > 0) causes the BH to spin down efficiently because of angular momentum loss to the jet. Centre: 

The absolute error in s from the polynomial fit in the left-hand panel. Right: The modified spin-up parameter s 
′ 

(equation 16), which measures the amount of 

spin-up/spin-down for a given energy output in the jet. (We omit a ∗ = 0 from the final panel since this model does not have a jet.) 

spin-up in this case is far less than the equi v alent rate in the case of a 

thin accretion disc (Shapiro 2005 ), plotted with a dashed black line 

in Fig. 10 . 

In the left-hand panel of Fig. 10 , we show a fifth-degree polynomial 

fit to s ( a ∗): 

s( a ∗) ≈ 0 . 45 − 12 . 53 a ∗ − 7 . 80 a 2 ∗ + 9 . 44 a 3 ∗ + 5 . 71 a 4 ∗ − 4 . 03 a 5 ∗ . 

(15) 

We show the residuals of this fit in the central panel. 

The parameter s measures spin-up normalized by the rate of 

accretion of rest mass energy Ṁ 0 . Ho we ver, Ṁ 0 is generally dif ficult 

to estimate from observations. A potentially more useful way of 

scaling spin-up is via the power P out carried out in the jet (where 

P out ≡ d E out / d t = ηṀ 0 c 
2 ). We thus define 

s ′ = 
d | a ∗| 

d E out /Mc 2 
= 

s 

η
sgn ( a ∗) . (16) 

The right-hand panel in Fig. 10 shows how s 
′ 
behaves as a function of 

a ∗. By this measure, for a given jet power, the spin-down is fastest for 

a moderate retrograde spin. Note that in order to produce the same 

jet power, the mass accretion rate would have to be larger for low- 

spin BHs as compared to high-spin BHs. The differences between the 

magnitudes of s and s 
′ 
is explained by differences in the jet efficiency 

(see Fig. 4 ). 

BH spin-down via accretion can have a non-negligible effect on 

the spin evolution of massive BHs across cosmic time; we explore 

the consequences in Section 4.2. 

Note that equation (15) gives spin-up–spin-down equilibrium, i.e. 

s = 0, at a small positive value of the BH spin a eq ≈ 0.035. If 

a spinning BH were to accrete for an extremely long time in the 

MAD state, one would expect the BH spin to asymptote to a ∗ = 

a eq . Ho we ver, the v alue of a eq itself probably drifts with time. For 

instance, Tchekhovsk o y et al. ( 2012 ), whose simulations were of 

shorter duration, found a larger a eq ≈ 0.07. We speculate that, for 

suf ficiently long-li ved MAD systems, a eq → 0. 

4  DI SCUSSI ON  

4.1 Correlations with φBH 

In Figs 5 and 7 , we showed that the disc scale height h / r at small 

radii is smaller in prograde simulations than in the corresponding 

retrograde simulations; conversely, the jet width defined by the σ M = 

1 surface is larger in prograde simulations than in retrograde systems 

(Fig. 8 ). Furthermore, BHs surrounded by retrograde MADs have less 

magnetic flux than BHs with the same spin magnitude in prograde 

systems (Fig. 4 ). In Fig. 11 , we connect these observations and plot 

the scale height h / r and jet width w jet as a function of φBH . 
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Figure 11. (Left) The scale height ratio h / r versus the saturated magnetic flux parameter φBH for each simulation. The disc scale height is calculated at r = 3 r g . 

(Right) The jet width w jet , defined as twice the cylindrical radius of the σM = 1 contour, from the time- and azimuth-averaged data at height z = 10 r g . The 

scale height appears to decrease linearly with magnetic flux φBH , and the jet width to increase linearly with φBH . 

We compute the disc scale height using equation (11) at r = 3 r g , 

and define the jet width w jet as twice the cylindrical radius of the σ M = 

1 contour (of the t - and φ-averaged data in Fig. 5 ) at a height z = 

10 r g . 
7 Note that the a ∗ = 0 simulation does not have a magnetized 

relativistic jet; its σ M = 1 contour does not extend to large radii but 

begins to close in at r ≈ 30 r g (Fig. 8 ). As a result, we do not compute 

a jet width for a ∗ = 0. 

The disc scale height h / r at 3 r g decreases linearly with increasing 

φBH (Fig. 11 , left-hand panel). Conversely, the jet width w jet at 

z = 10 r g increases nearly linearly with φBH . It is likely that these 

effects are related. A BH with more magnetic flux produces a 

wider magnetically dominated jet; a wider jet then compresses the 

equatorial disc near the BH to a thinner region around the mid-plane 

than in a system with less magnetic flux and a less po werful, narro wer 

jet. The linear trends of h / r and jet width w jet with φBH are simpler 

than the more complicated variations as a function of BH spin a ∗ or 

jet efficiency η. This is because the relationships between a ∗, η, and 

φBH themselves are not linear (Fig. 4 ). 

The correlation of jet width and disc scale height indicated by 

Fig. 11 could have observational consequences. For instance, the jet 

width in M87 has been measured within ≈ 30 r g of the central BH by 

Hada et al. ( 2016 ) and Kim et al. ( 2018 ). Recent EHT polarimetric 

results suggest that the central accretion disc in M87 ∗ is MAD (Event 

Horizon Telescope Collaboration 2021 ), so the relationship in Fig. 11 

between jet width and φBH in the present MAD simulations could 

potentially be used to infer the saturation magnetic flux in M87 ∗. 

The inferred magnetic flux could then be used to solve for the BH 

spin via the relationship established in equation (9). Ho we ver, this 

measurement w ould f ace several significant sources of systematic 

uncertainty. First, the jet viewing angle and bulk Lorentz factor must 

7 The choices of r and z here are moti v ated by observations of the supermassive 

BH in M87 by the Event Horizon Telescope (Event Horizon Telescope 

Collaboration 2019a ) and the GRMHD-based models that were used to 

interpret the observed image (Event Horizon Telescope Collaboration 2019b ). 

be well constrained to de-project the observed widths. Secondly, we 

will need to calibrate the observed jet width against the width of 

the σ M = 1 surface in the simulations; in practice, the jet emission 

may not be brightest exactly on this contour. In addition, not all 

the correlations are monotonic, so there may be double-valued 

solutions. 

Furthermore, if the accretion flow in M87 ∗ is MAD, it is likely that 

the 230 GHz EHT image of emission immediately surrounding the 

BH originates from the equatorial disc close to the horizon (e.g. The 

Event Horizon Telescope Collaboration 2019b ; Chael et al. 2021 ). 

Analyses of future EHT images of the central few r g in M87 ∗ may 

constrain the disc scale height h / r and thus provide another handle 

on φBH and a ∗, assuming the relationships derived in our set of nine 

simulations hold for MAD systems generally. 

4.2 Black hole spin-down over cosmic time 

In this paper, we find that the spin-down of BHs from the angular 

momentum lost to the jet in the MAD state is significant. This may 

have consequences for the cosmic evolution of BHs. Using a fixed 

Eddington ratio and the fit for s ( a ∗) in equation (15), we numerically 

integrate 

d a ∗

d t 
= f Edd 

Ṁ Edd 

M 
s( a ∗) , (17) 

where the Eddington accretion rate is given by Ṁ Edd = 

(4 πGm p M) / ( εσT c), with σ T the Thomson cross-section and assum- 

ing the fiducial radiative efficiency ε to be 0.1. Since Ṁ Edd ∝ M , the 

mass dependence in equation (17) cancels out. 

In Fig. 12 , we plot the spin evolution of BHs initialized with 

spins a ∗ ∈ { −0.9, −0.5, 0, 0.5, 0.9 } . We assume optimistic ac- 

cretion parameters, with continuous accretion at the rate of f Edd ≡
Ṁ 0 / Ṁ Edd = 3 × 10 −3 (near the boundary between geometrically 

thin and thick discs) for 1 Gyr. This Eddington ratio is near the 

approximate boundary abo v e which a hot accretion flow is expected 

to transition to a thin disc (Yuan & Narayan 2014 ). Under the 
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Figure 12. Spin evolution of MADs continuously accreting at an Eddington 

ratio of 3 × 10 −3 for 1 Gyr, estimated by numerically integrating equa- 

tion (17). BH spins are initialized at a ∗ ∈ { −0.9, −0.5, 0, 0.5, 0.9 } . While 

steady accretion at this level for 1 Gyr is optimistic, this e x ercise demonstrates 

that spin-down in the MAD regime can be relevant for the cosmic evolution 

of BH spins. 

assumed conditions, we find cosmologically significant spin-down, 

with the a ∗ = 0.9 model reaching a ∗ ∼ 0.4 at the end of the time 

period. This spin-down is likely to be most rele v ant for BHs at the 

centres of massive elliptical galaxies, which are thought to steadily 

accrete at low Eddington rates as they impart ‘maintenance mode’ 

feedback on to their hosts (e.g. Best et al. 2006 ; Kormendy & Ho 

2013 ). 

A number of studies consider the cosmic spin evolution of massive 

BHs based on models in which corotating accretion flows al w ays 

spin a BH up (e.g. King, Pringle & Hofmann 2008 ; Barausse 2012 ; 

Volonteri et al. 2013 ; Izquierdo-Villalba et al. 2020 ). We speculate 

that reversing this assumption for thick discs may significantly reduce 

the spins of supermassive BHs in the most massive galaxies, as well 

as super-Eddington accretors. This may help models reproduce the 

observed population of billion solar mass quasars at z ∼ 6 −7 (e.g. 

Shapiro 2005 ; Volonteri & Rees 2005 ; Zubovas & King 2019 ). As 

a reminder, our results pertain specifically to hot accretion flows in 

the MAD state. The spin-down effects we describe will be much 

less severe in the opposite SANE case. The results described in 

Gammie et al. ( 2004 ) may be rele v ant in that limit. In future work, we 

plan to explore the spin evolution of super-Eddington discs in more 

detail. 

In the case of M87 ∗, the current mass accretion rate is estimated 

to be Ṁ 0 ∼ 10 −3 M �yr −1 (Event Horizon Telescope Collaboration 

et al. 2021 ), which corresponds to f Edd � 10 −5 . At this mass accretion 

rate, the BH spin will remain essentially unchanged ev en o v er a time 

as long as the age of the Uni verse. Ho we ver, it appears that in the 

past, M87 ∗ had a much more powerful jet, with power reaching 

perhaps 10 45 erg s −1 (Owen, Eilek & Kassim 2000 ; de Gasperin et al. 

2012 ), which is ∼100 times greater than the current jet power. If that 

po wer le v el had been maintained for a Gyr, then M87 ∗ would hav e 

experienced significant spin-down. 

4.3 Generality of the results 

It is important to keep in mind that the results presented in this paper 

apply only to radiatively inefficient hot accretion flows. Accretion 

systems where radiative cooling is important are quite different, and 

our results do not apply to those. Even within the class of radiatively 

inef ficient hot flo ws, our work focuses only on the MAD regime. 

The opposite case of SANE accretion, where φBH lies below the 

saturation value φBH, sat , needs to be explored separately. An added 

complication in SANE accretion is that, in addition to the BH spin a ∗, 

the results will depend also on a second parameter, viz., the amount 

of magnetic flux at the BH horizon relative to the saturation value: 

φBH / φBH,sat . 

As discussed in Section 1, there is some observational evidence 

that the MAD regime may be reasonably common in Nature. There is 

also theoretical evidence that this regime is easier to achieve in long- 

lived systems than previously thought. (In this context, almost any 

system in Nature is extremely long-lived compared to the time-scales 

probed by simulations.) The good agreement between our results and 

those reported in Tchekhovsk o y et al. ( 2012 ), even though the two 

sets of simulations differ by a factor of 3 in duration, gives confidence 

that the results are reasonably well-converged, and may be applied 

to MAD systems. 

There is, ho we v er, a cav eat. Once φBH at the horizon has reached 

the MAD saturation limit φBH, sat , flux accumulates in the surrounding 

accretion flow and we expect an MAD-like ‘magnetosphere’ to 

develop out to some radius r MAD in the disc Avara, McKinney & 

Reynolds ( 2016 ) discuss a similar idea in the context of a geometri- 

cally thin disc model. If enough magnetic flux of the same sign (no 

reversals in B z ) is supplied by the accretion flow, r MAD will increase 

monotonically with time. For the simulations described in this paper, 

we think r MAD is of order several tens of r g (perhaps as much as 

100 r g ), 
8 though we do not have a reliable method of defining r MAD . 

The change in the character of the radial profiles of ρ and u r in Fig. 7 

at r ≈ 50 r g might suggest that this radius corresponds to the location 

of r MAD (we thank the referee for this suggestion). We imagine that 

r MAD was a little smaller for the simulations in Tchekhovsk o y et al. 

( 2012 ), but perhaps not by a large factor. On the other hand, the 

stellar-winds-driven accretion model of Sgr A 
∗ described by Ressler 

et al. ( 2020a ), Ressler et al. ( 2020b ) concei v ably had r MAD as large 

as 10 4 r g . This brings up the following question: Could the properties 

of MADs change substantially if r MAD is very much larger than the 

typical values explored so far via simulations? If the answer is yes, 

then r MAD would become a rele v ant second parameter (in addition to 

a ∗) in the MAD regime of accretion, and its effects will need to be 

quantified. 

5  SUMMARY  

In this work, we explored the long time evolution of radiatively 

inefficient MADs for nine different values of the BH spin parameter, 

a ∗ = −0.9, −0.7, −0.5, −0.3, 0, 0.3, 0.5, 0.7, and 0.9, using the 

GRMHD code KORAL . We evolved our simulations up to t � 10 5 t g 
to ensure inflow equilibrium out to large radii. We considered the 

effect of BH spin on the dimensionless magnetic flux parameter 

φBH and the jet efficiency η, and found results in agreement with 

previous work by Tchekhovskoy et al. ( 2012 ) which used shorter 

8 The models in this paper hav e achiev ed inflow equilibrium out to radii 

well in excess of 100 r g . This is one of the benefits of running long-duration 

simulations. 
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duration simulations. We also estimated the spin-down rate in MAD 

geometrically thick accretion flows. 

In Table 3 , we present a summary of our time-averaged results in 

the nine simulations for the following quantities: the dimensionless 

magnetic flux on the horizon, the jet efficiency, the regular and 

modified spin-up parameters, variability in the mass accretion rate 

and the magnetic flux parameter, disc scale height at r = 3 r g , jet width 

at z = 10 r g , and power-law index k of the time-averaged jet shape. 

Our main conclusions are as follows: 

(i) The saturation value of the magnetic flux of MAD discs 

depends on the BH spin. Retrograde discs saturate at a lower relative 

magnetic flux than prograde systems. 

(ii) Prograde MAD systems produce more powerful jets than 

retrograde systems. The jet is powered by the BH spin energy in 

all cases, but the lower magnetic flux saturation level in retrograde 

systems limits their jet power and efficiency. 

(iii) All jets exhibit a parabolic shape with a power-law index of 

k ≈ 0.27 −0.42, similar to values observed in AGN jets. 

(iv) Retrograde MAD simulations have narrower jets and thicker 

equatorial discs near the BH, compared to prograde systems with 

the same spin magnitude. Thus, given a BH where there is evidence 

that it is an MAD system (as in the case of M87 ∗, Event Horizon 

Telescope Collaboration 2021 ), one could potentially constrain the 

dimensionless magnetic flux φBH and the BH spin a ∗ using a 

measured jet width or disc scale height close to the BH. 

(v) Prograde and retrograde MADs exhibit dif ferent v ariability 

trends in accretion rate, with variability increasing with increasing 

spin for a ∗ > 0, while remaining almost constant for a ∗ < 0. 

Variability in the magnetic flux on the BH shows the opposite 

behaviour. 

(vi) At all non-zero spins, jets from MAD systems spin-down the 

BH by sapping it of angular momentum. If jets are persistent o v er 

cosmic time, this spin-down can notably reduce the BH spin. 

We hav e ne glected the effect of radiation in the simulations de- 

scribed in this work (although KORAL is equipped to include radiation 

when needed), and hence, our target BH systems are low-luminosity 

AGNs and low-hard state BH binaries, where the accreting gas is 

radiati vely inef ficient and the accretion disc is geometrically thick. In 

future studies, it will be important to understand how our results will 

change if we consider radiatively efficient thin discs as well super- 

Eddington radiatively supported thick accretion flows (e.g. S ądowski 

et al. 2014 ). Further, it would be interesting to understand whether 

the φBH versus a ∗ relationship would change under more general 

disc geometries with a misalignment between the spin vectors of 

the BH and the disc (Fragile et al. 2007 ; Liska et al. 2018 ). Recent 

work suggests that the magnetic flux on to the BH drops with higher 

misalignment angles given the same initial disc magnetic field (e.g. 

Chatterjee et al. 2020 ). 
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APPENDI X  A :  EFFECT  O F  T H E  A D I A BAT I C  

I NDEX  

We have checked whether our choice of adiabatic index � = 13/9 

has a significant impact on the magnetic flux accumulated on the 

BH in our simulations. We ran two additional simulations, one with 

� = 4/3 and the other with � = 5/3, for BH spin a ∗ = 0. Both 

simulations were run up to a total time of t = 30 000 t g . The radius 

of the pressure maximum of the initial torus needed to be adjusted 

in these simulations in order to keep the outer edge of the torus at 

r ≈ 10 4 r g ; for � = 4/3 we set r max = 42.43 r g , for � = 5/3 we set 

r max = 42.40 r g , while for our fiducial � = 13/9 we set r max = 42.43 

(Table 1 ). The simulation grid and all other initial conditions were 

the same as in our fiducial simulation. 

Fig. A1 shows the accretion rate Ṁ 0 and dimensionless magnetic 

flux φBH at the horizon for the three a ∗ = 0 simulations. We find 

that the accretion rate in arbitrary units increases with increasing 

adiabatic index, but this is of no consequence since all our results 

correspond to dimensionless quantities for which the BH mass and 

mass accretion rate are scaled out. 

The dimensionless magnetic flux parameter φBH is plotted in 

Fig. A1 as a function of time for the three simulations. This quantity 

shows no dependence on the adiabatic index. In particular, φBH 

saturates at essentially the same value, φBH ≈ 50, in all three 

simulations. Variability and other dimensionless diagnostics are also 

similar for different values of �. 
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Figure A1. We compare the accretion rate Ṁ 0 (top row) and the dimensionless magnetic flux parameter φBH (bottom row) at the BH horizon for simulations 

with BH spin a ∗ = 0 and three different choices of the adiabatic index: � = 4/3 (red), � = 13/9 (the fiducial model in the main text, black), and � = 5/3 (blue). 

The mean accretion rate (in arbitrary units) is sensitive to the choice of adiabatic index, but the dimensionless magnetic flux φBH saturates at the same value in 

all three simulations. 

APPENDIX  B:  C H E C K I N G  T H E  M A D  

SA  T U R A  T I O N  LEVEL  F O R  R E T RO G R A D E  

SPINS  

Fig. 4 shows that our retrograde simulations saturate at a significantly 

lo wer v alue of the dimensionless magnetic flux parameter φBH than 

the prograde simulations. In order to check whether our retrograde 

spin cases have reached their maximum value of magnetic flux and 

to test the impact of our initial conditions, we ran an additional 

simulation with the same parameters and initial conditions as for spin 

a ∗ = −0.7, but with an initial magnetic field strength | b | stronger 

by a factor of 
√ 

10 (i.e. initial β init lower by a factor of 10). The 

simulation grid and all other initial conditions were identical. We ran 

this new simulation up to a total time of t = 17 000 t g . 

Fig. B1 shows that, in the initial, transitory period t � 2000 t g , 

the simulation with the stronger initial field ( β init = 10) does have a 

higher value of φBH than our fiducial set-up ( β init = 100). Ho we ver, 

once the simulations reach steady state and are fully accreting gas 

( t � 2000 t g ), both simulations saturate at the same mean value of 

φBH ≈ 30. This test suggests that the saturation levels of the MAD 

simulations run in this paper do not depend on the initial field strength 

in the torus. 
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Figure B1. We compare the accretion rate Ṁ 0 (black line) and the dimensionless magnetic flux parameter φBH (red line) at the BH horizon from a spin a ∗ = 

−0.7 simulation run with our fiducial initial magnetic field strength ( β init = 100) and from a simulation with an initial magnetic pressure 10 times larger ( β init = 

10; blue and green lines). (Right) The same data plotted on a log–log scale to emphasize the differences between the simulations in the initial, transitory phase, 

before accretion reaches steady state. Despite the differences in the initial conditions, both simulations saturate at the same dimensionless magnetic flux φBH . 

This paper has been typeset from a T E X/L A T E X file prepared by the author. 
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