
High-Speed NTT-based Polynomial Multiplication
Accelerator for Post-Quantum Cryptography

Mojtaba Bisheh-Niasar

CEECS Department

Florida Atlantic University
Boca Raton, FL

mbishehniasa2019@fau.edu

Reza Azarderakhsh

CEECS Department

Florida Atlantic University
Boca Raton, FL

razarderakhsh@fau.edu

Mehran Mozaffari-Kermani

CSE Department

University of South Florida
Tampa, FL

mehran2@usf.edu

Abstract—This paper demonstrates an architecture for accel-
erating the polynomial multiplication using number theoretic
transform (NTT). Kyber is one of the finalists in the third round
of the NIST post-quantum cryptography standardization process.
Simultaneously, the performance of NTT execution is its main
challenge, requiring large memory and complex memory access
pattern. In this paper, an efficient NTT architecture is presented
to improve the respective computation time. We propose several
optimization strategies for efficiency improvement targeting dif-
ferent performance requirements for various applications. Our
NTT architecture, including four butterfly cores, occupies only
798 LUTs and 715 FFs on a small Artix-7 FPGA, showing more
than 44% improvement compared to the best previous work.
We also implement a coprocessor architecture for Kyber KEM
benefiting from our high-speed NTT core to accomplish three
phases of the key exchange in 9, 12, and 19 μs, respectively,
operating at 200 MHz.

Index Terms—FPGA, hardware architecture, Kyber, lattice-
based cryptography, NTT, post-quantum cryptography.

I. INTRODUCTION

The security of classical public-key cryptosystems relies

on the underlying NP-hard problems like integer factoriza-

tion, discrete logarithm, and elliptic curve discrete logarithm.

However, these problems can be solved when a large-scale

quantum computer is build using quantum algorithms such

as Shor’s algorithm [1]. Hence, the National Institute of

Standards and Technology (NIST) started a post-quantum

cryptography standardization process in 2016, noting that

in round-3 of this competition, the four key encapsulation

mechanisms (KEM) finalists, i.e., Classic-McEliece, Kyber,

NTRU, and Saber, were announced in July 2020. Among

all promising candidates, lattice-based cryptography is a very

attractive alternative, mainly because of offering a good trade-

off between security and efficiency.

Kyber KEM [2] is part of the Cryptographic Suite for

Algebraic Lattices (CRYSTALS) and shares a common frame-

work with the Dilithium signature scheme [3]. Kyber bases

its security on the hardness assumptions over module learning

with errors (Module-LWE) and is believed to be quantum-

resistant. The main characteristic of Kyber is polynomial mul-

tiplication over a polynomial ring as Z3329[X]/
〈
X256 + 1

〉
,

providing a significant increase in efficiency. Hence, the most

computationally intensive operation, i.e., matrix-vector and

vector-vector multiplication, can be optimized with the fast

number-theoretic transform (NTT), which can reduce compu-

tational complexity from O(n2) to roughly O(nlogn). Since

the implementation of NTT-based multiplication is still a per-

formance bottleneck in lattice-based cryptography, improving

NTT efficiency has recently received significant attention.

Reducing the computational complexity of polynomial mul-

tiplication is essential for faster key encapsulation and opti-

mization of the resource utilization of the entire cryptosys-

tem. This acceleration of polynomial multiplication would

be challenging for various applications due to their resource

constraints, strict performance, and flexibility requirements.

However, for a widely-deployed cryptosystem, the overall

complexity consisting of the utilized resource and the required

latency will have to be minimal to be standardized by NIST

[4]. To address these challenges, hardware implementation of

the cryptosystem will be critical since it accelerates the core

arithmetic operation occupying limited resources.

Overall, there are two possible strategies to deploy hardware

accelerators: (i) hardware/software co-design approaches and

(ii) pure hardware architectures. Although hardware/software

co-design approaches are more flexible and easier to develop

compared to pure hardware architectures, they may not lead

to the best performance. Most hardware accelerators focus on

the FPGA platform to take advantage of its reconfigurability.

FPGA can provide an appropriate balance between flexibility

and performance, which is especially important for a rapidly

evolving field like PQC.

A. Related Work

There are prominent works to accelerate polynomial mul-

tiplication in the literature. The work of [5] proposed

the negative wrapped convolution (NWC) to eliminate the

overhead of zero padding in the polynomial multiplication

over Zq[X]/ 〈Xn + 1〉. The authors in [6] introduced low-

complexity NTT by merging the pre-processing of NTT into

butterfly operations. Furthermore, low-complexity INTT is

proposed in [7] to avoid post-processing overhead. Longa

et al. in [8] proposed the KRED and KRED-2X reduction

algorithms to speed up the NTT computation. This work also

reduces post-processing computation of INTT at the cost of

more memory utilization. Furthermore, employing Cooley-

Tukey (CT) and Gentleman-Sande (GS) butterfly configura-

tions reduces bit-reverse operation, which was implemented

in [9]. The authors in [10] presented a processor benefiting

from polynomial vector structure in the Kyber algorithm to

reduce memory access overhead.

A flexible and scalable NTT architecture was presented

in [11], [12]. Furthermore, the work of [13] implemented a

scalable NTT architecture on RISC-V. In [14], a low-power

NTT was proposed to reduce the required latency.

Although a compact design of NTT employing only one

butterfly core requires few hardware resources, it is too slow

to provide high throughput requirements of high-performance

applications. The work of [15] employed four butterfly cores

for NewHope implementation. However, increasing the num-

ber of butterfly cores in unmerged implementations increases

memory access overhead. Hence, merging NTT layers was

studied in [16] using 2×2 butterfly structure. This design was

customized in [17] for NewHope using KRED and KRED-2X

reductions in their proposed architecture. The authors in [18],

[19] used the same architecture for Kyber KEM, employing

the high-level synthesis (HLS) approach. Implementing KRED

and KRED-2X modular reductions increases the performance

in software platforms, while it doubles the occupied resources

in hardware. Furthermore, the required memory for the pre-

computed values is increased to store two sets of constants.

Additionally, the authors in [20] implemented 3-layer merged

NTT for NewHope by RISC-V ISA features, while they

claimed using this method for Kyber cannot improve effi-

ciency. The prior hardware NTT designs have so far been

fixed in throughput. Furthermore, since the same butterfly

configurations are used for both NTT and INTT, a bit-reverse

function is required.

Implementing Ring-LWE has been increased since it offers

high-performance and compact architecture compared to both

PQC schemes [21], [22] and even pre-quantum cryptosystems

[23], [24]. Although many efforts towards the HLS [25]

and the hardware/software co-design implementation of PQC

accelerators have been made [9], [20], [26], [27], there are

merely a few developed pure hardware architectures for Kyber

KEM. The first hardware implementation of Kyber is reported

in [28], employing an RTL-based methodology providing

good performance and smaller area consumption compared

to the HLS-based approach. Furthermore, the authors in [29]

proposed an architecture of Kyber, which heavily relies on

BlockRAM primitives between components. Recently, the

work of [30] implemented a compact FPGA-based architecture

occupying only 3 BRAMs.

Fig. 1 shows a performance and resource utilization compar-

ison between software, hardware/software, and pure hardware

implementations of Kyber. Software benchmarking [31], [32],

[33] reports 60-80% of the overall required cycle for hashing

and sampling while hardware/software accelerators can reduce

it. However, Keccak latency can be hidden by pure hardware

design when it works in a parallel fashion with the NTT

core. A wide range of NTT computation (25-90%) has been

10-5 10-4 10-3 10-2 10-1

HW

HW/SW

SW

Ti
m

e(
s)

0 5k 10k 15k 20k

HW
HW/SW

A
re

a
(#

LU
T)

Keccak NTT Control

Figure 1. Performance (in log10) and resource utilization comparison
in three different Kyber implementation approaches: software (SW), hard-
ware/software (HW/SW), and hardware (HW). Kyber architecture is break-
down into three main cores, including Keccak (hashing and sampling), NTT
(polynomial multiplication), and Control (controller and all other required
functions).

reported in the literature for the hardware/software approach

since different optimization perspectives have been targeted.

Therefore, implementation gaps are identified in accelerating

and compacting the NTT in pure hardware architecture to

reduce the required time and resources.

B. Contributions

Polynomial multiplication computations take a significant

portion of Kyber KEM latency on hardware implementation.

Therefore, to improve the efficiency of Kyber, one should in-

crease efficiency on the NTT core, providing higher throughput

using fewer hardware resources. This paper proposes algorith-

mic optimizations and hardware optimizations to design an

efficient pure hardware architecture of high-speed polynomial

multiplication core (PMC) on FPGA to accelerate Kyber

KEM. Algorithmic optimizations include modular reduction

and efficient NTT computation. The hardware optimizations

are achieved by designing a reconfigurable butterfly core (BF),

judicious rearrangement of the sequence of the operations to

leverage pipelining and parallelism at multiple layers within

each unit’s implementation.

The contributions and novelties of this paper are as follows:

1) We propose a hardware-friendly modular reduction al-

gorithm, which requires few resources without the ad-

ditional cost of memory utilization. Reductions are only

carried out after multiplications to avoid occupying other

resources.

2) We propose an improved reconfigurable hardware archi-

tecture for NTT and INTT with highly efficient mod-

ular reduction. This reconfigurability supporting both

decimation-in-frequency (DIF) and decimation-in-time

(DIT) NTT algorithm avoids utilizing additional re-

sources for the same computations while reduces the

pre-processing cost of NTT and post-processing cost of

INTT. The proposed architecture significantly reduces

the overall area and memory consumption with no

impact on performance.

3) We implement a parameterized design of the NTT

module using VHDL and prototype it on an Artix-7

FPGA. Our NTT core shows an efficiency improvement

u

v

(u+ v) mod q

(u- v) mod q

u

v

(u+ v) mod q

(u- v) mod q

CT Butterfly
u

v

(u+ v) mod q

(u- v) mod q

CT Butterfly

u

v

(u+v) mod q

(u-v) mod q

u

v

(u+v) mod q

(u-v) mod q

GS Butterfly
u

v

(u+v) mod q

(u-v) mod q

GS Butterfly

n
0

n
0

n
2

n
2

n
0

n
1

n
2

n
3

n
0

Stage 0 Stage 1 Stage 2

NTTCT

n
0

n
0

n
0

s(0)

s(1)

s(2)

s(3)

s(4)

s(6)

s(7)

s(5)

s(0)

s(1)

s(2)

s(3)

s(4)

s(6)

s(7)

s(5)

â(0)

â(4)

â(2)

â(6)

â(1)

â(3)

â(7)

â(5)

â(0)

â(4)

â(2)

â(6)

â(1)

â(3)

â(7)

â(5)

n
-0

n
-1

n
-2

n
-3

n
-0

n
-2

n
-0

n
-2

n
-0

n
-0

n
-0

n
-0

Stage 0 Stage 1 Stage 2

INTTGS
t(0)

t(1)

t(2)

t(3)

t(4)

t(6)

t(7)

t(5)

t(0)

t(1)

t(2)

t(3)

t(4)

t(6)

t(7)

t(5)

Figure 2. An 8-point NTT-based polynomial multiplication: (Left) Dataflow graph including CT butterfly-based NTT, point-wise multiplication, and GS
butterfly-based INTT. Polynomial â is in NTT domain and s and t are in normal domain. (Right) CT and GS butterfly configurations.

by 44% with at least 25% and 80% fewer Slice and

BRAM resource utilization.

4) We propose a high-performance coprocessor architecture

for lattice-based public-key cryptography with Kyber

KEM as a case study. Our result utilizes the proposed

high-speed NTT core and outperforms all reported im-

plementations by reducing the total time.

The rest of the paper is organized as follows. In Section II,

we discuss the preliminaries. In Section III, our proposed

algorithms and architectures are discussed. The details of

FPGA implementations are provided in Section IV. We discuss

our results and compare to the counterparts in Section V.

Finally, we conclude the paper in Section VI.
II. PRELIMINARIES

In this section, Kyber protocols and relevant mathematical

background are briefly described.
A. The Kyber Protocol

Kyber is an IND-CCA secure KEM [34], including three

algorithms, i.e., key generation, encryption, and decryption.

In key generation, a matrix A and a secret key s are sampled

from a uniform and binomial distribution, respectively. Then

a public key is computed by multiplication between A and

s in the NTT domain and adding noise to the product. In

encryption, a message m should be added to the product of

the public key and a sampled random r in the normal domain

to generate a vector v. Additionally, another polynomial mul-

tiplication is performed between r and uniform distribution to

compute matrix u. The encryption output, called ciphertext ct,
is composed of compression of u and v, while the message

can then be decrypted by recovering an approximation of v
by computing the product of secret key and u.

All polynomials in the Kyber scheme have 256 coefficients

over k-dimensional vectors, where k = 2, 3, 4 indicates the

three different post-quantum security levels. Kyber uses these

functions to construct a Chosen Plaintext Attack (CPA) secure

public-key encryption scheme. A CCA-secure KEM can be

constructed using an adapted Fujisaki-Okamoto transformation

[35]. For details, we refer interested readers to [2].
B. Polynomial Multiplication

Polynomial multiplication is the bottleneck of lattice-based

cryptography, which can either be done using NTT or school-

book polynomial multiplication algorithm. The former can

be exploited to compute polynomial multiplication efficiently

over a polynomial ring Zq[X]/ 〈Xn + 1〉. The NTT is a

generalization of a fast Fourier transform (FFT) defined in

a finite field. Let f be a polynomial of degree n, where

f =
∑n−1

i=0 fiX
i and fi ∈ Zq , and ωn be n-th primitive

root of unity such that ωn
n = 1 mod q. The forward NTT is

defined by f̂ = NTT (f), such that f̂i =
∑n−1

j=0 fjω
ij
n mod q.

Furthermore, the inverse NTT is shown by f = INTT (f̂),
such that fi = n−1

∑n−1
j=0 f̂jω

−ij
n mod q. An NTT-based

polynomial multiplication between f and g can be performed

such that f.g = INTT(NTT(f) ◦ NTT(g)).
To avoid applying the NTT of length 2n with n zero padding

of inputs, NWC [5] is proposed at the cost of pre-processing

of NTT and post-processing of INTT. Let ψ =
√
ωn be a

primitive 2n-th root of unity. Pre-processing of NTT includes

multiplication between the coefficients of the input polynomi-

als and ψi, while the post-processing of INTT is multiplication

between the coefficients of the output polynomial and ψ−i.

NTT computation can be implemented by CT or GS butter-

fly. The bit-reverse function is the bit-wise reversal of the bi-

nary representation of the coefficient index. By performing CT

butterfly for NTT and GS for INTT can avoid the bit-reverse

permutation [8]. Fig. 2 illustrates an 8-point NTT-based mul-

tiplication employing both CT and GS butterfly operations.

In order to perform point-wise multiplication in Kyber, we

have to compute 128 degree-2 polynomial multiplications

such that (âj,2i + âj,2i+1X) · (ŝ2i + ŝ2i+1X) = (âj,2iŝ2i +

âj,2i+1ŝ2i+1ω
2br7(i)+1
n) + (âj,2iŝ2i+1 + âj,2i+1ŝ2i)X , where

br7 is the bit reversal function.
C. Modular Reduction

Different modular reductions can be implemented in butter-

fly core, including Barrett reduction and Montgomery reduc-

tion. A variant of Montgomery reduction was introduced by

[8], benefiting from a special form of prime q = k · 2m + 1.

This method includes two functions, i.e., KRED and KRED-

2X, which take any integer C and return an integer D such

that D ≡ k · C mod q and D ≡ k2 · C mod q, respectively.

However, we can eliminate the extra factor of ks with s ∈
{1, 2} by replacing k−s ·ωij

n instead of ωij
n in NTT algorithm.

Although these functions do not compute the exact value of

C mod q, they can close the output range to the exact value.

Algorithm 1 Proposed K2-RED Reduction Algorithm

Input: A binary number C = (c23, . . . , c0)2, k = 13, m = 8,

q = 3329 = k · 2m + 1
Output: C

′′
= k2C mod q

Step 1:

1: Cl = (c7, . . . , c0)2
2: Ch = (c23, . . . , c8)2
3: C

′ ← k · Cl − Ch

Step 2:

4: C
′
l = (c

′
7, . . . , c

′
0)2

5: C
′
h = (c

′
15, . . . , c

′
8)2

6: C
′′ ← k · C ′

l − C
′
h

7: return C
′′

In Kyber with q = 3329, we have k = 13 and m = 8. These

functions do not need any multiplications in hardware and can

be achieved by shifter and adder.

III. PROPOSED ARCHITECTURE FOR HIGH-SPEED

POLYNOMIAL MULTIPLIER

A. Modular Reduction

Implementing KRED and KRED-2X requires to store k−1 ·
ωij
n and k−2 ·ωij

n in ROM. Furthermore, the KRED-2X returns

k2 · C0 − k · C1 + C2 where C0, C1, and C2 are the m-bit

chunks of input C. Thus, for k = 13 it needs 5 shifting and 7

additions to output a 16-bit data. However, it allows output to

grow up to 32 bits. Hence, we propose K2-RED reduction,

a modified version of the KRED algorithm, presented in

Algorithm 1. It includes two steps of performing KRED,

so its output is k2 · C mod q. This reduction needs 4 shift

and 6 addition operations and keeps output width to 12 bits.

Furthermore, we do not need to implement another reduction

unit in the butterfly core by implementing this reduction

after multiplication, and the required memory is halved. Fig.

3 shows the reduction architecture of a 24-bit input using

Algorithm 1 to compute a 12-bit output.

B. Reconfigurable Butterfly Core

To avoid the bit-reverse cost in polynomial multiplication,

two different butterfly configurations, i.e., CT and GS, are

required for NTT and INTT, respectively. Hence, a recon-

figurable butterfly core is proposed to support both CT and

GS operations and reduce required hardware resources. We

implement a 2 × 2 butterfly core to merge two layers of

NTT/INTT and perform two butterfly operations in each layer.

The proposed architecture for PMC is depicted in Fig. 3

employing four butterfly cores. Each butterfly core includes

a multiplication, a modular reduction, an addition, and a

subtraction, while there are also some registers to balance

the pipeline latency in different configurations. The signal

mode chooses between NTT and INTT operations. It also

supports point-wise multiplication, polynomial addition, and

polynomial subtraction employing an additional control logic

which is not shown in Fig. 3 for brevity. When mode is

set to 0, the butterfly works in CT configuration in the

NTT computation and computes u + vω and u − vω. The

--

× ×

0

1

0

1
0

1

0

1

01

0
1
2

0
1
2

K2-REDK2-RED

u

v

u
u+v

u+v

v

u-v
(v-u)

u00u01 v00v01

0000

u11 v10v11

u20u21 v20v21

11 10

BF data out 4(logq+1)

4(logq+1)

data in

data out

00
10

11
ROMROM

00
10

11
ROM

u10

c8 c7 c0......

ClCh

Cl«2 ClCl«3Ch

c 15 c 8 c 7 c 0......

C lC h

C l«2 C lC l«3C h

c 11 ...

++

c 0

c23

mode

NTT
RAM

n/4 addr_aaddr_a
addr_baddr_b
writewrite

n/4

BF
data out

B
uf

fe
r (

7)

B
uf

fe
r (

6)

B
uf

fe
r (

5)

B
uf

fe
r (

4)

Figure 3. Proposed polynomial multiplication architecture employing 2×2
reconfigurable butterfly cores and K2-RED reduction

butterfly cores are reconfigured when mode = 1 for GS in

INTT operation, while its output is manipulated compared

to standard GS to reduce required memory. The proposed

architecture supports both even or odd numbers of layers

employing pipeline stages. Hence, to support an odd number

of layers, mode is set to 2 for the first butterfly row in the

last layer of computation to only pass the data. The proposed

NTT algorithm is shown in Algorithm 2 for even layers.

In each cycle, four coefficients are read from NTT RAM

to fed cores, and their outputs are buffered in four serial-in,

parallel-out shift registers with different lengths. The results

are written back to the NTT RAM sequentially. The address

and data flow of NTT RAM for read and write operation in

every clock cycle are given in Fig. 4 for n = 128. After

4 cycles, the first buffer is full, and 4 coefficients can be

stored in the RAM. The same scenario is performed after one

cycle for the second and then for the third and fourth buffer,

and its first 4-coefficients will be stored. Each round of NTT

includes n
4 reading and storing while there are fully pipelined

to increase throughput. The pipeline latency between read and

write sequences consists of 2 cycles for reading from RAM, 8

cycles for two butterfly operations, and 4 cycles for buffering

the results in registers. Furthermore, to avoid any memory

conflict, we consider 6 idle cycles between each round.

The required twiddle factors for NTT are stored in a ROM.

Based on the symmetry property of twiddle factors in NTT and

INTT, i.e., ωi
n and ω−i

n respectively, we have ω−i
n = −ωn−i

n .

Algorithm 2 Proposed NTT Algorithm Based on Cooley-

Tukey Butterfly

Input: a polynomial a(x) ∈ Zq[X]/ 〈Xn + 1〉, n-th primitive

root of unity ωn ∈ Zq , n = 2l

Output: a(x) = NTTωn(a) ∈ Zq[X]/ 〈Xn + 1〉
1: for (s = 0, s < log(n), s = s+ 2) do
2: m = 2s

3: t = t 	 2
4: for (i = 0, to i < m, i++) do
5: for (j = 4i · t, j < 4i · t+ t, j ++) do
6: u00 ← aj , v00 ← aj+t, u01 ← aj+2t, v01 ← aj+3t

7: ω00 ← ψk−2 [m+ i]
8: (u10, u11) ← BF_CT (u00, v00, ω00)
9: (v10, v11) ← BF_CT (u01, v01, ω00)

10: ω10 ← ψk−2 [2× (m+ i)], ω11 ← ψk−2 [2× (m+ i) + 1]

11: (u20, u21) ← BF_CT (u10, v10, ω10)
12: (v20, v21) ← BF_CT (u11, v11, ω11)
13: aj ← u20, aj+t ← v20,aj+2t ← u21, aj+3t ← v21
14: end for
15: end for
16: end for
17: return a(x)

Hence, to reduce the required memory, we can use NTT

twiddle factors for INTT by (i) reversing the order of reading

ROM, and (ii) computing v − u instead of u − v in GS

configuration. Our proposed architecture can perform NTT and

INTT operations in around n
8 logn and n

8 (logn+1) cycles for

even and odd number of layers, respectively.

C. Area/Performance Trade-offs

The main goal of the proposed architecture is to achieve

high-speed computation employing small area requirements.

However, we can target different area/performance trade-

offs by increasing the number of PMC, taking advantage of

polynomial vector structure in the Kyber algorithm. Since

NTT/INTT can be computed for odd and even coefficients

of each polynomial in Kyber separately, two PMC can be

implemented for each polynomial vector. Hence, for Kyber-

512 having 2 polynomial vectors, increasing the number of

implemented PMC from 1 to 2 or 4 can drastically reduce to

a half or a quarter of NTT/INTT latency.

Nevertheless, implementing more PMC needs more band-

width for feeding the butterfly cores and storing their results.

On the other hand, due to the data width limitation for BRAM,

one BRAM cannot support two PMCs. Thus, the number of

utilized BRAM should be matched with PMC to provide the

required bandwidth by implementing more BRAMs in parallel.

IV. ARCHITECTURE OF CRYSTAL-KYBER

The proposed highly optimized architecture for Kyber co-

prosessor can compute all the operations described in the

Kyber protocol. It includes a PMC, Keccak, binomial sam-

pler, rejection sampler, and compress/decompress units. The

architecture of Kyber is designed to perform in constant time.

Table I
IMPLEMENTATION RESULTS FOR DIFFERENT MODULAR REDUCTION

ALGORITHMS

Reduction CPD Area Output
Algorithm [ns] #LUTs #FFs #Slices #DSPs Width

Barrett Reduction 1.34 59 31 26 2 12

Montgomery [19] 2.10 391 382 91 1 121

KRED [19] 1.99 80 47 31 0 161

K2-RED 0.91 54 30 18 0 12
1Our estimation by re-implementing this work.

The Keccak used in SHA3 standard is Keccak-f [1600],

which performs four functions, including SHA3-256, SHA3-

512, SHAKE-128, and SHAKE-256 during KEM. To design a

high-performance architecture, we modify the high-speed core

implementation of the Keccak provided by [36]. It requires

24 clock cycles to execute 24 rounds of the Keccak sponge

function computation. We also develop a dedicated SIPO and

PISO for interfacing with this core in its input and output,

respectively. The SIPO takes data in 64-bit width and delivers

1344-bit data to the Keccak core, while the PISO takes 1344-

bit data and divides it into 21 chunks of 64-bit width.

Since CT configuration is used in NTT, we assume that

the input polynomials are in normal order, while the public

and secret keys are in bit-reverse order. Hence, the point-wise

multiplication works in bit-reverse order in the NTT domain,

and the results are transformed back to the normal domain

with normal order employing GS configuration.

In order to reduce the total cycle, operations are performed

in a parallel fashion. Hence, the latency of samplers can be

entirely absorbed by the Keccak core. To accelerate the KEM

computation, we duplicate PMC to maximize the polynomial

multiplication speed, while NTT/INTT is independently per-

formed for odd and even coefficients.
V. IMPLEMENTATION RESULTS AND COMPARISONS

Our proposed architecture is synthesized with Xilinx Vivado

2019.2 and implemented on a Xilinx Artix XC7A100T-3

FPGA device which is recommended by NIST.
A. Implementation Results of NTT Core

Table I reports implementation results for different alter-

native reduction algorithms for q = 3, 329. As one can see,

our proposed K2-RED algorithm is more compact compared

to other algorithms and maintains the output of 12 bits to

reduce required memory. It also requires half of precomputed

twiddle factors compared with KRED since the latter needs

storing k−1 · ωij
n and k−2 · ωij

n in ROM for reduction.

Table II reports area and time specifications for our PMC

core in NTT and INTT mode. Other state-of-the-art NTT

designs with the merged-layer NTT structure are also listed.

Additionally, we report the results for both Kyber with q =
3, 329, n = 256, and NewHope with q = 12, 289, n = 1024 to

show the superiority of the proposed architecture in different

schemes. For comparison, A × T are reported, where A and

T are the utilized LUT and time in μs, respectively. It should

be noted that we assume the same operating frequency in

computing A × T as our architecture for the works which

do not report frequency. An operating frequency in a limited

range is mostly considered to reduce the required power. Thus,

6

...0 2 4 6 10 8 16 24 1 9

0 8 16 24

27 4 12 ...312315Read

#1

Write

...

Cycle #2 #3 #4 #5 #6 #16 #17 #18

20 ...

...

#32#31#30 #39 #40 #41 #42 #43

19

a96 a64 a32 a0a96 a64 a32 a0

Addr.0 in Round 1 a24 a16 a8 a0a24 a16 a8 a0

Addr.0 in Round 2

27 4 ... 29 14 22 30 ...

Memory configuration at
the beginning of Round 2

0

1

8

31

...
...

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1
...

a57 a49 a41 a33

a103

...

a111a119a127

a24 a16 a8 a0

a25 a17 a9 a1
...

a57 a49 a41 a33

a103

...

a111a119a127

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1
...

a57 a49 a41 a33

a103

...

a111a119a127

Memory configuration at
the beginning of Round 2

0

1

8

31

...
...

a24 a16 a8 a0

a25 a17 a9 a1
...

a57 a49 a41 a33

a103

...

a111a119a127

Memory configuration at
the beginning of Round 1

...

a0a32a64a96

a1a33a65a95

a8a40a72a104

a31a63a95a127

...

0

1

8

31

...
...

0

1

8

31

...
...

Round 1: Performing Stage 1 & 2

Figure 4. Memory Address and Data flow when NTT operation is performed.

Table II
IMPLEMENTATION RESULTS FOR DIFFERENT NTT IMPLEMENTATION ON FPGA

Parameters Work Platform
Butterfly NTT/INTT Freq Time Area Speedup

A×C A×T
Arrangement Cycles [MHz] [μs] #LUTs #FFs #Slices #DSPs #BRAM Ratio

Zhang et al. [7] Artix-7 2 2,8251/2,8251 244 11.58 847 375 - 2 6 1.70 2.4 (45.8%) 9.8 (44.9%)

Xing et al. [15] Zynq-7000 4 2,6882/2,6882 153 5.52 4823 2901 - 8 0 2.58 13.0 (90.0%) 84.7 (93.6%)
n = 1024 Mert et al. [12] Virtex-7 32 200/- 125 1.60 17,188 - - 96 48 0.24 3.4 (61.8%) 27.5 (80.4%)
q = 12, 289 Kuo et al. [17] Zynq-7000 2×2 2,616/- 150 17.44 2832 1381 - 8 10 2.57 7.4 (82.4%) 49.4 (89.1%)

Nguyen et al. [18] Zynq-7000 2×2 2,032/- 188 10.81 898 1117 357 4 10 1.59 1.8 (27.8%) 9.7 (44.3%)
This Work Artix-7 2×2 1,591/1,591 234 6.80 798 715 268 4 2 1.00 1.3 5.4

Fritzmann et al. [26] Zynq-7000 2 1,935/1,930 - - 2908 170 - 9 0 5.97 5.6 (94.6%) 25.3 (95.3%)
Karabulut et al. [13] Virtex-7 1 43,756/- - - 417 462 NA 0 0 135.05 18.2 (98.4%) 82.2 (98.5%)

n = 256 Alkim et al. [20] Artix-7 1 6,868/6,367 59 116.41 - - - - - 79.73 - -
q = 3, 329 Huang et al. [29] Artix-7 2 1,834/- 155 11.83 - - - - - 8.10 - -

Xing et al. [30] Artix-7 2 512/576 161 3.18 1,737 1,167 - 2 3 2.18 0.9 (66.7%) 5.5 (78.2%)
This Work Artix-7 2×2 324/324 222 1.46 801 717 312 4 2 1.00 0.3 1.2

1This number is obtained by adding the reported cycles for the butterfly operations (i.e., 2569 cycles) with n/4 = 256 cycles for the scramble function.
2This number is obtained by adding the reported butterfly cycles (i.e., 1280 cycles) with 1280 and 128 cycles for the scramble function and pre/post-processing.

A×C can be computed for a fair comparison, where C is the

required clock cycles.

The results show our proposed architecture is the fastest and

smallest architecture for n = 1024. Although the work of [17]

and [18] implemented 2 × 2 butterfly structure, they use the

KRED algorithm over a fixed butterfly configuration. Nonethe-

less, our proposed reduction algorithm reduces required re-

sources, especially in terms of occupied BRAM, and increases

the maximum operating frequency. Furthermore, employing

reconfigurable PMC eliminates the bit-reverse function and the

pre-processing and post-processing cost. For instance, [17] and

[18] need 1,330 and 1,324 cycles for only butterfly operations,

respectively, while ours requires 1,320 cycles. In [17], the

reduction unit is implemented by DSP block, which results

in increasing the number of utilized DSP two times that of

ours. Our architecture approximately improves 90% A×T and

reduces 2.57× the total time for NTT computation comapred

to [17]. Although [18] implements the reduction unit without

DSP block, this design needs larger area and more cycles.

Hence, our proposed design achieves 44% A×T improvement

and 1.59× speedup compared to [18].

The work of [7] occupies two butterfly cores and a highly

optimized reduction hardware tailored only for the special

value. However, this approach requires more BRAM and LUT

to implement a low-complexity NTT utilizing 2 DSPs. As a

result, our architecture achieves a speedup factor of 1.70× and

improves A× T by almost 45%.

Our results for Kyber parameters show a significant im-

provement requiring only 1.46 μs. Since Kyber parameters

have been changed during round 2 of the NIST competition,

we only list previous works implementing Kyber v-3 param-

eters for a fair comparison. The work in [26] optimized an

NTT core based on hardware/software approach over RISC-V

architecture, while it works at 45 MHz on the ASIC platform.

If this design runs at the same frequency as ours, its A × T
and total time are 21× and 5.97× greater than our proposed

design. The works in [13] and [20] also presented an NTT

architecture over RISC-V, which requires considerably greater

cycle count, while our optimized design achieves 135.05× and

79.73× speedup, respectively. The FPGA-based design was

proposed in [29] employing Montgomery reduction. The re-

quired hardware resources for the NTT core were not reported;

however, our design reduces the required cycles achieving a

speedup factor of 8.1. In [30], two butterfly cores for even

and odd coefficients are used employing 2 DSPs at the cost

of utilizing 2.17× and 1.63× more LUT and FF. Our result

shows 2.18× faster computing and 78.2% A×T improvement

compared to [30].
B. Implementation Results of CRYSTAL-Kyber

Table III lists the detailed resource consumption, perfor-

mance results, and comparison in terms of A×T for all NIST

security levels. The total time is the required time for a key

encapsulation and a decapsulation (Encaps + Decaps), as the

key generation can be done offline. We utilize 2, 3, and 4

PMCs in our proposed architecture for security levels 1, 3,

and 5, respectively. As one can see, our design requires 10,502

LUTs, 9,859 FFs, 8 DSPs, and 13 BRAMs for NIST security

level 1, performing the Kyber protocol in almost 31 μs.

There are several hardware/software implementations target-

ing Kyber KEM in the literature. However, a direct comparison

is not possible between the listed hardware implementations

due to the varying techniques of different FPGA generations,

targeting different optimization goals, and using different

design methodologies. The work in [9] implemented a config-

urable coprocessor based on a RISC-V architecture that can be

used for multiple lattice-based schemes including Kyber. Its ar-

Table III
FPGA IMPLEMENTATION RESULTS AND COMPARISON WITH STATE-OF-THE-ART

Scheme Work Platform
Area

KeyGen Encaps Decaps Freq Total Time Throughput
A× T

#LUTs #FFs #Slices #DSPs #BRAMs
[CCs] [CCs] [CCs] [MHz] [μs] [KEM/s]

Kyber-512

Basu et al. [25]1 Virtex-7 1,977,896 194,126 NA 0 0 - 31,669 43,018 67 1,115 897 2,214.2 (99.9%)
Banerjee et al. [9] Artix-7 14,975 2,539 4,173 11 14 74,519 131,698 142,309 25 10,960 91 164.4 (99.8%)

Fritzmann et al. [26] Zynq-7000 23,947 10,847 NA 21 32 150,106 193,076 204,843 - - - 47.6 (99.3%)
Alkim et al. [20] Artix-7 1,842 1,634 NA 5 34 710,000 971,000 870,000 59 31,203 32 57.5 (99.4%)

Huang et al. [29]1 Artix-7 88,901 NA 141,825 354 202 - 49,015 68,815 155 760 1,315 67.8 (99.5%)
Xing et al. [30] Artix-7 7,412 4,644 2,126 2 3 3,768 5,079 6,668 161 73 13,705 0.54 (34.0%)
Dang et al. [28] Artix-7 11,864 10,348 3,989 8 15 - 3,025 4,395 210 35 28,301 0.42 (21.4%)

This work Artix-7 10,502 9,859 3,547 8 13 1,882 2,446 3,754 200 31 32,258 0.33

Kyber-768

Banerjee et al. [9] Artix-7 14,975 2,539 4,173 11 14 111,525 177,540 190,579 25 14,725 67 220.5 (99.8%)
Fritzmann et al. [26] Zynq-7000 23,947 10,847 NA 21 32 273,370 325,888 340,418 - - - 79.8 (99.4%)

Huang et al. [29]1 Artix-7 110,260 NA 167,293 292 202 - 77,481 102,113 155 1,159 863 127.7 (99.6%)
Xing et al. [30] Artix-7 7,412 4,644 2,126 2 3 6,316 7,925 10,049 161 112 8,957 0.83 (43.4%)
Dang et al.[28] Artix-7 11,884 10,380 3,984 8 15 - 4,065 5,555 210 46 21,829 0.54 (13.0%)

This work Artix-7 11,783 10,424 3,952 12 14 2,667 3,251 4,805 200 40 24,826 0.47

Kyber-1024

Banerjee et al. [9] Artix-7 14,975 2,539 4,173 11 14 148,547 223,469 240,977 25 18,578 53 278.2 (99.7%)
Fritzmann et al. [26] Zynq-7000 23,947 10,847 NA 21 32 349,673 405,477 424,682 - - - 99.4 (99.2%)

Alkim et al. [20] Artix-7 1,842 1,634 NA 5 34 2,203,000 2,619,000 2,429,000 59 85,559 11 157.6 (99.5%)

Huang et al. [29]1 Virtex-7 132,918 NA 172,489 548 202 - 107,054 135,553 192 1,264 791 167.9 (99.6%)
Xing et al. [30] Artix-7 7,412 4,644 2,126 2 3 9,380 11,321 13,908 161 157 6,381 1.16 (35.3%)
Dang et al. [28] Artix-7 12,183 12,441 4,511 8 15 - 5,785 7,395 210 63 15,933 0.76 (1.3%)

This work Artix-7 13,347 11,639 4,585 16 16 3,459 4,122 6,257 185 56 17,824 0.75
1Different architectures for Encaps and Decaps are used.

chitecture performs almost 91 KEM per second for Kyber-512,

which is 353× slower than our design. Our proposed design

also achieves 99.8% improvements in terms of A×T . In [26],

another RISC-V-based architecture was proposed to accelerate

NTT-based schemes. This design requires 64× more cycles

for encapsulation and decapsulation while consuming 2.3×,

1.1×, 2.6×, and 2.1× more LUTs, FFs, DSPs, and BRAMs,

respectively. Additionally, [20] proposed a RISC-V design

to accelerate Kyber KEM employing customized instructions.

Although the design of [20] is lightweight, its required latency

is significantly greater than ours. Thus, our hardware imple-

mentation of Kyber is around 1,000 times faster and 180 times

more efficient than their hardware/software implementation.

An HLS evaluation was proposed in [25] for Kyber-512

employing different implementations for encapsulation and

decapsulation. However, this approach comes at a considerably

far larger area consumption. Our design achieves almost 7,000

times better A× T compared to HLS-based implementation.

Our design achieves 24.5× faster KEM and improves 99.5%

A×T while occupying 8.4×, 44.2×, and 13.5× fewer LUTs,

DSPs, and BRAMs compared to a pure hardware architecture

in [29], respectively. The high-speed implementation of Kyber

was reported in [28] for two different platforms, i.e., Artix-

7 and Virtex-7. In security level 1, our proposed architecture

reduces 11.4% of total time and improves 21.4% A × T on

the same platform. Besides, our design reduces required cycles

by 16% and 21% in security levels 3 and 5 by implementing

parallel PMCs to accelerate NTT computation. Moreover, our

design has 2.35× and 34% better time and A×T , respectively,

compared to compact design in [30] in security level 1, while

ours utilizes 1.4×, 2.1×, 4×, 4.3× more LUTs, FFs, DSPs,

and BRAMs, respectively.

Table IV lists other PQC scheme results implemented on

the FPGA platform for NIST security level 1. Elkhatib et
al. in [21] implemented a supersingular isogeny-based KEM

performed in 8.8 ms. Howe et al. [37] presented a flexible

FrodoKEM architecture that performs 825 and 710 encap-

sulations and decapsulation. The work of [38] proposed an

Table IV
COMPARISON WITH OTHER PQC SCHEMES IN NIST SECURITY LEVEL 1.

Protocol Platform
Area Freq Time

#LUTs #FFs #Slices #DSPs #BRAMs [MHz] [us]
SIKEp434 [21] Virtex-7 12,818 18,271 5,527 195 32 249.6 8,800
Frodo-640 [37] Artix-7 6,881 5,081 1,947 16 12.5 149 2,621
LightSaber [38] UltraScale+ 23,686 9,805 NA 0 2 150 60

Kyber-512 [Ours] Artix-7 10,502 6,859 3,547 8 15 200 31

instruction-set coprocessor performing Saber in 60 μs.

The experimental result shows that taking advantage of the

proposed PMC to implement lattice-based KEM schemes as

full-hardware architecture results in high-speed and efficient

design. For Kyber KEM, our coprocessor architecture out-

performs all the reported implementations in the literature.

The efficiency of our proposed implementation already has

performance levels comparable to or even significantly better

than pre-quantum algorithms [23], [24], [39].

VI. CONCLUSION

This paper proposed a high-performance and efficient archi-

tecture for NTT-based polynomial multiplication and lattice-

based public-key cryptography coprocessor with Kyber KEM

as a case study. We optimize the implementation of the

NTT core by merging the layers and an efficient reduction

unit by creating a configurable butterfly core. Besides, we

propose a coprocessor architecture that can perform all KEM

operations for Kyber. Overall, our NTT core shows more

than 44% improvement in terms of A × T . The proposed

Kyber coprocessor architecture also performs key generation,

encapsulation, and decapsulation in 9, 12, and 19 μs for a

security level comparable to AES-128, respectively, on an

Artix-7 FPGA.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their

comments. This work is supported in parts by a grant from

NSF-1801341.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symposium on Foundations of Computer
Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pp. 124–
134, 1994.

[2] R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle, “CRYSTALS-
Kyber: Algorithm specification and supporting documentation (version
3.0). submission to the NIST post-quantum cryptography standardization
project,” 2020.

[3] NISTIR 8309, “Status report on the second round of the NIST post-
quantum cryptography standardization process,” National Institute of
Standards and Technology, 2020.

[4] NIST, “Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process,” National Institute of
Standards and Technology, 2016.

[5] T. Pöppelmann and T. Güneysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings, pp. 139–158, 2012.

[6] S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact Ring-LWE cryptoprocessor,” in Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, pp. 371–391, 2014.

[7] N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-complexity
NTT/INTT,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 2, pp. 49–72, 2020.

[8] P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Cryptology and Network
Security - 15th International Conference, CANS 2016, Milan, Italy,
November 14-16, 2016, Proceedings, pp. 124–139, 2016.

[9] U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols
(extended version),” IACR Cryptol. ePrint Arch., vol. 2019, p. 1140,
2019.

[10] Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient Kyber
on FPGAs: A processor for vector of polynomials,” in 25th Asia and
South Pacific Design Automation Conference, ASP-DAC 2020, Beijing,
China, January 13-16, 2020, pp. 247–252, 2020.

[11] A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, M. Becchi, and A. Aysu,
“A flexible and scalable NTT hardware: Applications from homomorphi-
cally encrypted deep learning to post-quantum cryptography,” in 2020
Design, Automation & Test in Europe Conference & Exhibition, DATE
2020, Grenoble, France, March 9-13, 2020, pp. 346–351, 2020.

[12] A. C. Mert, E. Karabulut, E. Öztürk, E. Savas, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Transactions on Computers, pp. 1–1, 2020.

[13] E. Karabulut and A. Aysu, “RANTT: A RISC-V architecture extension
for the number theoretic transform,” in 2020 30th International Confer-
ence on Field-Programmable Logic and Applications (FPL), pp. 26–32,
2020.

[14] T. Fritzmann and J. Sepúlveda, “Efficient and flexible low-power NTT
for lattice-based cryptography,” in IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA,
May 5-10, 2019, pp. 141–150, 2019.

[15] Y. Xing and S. Li, “An efficient implementation of the NewHope key
exchange on FPGAs,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67-I,
no. 3, pp. 866–878, 2020.

[16] C. Du, G. Bai, and X. Wu, “High-speed polynomial multiplier archi-
tecture for Ring-LWE based public key cryptosystems,” in Proceedings
of the 26th edition on Great Lakes Symposium on VLSI, GLVLSI 2016,
Boston, MA, USA, May 18-20, 2016, pp. 9–14, 2016.

[17] P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang, “High performance post-quantum key exchange on
FPGAs,” IACR Cryptology ePrint Archive, p. 690, 2017.

[18] D. T. Nguyen, V. B. Dang, and K. Gaj, “A high-level synthesis approach
to the software/hardware codesign of NTT-based post-quantum cryptog-
raphy algorithms,” in International Conference on Field-Programmable
Technology, FPT 2019, Tianjin, China, December 9-13, 2019, pp. 371–
374, 2019.

[19] D. T. Nguyen, V. B. Dang, and K. Gaj, “High-level synthesis in
implementing and benchmarking number theoretic transform in lattice-
based post-quantum cryptography using software/hardware codesign,” in
Applied Reconfigurable Computing. Architectures, Tools, and Applica-
tions - 16th International Symposium, ARC 2020, Toledo, Spain, April
1-3, 2020, Proceedings [postponed], pp. 247–257, 2020.

[20] E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 3, pp. 219–242, 2020.

[21] R. Elkhatib, R. Azarderakhsh, and M. Mozaffari Kermani, “Highly
optimized montgomery multiplier for SIKE primes on FPGA,” in 27th
IEEE Symposium on Computer Arithmetic, ARITH 2020, Portland, OR,
USA, June 7-10, 2020, pp. 64–71, 2020.

[22] M. Anastasova, R. Azarderakhsh, and M. Mozaffari Kermani, “Fast
strategies for the implementation of SIKE round 3 on ARM Cortex-
M4,” IACR Cryptol. ePrint Arch., vol. 2021, p. 115, 2021.

[23] M. Bisheh Niasar, R. E. Khatib, R. Azarderakhsh, and M. Mozaffari
Kermani, “Fast, small, and area-time efficient architectures for key-
exchange on Curve25519,” in 27th IEEE Symposium on Computer
Arithmetic, ARITH 2020, Portland, OR, USA, June 7-10, 2020, pp. 72–
79, 2020.

[24] M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Ef-
ficient hardware implementations for elliptic curve cryptography over
Curve448,” in Progress in Cryptology - INDOCRYPT 2020 - 21st
International Conference on Cryptology in India, Bangalore, India,
December 13-16, 2020, Proceedings, pp. 228–247, 2020.

[25] K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography- A hardware evaluation study,” IACR Cryptol. ePrint Arch.,
vol. 2019, p. 47, 2019.

[26] T. Fritzmann, G. Sigl, and J. Sepúlveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 239–280, 2020.

[27] G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng,
“VPQC: A domain-specific vector processor for post-quantum cryptog-
raphy based on RISC-V architecture,” IEEE Trans. Circuits Syst. I Regul.
Pap., vol. 67-I, no. 8, pp. 2672–2684, 2020.

[28] V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of round
2 candidates in the NIST post-quantum cryptography standardization
process using hardware and software/hardware co-design approaches,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 795, 2020.

[29] Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-Kyber PQC algorithm through resource reuse,”
IEICE Electronics Express, vol. advpub, 2020.

[30] Y. Xing and S. Li, “A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 2, pp. 328–356, 2021.

[31] L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient
high-speed implementation of Kyber on Cortex-M4,” in Progress in
Cryptology - AFRICACRYPT 2019 - 11th International Conference on
Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings,
pp. 209–228, 2019.

[32] E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimiza-
tions for {R, M} LWE schemes,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2020, no. 3, pp. 336–357, 2020.

[33] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4:
post-quantum crypto library for the ARM Cortex-M4,” 2018.

[34] J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber:
A CCA-secure module-lattice-based KEM,” in 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United
Kingdom, April 24-26, 2018, pp. 353–367, 2018.

[35] E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pp. 537–554, 1999.

[36] G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, and G. V. Assche,
“Keccak in VHDL,” 2020.

[37] J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, “Exploring
parallelism to improve the performance of frodokem in hardware.”
Cryptology ePrint Archive, Report 2021/155, 2021.

[38] S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,” IACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 443–466,
2020.

[39] M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Area-
time efficient hardware architecture for signature based on Ed448,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1–1, 2021.

