2021 IEEE 28th Symposium on Computer Arithmetic (ARITH) | 978-1-6654-2293-2/21/$31.00 ©2021 IEEE | DOI: 10.1109/ARITH51176.2021.00028

2021 IEEE 28th Symposium on Computer Arithmetic (ARITH)

High-Speed NTT-based Polynomial Multiplication
Accelerator for Post-Quantum Cryptography

Mojtaba Bisheh-Niasar

CEECS Department
Florida Atlantic University
Boca Raton, FL
mbishehniasa2019 @fau.edu

Abstract—This paper demonstrates an architecture for accel-
erating the polynomial multiplication using number theoretic
transform (NTT). Kyber is one of the finalists in the third round
of the NIST post-quantum cryptography standardization process.
Simultaneously, the performance of NTT execution is its main
challenge, requiring large memory and complex memory access
pattern. In this paper, an efficient NTT architecture is presented
to improve the respective computation time. We propose several
optimization strategies for efficiency improvement targeting dif-
ferent performance requirements for various applications. Our
NTT architecture, including four butterfly cores, occupies only
798 LUTs and 715 FFs on a small Artix-7 FPGA, showing more
than 44% improvement compared to the best previous work.
We also implement a coprocessor architecture for Kyber KEM
benefiting from our high-speed NTT core to accomplish three
phases of the key exchange in 9, 12, and 19 us, respectively,
operating at 200 MHz.

Index Terms—FPGA, hardware architecture, Kyber, lattice-
based cryptography, NTT, post-quantum cryptography.

I. INTRODUCTION

The security of classical public-key cryptosystems relies
on the underlying NP-hard problems like integer factoriza-
tion, discrete logarithm, and elliptic curve discrete logarithm.
However, these problems can be solved when a large-scale
quantum computer is build using quantum algorithms such
as Shor’s algorithm [1]. Hence, the National Institute of
Standards and Technology (NIST) started a post-quantum
cryptography standardization process in 2016, noting that
in round-3 of this competition, the four key encapsulation
mechanisms (KEM) finalists, i.e., Classic-McEliece, Kyber,
NTRU, and Saber, were announced in July 2020. Among
all promising candidates, lattice-based cryptography is a very
attractive alternative, mainly because of offering a good trade-
off between security and efficiency.

Kyber KEM [2] is part of the Cryptographic Suite for
Algebraic Lattices (CRYSTALS) and shares a common frame-
work with the Dilithium signature scheme [3]. Kyber bases
its security on the hardness assumptions over module learning
with errors (Module-LWE) and is believed to be quantum-
resistant. The main characteristic of Kyber is polynomial mul-
tiplication over a polynomial ring as Zssz9[X]/ (X% + 1),
providing a significant increase in efficiency. Hence, the most
computationally intensive operation, i.e., matrix-vector and

Reza Azarderakhsh

CEECS Department
Florida Atlantic University
Boca Raton, FL
razarderakhsh@fau.edu

Mehran Mozaffari-Kermani

CSE Department
University of South Florida
Tampa, FL
mehran2 @usf.edu

vector-vector multiplication, can be optimized with the fast
number-theoretic transform (NTT), which can reduce compu-
tational complexity from O(n?) to roughly O(nlogn). Since
the implementation of NTT-based multiplication is still a per-
formance bottleneck in lattice-based cryptography, improving
NTT efficiency has recently received significant attention.

Reducing the computational complexity of polynomial mul-
tiplication is essential for faster key encapsulation and opti-
mization of the resource utilization of the entire cryptosys-
tem. This acceleration of polynomial multiplication would
be challenging for various applications due to their resource
constraints, strict performance, and flexibility requirements.
However, for a widely-deployed cryptosystem, the overall
complexity consisting of the utilized resource and the required
latency will have to be minimal to be standardized by NIST
[4]. To address these challenges, hardware implementation of
the cryptosystem will be critical since it accelerates the core
arithmetic operation occupying limited resources.

Overall, there are two possible strategies to deploy hardware
accelerators: (i) hardware/software co-design approaches and
(ii) pure hardware architectures. Although hardware/software
co-design approaches are more flexible and easier to develop
compared to pure hardware architectures, they may not lead
to the best performance. Most hardware accelerators focus on
the FPGA platform to take advantage of its reconfigurability.
FPGA can provide an appropriate balance between flexibility
and performance, which is especially important for a rapidly
evolving field like PQC.

A. Related Work

There are prominent works to accelerate polynomial mul-
tiplication in the literature. The work of [5] proposed
the negative wrapped convolution (NWC) to eliminate the
overhead of zero padding in the polynomial multiplication
over Zqy[X]/(X™ +1). The authors in [6] introduced low-
complexity NTT by merging the pre-processing of NTT into
butterfly operations. Furthermore, low-complexity INTT is
proposed in [7] to avoid post-processing overhead. Longa
et al. in [8] proposed the KRED and KRED-2X reduction
algorithms to speed up the NTT computation. This work also
reduces post-processing computation of INTT at the cost of

978-1-6654-2293-2/21/$31.00 ©2021 IEEE 94
DOI 10.1109/ARITH51176.2021.00028

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

more memory utilization. Furthermore, employing Cooley-
Tukey (CT) and Gentleman-Sande (GS) butterfly configura-
tions reduces bit-reverse operation, which was implemented
in [9]. The authors in [10] presented a processor benefiting
from polynomial vector structure in the Kyber algorithm to
reduce memory access overhead.

A flexible and scalable NTT architecture was presented
in [11], [12]. Furthermore, the work of [13] implemented a
scalable NTT architecture on RISC-V. In [14], a low-power
NTT was proposed to reduce the required latency.

Although a compact design of NTT employing only one
butterfly core requires few hardware resources, it is too slow
to provide high throughput requirements of high-performance
applications. The work of [15] employed four butterfly cores
for NewHope implementation. However, increasing the num-
ber of butterfly cores in unmerged implementations increases
memory access overhead. Hence, merging NTT layers was
studied in [16] using 2 x 2 butterfly structure. This design was
customized in [17] for NewHope using KRED and KRED-2X
reductions in their proposed architecture. The authors in [18],
[19] used the same architecture for Kyber KEM, employing
the high-level synthesis (HLS) approach. Implementing KRED
and KRED-2X modular reductions increases the performance
in software platforms, while it doubles the occupied resources
in hardware. Furthermore, the required memory for the pre-
computed values is increased to store two sets of constants.
Additionally, the authors in [20] implemented 3-layer merged
NTT for NewHope by RISC-V ISA features, while they
claimed using this method for Kyber cannot improve effi-
ciency. The prior hardware NTT designs have so far been
fixed in throughput. Furthermore, since the same butterfly
configurations are used for both NTT and INTT, a bit-reverse
function is required.

Implementing Ring-LWE has been increased since it offers
high-performance and compact architecture compared to both
PQC schemes [21], [22] and even pre-quantum cryptosystems
[23], [24]. Although many efforts towards the HLS [25]
and the hardware/software co-design implementation of PQC
accelerators have been made [9], [20], [26], [27], there are
merely a few developed pure hardware architectures for Kyber
KEM. The first hardware implementation of Kyber is reported
in [28], employing an RTL-based methodology providing
good performance and smaller area consumption compared
to the HLS-based approach. Furthermore, the authors in [29]
proposed an architecture of Kyber, which heavily relies on
BlockRAM primitives between components. Recently, the
work of [30] implemented a compact FPGA-based architecture
occupying only 3 BRAMs.

Fig. 1 shows a performance and resource utilization compar-
ison between software, hardware/software, and pure hardware
implementations of Kyber. Software benchmarking [31], [32],
[33] reports 60-80% of the overall required cycle for hashing
and sampling while hardware/software accelerators can reduce
it. However, Keccak latency can be hidden by pure hardware
design when it works in a parallel fashion with the NTT
core. A wide range of NTT computation (25-90%) has been

95

Time(s)

e
=)
-t 4
®
- |
<
<
1] 5k 10k 15k 20k
I Keccak IEINTT [IControl
Figure 1. Performance (in logio) and resource utilization comparison

in three different Kyber implementation approaches: software (SW), hard-
ware/software (HW/SW), and hardware (HW). Kyber architecture is break-
down into three main cores, including Keccak (hashing and sampling), NTT
(polynomial multiplication), and Control (controller and all other required
functions).

reported in the literature for the hardware/software approach
since different optimization perspectives have been targeted.
Therefore, implementation gaps are identified in accelerating
and compacting the NTT in pure hardware architecture to
reduce the required time and resources.

B. Contributions

Polynomial multiplication computations take a significant
portion of Kyber KEM latency on hardware implementation.
Therefore, to improve the efficiency of Kyber, one should in-
crease efficiency on the NTT core, providing higher throughput
using fewer hardware resources. This paper proposes algorith-
mic optimizations and hardware optimizations to design an
efficient pure hardware architecture of high-speed polynomial
multiplication core (PMC) on FPGA to accelerate Kyber
KEM. Algorithmic optimizations include modular reduction
and efficient NTT computation. The hardware optimizations
are achieved by designing a reconfigurable butterfly core (BF),
judicious rearrangement of the sequence of the operations to
leverage pipelining and parallelism at multiple layers within
each unit’s implementation.

The contributions and novelties of this paper are as follows:

1) We propose a hardware-friendly modular reduction al-
gorithm, which requires few resources without the ad-
ditional cost of memory utilization. Reductions are only
carried out after multiplications to avoid occupying other
resources.

We propose an improved reconfigurable hardware archi-
tecture for NTT and INTT with highly efficient mod-
ular reduction. This reconfigurability supporting both
decimation-in-frequency (DIF) and decimation-in-time
(DIT) NTT algorithm avoids utilizing additional re-
sources for the same computations while reduces the
pre-processing cost of NTT and post-processing cost of
INTT. The proposed architecture significantly reduces
the overall area and memory consumption with no
impact on performance.

We implement a parameterized design of the NTT
module using VHDL and prototype it on an Artix-7
FPGA. Our NTT core shows an efficiency improvement

2)

3)

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

: NTTcr : 4(0) INTT s

TN L NI K e TN
AV X o TXR e
s(2) o> E - E O E = E ! @ (u-mv) mod ¢
5(3) »% Em"",/\t E(u‘:><: :((S})V:><mu" E ,/Km,.’ E

o ! ! a(l) i i
(4) o> ; T @ ; ;
:(5)] AC/XX\‘ \/ m><: o f><mnz | \[| uGSButte P
s(6) »M /* E“’"z >< E) i :><Xm.."’ i x [
s(7) O,L“,/ \ Em"A E‘“w;><: é&:><m"" i Am,.' i " @ (u-v)m mod g

Stage 0 i Stage 1 i Stage 2 Stage 0 i Stage 1 i

Figure 2. An 8-point NTT-based polynomial multiplication: (Left) Dataflow graph including CT butterfly-based NTT, point-wise multiplication, and GS
butterfly-based INTT. Polynomial & is in NTT domain and s and ¢ are in normal domain. (Right) CT and GS butterfly configurations.

by 44% with at least 25% and 80% fewer Slice and
BRAM resource utilization.

We propose a high-performance coprocessor architecture
for lattice-based public-key cryptography with Kyber
KEM as a case study. Our result utilizes the proposed
high-speed NTT core and outperforms all reported im-
plementations by reducing the total time.

The rest of the paper is organized as follows. In Section II,
we discuss the preliminaries. In Section III, our proposed
algorithms and architectures are discussed. The details of
FPGA implementations are provided in Section IV. We discuss
our results and compare to the counterparts in Section V.

Finally, we conclude_the I%ager in Section VI.
II. LIMINARIES

4)

In this section, Kyber protocols and relevant mathematical

bacl;%round are briefly described.
A. The Kyber Protocol

Kyber is an IND-CCA secure KEM [34], including three
algorithms, i.e., key generation, encryption, and decryption.
In key generation, a matrix A and a secret key s are sampled
from a uniform and binomial distribution, respectively. Then
a public key is computed by multiplication between A and
s in the NTT domain and adding noise to the product. In
encryption, a message m should be added to the product of
the public key and a sampled random r in the normal domain
to generate a vector v. Additionally, another polynomial mul-
tiplication is performed between r and uniform distribution to
compute matrix u. The encryption output, called ciphertext ct,
is composed of compression of u and v, while the message
can then be decrypted by recovering an approximation of v
by computing the product of secret key and u.

All polynomials in the Kyber scheme have 256 coefficients
over k-dimensional vectors, where k = 2,3,4 indicates the
three different post-quantum security levels. Kyber uses these
functions to construct a Chosen Plaintext Attack (CPA) secure
public-key encryption scheme. A CCA-secure KEM can be
constructed using an adapted Fujisaki-Okamoto transformation

%35}.) For details, we refer interested readers to [2].
. Polynomial Multiplication

Polynomial multiplication is the bottleneck of lattice-based
cryptography, which can either be done using NTT or school-
book polynomial multiplication algorithm. The former can

96

be exploited to compute polynomial multiplication efficiently
over a polynomial ring Z,[X]/(X™ +1). The NTT is a
generalization of a fast Fourier transform (FFT) defined in
a finite field. Let f be a polynomial of degree n, where
f Z;.:Ol ;X" and f; € Z, and w, be n-th primitive
root of unity such that w] = 1 mod ¢g. The forward NTT is
defined by f = NTT(f). such that f; = -/ fjwi/ mod q.
Furthermore, the inverse NTT is shown by f = INTT(f),
such that f; = n~ 'Y fjw;” mod g. An NTT-based
polynomial multiplication between f and g can be performed
such that f.g = INTT(NTT(f) o NTT(g)).

To avoid applying the NTT of length 2n with n zero padding
of inputs, NWC [5] is proposed at the cost of pre-processing
of NTT and post-processing of INTT. Let ¢ = /w, be a
primitive 2n-th root of unity. Pre-processing of NTT includes
multiplication between the coefficients of the input polynomi-
als and %, while the post-processing of INTT is multiplication
between the coefficients of the output polynomial and v~

NTT computation can be implemented by CT or GS butter-
fly. The bit-reverse function is the bit-wise reversal of the bi-
nary representation of the coefficient index. By performing CT
butterfly for NTT and GS for INTT can avoid the bit-reverse
permutation [8]. Fig. 2 illustrates an 8-point NTT-based mul-
tiplication employing both CT and GS butterfly operations.
In order to perform point-wise multiplication in Kyber, we
have to compute 128 degree-2 polynomial multiplications
such that (&jygi —I—‘flj,giJrlX) . (§21 + §2i+1X) = (dj’gi§2i +
&j,2i+1§2i+1wibr7(z>+1) + (Gj2i82i41 + Gj2:+152:) X, Where
br7 is the bit reversal function.

C. Modular Reduction

Different modular reductions can be implemented in butter-
fly core, including Barrett reduction and Montgomery reduc-
tion. A variant of Montgomery reduction was introduced by
[8], benefiting from a special form of prime ¢ = k- 2™ + 1.
This method includes two functions, i.e., KRED and KRED-
2X, which take any integer C' and return an integer D such
that D = k- C mod ¢ and D = k? - C mod ¢, respectively.
However, we can eliminate the extra factor of £° with s €
{1,2} by replacing k~*-w¥ instead of w¥ in NTT algorithm.
Although these functions do not compute the exact value of
C mod ¢, they can close the output range to the exact value.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1 Proposed K>-RED Reduction Algorithm
.,CQ)Q, k= 13, m = 8,

Input: A binary number C = (ca3, . .
g=3320=k-2m +1
Output: C = k?C mod ¢

Step 1:
1: Cl = (67,.. .,Co)g
2: C}/l = (0237 .. .7C8)2
3:.C «+k-C—Cy,
Step 2:
4: Cl: = (c%,...,cé,)z
5: Ch, = (135, - .,08)2
6:C «—k-C, -C)
7: return C

In Kyber with ¢ = 3329, we have £ = 13 and m = 8. These
functions do not need any multiplications in hardware and can
be achieved by shifter and adder.
III. PROPOSED ARCHITECTURE FOR HIGH-SPEED
POLYNOMIAL MULTIPLIER

A. Modular Reduction

Implementing KRED and KRED-2X requires to store k! -
wid and k=2-w in ROM. Furthermore, the KRED-2X returns
k% . Cy—k-Cy + Cy where Cy, Cy, and Cy are the m-bit
chunks of input C. Thus, for kK = 13 it needs 5 shifting and 7
additions to output a 16-bit data. However, it allows output to
grow up to 32 bits. Hence, we propose K>-RED reduction,
a modified version of the KRED algorithm, presented in
Algorithm 1. It includes two steps of performing KRED,
so its output is k? - C' mod ¢. This reduction needs 4 shift
and 6 addition operations and keeps output width to 12 bits.
Furthermore, we do not need to implement another reduction
unit in the butterfly core by implementing this reduction
after multiplication, and the required memory is halved. Fig.
3 shows the reduction architecture of a 24-bit input using
Algorithm 1 to compute a 12-bit output.

B. Reconfigurable Butterfly Core

To avoid the bit-reverse cost in polynomial multiplication,
two different butterfly configurations, i.e., CT and GS, are
required for NTT and INTT, respectively. Hence, a recon-
figurable butterfly core is proposed to support both CT and
GS operations and reduce required hardware resources. We
implement a 2 x 2 butterfly core to merge two layers of
NTT/INTT and perform two butterfly operations in each layer.

The proposed architecture for PMC is depicted in Fig. 3
employing four butterfly cores. Each butterfly core includes
a multiplication, a modular reduction, an addition, and a
subtraction, while there are also some registers to balance
the pipeline latency in different configurations. The signal
mode chooses between NTT and INTT operations. It also
supports point-wise multiplication, polynomial addition, and
polynomial subtraction employing an additional control logic
which is not shown in Fig. 3 for brevity. When mode is
set to 0, the butterfly works in CT configuration in the
NTT computation and computes u + vw and v — vw. The

97

data out

4(logq+1) f

Vo

NTT |

RAM

=

n

ib addr_a
"4 >/ addr b vir

—> write

=

n

data in BF

data out

ROM

Buffer (7)

Lex | [e[e | [o]
Gy Ci3 Ci2 C
Y
| C"/s ‘ ‘ L"x C’7 ‘ . ‘ c'” |
C, C3 Cu2 c,
| ¢ ‘ ‘ 'y |

Figure 3. Proposed polynomial multiplication architecture employing 2x2
reconfigurable butterfly cores and K>-RED reduction

butterfly cores are reconfigured when mode = 1 for GS in
INTT operation, while its output is manipulated compared
to standard GS to reduce required memory. The proposed
architecture supports both even or odd numbers of layers
employing pipeline stages. Hence, to support an odd number
of layers, mode is set to 2 for the first butterfly row in the
last layer of computation to only pass the data. The proposed
NTT algorithm is shown in Algorithm 2 for even layers.

In each cycle, four coefficients are read from NTT RAM
to fed cores, and their outputs are buffered in four serial-in,
parallel-out shift registers with different lengths. The results
are written back to the NTT RAM sequentially. The address
and data flow of NTT RAM for read and write operation in
every clock cycle are given in Fig. 4 for n = 128. After
4 cycles, the first buffer is full, and 4 coefficients can be
stored in the RAM. The same scenario is performed after one
cycle for the second and then for the third and fourth buffer,
and its first 4-coefficients will be stored. Each round of NTT
includes % reading and storing while there are fully pipelined
to increase throughput. The pipeline latency between read and
write sequences consists of 2 cycles for reading from RAM, 8
cycles for two butterfly operations, and 4 cycles for buffering
the results in registers. Furthermore, to avoid any memory
conflict, we consider 6 idle cycles between each round.

The required twiddle factors for NTT are stored in a ROM.
Based on the symmetry property of twiddle factors in NTT and

INTT, i.e., w! and w;* respectively, we have w,? = —wn™¢

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

Algorithm 2 Proposed NTT Algorithm Based on Cooley-

Tukey Butterfly

Input: a polynomial a(x) € Z,[X]/ (X,, + 1), n-th primitive

root of unity w,, € Zg, n = 2!

Output: a(z) = NTT,,, (a) € Z,[X]/ (X, + 1)

1: for (s =0, s < log(n), s =s+2) do

m = 2°

t=t>2

for 1 =0,t0 i <m, i+ +) do

for (j =4i-t,j<4i-t+t, j++) do

Upo < Aj, Voo < Qj4t, U1 £ Aj42t, Vo1 < Aj43¢
woo < Yp—2[m +1]
(w10, u11) < BF_CT(ugo, voo, woo)

9: (U107U11) <— BF_C’T(uOl,sz,woo)

10: wio Yp—2[2 X (M ~+19)], wi1 Yp—2[2 x (m + 1) + 1]
11: (u20, u21) < BF_CT(u19, v10,w10)

12: ('UQ(),’UQl) — BF_CT(’U,H,’UH,MH)

13: Qj £ U0, Aj4t < V20,0542t < U21, Q43¢ < V21
14: end for

15: end for

16: end for

17: return a(z)

Hence, to reduce the required memory, we can use NTT
twiddle factors for INTT by (i) reversing the order of reading
ROM, and (ii) computing v — u instead of v — v in GS
configuration. Our proposed architecture can perform NTT and
INTT operations in around glogn and % (logn + 1) cycles for
even and odd number of layers, respectively.

C. Area/Performance Trade-offs

The main goal of the proposed architecture is to achieve
high-speed computation employing small area requirements.
However, we can target different area/performance trade-
offs by increasing the number of PMC, taking advantage of
polynomial vector structure in the Kyber algorithm. Since
NTT/INTT can be computed for odd and even coefficients
of each polynomial in Kyber separately, two PMC can be
implemented for each polynomial vector. Hence, for Kyber-
512 having 2 polynomial vectors, increasing the number of
implemented PMC from 1 to 2 or 4 can drastically reduce to
a half or a quarter of NTT/INTT latency.

Nevertheless, implementing more PMC needs more band-
width for feeding the butterfly cores and storing their results.
On the other hand, due to the data width limitation for BRAM,
one BRAM cannot support two PMCs. Thus, the number of
utilized BRAM should be matched with PMC to provide the
required bandwidth by implementing more BRAMs in parallel.

IV. ARCHITECTURE OF CRYSTAL-KYBER

The proposed highly optimized architecture for Kyber co-
prosessor can compute all the operations described in the
Kyber protocol. It includes a PMC, Keccak, binomial sam-
pler, rejection sampler, and compress/decompress units. The
architecture of Kyber is designed to perform in constant time.

98

Table I
IMPLEMENTATION RESULTS FOR DIFFERENT MODULAR REDUCTION

ALGORITHMS
Reduction CPD Area Output
Algorithm [ns] | #LUTs #FFs #Slices #DSPs | Width
Barrett Reduction 1.34 59 31 26 2 12
Montgomery [19] 2.10 391 382 91 1 12!
KRED [19] 1.9 80 47 31 0 16!
K2-RED 0.91 54 30 18 0 12

TOur estimation by re-implementing this work.

The Keccak used in SHA3 standard is Keccak-f[1600],
which performs four functions, including SHA3-256, SHA3-
512, SHAKE-128, and SHAKE-256 during KEM. To design a
high-performance architecture, we modify the high-speed core
implementation of the Keccak provided by [36]. It requires
24 clock cycles to execute 24 rounds of the Keccak sponge
function computation. We also develop a dedicated SIPO and
PISO for interfacing with this core in its input and output,
respectively. The SIPO takes data in 64-bit width and delivers
1344-bit data to the Keccak core, while the PISO takes 1344-
bit data and divides it into 21 chunks of 64-bit width.

Since CT configuration is used in NTT, we assume that
the input polynomials are in normal order, while the public
and secret keys are in bit-reverse order. Hence, the point-wise
multiplication works in bit-reverse order in the NTT domain,
and the results are transformed back to the normal domain
with normal order employing GS configuration.

In order to reduce the total cycle, operations are performed
in a parallel fashion. Hence, the latency of samplers can be
entirely absorbed by the Keccak core. To accelerate the KEM
computation, we duplicate PMC to maximize the polynomial
multiplication speed, while NTT/INTT is independently per-
formed for odd and even coefficients.

V. IMPLEMENTATION RESULTS AND COMPARISONS

Our proposed architecture is synthesized with Xilinx Vivado
2019.2 and implemented on a Xilinx Artix XC7A100T-3
FPGA device which is recommended by NIST.

A. Implementation Results of NTT Core

Table I reports implementation results for different alter-
native reduction algorithms for ¢ = 3,329. As one can see,
our proposed K2-RED algorithm is more compact compared
to other algorithms and maintains the output of 12 bits to
reduce required memory. It also requires half of precomputed
twiddle factors compared with KRED since the latter needs
storing k=1 - w¥ and k=2 - w¥ in ROM for reduction.

Table II reports area and time specifications for our PMC
core in NTT and INTT mode. Other state-of-the-art NTT
designs with the merged-layer NTT structure are also listed.
Additionally, we report the results for both Kyber with ¢ =
3,329, n = 256, and NewHope with ¢ = 12,289, n = 1024 to
show the superiority of the proposed architecture in different
schemes. For comparison, A x T are reported, where A and
T are the utilized LUT and time in pus, respectively. It should
be noted that we assume the same operating frequency in
computing A x T as our architecture for the works which
do not report frequency. An operating frequency in a limited
range is mostly considered to reduce the required power. Thus,

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

Memory configuration at

Round 1: Performing Stage 1 & 2

Memory configuration at

the beginning of Round 1 the beginning of Round 2
0 |an | ags | as | ao | Cycle #1 #2 #3 #4 #5 #6 #16 #17 #18 #30 #31 #32 #30 #40 #41 #42 #43 0 | am|aw| as | a
1 | ags| ags | ass | & | Read 0] 8 ‘ 16 24‘ 1 ‘ 9 ‘ o |27] 4 [12]20 15] 2331 02461 1 | ans | ap| as | a
Write’ s Pipeline Latenc 0|8 |16]24 19027 4| ./ 29[6 | 14|22 30
/ S I AN
8 |ajs|an |agp | ag [K N 8 a57‘ 349‘ ay) ‘ ag
Lo o[2 [: . _
rYTr— o]]
31 |any| ags | a6 | as 2] e 31 [anz|ang|ain|as
Addr.0 in Round 2
Figure 4. Memory Address and Data flow when NTT operation is performed.
Table 1T
IMPLEMENTATION RESULTS FOR DIFFERENT NTT IMPLEMENTATION ON FPGA
. . . Butterfly NTT/INTT Freq Time Area Speedup
Parameters Work Platform |\ - ement Cycles [MHz] [ps] | #LUTs #FFs #Slices #DSPs _#BRAM | Ratio AxC AXT
Zhang et al. [7] Artix-7 2 2825728257 244 11.58 847 375 2 6 1.70 2.4 (458%) | 9.8 (44.9%)
Xing ef al. [15] Zyng-7000 4 2,688%/2,6882 153 552 4823 2901 8 0 2.58 13.0 (90.0%) | 84.7 (93.6%)
n=1024 Mert et al. [12] Virtex-7 32 200/- 125 1.60 | 17,188 - 9 48 0.24 3.4 (61.8%) | 27.5 (80.4%)
q = 12,289 Kuo et al. [17] Zyng-7000 2x2 2,616/- 150 1744 | 2832 1381 - 8 10 2.57 7.4 (82.4%) | 49.4 (89.1%)
Nguyen ef al. [18] | Zyng-7000 2%2 2,032/~ 188 10.81 898 17 357 4 10 1.59 1.8 (27.8%) | 9.7 (44.3%)
This Work Artix-7 2x2 1,591/1,591 234 6.80 798 715 268 4 2 1.00 13 5.4
Fritzmann ef al. [26] | Zyng-7000 2 1,935/1,930 B B 2908 170 B 9 0 597 5.6 (94.6%) | 25.3 (95.3%)
Karabulut er al. [13] Virtex-7 1 43,756/- - - 417 462 NA 0 0 135.05 18.2 (98.4%) | 82.2 (98.5%)
n =256 Alkim ef al. [20] Artix-7 1 6,868/6,367 59 116.41 - - - - 79.73 - -
q=3,329 Huang et al. [29] Artix-7 2 1,834/- 155 11.83 - - - - 8.10 - -
Xing et al. [30] Artix-7 2 512/576 161 3.18 1,737 1,167 - 2 3 2.18 0.9 (66.7%) | 5.5 (78.2%)
This Work Artix-7 2x2 324/324 222 146 801 77 312 4 2 1.00 0.3 12

This number is obtained by adding the reported cycles for the butterfly operations (i.e., 2569 cycles) with n/4 = 256 cycles for the scramble function.
2This number is obtained by adding the reported butterfly cycles (i.e., 1280 cycles) with 1280 and 128 cycles for the scramble function and pre/post-processing.

A x C can be computed for a fair comparison, where C' is the
required clock cycles.

The results show our proposed architecture is the fastest and
smallest architecture for n = 1024. Although the work of [17]
and [18] implemented 2 x 2 butterfly structure, they use the
KRED algorithm over a fixed butterfly configuration. Nonethe-
less, our proposed reduction algorithm reduces required re-
sources, especially in terms of occupied BRAM, and increases
the maximum operating frequency. Furthermore, employing
reconfigurable PMC eliminates the bit-reverse function and the
pre-processing and post-processing cost. For instance, [17] and
[18] need 1,330 and 1,324 cycles for only butterfly operations,
respectively, while ours requires 1,320 cycles. In [17], the
reduction unit is implemented by DSP block, which results
in increasing the number of utilized DSP two times that of
ours. Our architecture approximately improves 90% A x T and
reduces 2.57x the total time for NTT computation comapred
to [17]. Although [18] implements the reduction unit without
DSP block, this design needs larger area and more cycles.
Hence, our proposed design achieves 44% A x T improvement
and 1.59x speedup compared to [18].

The work of [7] occupies two butterfly cores and a highly
optimized reduction hardware tailored only for the special
value. However, this approach requires more BRAM and LUT
to implement a low-complexity NTT utilizing 2 DSPs. As a
result, our architecture achieves a speedup factor of 1.70x and
improves A x T' by almost 45%.

Our results for Kyber parameters show a significant im-
provement requiring only 1.46 pus. Since Kyber parameters
have been changed during round 2 of the NIST competition,
we only list previous works implementing Kyber v-3 param-
eters for a fair comparison. The work in [26] optimized an
NTT core based on hardware/software approach over RISC-V

99

architecture, while it works at 45 MHz on the ASIC platform.
If this design runs at the same frequency as ours, its A x T’
and total time are 21x and 5.97x greater than our proposed
design. The works in [13] and [20] also presented an NTT
architecture over RISC-V, which requires considerably greater
cycle count, while our optimized design achieves 135.05x and
79.73x speedup, respectively. The FPGA-based design was
proposed in [29] employing Montgomery reduction. The re-
quired hardware resources for the NTT core were not reported;
however, our design reduces the required cycles achieving a
speedup factor of 8.1. In [30], two butterfly cores for even
and odd coefficients are used employing 2 DSPs at the cost
of utilizing 2.17x and 1.63x more LUT and FF. Our result
shows 2.18 x faster computing and 78.2% A x T improvement
compared to [30].
B. Implementation Results of CRYSTAL-Kyber

Table III lists the detailed resource consumption, perfor-
mance results, and comparison in terms of A x T for all NIST
security levels. The total time is the required time for a key
encapsulation and a decapsulation (Encaps + Decaps), as the
key generation can be done offline. We utilize 2, 3, and 4
PMCs in our proposed architecture for security levels 1, 3,
and 5, respectively. As one can see, our design requires 10,502
LUTs, 9,859 FFs, 8 DSPs, and 13 BRAMs for NIST security
level 1, performing the Kyber protocol in almost 31 us.

There are several hardware/software implementations target-
ing Kyber KEM in the literature. However, a direct comparison
is not possible between the listed hardware implementations
due to the varying techniques of different FPGA generations,
targeting different optimization goals, and using different
design methodologies. The work in [9] implemented a config-
urable coprocessor based on a RISC-V architecture that can be
used for multiple lattice-based schemes including Kyber. Its ar-

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

Table 1T
FPGA IMPLEMENTATION RESULTS AND COMPARISON WITH STATE-OF-THE-ART

Area

Scheme ‘Work Platform KeyGen Encaps Decaps Freq Total Time Throughput AxT
#LUTs #FFs #Slices #DSPs #BRAMs [ccs) [ccs) [ccsl [MHz]] (KEMJs]
Basu ef al. [25]" Virtex-7 | 1,977,896 194,126 NA 0 0 B 31,669 3018 67 1,115 897 22142 (99.9%)
Banerjee ef al. [9] Artix-7 14,975 2,539 4,173 11 14 74,519 131,698 142,309 25 10,960 91 164.4 (99.8%)
Fritzmann ef al. [26] | Zyng-7000 | 23,947 10,847 NA 21 32 150,106 193,076 204,843 - - - 47.6 (99.3%)
Kyber-512 Alkim ef al. [20] Artix-7 1,842 1,634 NA 5 34 710,000 971,000 870,000 59 31,203 32 57.5 (99.4%)
Huang e al. [29]' Artix-7 88,901 NA 141,825 354 202 - 49,015 68,815 155 760 1315 67.8 (99.5%)
Xing et al. [30] Artix-7 7,412 4,644 2,126 2 3 3,768 5,079 6,668 161 73 13,705 0.54 (34.0%)
Dang et al. [28] Artix-7 11,864 10,348 3989 8 15 - 3,025 4,395 210 35 28,301 0.42 (21.4%)
This work Artix-7 10,502 9,859 3,547 8 13 1,882 2,446 3,754 200 31 32,258 0.33
Banerjee ef al. [9] Artix-7 14975 2,539 2173 T 4 111,525 177,540 190,579 25 14,725 67 220.5 (99.8%)
Fritzmann ef al. [26] | Zyng-7000 | 23,947 10,847 NA 21 32 273370 325888 340418 - - - 79.8 (99.4%)
Kyber-76s | Huang et al. [29]' Artix-7 110,260 NA 167,293 292 202 - 77,481 102,113 155 1,159 863 127.7 (99.6%)
Xing et al. [30] Artix-7 7,412 4,644 2,126 2 3 6,316 7,925 10,049 161 112 8,957 0.83 (43.4%)
Dang er al.[28] Artix-7 11,884 10,380 3,984 8 15 - 4,065 5,555 210 46 21,829 0.54 (13.0%)
This work Artix-7 11,783 10424 3952 12 14 2,667 3,251 4,805 200 40 24,826 0.47
Banerjee e7 al. 0] Artix-7 14,975 2,530 1173 11 i 148547 223,460 240977 25 18,578 53 2782 (99.7%)
Fritzmann et al. [26] | Zyng-7000 | 23,947 10,847 NA 21 32 349,673 405477 424,682 - - - 99.4 (99.2%)
Alkim ef al. [20] Artix-7 1,842 1,634 NA 5 34 2,203,000 2,619,000 2429000 59 85,559 11 157.6 (99.5%)
Kyber-1024 | Huang et al. [29]' Virtex-7 132,918 NA 172,489 548 202 - 107,054 135,553 192 1,264 791 167.9 (99.6%)
Xing ef al. [30] Artix-7 7,412 4,644 2,126 2 3 9,380 11,321 13,908 161 157 6,381 1.16 (35.3%)
Dang et al. [28] Artix-7 12,183 12,441 4511 8 15 - 5,785 7,395 210 63 15,933 0.76 (1.3%)
This work Artix-7 13,347 11,639 4,585 16 16 3,459 4,122 6,257 185 56 17,824 0.75
IDifferent architectures for Encaps and Decaps are used.
chitecture performs almost 91 KEM per second for Kyber-512, Table TV

which is 353 slower than our design. Our proposed design
also achieves 99.8% improvements in terms of A x 7. In [26],
another RISC-V-based architecture was proposed to accelerate
NTT-based schemes. This design requires 64x more cycles
for encapsulation and decapsulation while consuming 2.3,
1.1x, 2.6x, and 2.1x more LUTs, FFs, DSPs, and BRAMs,
respectively. Additionally, [20] proposed a RISC-V design
to accelerate Kyber KEM employing customized instructions.
Although the design of [20] is lightweight, its required latency
is significantly greater than ours. Thus, our hardware imple-
mentation of Kyber is around 1,000 times faster and 180 times
more efficient than their hardware/software implementation.
An HLS evaluation was proposed in [25] for Kyber-512
employing different implementations for encapsulation and
decapsulation. However, this approach comes at a considerably
far larger area consumption. Our design achieves almost 7,000
times better A x 1" compared to HLS-based implementation.

Our design achieves 24.5x faster KEM and improves 99.5%
A x T while occupying 8.4x, 44.2x, and 13.5x fewer LUTs,
DSPs, and BRAMs compared to a pure hardware architecture
in [29], respectively. The high-speed implementation of Kyber
was reported in [28] for two different platforms, i.e., Artix-
7 and Virtex-7. In security level 1, our proposed architecture
reduces 11.4% of total time and improves 21.4% A x T on
the same platform. Besides, our design reduces required cycles
by 16% and 21% in security levels 3 and 5 by implementing
parallel PMCs to accelerate NTT computation. Moreover, our
design has 2.35x and 34% better time and A xT", respectively,
compared to compact design in [30] in security level 1, while
ours utilizes 1.4x, 2.1x, 4x, 4.3x more LUTSs, FFs, DSPs,
and BRAMs, respectively.

Table IV lists other PQC scheme results implemented on
the FPGA platform for NIST security level 1. Elkhatib et
al. in [21] implemented a supersingular isogeny-based KEM
performed in 8.8 ms. Howe et al. [37] presented a flexible
FrodoKEM architecture that performs 825 and 710 encap-
sulations and decapsulation. The work of [38] proposed an

100

COMPARISON WITH OTHER PQC SCHEMES IN NIST SECURITY LEVEL 1.

Protocol Platform Area Freq Time
#LUTs #FFs #Slices #DSPs #BRAMs | [MHz] [us]

SIKEp434 [21] Virtex-7 12,818 18,271 5,527 195 32 249.6 8,800

Frodo-640 [37] Artix-7 6,881 5,081 1,947 16 12.5 149 2,621
LightSaber [38] UltraScale+ | 23,686 9.805 NA 0 2 150 60
Kyber-512 [Ours] Artix-7 10,502 6,859 3,547 8 15 200 31

instruction-set coprocessor performing Saber in 60 us.

The experimental result shows that taking advantage of the
proposed PMC to implement lattice-based KEM schemes as
full-hardware architecture results in high-speed and efficient
design. For Kyber KEM, our coprocessor architecture out-
performs all the reported implementations in the literature.
The efficiency of our proposed implementation already has
performance levels comparable to or even significantly better
than pre-quantum algorithms [23], [24], [39].

VI. CONCLUSION

This paper proposed a high-performance and efficient archi-
tecture for NTT-based polynomial multiplication and lattice-
based public-key cryptography coprocessor with Kyber KEM
as a case study. We optimize the implementation of the
NTT core by merging the layers and an efficient reduction
unit by creating a configurable butterfly core. Besides, we
propose a coprocessor architecture that can perform all KEM
operations for Kyber. Overall, our NTT core shows more
than 44% improvement in terms of A x T. The proposed
Kyber coprocessor architecture also performs key generation,
encapsulation, and decapsulation in 9, 12, and 19 us for a
security level comparable to AES-128, respectively, on an
Artix-7 FPGA.

ACKNOWLEDGMENT

The authors would like to thank the reviewers for their
comments. This work is supported in parts by a grant from
NSF-1801341.

REFERENCES
[1] P. W. Shor, “Algorithms for quantum computation: Discrete logarithms
and factoring,” in 35th Annual Symposium on Foundations of Computer

Science, Santa Fe, New Mexico, USA, 20-22 November 1994, pp. 124—
134, 1994.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

(2]

(3

[t

[5

[6

—

[9

—

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

R. Avanzi, J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky,
J. M. Schanck, P. Schwabe, G. Seiler, and D. Stehle, “CRYSTALS-
Kyber: Algorithm specification and supporting documentation (version
3.0). submission to the NIST post-quantum cryptography standardization
project,” 2020.

NISTIR 8309, “Status report on the second round of the NIST post-
quantum cryptography standardization process,” National Institute of
Standards and Technology, 2020.

NIST, “Submission requirements and evaluation criteria for the post-
quantum cryptography standardization process,” National Institute of
Standards and Technology, 2016.

T. Poppelmann and T. Giineysu, “Towards efficient arithmetic for
lattice-based cryptography on reconfigurable hardware,” in Progress in
Cryptology - LATINCRYPT 2012 - 2nd International Conference on
Cryptology and Information Security in Latin America, Santiago, Chile,
October 7-10, 2012. Proceedings, pp. 139-158, 2012.

S. S. Roy, F. Vercauteren, N. Mentens, D. D. Chen, and I. Verbauwhede,
“Compact Ring-LWE cryptoprocessor,” in Cryptographic Hardware and
Embedded Systems - CHES 2014 - 16th International Workshop, Busan,
South Korea, September 23-26, 2014. Proceedings, pp. 371-391, 2014.
N. Zhang, B. Yang, C. Chen, S. Yin, S. Wei, and L. Liu, “Highly
efficient architecture of NewHope-NIST on FPGA using low-complexity
NTT/INTT,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 2, pp. 49-72, 2020.

P. Longa and M. Naehrig, “Speeding up the number theoretic transform
for faster ideal lattice-based cryptography,” in Cryptology and Network
Security - 15th International Conference, CANS 2016, Milan, Italy,
November 14-16, 2016, Proceedings, pp. 124-139, 2016.

U. Banerjee, T. S. Ukyab, and A. P. Chandrakasan, “Sapphire: A
configurable crypto-processor for post-quantum lattice-based protocols
(extended version),” JACR Cryptol. ePrint Arch., vol. 2019, p. 1140,
2019.

Z. Chen, Y. Ma, T. Chen, J. Lin, and J. Jing, “Towards efficient Kyber
on FPGAs: A processor for vector of polynomials,” in 25th Asia and
South Pacific Design Automation Conference, ASP-DAC 2020, Beijing,
China, January 13-16, 2020, pp. 247-252, 2020.

A. C. Mert, E. Karabulut, E. Oztiirk, E. Savas, M. Becchi, and A. Aysu,
“A flexible and scalable NTT hardware: Applications from homomorphi-
cally encrypted deep learning to post-quantum cryptography,” in 2020
Design, Automation & Test in Europe Conference & Exhibition, DATE
2020, Grenoble, France, March 9-13, 2020, pp. 346-351, 2020.

A. C. Mert, E. Karabulut, E. Oztiirk, E. Savas, and A. Aysu, “An
extensive study of flexible design methods for the number theoretic
transform,” IEEE Transactions on Computers, pp. 1-1, 2020.

E. Karabulut and A. Aysu, “RANTT: A RISC-V architecture extension
for the number theoretic transform,” in 2020 30th International Confer-
ence on Field-Programmable Logic and Applications (FPL), pp. 26-32,
2020.

T. Fritzmann and J. Sepulveda, “Efficient and flexible low-power NTT
for lattice-based cryptography,” in IEEE International Symposium on
Hardware Oriented Security and Trust, HOST 2019, McLean, VA, USA,
May 5-10, 2019, pp. 141-150, 2019.

Y. Xing and S. Li, “An efficient implementation of the NewHope key
exchange on FPGAs,” IEEE Trans. Circuits Syst. I Regul. Pap., vol. 67-1,
no. 3, pp. 866-878, 2020.

C. Du, G. Bai, and X. Wu, “High-speed polynomial multiplier archi-
tecture for Ring-LWE based public key cryptosystems,” in Proceedings
of the 26th edition on Great Lakes Symposium on VLSI, GLVLSI 2016,
Boston, MA, USA, May 18-20, 2016, pp. 9-14, 2016.

P.-C. Kuo, W.-D. Li, Y.-W. Chen, Y.-C. Hsu, B.-Y. Peng, C.-M. Cheng,
and B.-Y. Yang, “High performance post-quantum key exchange on
FPGAs,” IACR Cryptology ePrint Archive, p. 690, 2017.

D. T. Nguyen, V. B. Dang, and K. Gaj, “A high-level synthesis approach
to the software/hardware codesign of NTT-based post-quantum cryptog-
raphy algorithms,” in International Conference on Field-Programmable
Technology, FPT 2019, Tianjin, China, December 9-13, 2019, pp. 371—
374, 2019.

D. T. Nguyen, V. B. Dang, and K. Gaj, “High-level synthesis in
implementing and benchmarking number theoretic transform in lattice-
based post-quantum cryptography using software/hardware codesign,” in
Applied Reconfigurable Computing. Architectures, Tools, and Applica-
tions - 16th International Symposium, ARC 2020, Toledo, Spain, April
1-3, 2020, Proceedings [postponed], pp. 247-257, 2020.

101

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

E. Alkim, H. Evkan, N. Lahr, R. Niederhagen, and R. Petri, “ISA
extensions for finite field arithmetic accelerating Kyber and NewHope
on RISC-V,” IACR Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020,
no. 3, pp. 219-242, 2020.

R. Elkhatib, R. Azarderakhsh, and M. Mozaffari Kermani, “Highly
optimized montgomery multiplier for SIKE primes on FPGA,” in 27th
IEEE Symposium on Computer Arithmetic, ARITH 2020, Portland, OR,
USA, June 7-10, 2020, pp. 64-71, 2020.

M. Anastasova, R. Azarderakhsh, and M. Mozaffari Kermani, ‘“Fast
strategies for the implementation of SIKE round 3 on ARM Cortex-
M4.” IACR Cryptol. ePrint Arch., vol. 2021, p. 115, 2021.

M. Bisheh Niasar, R. E. Khatib, R. Azarderakhsh, and M. Mozaffari
Kermani, “Fast, small, and area-time efficient architectures for key-
exchange on Curve25519,” in 27th IEEE Symposium on Computer
Arithmetic, ARITH 2020, Portland, OR, USA, June 7-10, 2020, pp. 72—
79, 2020.

M. Bisheh Niasar, R. Azarderakhsh, and M. Mozaffari Kermani, “Ef-
ficient hardware implementations for elliptic curve cryptography over
Curved48,” in Progress in Cryptology - INDOCRYPT 2020 - 2lst
International Conference on Cryptology in India, Bangalore, India,
December 13-16, 2020, Proceedings, pp. 228-247, 2020.

K. Basu, D. Soni, M. Nabeel, and R. Karri, “NIST post-quantum
cryptography- A hardware evaluation study,” IACR Cryptol. ePrint Arch.,
vol. 2019, p. 47, 2019.

T. Fritzmann, G. Sigl, and J. Sepilveda, “RISQ-V: Tightly coupled
RISC-V accelerators for post-quantum cryptography,” IACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 239-280, 2020.
G. Xin, J. Han, T. Yin, Y. Zhou, J. Yang, X. Cheng, and X. Zeng,
“VPQC: A domain-specific vector processor for post-quantum cryptog-
raphy based on RISC-V architecture,” IEEE Trans. Circuits Syst. I Regul.
Pap., vol. 67-1, no. 8, pp. 2672-2684, 2020.

V. B. Dang, F. Farahmand, M. Andrzejczak, K. Mohajerani, D. T.
Nguyen, and K. Gaj, “Implementation and benchmarking of round
2 candidates in the NIST post-quantum cryptography standardization
process using hardware and software/hardware co-design approaches,”
IACR Cryptol. ePrint Arch., vol. 2020, p. 795, 2020.

Y. Huang, M. Huang, Z. Lei, and J. Wu, “A pure hardware implemen-
tation of CRYSTALS-Kyber PQC algorithm through resource reuse,”
IEICE Electronics Express, vol. advpub, 2020.

Y. Xing and S. Li, “A compact hardware implementation of CCA-secure
key exchange mechanism CRYSTALS-KYBER on FPGA,” JACR Trans.
Cryptogr. Hardw. Embed. Syst., vol. 2021, no. 2, pp. 328-356, 2021.
L. Botros, M. J. Kannwischer, and P. Schwabe, “Memory-efficient
high-speed implementation of Kyber on Cortex-M4,” in Progress in
Cryptology - AFRICACRYPT 2019 - 11th International Conference on
Cryptology in Africa, Rabat, Morocco, July 9-11, 2019, Proceedings,
pp. 209-228, 2019.

E. Alkim, Y. A. Bilgin, M. Cenk, and F. Gérard, “Cortex-m4 optimiza-
tions for {R, M} LWE schemes,” IACR Trans. Cryptogr. Hardw. Embed.
Syst., vol. 2020, no. 3, pp. 336-357, 2020.

M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen, “PQM4:
post-quantum crypto library for the ARM Cortex-M4,” 2018.

J. W. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M.
Schanck, P. Schwabe, G. Seiler, and D. Stehlé, “CRYSTALS-Kyber:
A CCA-secure module-lattice-based KEM,” in 2018 IEEE European
Symposium on Security and Privacy, EuroS&P 2018, London, United
Kingdom, April 24-26, 2018, pp. 353-367, 2018.

E. Fujisaki and T. Okamoto, “Secure integration of asymmetric and
symmetric encryption schemes,” in Advances in Cryptology - CRYPTO
’99, 19th Annual International Cryptology Conference, Santa Barbara,
California, USA, August 15-19, 1999, Proceedings, pp. 537-554, 1999.
G. Bertoni, J. Daemen, S. Hoffert, M. Peeters, and G. V. Assche,
“Keccak in VHDL,” 2020.

J. Howe, M. Martinoli, E. Oswald, and F. Regazzoni, “Exploring
parallelism to improve the performance of frodokem in hardware.”
Cryptology ePrint Archive, Report 2021/155, 2021.

S. S. Roy and A. Basso, “High-speed instruction-set coprocessor for
lattice-based key encapsulation mechanism: Saber in hardware,” JACR
Trans. Cryptogr. Hardw. Embed. Syst., vol. 2020, no. 4, pp. 443-466,
2020.

M. Bisheh-Niasar, R. Azarderakhsh, and M. Mozaffari-Kermani, “Area-
time efficient hardware architecture for signature based on Ed448,” IEEE
Transactions on Circuits and Systems II: Express Briefs, pp. 1-1, 2021.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:47:39 UTC from IEEE Xplore. Restrictions apply.

