
Supersingular Isogeny Key Encapsulation (SIKE)
Round 2 on ARM Cortex-M4

Hwajeong Seo , Mila Anastasova, Amir Jalali , and Reza Azarderakhsh ,Member, IEEE

Abstract—We present the first practical software implementation of Supersingular Isogeny Key Encapsulation (SIKE) round 2,

targeting NIST’s 1, 2, 3, and 5 security levels on 32-bit ARM Cortex-M4 microcontrollers. The proposed library introduces a new

speed record of all SIKE Round 2 protocols with reasonable memory consumption on the low-end target platform. We achieved

this record by adopting several state-of-the-art engineering techniques as well as highly-optimized hand-crafted assembly

implementation of finite field arithmetic. In particular, we carefully redesign the previous optimized implementations of finite field

arithmetic on the 32-bit ARM Cortex-M4 platform and propose a set of novel techniques which are explicitly suitable for SIKE

primes. The benchmark result on STM32F4 Discovery board equipped with 32-bit ARM Cortex-M4 microcontrollers shows that

entire key encapsulation and decapsultation over SIKEp434 take about 184 million clock cycles (i.e., 1.09 seconds @168 MHz).

In contrast to the previous optimized implementation of the isogeny-based key exchange on low-end 32-bit ARM Cortex-M4, our

performance evaluation shows feasibility of using SIKE mechanism on the low-end platform. In comparison to the most of the

post-quantum candidates, SIKE requires an excessive number of arithmetic operations, resulting in significantly slower timings.

However, its small key size makes this scheme as a promising candidate on low-end microcontrollers in the quantum era by

ensuring the lower energy consumption for key transmission than other schemes.

Index Terms—ARM assembly, finite field, isogeny-based cryptosystems, key encapsulation mechanism, post-quantum cryptography

Ç

1 INTRODUCTION

THE hard problems of traditional PKC (e.g., RSA and
ECC) can be easily solved by using Shor’s algorithm [36]

and its variant on a quantum computer. The traditional
PKC approaches cannot be secure anymore against quan-
tum attacks.

A number of post-quantum cryptography algorithms
have been proposed in order to resolve this problem.
Among them, Supersingular Isogeny Diffie-Hellman key
exchange (SIDH) protocol proposed by Jao and De Feo is
considered as a premier candidate for post-quantum crypto-
systems [23]. Its security is sufficiently high even for quan-
tum computers. SIDH is the basis of the Supersingular
Isogeny Key Encapsulation (SIKE) protocol [2], which is
currently under consideration by the National Institute of
Standards and Technology (NIST) for inclusion in a future
standard for post-quantum cryptography [37].

One of the attractive features of SIKE is their relatively
small public keys which are, to date, the most compact ones
among well-established quantum-resistant algorithms. In

spite of this prominent advantage, the “slow” speed of these
protocols has been a sticking point which hinders their use
in many applications. Therefore, speeding up SIKE has
become a critical issue as it determines the practicality of
these isogeny-based cryptographic schemes.

In CANS’16, Koziel et al. presented the first SIDH imple-
mentations on 32-bit ARM Cortex-A processors [29]. In
2017, Jalali et al. presented the first SIDH implementations
on 64-bit ARM Cortex-A processors [22]. In SPACE’18, Jalali
et al. suggested SIKE implementations on 32-bit ARM Cor-
tex-A processor [21]. In CHES’18, Seo et al. improved previ-
ous SIDH and SIKE implementations on high-end 32/64-bit
ARM Cortex-A processors [35]. At the same time, the imple-
mentations of SIDH on Intel and FPGA are also successfully
evaluated [5], [12], [26], [28].

Afterward, in 2018, the first implementation of SIDH on
low-end 32-bit ARM Cortex-M4 micro-controller was sug-
gested [27]. The paper shows that an ephemeral key exchange
(i.e., SIDHp751) on a 32-bit ARM Cortex-M4@120 MHz
requires 18.833 seconds to perform - too slow to use on low-
endmicro-controllers.

In this work, we challenge to the practicality of SIKE
round 2 protocols for NIST PQC competition (i.e.,
SIKEp434, SIKEp503, SIKEp610, and SIKEp751) on low-
end microcontrollers. We present new optimized imple-
mentations of modular arithmetic for the case of low-end
32-bit ARM Cortex-M4 microcontrollers. Taking advan-
tage of compact and efficient assembly implementation,
our proposed modular arithmetic implementations show
promising timing results on the target platform which
implies that the supersingular isogeny-based protocols
are indeed practical on 32-bit ARM Cortex-M4 low-end
microcontrollers.

� Hwajeong Seo is with College of IT Engineering, Hansung University,
Seoul, Republic of Korea. E-mail: hwajeong84@gmail.com.

� MilaAnastasova and RezaAzarderakhsh are with theDepartment of Computer,
Electrical Engineering andComputer Science, FloridaAtlanticUniversity, Boca
Raton, FL 33431USA. E-mail: {manastasova2017, razarderakhsh}@fau.edu.

� Amir Jalali is with the Information Security Group, LinkedIn Corporation,
Sunnyvale, CA USA. E-mail: ajalali@linkedin.com.

Manuscript received 30 Dec. 2019; revised 22 June 2020; accepted 23 Aug. 2020.
Date of publication 9 Sept. 2020; date of current version 8 Sept. 2021.
(Corresponding author: Reza Azarderakhsh.)
Recommended for acceptance by N. Abu-Ghazaleh.
Digital Object Identifier no. 10.1109/TC.2020.3023045

IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021 1705

0018-9340 © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0003-0069-9061
https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6715-2477
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
https://orcid.org/0000-0002-6921-6868
mailto:hwajeong84@gmail.com
mailto:manastasova2017@fau.edu
mailto:razarderakhsh@fau.edu
mailto:ajalali@linkedin.com

1.1 Extended Version of CANS’19

In this paper, we extended our previous work published in
CANS’19 [34]. The relative improvements compared to the
CANS’19 submission are listed as follows:

� We added SIKEp610 optimized implementation to
the previous library. Therefore, this work is the first
optimized implementation of entire SIKE round 2
candidate on 32-bit ARM Cortex-M4 platform.

� We adopted novel implementation techniques to
improve our previous Montgomery reduction imple-
mentation. We redesigned the carry propagation step
in a more efficient way and took advantage of status
register for storing carry bit. This approach reduced
the total number of memory/register access notably.

� Due to the low stack capacity of the target platform,we
unifiedmultiplication and reductionmethods into one
method to reduce the total number of function calls.
This simple change provided significant improvement
in the overall RAM consumption and removed inter-
rupt handling delays for stack utilization.

� In our previous work [34], we only implemented
some parts of SIKE underlying arithmetic in assem-
bly. However, to achieve better performance, in this
work, we implemented the entire field arithmetic
implementations in pure hand-crafted assembly.

The above improvements helped us to enhance our pre-
vious timing results and make this work outperform our
previous implementation by 26.9, 27.3, and 18.6 percent for
SIKEp434, SIKEp503, and SIKEp751, respectively.

Our implementations are publicly available1 under MIT
license.

2 SIKE MECHANISM

SIKE mechanism is constructed by applying a transforma-
tion of Hofheinz, H€ovelmanns, and Kiltz [18] to the super-
singular isogeny Public Key Encryption (PKE) scheme
described in [23].2 It is an actively secure key encapsulation
mechanism (IND-CCA KEM) which addresses the static
key vulnerability of SIDH due to active attacks in [14].

2.1 Public Parameters

SIKE can be defined over a prime of the form p ¼
‘
eA
A � ‘eBB � f � 1. However, for efficiency reasons, ‘A ¼ 2; ‘B ¼
3, and f ¼ 1 are fixed, thus the SIKE prime has the form of
p ¼ 2eA � 3eB � 1. The starting supersingular elliptic curve
E0=Fp2 : y

2 ¼ x3 þ x with cardinality equal to ð2eA � 3eBÞ2,
along with base points hPA;QAi ¼ E0½2eA � and hPB;QBi ¼
E0½3eB � are defined as public parameters.

2.2 Key Encapsulation Mechanism

The key encapsulation mechanism can be divided into three
main operations: Alice’s key generation, Bob’s key encapsu-
lation, and Alice’s key decapsulation. We describe each
operation in the following. Fig. 1 presents the entire key
encapsulation mechanism in a nutshell.

2.2.1 Key Generation

Alice randomly chooses an integer skA 2 Z=2eAZ and by
applying an isogeny fA : E0 ! EA with kernel RA :¼
hPA þ ½skA�QAi to the base points fPB;QBg, computes her
public key pkA ¼ ½EA;fAðPBÞ;fAðQBÞ�. Moreover, she gen-
erates a t-bit3 random sequence s 2R f0; 1gt.

2.2.2 Encapsulation

Bob generates a t-bit random messagem 2R f0; 1gt, concate-
nates it with Alice’s public key pkA and computes an
ðeBlog 23Þ-bit hash value r using cSHAKE256 hash function
H1, taking m k pkA as the input. Using r, he applies a secret
isogeny fB : E0 ! EB to the base points fPA;QAg and forms
his public key pkBðrÞ ¼ ½EB;fBðPAÞ;fBðQAÞ�. Bob also com-
putes the common j-invariant of curve EBA by applying
another isogeny f0B : EA ! EBA using Alice’s public key.
Bob forms a ciphertext c ¼ ðc0; c1Þ, such that

c ¼ ðc0; c1Þ ¼ ðpkBðrÞ; H2ðjðEBAÞÞ �mÞ;
whereH2 is a cSHAKE256 hash with a custom length output
and a defined initialization parameter. Finally, Bob computes
the shared secret asK ¼ H3ðm k cÞ and sends c to Alice.

2.2.3 Decapsulation

Upon receipt of c, Alice computes the common j-invariant of
EAB by applying her secret isogeny to EB. She computes
m0 ¼ c1 �H2ðjðEABÞÞ and r0 ¼ H1ðm k pkAÞ. Finally, she val-
idates Bob’s public key by computing pkBðr0Þ and comparing
it with c0. She generates the same shared secretK ¼ H3ðm0 k
cÞ if the public key is valid, otherwise she outputs a random
valueK ¼ H3ðs k cÞ to be resistant against active attacks.

3 ARM CORTEX-M4 ARCHITECTURE

With over 100 billion ARM-based chips shipped worldwide
as of 2017 [1], ARM is the most popular instruction set archi-
tecture (ISA), in terms of quantity. In this work, we target the
popular low-end 32-bit ARM Cortex-M4 microcontrollers,
which belong to the “microcontroller” profile implemented

Fig. 1. SIKE mechanism.

1. [Online]. Available: https://github.com/solowal/SIKE_M4
2. We refer the readers to [2], [23] for further details. 3. The value of t is defined by the implementation parameters.

1706 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/solowal/SIKE_M4

by cores from the Cortex-M series. The ARMCortex-M archi-
tecture is a reduced instruction set computer (RISC) using a
load-store architecture. The ARM Cortex-M4 microcontrol-
lers support a three-stage pipeline and efficient memory
accesses (read/write) involving 1 register and n registers
take 2 cycles and nþ 1 cycles, respectively.

As other traditional 32-bit ARM architectures, the ARM
Cortex-M4 ISA is equipped with 16 32-bit registers
(R0�R15), from which 15 (R0�R12, R13 (SP), R14 (LR))
are available. R13, R14, and R15 registers are reserved for
stack pointer, link register, and program counter, respec-
tively. The R13 and R14 registers can be freed up by saving it
in the stack and retrieving it after the register has been used.

Since the maximum capacity of the 15 registers is of only
480 bits (32	 15), efficient use of the available registers to
minimize the number of memory accesses is a critical strat-
egy for optimized implementations of multi-precision mul-
tiplications (i.e., 512-bit and 768-bit). The ARM Cortex-M4
provides an instruction set supporting 32-bit operations or,
in the case of Thumb and Thumb2, a mix of 16- and 32-bit
operations. The instruction set is comprised of standard
instructions for basic arithmetic (i.e., addition and addition
with carry operations) and logic operations. However, in
contrast to other lower processor classes, the ARM Cortex-
M4 supports for the so-called DSP instructions, which
include unsigned multiplication with double accumulation
UMAAL instruction.

The UMAAL instruction performs a 32	 32-bit multiplica-
tion followed by accumulations with two 32-bit values. This
instruction achieves the same latency (i.e., 1 clock cycle) and
throughput of the unsigned multiplication instruction,
which means that the accumulation (i.e., two 32-bit addition
operations) is virtually executed for free. Detailed descrip-
tions of multiplication operations are as follows:

� UMULL (unsigned multiplication):
UMULLR0,R1,R2,R3 computes (R1 k R0) R2 	 R3.

� UMLAL (unsigned multiplication with accumulation):
UMLAL R0, R1, R2, R3 computes (R1 k R0) (R1 k
R0) + R2 	 R3.

� UMAAL (unsigned multiplication with double accu-
mulation):
UMAAL R0, R1, R2, R3 computes (R1 k R0) R1 +

R0 + R2 	 R3.
The popularity of ARM Cortex-M4 microcontrollers in

different applications introduced a post-quantum cryptog-
raphy software library (pqm4) which targets this family of
microcontrollers [24]. The pqm4 library provides a frame-
work for benchmarking and testing, started as a result of

the PQCRYPTO project funded by the European Commis-
sion in the H2020 program. The library currently contains
implementations of 10 post-quantum key-encapsulation
mechanisms and 3 post-quantum signature schemes target-
ing the ARM Cortex-M4 family of microcontrollers. In par-
ticular, pqm4 targets the STM32F4 Discovery board,
featuring an ARM Cortex-M4 CPU@168 MHz, 1MB of Flash,
and 192 KB of RAM. The library offers a simple build sys-
tem that generates an individual static library for each
implementation for each scheme. After compilation, the
library provides automated benchmarking for speed and
stack usage. As a result, we chose to evaluate the perfor-
mance of our proposed library with pqm4 framework to
provide a fair and valid comparison with other PQC
schemes.

In the following Section, we describe proposed engineer-
ing techniques for designing highly-optimized arithmetic
libraries, targeting different security levels of SIKE schemes
on 32-bit ARM Cortex-M4 microcontrollers.

4 OPTIMIZED SIKE ON ARM CORTEX–M4

4.1 Multi-Precision Multiplication

In this work, we describe the multi-precision multiplica-
tion/squaring method in multiplication structure and
rhombus form.

Figs. 2, 3, and 4 illustrate different strategies for imple-
menting 256-bit multiplication on 32-bit ARM Cortex-M4
micro-controller. Let A and B be operands of length m bits
each. Each operand is written as A ¼ ðA½n� 1�; . . . ; A½1�;
A½0�Þ and B ¼ ðB½n� 1�; . . . ; B½1�; B½0�Þ, where n ¼ dm=we is
the number ofwords to represent operands, andw is the com-
puter word size (i.e., 32-bit). The result C ¼ A �B is repre-
sented as C ¼ ðC½2n� 1�; . . . ; C½1�; C½0�Þ. In the rhombus
form, the lowest indices (i, j ¼ 0) of the product appear at the
rightmost corner, whereas the highest indices (i, j ¼ n� 1)
appear at the leftmost corner. A black arrow over a point indi-
cates the processing of a partial product. The lowermost
points represent the results C½i� from the rightmost corner
(i ¼ 0) to the leftmost corner (i ¼ 2n� 1).

There are several works in the literature that studied the
use of UMAAL instructions to implement multi-precision
multiplication or modular multiplication on 32-bit ARM
Cortex-M4 microcontrollers [10], [11], [13], [17], [27], [30].
Among them, Fujii et al. [13], Haase et al. [17], and Kopper-
mann et al. [27] provided the most relevant optimized
implementations to this work, targeting Curve25519 and
SIDHp751 by using optimal modular multiplication and
squaring methods.

Fig. 2. 256-bit Operand Caching multiplication at the word-level where e
is 3 on ARM Cortex-M4 [13], Init
 : initial block;
1 !
2 : order of rows.

Fig. 3. 256-bit Operand Scanning multiplication at the word-level on
ARM Cortex-M4 [17],
1 !
2 !
3 !
4 !
5 : order of rows.

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1707

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

In [13], authors combine the UMAAL instructionwith (Con-
secutive) Operand Caching (OC) method for Curve25519
(i.e., 256-bit multiplication). The UMAAL instruction handles
the carry propagation without additional costs in the Multi-
plication ACcumulation (MAC) routine. The detailed
descriptions are given in Fig. 2. The size of operand caching
is 3, which needs three rows (3 ¼ d8=3e) for 256-bit multipli-
cation on 32-bit ARM Cortex-M4. The multiplication starts
from initial block and performs rows 1 and 2, sequentially.
The inner loop follows column-wise (i.e., Product-Scanning)
multiplication.

In [17], a highly-optimized usage of registers and the par-
tial products are performed with the Operand Scanning
(OS) method, targeting Curve25519 (i.e., 256-bit multiplica-
tion). The detailed descriptions are given in Fig. 3. In partic-
ular, the order of partial products has an irregular pattern
which only works for the target operand length (i.e., 256-bit
multiplication) due to the extremely compact utilization of
available registers in each partial product. However, for a
larger length integer multiplication, this greedy approach is
not suitable since the number of register is not enough to
cache sufficient operands and intermediate results to
achieve the optimal performance.

In [27], authors proposed an implementation of 1-level
additive Karatsuba multiplication with Comba method (i.e.,
Product Scanning) as the underlying multiplication strategy,
targeting 768-bit multiplication. They integrated their arith-
metic library into SIDHp751 and reported the first optimized
implementation of SIDH on ARM Cortex-M4 microcontrol-
lers. However, the product scanning is inefficient with the
UMAAL instruction, since all the intermediate results for long
integer multiplication cannot be stored into the small num-
ber of available registers. In order to improve their results,
we studied the performance evaluation of 448/512/640/
768-bit multiplication by replacing the Comba method with
OC method, using the 1-level additive/subtractive Karat-
suba multiplication. However, we realized that the Karat-
suba approach is slower than original OC method with
UMAAL instruction for large integer multiplication on Cortex-
M4, due to the excessive number of number of addition, sub-
traction, bit-wise exclusive-or, and loading/storing interme-
diate results inside Karatsuba method. Furthermore, 32-bit
ARM Cortex-M4microcontroller provides same latency (i.e.,
1 clock cycle) for both 32-bit wise unsigned multiplication
with double accumulation (i.e., UMAAL) and 32-bit wise
unsigned addition (i.e., ADD).

We acknowledge that on low-end devices, such as 8-bit
AVR microcontrollers, Karatsuba method is one of the most
efficient approaches for multi-precision multiplication. In

these platforms, the MAC routine requires at least 5 clock
cycles [19]. This significant overhead is efficiently replaced
with relatively cheaper 8-bit addition/subtraction operation
(i.e., 1 clock cycle). However, UMAAL instruction in ARM
Cortex-M4 microcontroller can perform the MAC routine
within 1 clock cycle. For this reason, it is hard to find a rea-
sonable trade-off between MAC (i.e., 1 clock cycle) and
addition/subtraction (i.e., 1 clock cycle) on the ARM Cor-
tex-M4 microcontroller. Following the above analysis, we
adopted the OC method for implementing multiplication in
our proposed implementation. Moreover, in order to
achieve the most efficient implementation of SIKE protocol
on ARM Cortex-M4, we proposed three distinguished
improvements to the original method which result in signif-
icant performance improvement compared to previous
works. We describe these techniques in the following.

4.1.1 Efficient Register Utilization

The OC method follows the product-scanning approach for
inner loop but it divides the calculation (i.e., outer loop)
into several rows [20]. The number of rows directly affects
the overall performance, since the OC method requires to
load the operands and load/store the intermediate results
by the number of rows.4 Table 1 presents the comparison of
memory access complexity depending on the multiplication
techniques. Our optimized implementation (i.e., Refined
Operand Caching) is based on the original OC method but
we optimized the available registers and increased the oper-
and caching size from e to eþ 1. In the equation, the number
of memory load by 3ðbn=ðeþ 1ÞcÞ indicates the operand
pointer access in each row.

Moreover, larger bit-length multiplication requires more
memory access operations. Table 2 presents the number of
memory access operations in OCmethod for different multi-
precision multiplication size. In this table, our proposed R-
OCmethod requires the least numbermemory access for dif-
ferent length multiplication. In particular, in comparison
with original OC implementation, our proposed implemen-
tation reduces the total number of memory accesses by 19.8,
19.7, 20.6, and 21 percent for 448-bit, 512-bit, 640-bit, and 768-
bit, respectively.5 The performance enhancements increase
as the operand length is getting longer.

In order to increase the size of operand caching (i.e., e) by
1, we need at least 3 more registers to retain two 32-bit

Fig. 4. Proposed 256-bit Refined Operand Caching multiplication at the
word-level where e is 4 on ARM Cortex-M4, Init
 : initial block;
1 : order of
rows; F
 : front part; R
 : middle right part; L
 : middle left part; B
 : back part.

TABLE 1
Comparison of Multiplication Methods, in Terms

of Memory-Access Complexity

The parameter d defines the number of rows within a processed block.

4. The number of rows is r ¼ bn=ec, where the number of needed
words (n ¼ dm=we), the word size of the processor (w) (i.e., 32-bit), the
bit-length of operand (m), and operand caching size (e) are given.

5. Compared with original OC implementation, we reduce the num-
ber of row by 1 (4! 3), 2 (5! 3), 2 (6! 4), and 2 (7! 5) for 448-bit,
512-bit, 640-bit, and 768-bit, respectively.

1708 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

operand limbs and one 32-bit intermediate result value. To
this end, we redefine the register assignments inside our
implementation. We saved one register for the result pointer
by storing the intermediate results into stack. Moreover, we
observed that in the OC method, both operand pointers are
not used at the same time in the row. Therefore, we don’t
need to maintain both operand pointers in the registers dur-
ing the computations. Instead, we store them to the stack
and load one by one on demand. In total, we used 2nþ 3
bytes of stack for implementation.

Using the above techniques, we saved three available
registers and utilized them to increase the size of operand
caching by 1. In particular, three registers are used for oper-
and A, operand B, and intermediate result, respectively. We
state that our utilization technique imposes an overhead in
memory access for operand pointers. However, since in each
row, only three memory accesses are required, the overall
overhead is negligible to the obtained performance benefit.
We provide a detailed comparison of register assignments of
this workwith previous implementations in Table 3.

4.1.2 Optimized Front Parts

As it is illustrated in Fig. 4, our R-OC method starts from an
initialization block (Init section). In the Init section, both
operands are loaded from memory to registers and the par-
tial products are computed. From the row1, only one oper-
and pointer is required in each column. The front part (i.e.,
I-F and 1-F) requires partial products by increasing the
length of column to 4.

Fujii et al. [13] implemented the front parts using carry-
less MAC routines. In their approach, they initialized up to
two registers to store the intermediate results in each

column. Fig. 5 illustrates their approach. Since the UMLAL

and UMAAL instructions need to update current values
inside the registers, the initialized registers are required.

In order to optimize the explicit register initialization, we
redesign the front part with product scanning. In contrast to
Fujii’s approach, we used UMULL and UMAAL instructions. As
a result, the register initialization is performed together with
unsigned multiplication (i.e., UMULL). This technique
improves the overall clock cycles since each instruction
directly assigns the results to the target registers. In particular,
we are able to remove all the register initialization routines,
which is 9 clock cycles for each front part compared to [13].
Moreover, the intermediate results are efficiently handled
with carry-less MAC routines by using the UMAAL instruc-
tions. Fig. 6 presents our 4-word strategy in further details.

4.1.3 Efficient Instruction Ordering

ARMCortex-M4 microcontrollers are equipped with 3-stage
pipeline in which the instruction fetch, decode, and execu-
tion are performed in order. As a result, any data depen-
dency between consecutive instructions imposes pipeline
stalls and degrades the overall performance considerably.
In addition to the previous optimizations, we reordered the
MAC routine instructions in a way which removes data
dependency between instructions, resulting in minimum
pipeline stalls. The proposed approach is presented in Fig. 6
(1-R section). In this Figure, the operand and intermediate

TABLE 2
Comparison of Multiplication Methods for Different Integer
Sizes, in Terms of the Number of Memory Access on 32-bit

ARM Cortex-M4 Microcontroller

The parameters d and e are set to 2 and 3, respectively.

TABLE 3
Comparison of Register Utilization of the Proposed

Method With Previous Works

Fig. 5. 3-word integers with the product scanning approach using the
UMLAL and UMAAL instructions for front part of OC method [13].

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1709

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

result are loaded from memory and partial products are
performed column-wise as follows:

..

.

LDR R6; ½R0; #4 � 4� ==Loading operand B½4� from memory

LDR R1; ½SP; #4 � 4� ==Loading result C½4� from memory

UMAAL R14; R10; R5; R7 ==Partial product ðB½1� � A½3�Þ
UMAAL R14; R11; R4; R8 ==Partial product ðB½2� � A½2�Þ
UMAAL R14; R12; R3; R9 ==Partial product ðB½3� � A½1�Þ
UMAAL R1; R14; R2; R6 ==Partial product ðB½4� � A½0�Þ

..

.

The intermediate result (C½4�) is loaded to the R1 register.
At this point, updating R1 register in the next instruction
results in pipeline stall. To avoid this situation, first, we
updated the intermediate results into other registers (R10,
R11, R12, R14), while R1 register was updated during the
last step of MAC. We followed a similar approach in 1-L sec-
tion,where operand (A) pointer is loaded to a temporary regis-
ter, and then the column-wise multiplications are performed
with the operands (A½4�; A½5�; A½6�; and A½7�). In the back part
(i.e., 1-B), the remaining partial products are performed with-
out operand loading. This is efficiently performed without
carry propagation by using the UMAAL instructions.

To compare the efficiency of our proposed techniqueswith
previous works, we evaluated the performance of our 256-bit
multiplication with the most relevant works on Cortex-M4

platform. To obtain a fair and uniform comparison, we bench-
marked the proposed implementations in [13], [17]6;7 with
our implementation on our development environment.

Table 4 presents the performance comparison of our
library with previous works in terms of clock cycles. We
observe that our proposed multiplication implementation
method is faster than previous optimized implementation
on the same platform. Furthermore, in contrast to the com-
pact implementation of 256-bit multiplication in [17], our
approach provides scalability to larger integer multiplica-
tion without any significant overhead.

In Fig. 7, the detailed descriptions of proposed multipli-
cation for SIKEp434, SIKEp503, SIKEp610, and SIKEp751
are given. The multiplications for SIKEp434, SIKEp503,
SIKEp610, and SIKEp751 consists of 4, 4, 5, and 6 rows,
respectively. The width of row (e) is set to 4. Only the row1
of multiplication for SIKEp434 is set to 2.

4.2 Multiprecision Squaring

Most of the optimized implementations of cryptography
libraries use optimized multiplication for computing the
square of an element. However, squaring can be imple-
mented more efficiently since using one operand reduces
the overall number of memory accesses by half, while
many redundant partial products can be removed (i.e.,
A½i� 	A½j� þA½j� 	A½i� ¼ 2	A½i� 	A½j�).

Similar to multiplication, squaring implementation consists
of partial products of the input operand limbs. These products
can be divided into two parts: the products which have two
operandswith the samevalue and the ones inwhich twodiffer-
ent values aremultiplied. Computing the first group is straight-
forward and it is only computed once for each limb of operand.
However, computing the latter products with different values
and doubling the result can be performed in two different
ways: doubled-result and doubled-operand. In doubled-result
technique, partial products are computed first and the result is
doubled afterwards (A½i� 	A½j� ! 2	A½i� 	A½j�), while in
doubled-operand, one of the operands is doubled and then
multiplied to the other value (2	A½i� ! 2	A½i� 	A½j�).

In the previous works [13], [17], authors adopted the
doubled-result technique inside squaring implementation.
Figs. 8 and 9 show their techniques for implementing opti-
mized squaring on Cortex-M4 platform. The red parts in the
figures present the partial products where the input values
are the same and the black dots with gray background rep-
resent the doubled-result products.

Fig. 8 demonstrates Sliding Block Doubling (SBD) based
squaring method in [13]. This method is based on the

Fig. 6. 4-word integers with the product scanning approach using the
UMULL and UMAAL instructions for front part of OC method.

TABLE 4
Comparison Results of 256-Bit Multiplication

on ARM Cortex-M4 Microcontrollers

6. Fujii et al. [Online]. Available: https://github.com/hayatofujii/
curve25519-cortex-m4

7. Haase et al. [Online]. Available: https://github.com/BjoernMHaase/
fe25519

1710 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/hayatofujii/curve25519-cortex-m4
https://github.com/hayatofujii/curve25519-cortex-m4
https://github.com/BjoernMHaase/fe25519
https://github.com/BjoernMHaase/fe25519

product scanning approach. The squaring consists of two
routines: initialization and row1 computation. The interme-
diate results are doubled column-wise as the row1 compu-
tations are performed.

Fig. 9 presents the Operand Scanning based squaring
method in [17]. In contrast to previous method, computa-
tions are performed row-wise. However, the intermediate
results are doubled in each column.Note that in this method,

the order of computation is designed explicitly for 256-bit
operand to maximize the operand caching. Similar to their
multiplication implementation, the proposed method does
not provide scalability to larger bit-lengthmultiplications.

In this work, we proposed a hybrid approach for imple-
menting a highly-optimized squaring operation which is
explicitly suitable for SIKE protocols. In general, doubling
operation may result in one bit overflow which requires an
extra word to retain. However, in the SIKE settings, moduli
are smaller than multiple of 32-bit word (434-bit, 503-bit,
610-bit, and 751-bit) which provide an advantage for opti-
mized arithmetic design. Taking advantage of this fact, we
designed our squaring implementation based on doubled-
operand approach. We divided our implementation into
three parts: one sub-multiplication and two sub-squaring
operations. We used R-OC for sub-multiplication and SBD
for sub-squaring operations. Fig. 10 illustrates our hybrid
method in detail. First, the input operand is doubled and
stored into the stack memory. Taking advantage of dou-
bled-operand technique, we perform the initialization part
by using R-OC method.

Second, the remaining rows 1 and 2 are computed based
on SBDmethods. In contrast to previous SBDmethod, all the
doubling operations on intermediate results are removed
during MAC routines. This saves several registers to double
the intermediate results since doubled-results have been
already computed. Furthermore, our proposed method is
fully scalable and can be simply adopted to larger integer
squaring.

In order to verify the performance improvement of our
proposed approach, we benchmarked our 255-bit squaring
implementation with the most optimized available imple-
mentations in the literature. Table 5 presents the performance
comparison of our method with previous implementations
on our target platform.

Our hybrid method outperforms previous implementa-
tions of 256-bit squaring, while in contrast to [17], it is scal-
able to larger parameter sets. In particular, it enabled us to
implement the same strategy for computing SIKE arithmetic
over larger finite fields.

In Fig. 11, detailed descriptions of proposed squaring
implementations for SIKEp434, SIKEp503, SIKEp610, and
SIKEp751 are described. The initial blocks of SIKEp434/

Fig. 7. Proposed multiplication for (a) SIKEp434, (b) SIKEp503, (c)
SIKEp610, (d) SIKEp751, respectively.

Fig. 8. 256-bit Sliding Block Doubling squaring at the word-level on ARM
Cortex-M4, Init
 : initial block;
1 : order of rows [13].

Fig. 9. 256-bit Operand Scanning squaring at the word-level on ARM
Cortex-M4,
1 !
2 !
3 : order of rows [17].

Fig. 10. 255-bit proposed squaring at the word-level on ARM Cortex-M4,
Init
 : initial block;
1 !
2 : order of rows.

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1711

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

SIKEp503 are
1 and
2 , which are performed in beginning.
Afterward, the remaining blocks including
3 and
4 are per-
formed. For cases of SIKEp610 and SIKEp751, the initial
blocks (
1 and
2) are performed. In particular, the initial
blocks are formed in a special shape to cover doubled prod-
uct areas. Afterward, the remaining blocks including
3 ,
4 ,
and
5 are performed.

4.3 Modular Reduction

Modular multiplication is a performance-critical building
block in SIKE protocols. One of the most well-known techni-
ques used for its implementation is Montgomery reduc-
tion [31]. We adapt the implementation techniques described
in Sections 4.1 and 4.2 to implement modular multiplication
and squaring operations. Specifically, we target the parame-
ter sets based on the primes SIKEp434, SIKEp503, SIKEp610,
and SIKEp751 for SIKE round 2 protocol [3], [8]. Montgomery
multiplication can be efficiently exploited and further simpli-
fied by taking advantage of so-called “Montgomery-

friendly” modulus, which admits efficient computations,
such as all-zerowords for lower part of themodulus.

The efficient optimizations for the modulus were first
pointed out by Costello et al. [8] in the setting of SIDH when
using modulus of the form 2x � 3y � 1 (referred to as “SIDH-
friendly” primes) are exploited by the SIDH library [9].

In CHES’18, Seo et al. suggested the variant of Hybrid-
Scanning (HS) for “SIDH-friendly” Montgomery reduction
on ARM Cortex-A15 [35]. Similar to OC method, the HS
method also changes the operand pointer when the row is
changed. By using the register utilization described in Sec-
tion 4.1, we increase the parameter d by 1 (3! 4. Moreover,
the initial block is also optimized to avoid explicit register
initialization and the MAC routine is implemented in the
pipeline-friendly approach. Compared with integer multi-
plication, the Montgomery reduction requires fewer num-
ber of registers to be reserved. Since the intermediate result
pointer and operand Q pointer are identical value (i.e.,
stack), we only need to maintain one address pointer to
access both values. Furthermore, the modulus for SIKE (i.e.,
operand M; SIKEp434, SIKEp503, SIKEp610, and SIKEp751)
is a static value. As a result, instead of obtaining values
from memory, we assign the direct values to the registers.
This step can be performed with the two instructions, such
as MOVW and MOVT. The detailed 32-bit value assignment
(e.g., 0x87654321) to register R1 is given as follows:

..

.

MOVW R1; #0x4321 ==R1 ¼ #0x4321

MOVT R1; #0x8765 ==R1 ¼ #0x8765� 16jR1
..
.

In Fig. 12, the 503-bit “SIDH-friendly” Montgomery
reduction on ARM Cortex-M4 microcontroller is described.
The Montgomery reduction starts from row 1, 2, 3, to 4.

In the front of row 1 (i.e., 1-F), the operand Q is loaded
from memory and the operand M is directly assigned using
a constant value. The multiplication accumulates the inter-
mediate results from memory using the operand Q pointer
and stored them into the same memory address. In the mid-
dle of row 1 (i.e., 1-M), the operandQ is loaded and the inter-
mediate results are also loaded and stored, sequentially. In
the back of row 1 (i.e., 1-B), the remaining partial products
are computed. Furthermore, the intermediate carry values
are stored into stack and used in the following rows.

Using the above techniques, we are able to reduce the
number of row by 1 (5! 4), 2 (6! 4), 2 (7! 6), and 2

TABLE 5
Comparison Results of 255/256-Bit Squaring on

ARM Cortex-M4 Micro-Controllers

Fig. 11. Proposed squaring for (a) SIKEp434, (b) SIKEp503, (c)
SIKEp610, (d) SIKEp751, respectively.

Fig. 12. 503-bit “SIDH-friendly” Montgomery reduction at the word-level,
where d is 4 on ARMCortex-M4,
1 !
2 !
3 !
4 : order of rows; F
 : front
part; M
 : middle part; B
 : back part; where M, R, T , and Q are modulus,
Montgomery radix, intermediate results, and quotient (Q T �M 0modR).

1712 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

(8! 6) for 448-bit, 512-bit, 640-bit, and 768-bit, respectively,
compared to original implementation of HS based Mont-
gomery reduction.

The back part is further optimized to handle the carry bit.
Unlike front and middle parts, the back part generates carry
bit when multiplication results (T A	B) and intermedi-
ate results (R M 	Q) are added. This carry bit can be
maintain in the register but it is quite waste of 31-bit out of
32-bit. We maintain the carry bit in the status register, which
is only updated when the instruction is ended with (S)

symbol. After 1-B part, 2-I and 2-M parts should be per-
formed before 2-B part. In order to maintain the carry bit in
the status register, we removed all instructions, which influ-
ence the status register. With this approach, we optimized
one register and many additions for carry bit accumulation.
The detailed flows are given in Fig. 13. In the beginning, we
cleared the carry bit by adding two zeros. Afterward, carry
bit is propagated from T ½16� to T ½31�with ADCS instruction.

TheMontgomerymultiplication consists ofmultiplication
and Montgomery reduction operations. In the engineering
view,multiplication and reduction are implemented in sepa-
rated functions. Current SIDH 3.2 library and Koppermann
et al.’s work [27] implement the Montgomery reduction in
this way. In the finite field multiplication function, multipli-
cation and reduction functions are called in order. However,
this approach requires three function calls. We implemented
Montgomery multiplication in an integrated way, which
requires only one function call. The loading and storing the
intermediate result are also finely scheduled to reduce the
number of memory access. The detailed descriptions of
SIKEp503 Montgomery multiplication are given in Fig. 14.
The multiplication results (T ½0� � T ½30�) are stored into the
1,024-bit stack. Afterward, the results are loaded in the
reduction. The rows 5 and 6 load and store the intermediate
results to the stack. The front part of row 7 (green area;
T ½16� � T ½18�) loads the intermediate result from stack and
stores the results directly to the output memory address.
Whole area of row 8 loads the intermediate result from stack
and stores the results directly to the outputmemory address.

Recently, Bos et al. [6] and Koppermann et al. [27] proposed
highly optimized techniques for implementation of modular
multiplication. They utilized the product-scanning methods
for modular reduction. However, our proposed method out-
performs both implementations in terms of clock cycles. In
particular, our proposed method provides much faster result
compared to Bos et al. [6], while the benchmark results in [6]
were obtained on the high-end ARMv7 Cortex-A8 processors
which is equipped with 15 pipeline stages and is dual-issue
super-scalar. Table 6 shows the detailedperformance compar-
ison of multiplication, squaring, and reduction over SIKE
primes in terms of clock cycles. We state that, the benchmark
results for [9] are based on optimized C implementation and
they are presented solely as a comparison reference between
portable and target-specific implementations.

In Fig. 15, the implementations of proposed modular
reduction for SIKEp434, SIKEp503, SIKEp610, and SIKEp751
are given. The width of row is set to 4. Only the last row of
SIKEp434 is set to 2.

Fig. 13. Back part optimization for 503-bit “SIDH-friendly” Montgomery
reduction on ARM Cortex-M4.

Fig. 14. 503-bit “SIDH-friendly” Montgomery multiplication at the word-
level on ARM Cortex-M4.

TABLE 6
Comparison Results of Modular Multiplication and Squaring

for SIKE on 32-bit ARM Cortex-M4 Microcontrollers

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1713

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

4.4 Modular Addition and Subtraction

Modular addition operation is performed as a long integer
addition operation followed by a subtraction from the
prime. To have a fully constant-time arithmetic implemen-
tation, the final reduction is performed using a masked bit.
In this case, even if the addition result is inside the field, a
redundant subtraction is performed, so the secret values
cannot be retrieved using power and timing attacks. The
detailed operations are presented in the following:

� Modular addition: (A+B) mod P

1 C A+B

2 {M,C} C-P

3 C C+(P&M).
� Modular subtraction: (A-B) mod P

1 {M,C} A-B

2 C C+(P&M).
Previous optimized implementations of modular addi-

tion on Cortex-M4 [27], [35], provided the simple masked

technique using hand-crafted assembly. However, in this
work, we optimized this approach further by introducing
three techniques:

� Proposed modular addition: (A+B) mod P

1 {M,C} A+B-P
2 C C+(P&M).

First, we take advantage of the special shape of SIDH-
friendly primes which have multiple words equal to
0xFFFFFFFF. Since this value is the same formultiple limbs,
we load it once inside a register and use it formultiple single-
precision subtraction. This operand re-using technique
reduces the number of memory access by n and n

2 for modu-
lar addition and modular subtraction, where the number of
needed words (n ¼ dm=we), the word size of the processor
(w) (i.e., 32-bit), and the bit-length of operand (m) are given,
respectively.

Second, we combine Step
1 (addition) and
2 (subtrac-
tion) into one operation ({M,C} A+B-P). In order to com-
bine both steps, we catch both intermediate carry and
borrow, while we perform the combined addition and sub-
traction operation.

Fig. 16 illustrates the proposed technique in details. In this
Figure, first, 4-word addition operations (A½0 � 3� þ B½0 � 3�)
compute the addition result. Subsequently, a single register is
set to constant (i.e., 0xFFFFFFFF), which is used for the carry
catching step. In Fig. 16, this step is shown in the last row of
fourth column.When the carry overflow happens from fourth
word addition (i.e., A½3� þB½3� þ CARRY), the carry catcher
register is set to 232 � 1 (i.e., 0xFFFFFFFF 0xFFFFFFFF +

0xFFFFFFFF + 0x00000001) by using the constant (i.e.,
0xFFFFFFFF) in last row of fourth column (Constant +

Constant + Carry). Otherwise, the carry catcher register is

Fig. 15. Proposed modular reduction for (a) SIKEp434, (b) SIKEp503, (c)
SIKEp610, (d) SIKEp751, respectively.

Fig. 16. Initial part of step
1 in 512-bit modular addition on ARM Cortex-
M4 (i.e., A[0�7]+B[0�7]-P[0�7]).

1714 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

set to 232 � 2 (i.e., 0xFFFFFFFE 0xFFFFFFFF +

0xFFFFFFFF + 0x00000000).
This addition operation stores the carry bit to the first bit

of carry catcher register. The carry value in carry catcher
register is used for the following addition steps (second col-
umn in the Fig. 16).

The stored carry in the first bit is shifted to the 32nd bit
by using the barrel-shifter module. Afterward, the value
is added to the constant (i.e., 0xFFFFFFFF). If the first
bit of carry catcher is set, the carry happens (i.e.,
0x00000001�31 + 0xFFFFFFFF). Otherwise, no carry
happens (i.e., 0x00000000�31 + 0xFFFFFFFF).

Similarly, we obtained the borrow bit. The results of 4-
word addition operations (A½0 � 3� þB½0 � 3�) are sub-
tracted by modulus (P ½0 � 3�) in the third column. When the
borrow happens from fourth word subtraction (i.e., A½3� þ
B½3� � P ½3� �BORROWÞ, the borrow catcher register is set to
232 � 1 (i.e., 0xFFFFFFFF 0x00000000 - 0x00000001)
in last row of third column (Zero - Borrow). Otherwise, the
borrow catcher register is set to 0 (i.e., 0x00000000
0x00000000 - 0x00000000). The borrow bit in borrow
catcher register is used for the following subtraction steps. To
obtain the borrow bit, the zero constant is subtracted by the
borrow catcher register. For one constant register optimiza-
tion, we used the address pointer instead of zero constant.

Since the address pointer of 32-bit ARM Cortex-M4 micro-
controller is aligned by 4-byte (i.e., 32-bit), the address is
always ranging from 0 (i.e., 0x00000000) to 232 � 4
(0xFFFFFFFC). When the borrow catcher register is set, we
can get the borrow bit through subtraction (e.g., Pointer -

0xFFFFFFFFwhere pointer is ranging from0 to 232 � 4). Oth-
erwise, no borrow happens. The combined modular addition
routine reduces the number of memory access by 2n since we
can avoid both loading and storing the intermediate results.

In addition to the above techniques, the masked addition
routine is also optimized. This is shown as Step
2 of modu-
lar addition and subtraction. When the mask value is set to
0xFFFFFFFF, the lower part of SIDH modulus is also
0xFFFFFFFF. Otherwise, both values are set to zero. We
optimized the modulus setting (MOVW/MOVT) and masking
operation (AND) for lower part of SIDH modulus. The
detailed descriptions for initial part of step
2 in 512-bit
modular addition/subtraction are given in Fig. 17.

Using the above optimization techniques, we are able to
reduce the number of memory access for modular addition
and subtraction by 3n (9n! 6n) and n=2 (6n! 11n=2),
respectively.

We benchmarked the proposed optimized addition and
subtraction implementations on our target platform. We
provide the performance evaluation of this work and previ-
ous works over different security levels in Table 7. Com-
pared to previous works, the proposed method improved
the performance by 15.9 and 4.5 percent for modular addi-
tion and subtraction, respectively. The other big integer
addition and subtraction operations are also optimized in
assembly language.

4.5 Constant-Time Implementation

We adopted the constant-time analysis method in [33] to
evaluate the security of our implementation against timing
attacks. This analysis starts with measuring the code execu-
tion time followed by post-processing steps and the t-test to
evaluate whether the cryptographic library under test leaks
secret information in different runs.

Unfortunately, the proposed tool in [33] only supports
Intel processors.8 Therefore, we manually set-up and follow
their approach targeting ARM Cortex-M4 processor. To this
end, the elapsed time of an operation was measured with
the systick peripheral available in ARM Cortex-M4 micro-
controllers. We analyzed the execution time of each opera-
tion with random values over 1,000 iterations. We post
processed the results and performed t-test following the
proposed method in [33].

Our analysis showed that the proposed library per-
formed all the operations completely in constant-time when
initialized with various random values. This is because our
implementation is free from any conditional statements or
different execution paths that depend on any secret values.
Moreover, ARM Cortex-M4 architecture offers constant-
time multiplier which computes multiplication of operands
in one clock cycle regardless of their input values [15].

5 PERFORMANCE EVALUATION

In this section, we present the performance evaluation of
our proposed SIKE implementations on 32-bit ARM Cortex-
M4 microcontrollers. We implemented highly-optimized

Fig. 17. Initial part of of step
2 in 512-bit modular addition/subtraction on
ARM Cortex-M4 (i.e., C[0�(n-1)/2]+(P[0�(n-1)/2]&M)).

TABLE 7
Comparison Results of Modular Addition and Subtraction

for SIKE on ARM Cortex-M4 Microcontrollers

8. [Online]. Available: https://github.com/oreparaz/dudect

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1715

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/oreparaz/dudect

arithmetic, targeting SIKE round 2 primes adapting our
optimized techniques for multiplication, squaring, reduc-
tion, and addition/subtraction. We integrate our arithmetic
libraries to the SIKE round 2 reference implementation [3]
to evaluate the feasibility of adopting this scheme on low-
end Cortex-M4 microcontrollers.

All the arithmetic is implemented in ARM assembly and
the libraries are compiled with GCC with optimization flag
set to -O3. The timing is measured in two frequencies (i.e.,
24 MHz and 168 MHz). Since the timing under 24 MHz set-
ting reduces the impact of memory delay, the execution tim-
ing is slightly lower than 168 MHz setting.

Table 8 presents the comparison of our proposed library
with highly optimized implementations in the literature
over different security levels. The optimized C implementa-
tion timings by Costello et al. [9] and the reference C imple-
mentation of SIKE [3] illustrate the importance of target-
specific implementations of SIKE low-end microcontrollers
such as 32-bit ARM Cortex-M4. In particular, compared to
optimized C Comba based implementation in SIDH v3.2,
the proposed modular multiplication for 434-bit, 503-bit,
610-bit, and 751-bit provide 19.54x and 20.25x, 20.47x, and
21.09x improvements, respectively.

The significant achieved performance improvement in
this work is the result of our highly-optimized arithmetic
library. Specifically, our tailored modular multiplication/
squaring minimize pipeline stalls on ARM Cortex-M4 3-
stage pipeline, resulting in remarkable timing improvement
compared to previous works.

Moreover, the proposed implementation achieved 184,
257, 493, and 770 million clock cycles for total key encapsu-
lation and decapsulation of SIKEp434, SIKEp503, SIKEp610,
and SIKEp751, respectively. The results are improved by
13.20x, 14.23x, 15.05x, and 15.93x for SIKEp434, SIKEp503,
SIKEp610 and SIKEp751, respectively.

The memory consumption is also important metric under
low-endmicrocontrollers. Target microcontroller equips 1MB

of FLASH memory and 192KB RAM. The RAM should be
considered more than FLASH memory. In the analysis, we
focused on the peak consumption of RAM. The peak is
observed in decapsulation parts. The percentage of consump-
tion for target processor is described in last column of Table 8.
The percentage of consumption is 3.57, 3.89, 5.80, and 6.54
percent for SIKEp434, SIKEp503, SIKEp610, and SIKEp751,
respectively. This amount of RAM consumption is reasonable
for practical implementation.

The real world timing can be calculated with operating
frequency and required clock cycles. In themiddle of Table 8,
the comparison of SIKE round 2 protocols on ARM Cortex-
M4 is given. The slow frequency (24 MHz) achieved 7.54,
10.45, 20.19, and 31.51 seconds for SIKEp434, SIKEp503,
SIKEp610, and SIKEp751, respectively. This can be useful for
low-power processors. The fast frequency (168 MHz)
achieved 1.09, 1.53, 2.94, and 4.58 seconds for SIKEp434,
SIKEp503, SIKEp610, and SIKEp751, respectively.

Recently, a guideline for the deployment of post-quan-
tum cryptography in industrial use cases has been proposed
which offers different requirements for cryptography opera-
tions that should be met with post-quantum candidates [32].

For the key-generation (public-key and private-key), the
guideline suggests less than one second latency. Consider-
ing our highly-optimized implementation of SIKE in this
work, we notice that SIKEp434 generates public and pri-
vate key pair in almost one second and meets the indus-
trial criteria. Although, we are optimistic that more
improvements will be made in isogeny-based cryptogra-
phy in the near future that will directly impact the SIKE
performance.

In terms of data volume, the guideline suggests that the
entire processed data should be below 16 KB. Fortunately,
compared to other post-quantum candidates, SIKE provides
the optimal data size and this requirement is easily achieved.

Finally, the guideline recommends that the post-quantum
candidate should provide 128-bit security level. SIKEp434

TABLE 8
Comparison of SIKE Round 2 Protocols on ARM Cortex-M4 Microcontrollers

Timings are reported in terms of clock cycles and seconds. Total includes encapsulation and decapsulation. Memory consumption is reported in terms of bytes.
Koppermann et al. [27] does not provide results on SIKE implementations.

1716 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

protocol offers this level of security based on the security
analysis provided in the original proposal [3]

As a result, we can conclude that SIKEp434 meets all the
performance/security requirements to be utilized in the
limited resources for industrial cryptography use cases in
the quantum-era.

Finally, prior to this work, supersingular isogeny-based
cryptography was assumed to be unsuitable to use on low-
end devices due to the nonviable performance evaluations
[27].9 However, in contrast to benchmark results in [27], our
SIKE implementations for NIST’s 1, 2, 3, and 5 security lev-
els are practical and can be used in real world cryptography.
The proposed implementation of SIKEp434 only requires
1.09 second, which shows that the quantum-resistant key
encapsulation and decapsulation from isogeny of supersin-
gular elliptic curve is a practical solution on low-power
microcontrollers.

In Table 9, the comparison result of NIST PQC round 3 on
32-bit ARM Cortex-M4 microcontroller is presented. Despite
of optimized implementation of SIKE, the scheme achieved
the lowest performance among round 3 finalists and alternate
candidates.However, thememory consumption is reasonably
small. Implementations of lattice based cryptography, such as
kyber, saber, and ntru achieved high-speed key encapsulation
mechanism on target microcontrollers. Particularly, kyber
shows the smallestmemory consumption.

6 CONCLUSION

In this work, we presented highly optimized implementa-
tions of SIKE protocols on low-end 32-bit ARM Cortex-M4
microcontrollers. We proposed a new set of implementation
techniques, taking advantage of Cortex-M4 capabilities. In
particular, we proposed a new implementation method for
the finite field arithmetic implementation.

We integrated proposed modular arithmetic implemen-
tations into SIKE reference implementations, targeting
NIST’s 1, 2, 3, and 5 security levels. Our library significantly
outperforms previous state-of-the-art implementations of

integer arithmetic on our target platform, providing faster
results compared to the only available optimized imple-
mentation of SIDHp751 on Cortex-M4 in the literature.

We hope proposed implementation techniques motivate
more engineering efforts on the optimized implementation
of SIKE mechanism on different embedded platforms. We
plan to adopt the same strategy in designing efficient soft-
ware libraries, targeting different families of microcontrol-
lers in the future.

ACKNOWLEDGMENTS

The work of Hwajeong Seo was supported in part by the
Institute for Information & Communications Technology
Planning & Evaluation (IITP) Grant funded by the Korean
Government (MSIT) (Study on Quantum Security Evalua-
tion of Cryptography based on Computational Quantum
Complexity, <Q|Crypton>) under Grant 2019-0-00033, and
in part by the Institute for Information & Communications
Technology Promotion (IITP) Grant funded by the Korean
Government (MSIT) (Research on Blockchain Security Tech-
nology for IoT Services) under Grant 2018-0-00264. The
work of Reza Azarderakhsh was supported by NSF-
1801341, NIST-60NANB16D246.

REFERENCES

[1] ARMHoldings, “Q1 2017 roadshowslides,” 2017. [Online]. Available:
https://www.arm.com/company/-/media/arm-com/company/
Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_
Roadshow_Slides_Final.pdf

[2] R. Azarderakhsh et al., “Supersingular isogeny key encapsulation
– Submission to the NIST’s post-quantum cryptography standard-
ization process,” 2017. [Online]. Available: https://csrc.nist.gov/
CSRC/media/Projects/Post-Quantum-Cryptography/
documents/round-1/submissions/SIKE.zip

[3] R. Azarderakhsh et al., “Supersingular isogeny key encapsulation
– Submission to the NIST’s post-quantum cryptography standard-
ization process, round 2,” 2019. [Online]. Available: https://csrc.
nist.gov/projects/post-quantum-cryptography/round-2-
submissions/SIKE.zip

[4] M. Bischof, T. Oder, and T. G€uneysu, “Efficient microcontroller
implementation of BIKE,” in Proc. Int. Conf. Inf. Technol. Commun.
Secur., 2019, pp. 34–49.

[5] J. Bos and S. Friedberger, “Arithmetic considerations for isogeny
based cryptography,” IEEE Trans. Comput., vol. 68, no. 7, pp. 979–990,
Jul. 2019.

[6] J. W. Bos and S. Friedberger, “Faster modular arithmetic for iso-
geny based crypto on embedded devices,” IACR Cryptology ePrint
Archive, vol. 2018, 2018, Art. no. 792.

[7] P. G. Comba,“Exponentiation cryptosystems on the IBM PC,” IBM
Syst. J., vol. 29, no. 4, pp. 526–538, 1990.

[8] C. Costello, P. Longa, and M. Naehrig, “Efficient algorithms for
supersingular isogeny Diffie-Hellman,” in Proc. Annu. Int. Cryptol-
ogy Conf., 2016, pp. 572–601.

[9] C. Costello, P. Longa, and M. Naehrig, “SIDH library,” 2016–2018.
[Online]. Available: https://github.com/Microsoft/PQCrypto-
SIDH

[10] W. de Groot, “A performance study of X25519 on Cortex-M3 and
M4,” Ph.D. thesis, Eindhoven Univ., Eindhoven Univ. Technol.,
Eindhoven, The Netherlands, 2015.

[11] F. De Santis and G. Sigl, “Towards side-channel protected X25519
on ARM Cortex-M4 processors,” in Proc. Softw. Perform. Enhance-
ment Encryption Decryption Benchmarking, 2016, pp. 19–21.

[12] A. Faz-Hern�andez, J. L�opez, E. Ochoa-Jim�enez, and F. Rodr�ıguez-
Henr�ıquez, “A faster software implementation of the supersingu-
lar isogeny Diffie-Hellman key exchange protocol,” IEEE Trans.
Comput., vol. 67, no. 11, pp. 1622–1636, Nov. 2018.

[13] H. Fujii and D. F. Aranha, “Curve25519 for the Cortex-M4 and
beyond,” Progress Cryptol.-LATINCRYPT, vol. 35, pp. 36–37,
2017.

TABLE 9
Comparison of NIST PQCRound 3 on ARMCortex-M4@24MHz
Microcontrollers, Where SL,R3, F , andARepresent Security

Level, NIST PQCRound 3 Result, Third Round Finalists,
and Alternate Candidates

9. Authors reported 18 seconds to key exchange on the ARMCortex-
M4 @120 MHz processor.

SEO ET AL.: SUPERSINGULAR ISOGENY KEY ENCAPSULATION (SIKE) ROUND 2 ON ARM CORTEX-M4 1717

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://www.arm.com/company/-/media/arm-com/company/Investors/Quarterly%20Results%20-%20PDFs/Arm_SB_Q1_2017_Roadshow_Slides_Final.pdf
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/CSRC/media/Projects/Post-Quantum-Cryptography/documents/round-1/submissions/SIKE.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/SIKE.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/SIKE.zip
https://csrc.nist.gov/projects/post-quantum-cryptography/round-2-submissions/SIKE.zip
https://github.com/Microsoft/PQCrypto-SIDH
https://github.com/Microsoft/PQCrypto-SIDH

[14] S. D. Galbraith, C. Petit, B. Shani, and Y. B. Ti, “On the security of
supersingular isogeny cryptosystems,” in Proc. 22nd Int. Conf. The-
ory Appl. Cryptol. Inf. Secur., 2016, pp. 63–91.

[15] J. Großsch€adl, E. Oswald, D. Page, and M. Tunstall, “Side-channel
analysis of cryptographic software via early-terminating multi-
plications,” inProc. Int. Conf. Inf. Secur. Cryptol., 2009, pp. 176–192.

[16] N. Gura, A. Patel, A. Wander, H. Eberle, and S. C. Shantz,
“Comparing elliptic curve cryptography and RSA on 8-bit CPUs,”
in Proc. Int. Workshop Cryptographic Hardware Embedded Syst., 2004,
pp. 119–132.

[17] B. Haase and B. Labrique, “AuCPace: Efficient verifier-based
PAKE protocol tailored for the IIoT,” IACR Trans. Cryptographic
Hardware Embedded Syst., vol. 2019, pp. 1–48, 2019.

[18] D. Hofheinz, K. H€ovelmanns, and E. Kiltz, “A modular analysis of
the fujisaki-okamoto transformation,” in Proc. 15th Int. Conf. The-
ory Cryptography, 2017, pp. 341–371.

[19] M. HutterandP. Schwabe,“Multiprecision multiplication on AVR
revisited,” J. Cryptographic Eng., vol. 5, no. 3, pp. 201–214, 2015.

[20] M. Hutter and E. Wenger, “Fast multi-precision multiplication for
public-key cryptography on embeddedmicroprocessors,” in Proc. Int.
Workshop Cryptographic Hardware Embedded Syst., 2011, pp. 459–474.

[21] A. Jalali, R. Azarderakhsh, and M. M. Kermani, “NEON SIKE:
Supersingular isogeny key encapsulation on ARMv7,” in Proc. Int.
Conf. Secur. Privacy Appl. Cryptography Eng., 2018, pp. 37–51.

[22] A. Jalali, R. Azarderakhsh, M. M. Kermani, and D. Jao,
“Supersingular isogeny Diffie-Hellman key exchange on 64-bit
ARM,” IEEE Trans. Dependable Secure Comput., vol. 16, no. 5,
pp. 902–912, Sep./Oct. 2019.

[23] D. Jao and L. D. Feo, “Towards quantum-resistant cryptosystems
from supersingular elliptic curve isogenies,” in Proc. Int. Workshop
Post-Quantum Cryptography, 2011, pp. 19–34.

[24] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“PQM4: Post-quantum crypto library for the ARM Cortex-M4,”
2019. [Online]. Available: https://github.com/mupq/pqm4

[25] M. J. Kannwischer, J. Rijneveld, P. Schwabe, and K. Stoffelen,
“pqm4: Testing and benchmarkingNIST PQC onARMCortex-M4,”
IACR Cryptol. ePrint Arch., vol. 2019, pp. 844, 2019. [Online]. Avail-
able: https://eprint.iacr.org/2019/844

[26] S. Kim, K. Yoon, J. Kwon, S. Hong, and Y.-H. Park, “Efficient iso-
geny computations on twisted Edwards curves,” Secur. Commun.
Netw., vol. 2018, 2018, Art. no. 5747642.

[27] P. Koppermann, E. Pop, J. Heyszl, and G. Sigl, “18 seconds to key
exchange: Limitations of supersingular isogeny Diffie-Hellman on
embedded devices,” Cryptology ePrint Archive, Report 2018/932,
2018. [Online]. Available: https://eprint.iacr.org/2018/932.

[28] B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast
hardware architectures for supersingular isogeny Diffie-Hellman
key exchange on FPGA,” in Proc. Int. Conf. Cryptol. India, 2016, pp.
191–206.

[29] B. Koziel, A. Jalali, R. Azarderakhsh, D. Jao, and M. Mozaffari-
Kermani, “NEON-SIDH: Efficient implementation of supersingu-
lar isogeny Diffie-Hellman key exchange protocol on ARM,” in
Proc. Int. Conf. Cryptol. Netw. Secur., 2016, pp. 88–103.

[30] Z. Liu, P. Longa, G. Pereira, O. Reparaz, and H. Seo, “FourQ on
embedded devices with strong countermeasures against side-
channel attacks,” in Proc. Int. Conf. Cryptographic Hardware Embed-
ded Syst., 2017, pp. 665–686.

[31] P. L. Montgomery,“Modular multiplication without trial divi-
sion,”Math. Comput., vol. 44, no. 170, pp. 519–521, 1985.

[32] D. Noack et al., “Use cases and requirements: Industrial use cases
and requirements for the deployment of post-quantum
cryptography,” 2020. [Online]. Available: https://quantumrisc.
org/results/quantumrisc-wp1-report.pdf

[33] O. Reparaz, J. Balasch, and I. Verbauwhede, “Dude, is my code
constant time?” in Proc. Des. Autom. Test Eur. Conf. Exhib., 2017,
pp. 1697–1702.

[34] H. Seo, A. Jalali, and R. Azarderakhsh, “SIKE round 2 speed
record on ARM Cortex-M4,” in Proc. Int. Conf. Cryptol. Netw.
Secur., 2019, pp. 39–60.

[35] H. Seo, Z. Liu, P. Longa, and Z. Hu, “SIDH on ARM: Faster modu-
lar multiplications for faster post-quantum supersingular isogeny
key exchange,” IACR Trans. Cryptographic Hardware Embedded
Syst., vol. 2018, pp. 1–20, 2018.

[36] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in Proc. 35th Annu. Symp. Found. Comput.
Sci., 1994, pp. 124–134.

[37] The National Institute of Standards and Technology (NIST), “Post-
quantum cryptography standardization,” 2018. [Online]. Available:
https://csrc.nist.gov/projects/post-quantum-cryptography/post-
quantum-cryptography-standardization

Hwajeong Seo received the BSEE, MS, and PhD
degrees in computer engineering from Pusan
National University, South Korea. He is currently
an assistant professor at Hansung University,
South Korea. His research interests include Inter-
net of Things and information security.

Mila Anastasova received the graduated degree
in computer science and engineering from Univer-
sity Carlos III of Madrid, Spain, in 2019. She is
currently working toward the master’s degree in
computer engineering at Florida Atlantic University,
Boca Raton, Florida. She is currently forming part
of the Institute for Sensing and EmbeddedNetwork
Systems Engineering (I-SENSE) at Florida Atlantic
University, Boca Raton, Florida. She is researching
in the area of isogeny-based quantum secure
cryptography.

Amir Jalali received the PhD degree in computer
engineering from the Department of Computer,
Electrical Engineering and Computer Science,
Florida Atlantic University, Boca Raton, Florida, in
2018. He is currently with the Information Security
Group, LinkedIn Corporation, Mountain View, CA.
His current research interests include applied cryp-
tography, post-quantum cryptography, and homo-
morphic encryption.

Reza Azarderakhsh (Member, IEEE) received the
PhD degree in electrical and computer engineering
fromWestern University, Canada, in 2011. He was
a recipient of the NSERC Post-Doctoral Research
Fellowship working with the Center for Applied
Cryptographic Research and the Department of
Combinatorics and Optimization, University of
Waterloo, Canada. Currently, he is an assistant
professor with the Department of Electrical and
Computer Engineering, Florida Atlantic University,
Boca Raton, Florida. His current research interest

include finite field and its applications, elliptic curve cryptography, pairing
based cryptography, and post-quantum cryptography. He is serving as an
associate editor of the IEEETransactions onCircuits and Systems.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1718 IEEE TRANSACTIONS ON COMPUTERS, VOL. 70, NO. 10, OCTOBER 2021

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:41:15 UTC from IEEE Xplore. Restrictions apply.

https://github.com/mupq/pqm4
https://eprint.iacr.org/2019/844
https://eprint.iacr.org/2018/932.
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://quantumrisc.org/results/quantumrisc-wp1-report.pdf
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization
https://csrc.nist.gov/projects/post-quantum-cryptography/post-quantum-cryptography-standardization

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

