IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

1237

High-Performance FPGA Accelerator for SIKE

Rami El Khatib

, Reza Azarderakhsh
and Mehran Mozaffari-Kermani

, Member, IEEE,
, Senior Member, IEEE

Abstract—In this article, we provide improvements for the architecture of Supersingular Isogeny Key Encapsulation (SIKE), a post-quantum
cryptography candidate. We develop a new highly optimized Montgomery multiplication algorithm and architecture for prime fields. The
multiplier occupies less area and provide better timing results than the state-of-the-art. We also provide improvements to the scheduling of
SIKE in our program ROM. We implement SIKE for all Round 3 NIST security levels (SIKEp434 for NIST security level 1, SIKEp503 for NIST
security level 2, SIKEp610 for NIST security level 3, and SIKEp751 for NIST security level 5) on Xilinx Artix 7 and Xilinx Virtex 7 FPGAs. Our
best implementation (NIST security level 1) runs 38 percent faster and occupies 30 percent less hardware resources in comparison to the
leading counterpart available in the literature and implementations for other security levels achieved similar improvement.

Index Terms—Hardware architectures, isogeny-based cryptography, Montgomery multiplication, post-quantum cryptography, SIKE

1 INTRODUCTION

POST—QUANTUM cryptography (PQC) centers on identifying
and understanding new mathematical techniques upon
which cryptography can be built that are both resistant
against quantum attacks and feasible to be implemented on
today’s widely used computerized devices. In a seminal
paper [1], Peter Shor showed that both RSA and ECC would
be easily broken by employing a quantum computer. The five
main classes of quantum-hard problems are as follows [2]:
code-based cryptography, lattice-based cryptography, hash-
based cryptography, multivariate cryptography, and isogeny-
based cryptography. The second round of the NIST PQC stan-
dardization process features a greater emphasis on evaluating
the performance of candidates. NIST completed Round 2 eval-
uation and Supersingular Isogeny Key Encapsulation (SIKE)
stayed as an alternate candidate in Round 3 with a strong
hope of being standardized in Round 4 [2].

When considering quantum-safe alternatives to ECC, iso-
geny-based cryptography appears as an attractive replace-
ment. The security of isogeny-based cryptosystems such as
SIKE scheme is based on the problem of computing isogenies
between elliptic curves. Improving the performance of iso-
geny-based cryptography is critical to ensuring that it sur-
vives into subsequent rounds of standardization. Notably, the
SIKE [3] scheme features the smallest public key sizes [4], [5]
of known quantum-safe public key exchange algorithms.
Small public key sizes are extremely advantageous in many
different scenarios as it reduces the communication overhead

Rami El Khatib and Reza Azarderakhsh are with the Department of Com-
puter and Electrical Engineering and Computer Science, Florida Atlantic
University, Boca Raton, FL 33431 USA. E-mail: {relkhatib2015@fau.edu,
razarderakhsh}@fau.edu.

Mehran Mozaffari-Kermani is with the Computer Science and Engineering
Department, University of South Florida, Tampa, FL 33620 USA.

E-mail: mehran2@usf.edu.

Manuscript received 23 July 2020; revised 20 Mar. 2021; accepted 1 May 2021.
Date of publication 10 May 2021; date of current version 10 May 2022.
(Corresponding author: Reza Azarderakhsh.)

Recommended for acceptance by]. C. Hoe.

Digital Object Identifier no. 10.1109/TC.2021.3078691

<+

and storage necessary for secure communications. The only
concern is the performance of SIKE towards which this work
is another step forward.

SIKE offers four different security levels, as shown in
Table 1, with higher security levels utilizing larger primes. The
prime is used as the modulus for modular addition and modu-
lar multiplication which together form a prime field F,,. The
prime field is then used to build the isogenies through a pyra-
mid scheme discussed in Section 2. SIKE’s prime has a special
form 2°4 - 3°8 — 1 where the least significant e4 bits are all 1s.
This form can be exploited in Montgomery multiplication [6],
which is a method for modular multiplication. It is well known
that the main drawback of SIKE over other PQC candidates is
the high cost of modular multiplication which makes it few
orders of magnitude slower than other PQC schemes.

Recently researchers were able to improve the computation
time of SIKE by slightly over one order of magnitude [7], [8],
reducing the total time to under 20 milliseconds while adding
protection against active attacks. In this work, we show that
there is still room for improvement of intensive lower level
computations. This paper is another step forward in this direc-
tion which reduces the computation time to less than 10 milli-
seconds and cuts the occupied number of hardware resources
considerably when implemented in FPGA. The goal of this
paper is to develop efficient and high-performance hardware
architectures for SIKE. The contributions of this paper is item-
ized in the following:

1.1

Our Contributions

We develop a highly optimized Montgomery multipli-
cation algorithm and architecture that further utilizes
the special form of SIKE primes. We experimented
various configurations for our high-radix design to
find the best choice for area-time trade-offs.

We improve the scheduler mechanism provided in
[9] and utilized it in our design. Which resulted in a
reduced number of clock cycles.

We implement SIKE for NIST Round 2 primes;
SIKEp434, SIKEp503, SIKEp610, and SIKEp751 with
the developed Montgomery multiplier architecture.

0018-9340 © 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1238

TABLE 1
SIKE Primes for Post-Quantum Cryptography Based
on NIST Round 2 Standardization Process [3]

Security Prime Form Public Key Shared Key
Level Size (Bytes) Size (Bits)
NIST level 1 pyzq = 22163137 — 1 330 128
NIST level 2 pjg3 = 22993159 — 1 378 192
NIST level 3 pgo = 2593192 — 1 462 192
NIST level 5 pr5 = 25723%9 — 1 564 256

e We evaluate time and area performance of the pro-
posed hardware architecture benchmarked on FPGA
and compare with counterparts.

The organization of the paper is as follows. In Section 2, we
give a literature review of SIKE. In Section 3, we discuss the
algorithm and architecture of our highly optimized Mont-
gomery multiplication. In Section 4, we discuss the improved
scheduler. In Section 5, we propose our SIKE implementation
and compare our results with counterparts available in the lit-
erature. Finally, in Section 6, we give our final thoughts and
discuss future work.

2 PRELIMINARIES: SIKE PROTOCOL

In this section, we provide a brief overview of the SIKE pro-
tocol. SIKE mainly requires two operations: Isogeny and
Shake256. The latter is part of the NIST standardized hash-
ing algorithm SHA-3 [10]. Isogeny operations are done over
Montgomery curve [11], [12] using the efficient projective
isogeny formulas [3] for better performance. We point the
reader to [3] for a detailed overview of SIKE.

2.1 SIKE Operations

A prime p is chosen of the form 2°43°6 — 1 where 2°4 ~ 3°8
(Check Table 1 for standardized primes). For public param-
eters, we have a starting curve Ej, two points P4 and Q4 of
order 2°4 and two points Pp and ()5 of order 3°6 (standard-
ized parameters are in SIKE specs [3]). Each pair of points

PQC
protocols

Y
Extended

_

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

with the same order must be chosen such that there is Weil
pairing so that P + [s]Q also has an order of ¢° (the order of
Pand Q) forany s < /°.

Key Generation. In key generation, Bob chooses a random
secret key sp € [0,3°8) and computes the isogenous elliptic
curve Epusing the isogeny ¢z with kernel (Pgp + [s5|@Q5).
The elliptic curve Ep along with ¢p(P4) and ¢p(Q4) make
up Bob’s public key pkp.

Key Encapsulation. In key encapsulation, Alice chooses a
secret message m € [0,2%-"*¢) (where ss_size is the shared
key size in Table 1) and hashes {m, pkp} using Shake256 to
generate her secret key r of size 2°4 bits. She can then com-
pute her emphemeral public key {E4,¢4(Pp),¢4(Q5)}
using the isogeny ¢, : Ey — Ep = Ey/(P4+ [r]Q4). She
also generates a key to encrypt the message m by first com-
puting the elliptic curve E4p under the isogeny ¢, : Ep —
Eap =2 Ep/{¢p(Pa) + [rl¢p(Qa)). Then she computes the
Jj-invariant j(E4p) and hashes it with Shake256 to the same
size of the message. She encrypts the message m by XORing
it with the key to generate c. She shares the ciphertext ct =
{pka,c} publicly and, finally, generates the shared secret
ss4 of size ss_size by hashing {m, ct} with Shake256.

Key Decapsulation. In key decapsulation, Bob first computes
the key used to encrypt ¢ by first computing the elliptic curve
Eps under the isogeny ¢p,: Ex — Epa = Ex/{(¢p(Pp)+
[s8]¢4(Q.4)) using Alice’s public key pk . If he receives Alice’s
correct ciphertext, £z should be isomorphic to E4p, aka.
equal j-invariant. Therefore, he can compute the key by hash-
ing the j-invariant j(£p4) with Shake256. The message m' can
then be recovered by XORing ¢ with the key. He can recover
Alice’s secret key 1’ by hashing {m/, pkp} and then generate
Alice’s public key pk/y = {E',¢,(Pp),#,(Qp)} under the
isogeny ¢y = Ey — E', = Ey/(Pa + [1']Q4). He checks that
Alice’s public key he computed is equal to Alice’s actual pub-
lic key. If they are equal, he outputs the correct shared secret
ssp by hashing {m, pka, c}.

Isogeny Computations. The pyramid in Fig. 1 shows the
breakdown of isogeny computations. To compute the Isogeny
E/(P + [s]Q), the kernel point R = P + [s]@Q needs to be com-
puted first using a three point ladder algorithm. The fastest

Three Point

\\
Ladder ‘

,,/

group ops

AN

- \
\ Large Degree Isogeny Comput. |

N
/

Group Ops

<Point Addition> <Point Doubling>

Qsogeny Evaluation and Computation

Fpg Arithemtic

Fp Arithemtic

Inversion

Fig. 1. Breakdown of isogeny computations [8].

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

EL KHATIB ET AL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE

TABLE 2
Optimal Modular Adder Parameters
Prime atb atbFp
SIKEp434 L=23,H=3 L=21,H=3
SIKEp503 L=20,H=3 L=26,H=3
SIKEp610 L=27H=3 L=20,H=3
SIKEp751 L=25H=3 L=20,H=3

algorithm is in [13] which requires one point addition and one
point doubling per bit of the scalar s. For the large degree iso-
geny computation E/(R), we break it down into point multi-
plications and small isogeny evaluations and computations
following a specific strategy. When the kernel is of order 32,
we perform point tripling and 3-isogenies. When the kernel is
of order 2°4, we perform point quadrupling and 4-isogenies
as their formulas are more efficient than point doubling and
2-isogenies. Note that for SIKEp610, since e is odd, one 2-iso-
geny is performed at the beginning. The elliptic curve group
operations are built using F , arithmetic which in turn is built
using F,, arithmetic.

3 PROPOSED EFFICIENT LOWER LEVEL
ARITHMETIC OPERATIONS

In this section, we are going to discuss our low level arith-
metic operations. For the modular adder, we reused the
modular adder in the leading hardware candidate of SIKE
[14], which utilizes the adder in [15], with more efficient
parameters. The parameter L indicates length of carry chain
before going to the next level compaction while the parame-
ter H indicates the maximum level of compaction. It is near
impossible to obtain the optimal parameters for the adder
as place and route greatly changes for different parameters.
However, going beyond H = 3 will add a significant rout-
ing delay and roughly L = ,/p is a good starting point to
test. We tested all L around /p for H = 1,2,3 for a & b first
and then for a & b F p. Table 2 shows optimal parameters
for the modular adder we are using.

For the modular multiplication (@ x bmod p), Montgomery
multiplication is a fast modular multiplication algorithm that
transforms the expensive division by p into a cheap division
by power of 2 which is a simple shift right in software or hard-
ware. Montgomery multiplication has been used for high-per-
formance ECC applications extensively such as in [16], [17],
[18], [19], [20]. Word-by-word Montgomery multiplication
algorithms were proposed in [21], [22]. Some Montgomery
multiplication architecture for SIKE can be seen in [14], [23].

Finely Integrated Operand Scanning (FIOS) Montgomery
multiplication algorithm is a word-by-word algorithm first
proposed in [21]. The original implementation was suitable
for software. In [23], the FIOS algorithm was re-purposed for
hardware implementation suitable for SIKE primes. We had
two issues using that implementation directly in SIKE. The
first issue is that it was not fully interleaved (a.k.a unused
blocks in the multiplier unit can’t be used before the multipli-
cation is complete). Since SIKE has a lot of modular multipli-
cation computation that can be parallelized, the extra cycles
from non-interleaving slows down SIKE. The issue can be

1239

Algorithm 1: Optimized Montgomery Multiplication
for SIKE Primes
Input :p=2° .3 — 1< 2K R =2K y,s5,
K=w-s84=|2/w|,a,b<2p—1
Output: MontMult(a,b)
1T +0
2 fori<-0tos—1do

3 | (C.9) + T(0] + ali] - b[0] } P i
4 m < S

5 forj< 1tosy —1do

6 (C,8) <= T[jl +ald] - bj] + C } s.a-Mult
7 Tj—1]+« S

8 | Ulsal < m+m-p[sa] } snRedo
9 forj < sa+1tos—1do

10 | Ulj] < m-plj] > sp-Red

11 for j < satos—1do

12 (C,S) « T[j) + Ulj] + ali] - bj] + C } s pp-Mult
13 Tj—1+ S

14 if p < 2K — 2 then

15 (C,8)«C

16 Tls—1]« S

17 else

18 (C,S) + T[s]+ C PE Final
19 Tls—1]« S

20 T[s] + C

21 return T’

easily resolved by pushing each chunk of the multiplicand (b
for example) into the corresponding processing element as
soon as it is needed instead of pushing all the chunks in one
go. This technique will have no impact on the total number of
cycles. The second issue is that when plugged in SIKE, the
operating frequency is around 200MHz. This frequency
makes the implementation non-competitive.

3.1 Proposed Montgomery Multiplication Algorithm
We further optimized the Montgomery multiplication algo-
rithm in [23] to minimize the number of operations in the
critical path and the total number of operations used specifi-
cally for SIKE primes. Our optimized algorithm is provided
in Algorithm 1. The algorithm performs the following s
(number of words) times: an initial step, s — 1 multiplica-
tion-reduction steps and a final step.

The initial step begins by adding the first result chunk
T'[0] with a[é] x p[0]. The least significant word S is used to
compute the quotient m and the carry C' is propagated to
the first multiplication-reduction step. Because of the special
form of SIKE primes where p[0] is all 1s for any word w <
eq, P = —p 'mod 2% = 1. This leads to m = S - p’ mod 2¥ =
S. Finally, a second carry C, is propagated to the first multi-
plication-reduction step. (C,,S)=S+m-p[0]=m+ m-
p[0] = (m,0) = C, = m. Our first change here is to keep the
carries separate instead of merging them together by adding
them.

Each of the multiplication-reduction steps consists of addi-
tion of current result chunk 7°[j], two parallel multiplications
(afi] - b[j] and m - p[j]), and the carry from the previous step.
The least significant word is stored in the previous result

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1240

a;

i

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Aser

even

startl;

even;

Fig. 2. Proposed Montgomery multiplication architecture.

chunk T'j — 1] and the carry is propagated to the next step.
Our approach was to split the multiplication-reductions steps
into two parts. In the first part where 1 < j < s4 = |24 /w]
(s4-Mult), we notice that all the bits of p[j] are 1. The reduc-
tion operation m x p[j] can be skipped completely as (C;, S) =
C. +m x p[j] = (m,0). Therefore, T'[j — 1] is independent of
the reduction operation and we are always propagating m to
the next step. In the second part where s4 < j < s (sp-Mult
and sp-Red), all operations of the multiplication-reduction
step are performed. In the first reduction operation (sp-
Red0), we add the carry C, = m to the reduction operation
m X p[s4] which will be added to the first multiplication oper-
ation in sp-Mult and merged with the carry C in subsequent
steps. This means that in subsequent reduction operations
only m x p[j] is performed without adding C,. Note that the
carry C'is 1 bit larger (w + 1 bits total) after the merging.

In the final step, the carry C of the last multiplication-
reduction step is pushed into the final result chunk T'[s — 1].
If the radix R =2% =2%" is chosen such that p < 2572,

Authorized licensed use limited to: Florida Atlantic University. Downloaded

o aj b ¢ s
PE Initiatblocks f *__ w_wl
- P \
b,,—lb ;Ellltlal1 —:—»Tg 1.
-------- [p— — —— w /'
P A TN > T
/
_i, sa-Mult
2R 2K I
[}
_:) sa-Mult
[}
R
1 @a: C: S
| ¥ v A
[}
sa-Mult
D i o e w__wk
H{ somute s 3
sg-Mult ¥
l")S“JI" : ,// 2wl A v
= 1ok v
> | 2w
b I sg-Mult > T.; \ 2N A
SA+T]
SRR +
[-
R R NN A A
] \
4'; sg-Mult _:-%T;'\b a rstart
B U, - -1‘\ v ol w o wl w
sg-Red blocks _-_-_-_-w-r_-- _ v
N C, So
start

then C' < 2" can fit in the result chunk. Otherwise, if p =
251 then an additional 1-bit register 77s] is used to process
the extra bit of C.

The changes made to the algorithm cut s, — 1 multiplica-
tions and s4 — 2 additions. Furthermore, sp-Red operations
can be computed ahead of time which will reduce the criti-
cal path delay in our architecture.

3.2 Proposed Architecture for Montgomery
Multiplication

Fig. 2 shows our proposed architecture. Our design can per-
form two multiplications in parallel and each block in our
design is pipelined and performs one operation in the algo-
rithm. The first block PE initial computes the first multipli-
cation carry C and the quotient m, which is also the
reduction carry C, for Montgomery multiplication with
SIKE primes. m is pushed to the reduction path (s4-
Red— sp-Red0— sp-Red) where the reduction operations
in the algorithm are performed. The first multiplication

on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

EL KHATIB ET AL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE

1241

TABLE 3
Breakdown of Our Proposed Montgomery Multiplication Architecture Compared to Previous Design (Dual Multiplier)
Total) Critical Arithmetic Total Arithmetic
Block Operation . i
Blocks Path Operations Operations
El Khatib et al. [23] twice
PE initial 1 T[0] + ali] - b[0] My + Ao My + Aoy Moy + Ao
Mult-Red s—1 T[] 4ali]-blj]l+m-plj]+C My +2A2, 2M, + 3A3, (25 —2)M,, + (3s — 3)Aaq,
PE final 1 C 0 0 0
Full design - - My, + 2A2, (28 — 1)My, + (3s — 2) Ay,
Proposed Design
PE initial 1 T[0] + ali] - b[0] My + Az My, + Az, My + Azy
sA-Red SA — 2 C 0 0 0
s A-Mult sa— 1 T[] + ali] - b[j] + C My + Ao My +2A24 (a4 —1)My + (254 — 2) Aoy
sp-Red0 1 m 4+ m - p[j] My, + Az My + Aoy My + Aoy
sp-Red sp — 1 m - plj] M, M, (sp — 1)My,
sp-Mult sB T[]+ Ulj] + ali] - blj] + C My + Asyy My + 3A0,, (sB)My + (3sB)Azw
PE final 1 C 0 0 0
Full design My + Aoy (s+sB)Mw + (25 + sB)Azw

carry C is pushed to the multiplication path (s4-Mult
— sp-Mult) where the multiplication operations in the algo-
rithm are performed and the result chunks are collected.
Finally, PE final receives the final carry from the multiplication
path and is used to process the final result chunk. Inside the
main path (PE initial = Multiplication path—PE final), carry C
is propagated forward while S is propagated backward as S is
stored in previous result chunk 7'[j — 1] in the algorithm.

al and a2, the first operands for the dual multiplier, are
pushed serially in odd and even cycles, respectively, into PE
initial and then propagated to the next block in the multiplica-
tion path. The second operands for the dual multiplier, b1 and
b2, are pushed directly to their respective block. However, to
achieve interleaving and increase throughput, b1 and 02 are
pushed in the first s cycles with one cycle delay for the next
word. On odd cycles, the odd blocks (1,3,5,...) compute
chunks for the first pair of operands (a;and b;) while the even
blocks (2,4, 6, . ..) compute chunks for the second pair of oper-
ands (az and b2). On even cycles, the blocks switch places
where now the odd blocks work on the second pair of oper-
ands and the even blocks work on the first pair of operands. A
reset is required to the register S that stores the result chunks
during the first s cycles. The final result is collected word-by-
word over s cycles after 2s cycles have passed since the start of
the multiplier.

In the reduction path, s4-Red is completely eliminated in
our algorithm and therefore m is simply propagated to
sp—Red0 after a certain delay. To shorten the critical path,
sp-Red blocks are processed one cycle in advance before the
result is pushed into their corresponding s 4-Mult block.

Table 3 gives a breakdown of the total number of blocks
required as well as the critical path and the number of arith-
metic operations used in comparison to [23] (used twice for
dual-multiplication). The critical path is shortened by one
addition and the design requires s, — 1 less multiplications
and s4 — 2 less additions.

3.3 Implementation and Results

The FPGAs we are using in our SIKE implementation are the
Xilinx Virtex-7 and Xilinx Artix-7. The DSP unit in this series
of FPGA can perform fast multiply-and-add (a x b+ ¢) or 3-

input addition (a 4 b + ¢). Chaining the DSPs allow for com-
plex arithmetic operations with a small additional delay per
DSP. Furthermore, DSPs support dual input for one of the
multiplicand (a x by + ¢ or a x by + ¢) by exploiting the pre-
adder. This allows us to design a dual multiplier while fully
utilizing the DSP unit. Table 4 shows how to utilize a maxi-
mum of 2 DSPs per block. In [23], the reduction and multiplica-
tion operations are not separated and therefore require 3
chained DSPs to compute them and more DSPs for a dual-mul-
tiplier design. Thus, our design requires less number of DSPs
in the critical path and less total DSPs.

A few additional optimizations can be exploited by the
DSP. The registers to store the second operands 60 and b1 are
used directly in the DSP. The DSP can select whether to add 0
or one of the operands in the addition step. This is used to
replace the reset signal of the registers that hold the result
chunks S. Another optimization that can be utilized is to store
a and b going to the multiplication of each block in the DSP’s
register. This will add one extra cycle but greatly shorten the
critical path. The start control signals and the even control sig-
nal for b1 and b2 are stored one cycle in advance in the DSP’s
control registers for improved performance. The registers
used to store C' and S are stored in the fabric outside the DSP
as this will give the best performance.

Table 5 shows number of DSPs used and timing results of
our implementations for each of the SIKE primes. Our design
requires less DSP, has a higher frequency, but require more
clock cycles in comparison to [14]. However, the higher

TABLE 4
DSP Breakdown of Our Proposed Montgomery
Multiplication Architecture (Dual Multiplier)

Block DSP 1 DSP 2 Total DSPs
PEinitial 7'[0] + a[i] x b[0] - 1
sa-Red - - -
s4-Mult ali] x b[j] DSP1+T[i]+C 2(sa—1)
sp-Red0 m+m - p[j] - 1
sp-Red m - p[j] - sp—1
sp-Mult Ulj] + ali] x b]j] DSP1+T[i]+C 2sp

PE final - - 0

Full design - - 2s+sp—1

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1242
TABLE 5
Montgomery Multiplication DSP and Timing Analysis
Reference # Freq Latency (cc) Latency (ns)
DSP | (MHz) | Mult. l Interleave | Mult. l Interleave
SIKEp434
Liu et al. [24]" 36 236 66 54 280 229
This work 65 294.0 81 52 276 177
SIKEp503
Koziel et al. [14]* 88 171.2 70 49 409 286
Liu et al. [24]* 64 213 66 54 310 254
This work 75 294.0 93 60 316 204
SIKEp610
Liu et al. [24]* 81 191 66 54 346 283
This work 90 2940 111 72 378 245
SIKEp751
Koziel et al. [14]"* 128 1674 100 69 597 412
Liu et al. [24]* 144 161 66 54 410 335
This work 113 2940 138 90 469 306

* LUT usage is 5-6 x more than our design.
sk Interleave cycle is odd number which adds an addition cycle.

frequency dominates the increased cycle count and the overall
total time to perform an operation is lower. In [24], a huge part
of the computation is moved from DSP to fabric. Their LUT
usage for SIKEp434 is 6724 in comparison to our LUT usage of
1,157. In addition, the design is not very scalable as SIKEp751
uses more DSP and 5 x LUT in comparison to our design. We
reserve further comment until the design is plugged in SIKE.

4 SCHEDULING PRIME FIELD OPERATIONS

The most expensive operations for performing the isogeny
computation are the double-and-add to compute the three-
point-ladder, double/triple, get-isogeny and evalu-
ate-isogeny to compute the -degree isogeny, and finally FF,,
inversion for encoding and decoding the data (generating
public key, getting the elliptic curve equation, and computing
J-invariant). The inversion formulas has been optimized in [3]
for each prime and since it is Fermatt-Based, there is little
room for improving the scheduling as the algorithm is mostly
sequentional. For the three-point-ladder and the /-degree iso-
geny computation, a good scheduler can exploit the available
resources to reduce the time to compute them. In this section,
we look at the scheduler used by Farzam et al. [9] and try to
improve on it.

4.1 Scheduling Operations
In [9], the authors implement an efficient scheduler by utiliz-
ing an optimization programming language (OPL) instead of
implementing the optimization using a script as was done in
[14] (and its previous iterations in [7], [8], [25]). The main
advantage of using OPL is that the optimization techniques
are heavily scrutinized and will almost always outperform a
hard-coded optimizer without a lot of investment in it. To
implement the efficient scheduler using OPL, the authors start
by generating a dependency graph after expanding all opera-
tions to their F, equivalent. For example, Fig. 3 shows the
dependency graph of a subroutine that performs an F? multi-
plication followed by an F? addition.

In addition to the data, a constraint set must be provided to
the scheduler depending on the available resources. We have

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

dog ai bo b1 ai bo ao b1

d

Fig. 3. Dependency graph showing Ff) multiplication [9] followed by]Ff]
addition (d = a - b+ ¢).

noticed one issue and one inefficient utilization of a resource
with the constraint the authors provided in [9]. Before discus-
sing the issues, we will briefly mention the constraints which
are also the same constraints used in the architecture of [14]

No simulatenous RAM read, RAM write, or both.
RAM read is 2 CCs.

RAM write is 1 CCs

The field adder/subtractor latency is 2 CCs. Conse-
cutive addition/subtraction are allowed as the sec-
ond cycle (reduction) utilizes a different unit from
the first cycle (addition).

For the field multiplier, our multiplier is designed differ-
ently but the constraints are exactly the same as in [14]. If
the first multiplication is performed on an even cycle, then
the second multiplication is performed on an odd cycle,
then the third multiplication is performed on an even cycle
and so on. We have noticed an issue in the authors’ con-
straints as can be seen in their paper’s Fig. 5 where they
scheduled the third multiplication in their multiplier in an
odd cycle which means that the third multiplication is over-
writing the second multiplication. We are not sure how they
got correct results with such a scheduling without any mod-
ification to the field multiplier which is not mentioned in
the paper.

Each multiplier also has 2 stages; the interleave stage and
writing stage. During the interleave stage, the multiplier is
locked and doesn’t accept new multiplication. Once the inter-
leave stage is complete, a new multiplication can be processed
while simulatenously the current multiplier writes the result
chunk-by-chunk into a register. The authors here delayed the
next multiplication until after the RAM read and interleave
cycles. That is actually not necessary. The multiplication can
be scheduled 2 cycles before the interleave stage of the multi-
plier finishes since it takes two cycles to start the multiplica-
tion due to the RAM read latency. One downside to the
design in [14] is that the interleave stage is an odd number
which means that the multiplication need to be scheduled one
cycle after that. In our multiplier design, the interleave stage
requires an even number of clock cycles and therefore no
additional cycle is required.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

EL KHATIB ET AL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE

1243

TABLE 6
Comparison of Major Subroutine for NIST Level 1 (SIKEp434) Between Our Design and [14]

Subroutine | Work

Multipliers Improvement (%)

2 [46 81012 [2[4]6]8]10]12

[14] | 838 | 569 | 429

376 | 371 | 371

Ladder Step 21191415919
our | 824 | 460 | 368 | 356 | 338 | 338
QUAD [14] | 955 | 718 | 659 | 659 | 659 | 659 3lalslsls]s
our | 930 | 692 | 627 | 626 | 626 | 626
[14] | 247 | 207 | 207 | 207 | 207 | 207
ET41
G 50 our | 247 | 196 | 196 | 196 | 196 | 196 01553]2°
EVAL 4 ISOx1 [14] | 830 | 580 | 539 | 539 | 539 | 539 25|23 32|34 (37|37

our | 619 | 445 | 368

354 | 337 | 337

EVAL 41502 | 1141 [1.219] 706 | 661

635 | 640 | 626

our [1,191| 625 | 463

418 | 397 | 388

[14] |1,795| 974 | 789

725 | 713 | 705

our |3,484(1,781|1,219

EVAL 4 ISOx3 214119(27|35|9
our [1,763| 931 | 638 | 527 | 464 | 644

EVAL 4 1SOx4 [14] | 2,377 1,258 | 914 | 850 | 805 | 770 214192102826
our |2,335|1,203| 834 | 661 | 581 | 566

EVAL 4 ISOx5 [14] 2,959 (1,563 |1,127 {1,002 | 927 | 879 2137 118]22]23
our [2,908(1,509 1,047 | 817 | 720 | 674

EVAL 4 1SOx6 [14] | 3,539 (1,841 1,313 | 1,158 | 1,023 | 1,020 213171711819

956 | 834 | 823

[14] | 4,092 (2,157 | 1,623

1,483 | 1,441 (1,430

EVAL 4 ISOx7
VAL A SO = 1 059 [2.101 1,433

1,121 | 986 | 965

[14] | 4,674 |2,447 | 1,754

1,618 | 1,542 (1,512

EVAL 4 ISOx8 0|4|8(20(25|28
our |4,665]2,357 1,614 (1,299 1,154 | 1,091
EVAL 4 1SOx9 [14] | 5,248 (2,754 1,965 | 1,705 | 1,648 | 1,600 olal7116l21123
our |5,2362,684 1,820 (1,429 |1,297|1,225
EVAL 4 ISOx10 [14] | 5,830 (3,014 2,137 1,869 | 1,787 | 1,709 1111715022023
our |5,785(2,973 1,997 1,595 1,390 | 1,320
TRIPLE [14] | 950 | 669 | 588 | 584 | 560 | 560 slel7lsl7]7
our | 927 | 627 | 548 | 536 | 523 | 523
[14] | 460 | 354 | 277 | 277 | 277 | 277
ET3 I 18|21
CET 3150 our | 375 | 281 | 254 | 254 | 254 | 254 8 518188
EVAL 3 1SOx1 [14] | 531 | 415 | 331 | 331 | 331 | 331 315lalalala
our | 513 | 393 | 319 | 319 | 319 | 319
EVAL 3 1SOx2 [14] | 907 | 559 | 452 | 453 | 390 | 392 311511611907 | 9
our | 879 | 476 | 379 | 366 | 361 | 355
EVAL 3 ISOx3 [14] |1,324] 753 | 564 | 514 | 49 | 469 2110|1417 (19]|16
our [1,295| 680 | 486 | 429 | 402 | 392
EVAL 3 ISOx4 [14] | 1,751 | 943 | 691 | 604 | 546 | 544 2161911501619

our |[1,711| 886 | 628

515 | 460 | 441

EVAL 3 ISOx5 [14] |2,172|1,149 | 843

718 | 651 | 619

our |2,128 (1,096 | 775

601 | 555 | 525

[14] 2,598 | 1,364 | 974

821 | 754 | 703

EVAL 3 ISOx6 2 14|7(12(14|13
our [2,543[1,308| 902 | 719 | 645 | 611

EVAL 3 ISOx7 [14] | 3,000 (1,607 |1,179 {1,031 | 1,061 | 1,030 115111119129]32
our |2,959|1,520|1,055| 839 | 749 | 705

EVAL 3 ISOx8 [14] |3,424(1,809 1,317 1,171 | 1,118 | 1,159 11319/20/24]31
our [3,381(1,746|1,204| 931 | 853 | 794

EVAL 4 ISOx9 [14] | 3,840 (2,010 | 1,469 | 1,257 | 1,177 | 1,208 113 l10l14122127
our |3,801(1,954|1,317|1,083| 915 | 879

EVAL 4 1SOx10 [14] | 4,264 (2,221 1,577 | 1,419 |1,267 | 1,290 11216l16l17125

our |4,225(2,172|1,479

1,187 | 1,052 | 968

Once a dependency graph and constraint are set, the
OPL model is ready to be fed into the OPL scheduler. We
feed the OPL model to the constraint programming (CP)
engine of IBM’s CPLEX Studio and use the result to gener-
ate the program ROM.

4.2 Scheduler Results

We provide our results in Table 6 for NIST level 1 (SIKE p434)
with a multiplier that has an interleave cost of 52 cycles and
multiplication cost of 81 cycles as was obtained in Section 3.
The table also compares our current results to the results

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1244 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

TABLE 7
Comparison of Scheduling Major Subroutines Used in Computing the Isogeny With 69 Interleave CC and 100 Multiplication CC

Multipliers Improvement (%)
2 [4 | 6 [8 [10] 12 [2[4]6]8]10]12
[14] [1,099] 613 | 523 | 479 | 479 | 476
Ladder Step [91 [1,097] 607 | 469 | 453 | 441 | 440 [0| 0|3 | 4 |10]10
our |1,095| 605 | 455 | 433 | 399 | 395
[14] |1,236 | 887 | 827 | 821 | 821 | 821
Quad [91 [1,232] 854 | 780 [780 | 780 | 780 [1| 2|5 |5 |5 |5
our |1,220] 840 | 741 | 741 | 741 | 741
[14] | 360 | 261 | 261 | 261 | 261 | 261
GET 4 1SO [9] | 322 | 248 | 248 [248 | 248 [248 |1| 6|6 |6 |6 |6
our | 320 | 234 | 234 | 234 | 234 | 234
[14] | 876 | 596 | 498 | 471 | 457 | 457
EVAL41SOx1 | [9] | 822 | 562 | 466 | 455 | 441 | 440 |0| 1 |5 |5 |11|10
our | 818 | 554 | 441 | 431 | 394 | 394
[14] 2,369 [1,260| 908 | 814 | 794 | 790
EVAL 41SOx3 | [9] [2,362[1,242] 846 | 731 | 722 [725 [0| 0 |2 | 7 |23|29
our |2,358[1,238] 832 | 679 | 553 | 516
[14] |3,916 | 2,047 | 1,452 1,280 | 1,276 | 1,270
EVAL41SOx5 | [9] [3,902]2,012(1,382[1,199[1,180[1,174]|0| 0 | 0 |12|27]36
our |3,898[2,008[1,380[1,053| 858 | 754
[14] |5462 [2,834 (1,962 (1,762 |1,762 | 1,750
EVAL 41SOx7 | [9] |5,443(2,783(1,885|1,676[1,650[1,643|0| 0 | 0 |14|28]38
our |5438[2,780[1,881]1,448 1,188 1,024
[14] | 7,007 | 3,627 | 2,565 | 2,243 | 2,241 | 2,230
EVAL 41SOx9 | [9] |6,983]3,552(2,408 2,163 12,170 [2,146]|0| 0 | 1 |15|32]40
our |6,97813,552(2,378(1,831[1,481 1,288
[14] |8,557 | 4,407 | 3,094 (2,779 | 2,760 | 2,740
EVAL 41SOx11| [9] [8,522[4,322(2,941[2,689(2,668]2,640|0| 0 | 0 [17 32|40
our |8,520[4,32212,928(2,226 1,826 | 1,581
[14] |1,224| 812 | 706 | 693 | 687 | 687
Triple [91 [1,222] 783 | 683 [664 | 654 | 654 |0| 1|3 |2 |66
our |1217] 774 | 663 | 649 | 617 | 617
[14] | 579 | 439 | 375 | 374 | 373 | 373
GET 3 1SO [91 | 518 | 377 [326 | 326 | 326 | 326 [9|11|10|10|10|10
our | 472 | 336 | 293 | 293 | 293 | 293
[14] | 676 | 501 | 418 | 418 | 418 | 418
EVAL31SOx1 | [9] | 668 | 492 | 405 | 405 | 405 | 405 |12 |7 |7 |7 |7
our | 659 | 484 | 376 | 376 | 376 | 376
[14] [1,740] 975 | 734 | 639 | 613 | 613
EVAL31SOx3 | [9] [1,732] 903 | 646 | 562 | 542 [533 |0| 1 |4 |5 |10|16
our |1,728] 895 | 622 | 532 | 487 | 448
[14] |2,867 [1,497 [1,100| 981 | 930 | 903
EVAL 31SOx5 | [9] [2,853]1,463[1,032| 869 | 843 [839 [0| 1 |0 |11|22]30
our |2,848[1,454[1,028[774 | 654 | 584
[14] |3,988 2,066 | 1,494 | 1,329 | 1,263 | 1,253
EVAL 31SOx7 | [9] [3,973]2,024[1,406 1,216 [1,174[1,179]0| 0 | 1 |13|23]|33
our |3,968[2,014[1,395[1,053| 899 | 788
[14] |5,116 | 2,635 | 1,902 (1,697 | 1,653 | 1,613
EVAL 31SOx9 | [9] [5,093]2,581 (1,769 1,566 [1,521[1,525]|0| 0 | 1 |14|26]35
our |5,088[2,575[1,752[1,342[1,121 | 992
[14] 16,237]3,212 2,353 2,060 | 2,000 | 1,982
EVAL 31SOx11| [9] [6,213(3,144(2,17211,932]1,888]1,859|0| 0 | 1 [16|28|36
our |6,20813,140[2,159] 1,616 [1,350 | 1,185

Subroutine Work

obtained by using the scheduler in [14] with the same multi- Since our multiplier operates at a higher clock frequency
plier costs. We observed 5-32 percent improvement across the at the cost of more clock cycles, a direct comparison between
board with an overall improvement of 10 percent. Similar per- our scheduler and the one provided in [9] is not possible.
centage improvement were observed across all SIKE primes. However, we ran our scheduler with an interleave cost of 69

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

EL KHATIB ET AL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE 1245
l(N\
/
S————————---—-—-—-—--—-—-—-—- s Adder/
| 1 ,/ Subtractor
- || Strategy Program : /
g‘) E ROM ROM E ,’/ Mult Unit
Public g i 11 | / Mult 0
NN ’
Parameters< gA i (Controller J E / Mt 1
B> Lo ____ -1 / 3
O—]]
B 7 | ,mmmmeNeeeeeo ’
- | |
‘[Memory || | Y o~ J
| . " 4
: Unit :I ,/l
Key i| Secret | ALU L Key
Generation { SB : Keys : . P pkB} Generation
[} L}
i[Message |1
[} [}
'| Buffer ||
[} [}
Key m — | Keccak- | — ct Key
) ! |)
Encapsulation pkB R :“"1-(-)8.8“- | sS4 Encapsulation
AR L
(8 N
[}
i| Controller
[}
[}
N—
Key N Key
Decapsulation { ct i SIKE ROM DECAPSULATE > SSB [Decapsulation
[}
[}
[

Fig. 4. Proposed hardware architecture for SIKE protocol.

and multiplication cost of 100 for SIKEp751. The results can
be observed in Table 7. At 2 multipliers, a very minor
improvement can be observed. However, when going to 8
multipliers, our improvements reaches 17 percent in some
places. The number increases at 12 multiplier reaching 40
percent improvement in some areas.

5 FPGA IMPLEMENTATIONS OF SIKE

The implementation is performed in Xilinx Vivado 2019.2 for
Xilinx Virtex-7 FPGA xc7vx690tffg1157-3 and Xilinx Artix-7
xc7a200tfbg676-2 to be able to fairly compare our proposed
scheme with the ones available in the literature. The Virtex-7
FPGA includes 108,300 Slices (most with four LUTs and eight
flip-flops), 3,600 DSP blocks and 1,470 36kb BlockRAMs. Each
DSP slice contains a pre-adder, a 25x18 multiplier, an adder,
and an accumulator. The Artix-7 FPGA includes similar
resources but less of available resources for each. Our design
is based on the design in the leading literature [14] with a
modified ALU based on Section 3 and an improved program
generated from the scheduler from Section 4.

5.1 Proposed SIKE Architecture

The architecture for SIKE used in our design is illustrated
in Fig. 4 which is composed of field arithmetic logic unit
(ALU), main SIKE controller/ROM, program and strategy
controller/ROM, memory unit, message buffer to hold
Alice’s message and ciphertext and Bob’s message, secret

key buffer to hold Alice’s secret key and Bob’s secret key,
and hash unit based on Keccak-1088.

The ALU is the main core and performs operations in
IF, while interacting with the memory unit. F,, arithmetic is
done using I, architectures. For instance, a I » multiplication
requires three F,, multiplications, two F, additions and three
F, subtractions, whereas a F,» squaring requires only two
IF, multiplications, two F,, additions and one F,, subtraction.
The ALU consists of a Multiplication unit and adder/subtrac-
tor unit. The adder/subtractor unit computes modular addi-
tion and subtraction (mod 2p) as well as modular reduction
(mod p) over the specified primes for SIKE. The multiplication
unit consists of n Dual-Multipliers based on the design pro-
posed in Section 3. Since the multiplication unit is the critical
resource, we use as many Dual-Multipliers as is allowed for
parallelization while trying to minimize Time-Area cost. The
cycle counts for our design is reported in Table 8.

TABLE 8
Number of Clock Cycles (in 105 CC) for the Key
Encapsulation Mechanism (KEM) in Our Design

Prime # Mults Keygen Key Encap Key Decap Total (E+D)
SIKEp434 6 0.541 0.974 1.019 1.994
SIKEp503 6 0.729 1.291 1.363 2.654
SIKEp503 6 1.056 2.144 2.112 4.256
SIKEp751 8 1.343 2.554 2.683 5.237

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1246 IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022
TABLE 9
Area and Timing Results of SIKE Implementation in Xilinx Virtex-7
Area Time Area x Time
Reference #Mults #FFs #LUTs #Slices #DSPs #BRAMs Freq Latency Total AT x 1073
(MHz) (cc x 10%) time (ms)

SIKEp434
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 24.3 180
Koziel et al. [14] 6 23,819 21,059 8,121 240 26.5 168.4 1.91 11.3 92
This work 6 18,271 12,818 5,527 195 32.0 249.6 1.99 8.0 44

SIKEp503
Koziel et al. [8]* 6 30,031 24,499 10,298 192 27 177 5.97 33.7 347
Koziel et al. [25]* 6 26,659 19,882 8918 192 40 181.4 3.80 20.9 186
Koziel et al. [7]* 6 24908 18,820 7,491 192 43.5 202.1 3.34 16.5 124
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 28.7 212
Koziel et al. [14] 6 27,609 23,746 8,907 264 33.5 165.9 2.35 14.1 126
This work 6 19,935 13,963 6,163 225 34.0 243.7 2.65 10.9 67

SIKEp610
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 51.8 384
Koziel et al. [14] 6 33,297 28,217 10,675 312 39.5 165.8 3.59 21.6 231
This work 6 26,757 16,226 7,461 270 38.5 239.0 4.26 17.8 133

SIKEp751
SIKE Team [3]** 8 51,914 44,822 16,756 376 56.5 198.0 6.60 33.4 560
Massolino et al.[26] (Fast) - - - 7,408 162 38.0 152.2 - 60.8 450
Koziel et al. [14] 8 50,079 39,953 15,834 512 43.5 163.1 4.55 27.8 440
Farzam et al. [9]** 8 - - 15336 512 45 160.9 3.877 24.10 369
This work 8 39,339 20,207 11,136 452 41.5 232.7 5.24 225 251
* SIDH.

«x SIKE Round 1 Parameters.

The memory unit is implemented using BlockRAM
resources from the FPGA device. The memory unit, secret
key buffer, message buffer, and the hash unit can share data
with each other and can be accessed directly 64-bit at a time.
The SIKE controller/ROM includes main routines (fixed
sequence of instructions) for key generation, key encapsula-
tion, and key decapsulation. On the other hand, The strat-
egy and program controller/ROM includes hand-optimized
routines for all the operations required for computing an
isogeny (three-point ladder and large-degree isogeny). The
program ROM includes the new subroutines discussed in
Section 4. The ROM units, similar to the memory unit, are
implemented using the BlockRam resources. Our design
requires 32 BlockRAMs for SIKEp434.

The sizes for various component of the SIKE architecture
are different based on the required security level. For the
whole operation, first we pre-load public parameters into
the Memory unit. For the secret key and message, Random
values are generated in the host CPU since they have negli-
gible impact on performance. Following the SIKE protocol
discussed in Section 2.1, key encapsulation and decapsula-
tion are performed and ss4 and ssp are generated.

5.2 Implementation Results and Comparison

The proposed SIKE architectures for all NIST security levels
were implemented and tested using Xilinx Vivado 2019.2 and
all the results were obtained after place-and-route. We report
area, timing and area-time trade-off (number of slices x time in
ms) results of the design in Table 9 for Virtex-7 and Table 10
for Artix-7. For the best performance, we chose 3 Dual-

Multipliers (6 multipliers total) for SIKEp434, SIKEp503 and
SIKEp610 and 4 Dual-Multipliers for SIKEp751. We tested the
functionality of the design using known answers tests (KATSs)
available in SIKE submission to NIST.

We compare our architecture results to the previous lead-
ing one [14] as well as the Software-Hardware co-design [26]
(fast implementation only) and some of the previous Super-
singular Isogeny Diffie-Hellman (SIDH) implementations. In
addition, we compare our results with [9]. However, they
used the old public parameters from Round 1 where the
three-point-ladder operation for Alice Round 1 (Alice’s pub-
lic key isogeny) can be heavily optimized since xg, = 0. The
total latency is the summation of key encapsulation and key
decapsulation as key generation can be done offline. As one
can see, for NIST level 1 security (SIKEp434) in Virtex-7, our
design requires 5,458 Slices (17,557 flip flops, 12,999 LUTs),
195 DSPs, and 32 BlockRAMs. It also runs 249.6 MHz and
performs the whole SIKE protocol in 8.0 ms. The drop in fre-
quency in comparison to the Montgomery multiplier in
Table 5 is caused by the strategy and program controller.
Our design is smaller (except for the BlockRAMs) and faster
with area-time trade-off being about 92 percent improved in
comparison to the leading counterpart [14]. For the remain-
ing security levels in Virtex-7, a similar improvement can be
observed. It is to be noted that the design in [26] is one design
for all SIKE security levels. In addition, the design targets
smaller area/lower performance device so a direct compari-
son is not fair. As for Artix-7, we can observe that the results
are better across the board.

The improvements made in the design makes SIKE a fea-
sible option for small embedded devices. Note that SIKE

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

EL KHATIB ET AL.: HIGH-PERFORMANCE FPGA ACCELERATOR FOR SIKE

1247

TABLE 10
Area and Timing Results of SIKE Implementation in Xilinx Artix-7

Area Time Area x Time
Reference #Mults #FFs #LUTs #Slices #DSPs #BRAMs Freq Latency Total AT x 1073
(MHz) (ce x 10%) time (ms)
SIKEp434
Koziel et al. [14] 6 24328 21,946 8,006 240 26.5 132.2 1.91 14.4 115
This work 6 17,557 12,999 5,458 195 32.0 184.8 2.04 11.0 60
SIKEp503
Koziel et al. [14] 6 27759 24610 9,186 264 335 129.9 2.35 18.1 166
This work 6 19,952 13,552 5,985 225 34.0 172.3 2.71 15.7 94
SIKEp610
Koziel et al. [14] 6 33,198 29,447 10,843 312 39.5 125.3 3.59 28.6 310
This work 6 25004 16,502 7,525 270 38.5 168.7 4.26 25.2 190
SIKEp751
Koziel et al. [14] 8 49982 40,792 15,794 512 435 127.0 455 35.8 565
This work 8 38,950 20,154 11,114 452 41.5 155.0 5.24 33.8 375

already offers smallest key sizes which reduces communica-
tion overhead in comparison to the other PQC submissions.
Although all of our computations and implementations in
this paper are secure (based on [14]) and constant-time, it is
worth mentioning that this work mainly focuses on the
high-performance implementations of the isogeny-based
candidate SIKE in FPGA and investigating side-channel
analysis attacks will be in our future work.

6 CONCLUSION

Post-quantum crypto accelerator hardware cores offer chip-
makers an easy-to-integrate technology-independent solu-
tion, offering various NIST recommended security levels. In
this paper, we optimized the Montgomery multiplication
algorithm and architecture targeting SIKE primes. We also
improved the scheduler for SIKE subroutines. We also pre-
sented FPGA implementations of supersingular isogeny
key encapsulation (SIKE) for all NIST Round 2 security lev-
els. The designs are the fastest FPGA implementations of
SIKE over large prime characteristic fields for various NIST
security levels. More specifically, our design utilizes 36 per-
cent less hardware area and is 12-20 percent faster than the
leading FPGA implementations. For NIST level 1, our pro-
posed hardware accelerator performs the SIKE protocol in
8.8 ms. We verified our architectures by using the Known
Answer Tests (KATs) from the SIKE submission and our
code will be available online for further improvements and
evaluations.

Minimizing public key sizes are critical for reducing
transmission and storage requirements for internet applica-
tions as well as IoTs. Our future work will involve imple-
menting the key compression mechanism and bench-
marking the whole design with compressed keys for vari-
ous security level required by NIST.

ACKNOWLEDGMENTS

This work was supported in part by the U.S. National Sci-
ence Foundation under Grant CNS-1801341 and in part by

the U.S. National Institute of Standards and Technology
under Grant 60NANB16D246.

REFERENCES

[1] P. W. Shor, “Algorithms for quantum computation: Discrete loga-
rithms and factoring,” in Proc. 35th Annu. Symp. Foundations Com-
put. Sci., 1994, pp. 124-134.

The National Institute of Standards and Technology, “Post-quan-
tum cryptography standardization,” 2017. [Online]. Available:
https://csrc.nist.gov/ projects/ post-quantum-cryptography /
post-quantum-cryptography-standardization

R. Azarderakhsh ef al., “Supersingular isogeny key encapsulation,”
2019. [Online]. Available: https:/ /sike.org/

R. Azarderakhsh, D. Jao, K. Kalach, B. Koziel, and C. Leonardi,
“Key compression for isogeny-based cryptosystems,” in Proc. 3rd
ACM Int. Workshop ASIA Public-Key Cryptogr., 2016, pp. 1-10.

C. Costello, D. Jao, P. Longa, M. Naehrig,]J. Renes, and
D. Urbanik, “Efficient compression of SIDH public keys,” in Proc.
Annu. Int. Conf. Theory Appl. Cryptogr. Techn., 2017, pp. 679-706.

P. L. Montgomery, “Modular multiplication without trial divi-
sion,” Math. Comput., vol. 44, no. 170, pp. 519-521, 1985.

B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “A high-
performance and scalable hardware architecture for isogeny-
based cryptography,” IEEE Trans. Comput., vol. 67, pp. 1594-1609,
Nov. 2018.

B. Koziel, R. Azarderakhsh, M. Mozaffari-Kermani, and D. Jao,
“Post-quantum cryptography on FPGA based on isogenies on
elliptic curves,” IEEE Trans. Circuits Syst. I: Reqular Papers, vol. 64,
pp- 86-99, Jan. 2017.

M.-H. Farzam, S. Bayat-Sarmadi, and H. Mosanaei-Boorani,
“Implementation of supersingular isogeny-based Diffie-Hellman
and key encapsulationusing an efficient scheduling,” IEEE Trans.
Circuits Syst. I: Regular Papers, vol. 67, no. 12, pp. 4895-4903, Dec.
2020.

The National Institute of Standards and Technology, “SHA-3 stan-
dard: Permutation-based hash and extendable-output functions,”
Inf. Technol. Lab, Comput. Secur. Resour. Center, Nat. Inst. Stand-
ards Technol, Gaithersburg, MD, USA, Tech. Rep., TR-FIPS.202,
2015.

L. De Feo, D. Jao, and J. Plut, “Towards quantum-resistant crypto-
systems from supersingular elliptic curve isogenies,” J.Math.
Cryptol., vol. 8, pp. 209247, 2014.

P. L. Montgomery, “Speeding the pollard and elliptic curve meth-
ods of factorization,” Math. Comput., vol. 48, pp. 243264, 1987.

A. Faz-Hernandez,]. Lopez, E. Ochoa-Jiménez, and F. Rodriguez-
Henriquez, “A faster software implementation of the supersingu-
lar isogeny Diffie-Hellman key exchange protocol,” IEEE Trans.
Comput., vol. 67, no. 11, pp. 1622-1636, Nov. 2018.

[2]

[3]

[4]

[5]

[6]

[71

[8]

[91

[10]

[11]

[12]

[13]

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

1248

[14] B. Koziel, A. Ackie, R. El Khatib, R. Azarderakhsh, and M. M.
Kermani, “SIKE’d up: Fast hardware architectures for supersingu-
lar isogeny key encapsulation,” IEEE Trans. Circuits Syst. I: Regular
Papers, vol. 67, no. 12, pp. 4842-4854, Dec. 2020.

T. B. Preufer, M. Zabel, and R. G. Spallek, “Accelerating computa-
tions on FPGA carry chains by operand compaction,” in Proc.
IEEE 20th Symp. Comput. Arith., 2011, pp. 95-102.

A. Mrabet et al., “High-performance elliptic curve cryptography
by using the CIOS method for modular multiplication,” in Inter-
national Proc. Conf. Risks Secur. Internet Syst., 2016, pp. 185-198.

H. Alrimeih and D. Rakhmatov, “Fast and flexible hardware sup-
port for ECC over multiple standard prime fields,” IEEE Trans.
Very Large Scale Integration Syst., vol. 22, no. 12, pp. 2661-2674,
Dec. 2014.

H. Eberle, N. Gura, S. C. Shantz, V. Gupta, L. Rarick, and S. Sun-
daram, “A public-key cryptographic processor for RSA and
ECC,” in Proc. 15th IEEE Int. Conf. Appl.-Specific Syst., Architectures
Process., 2004, pp. 98-110.

M. Imran, M. Rashid, A. R. Jafri, andM. Kashif, “Throughput/
area optimised pipelined architecture for elliptic curve crypto
processor,” IET Comput. Digit. Techn., vol. 13, no. 5, pp. 361-368,
2019.

M. Imran, S. Pagliarini, and M. Rashid, “An area aware accelera-
tor for elliptic curve point multiplication,” in Proc. 27th IEEE Int.
Conf. Electron., Circuits Syst., 2020, pp. 1-4.

C. KayaKoc, T. Acar, and B. S. Kaliski, “Analyzing and comparing
montgomery multiplication algorithms,” IEEE Micro, vol. 16,
no. 3, pp. 26-33, Jun. 1996.

H. Orup, “Simplifying quotient determination in high-radix mod-
ular multiplication,” in Proc. 12th Symp. Comput. Arith., 1995,
pp- 193-199.

R. El Khatib, R. Azarderakhsh, and M. Mozaffari-Kermani,
“Optimized algorithms and architectures for montgomery multi-
plication for post-quantum cryptography,” in Proc. Int. Conf. Cryp-
tology Netw. Secur., 2019, pp. 83-98.

W. Liu, Z. Ni, J. Ni, C. Rafferty, and M. O’Neill, “High perfor-
mance modular multiplication for SIDH,” IEEE Trans. Comput .-
Aided Des. Integr. Circuits Syst., vol. 39, no. 10, pp. 3118-3122, Oct.
2020.

B. Koziel, R. Azarderakhsh, and M. Mozaffari-Kermani, “Fast
hardware architectures for supersingular isogeny diffie-hellman
key exchange on FPGA,” in Proc. Int. Conf. Cryptol. India, 2016,
pp. 191-206.

P. M. C. Massolino, P. Longa, J. Renes, and L. Batina, “A compact
and scalable hardware/software co-design of SIKE,” IACR Trans.
Cryptographic Hardware Embedded Syst., vol. 2020, pp. 245-271,
2020.

[15]

[16]

[171]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

IEEE TRANSACTIONS ON COMPUTERS, VOL. 71, NO. 6, JUNE 2022

Rami El Khatib received the bachelor’ s degree in
electrical and computer engineering from the
American University of Beirut, the MSc degree
with a focus on implementations of post-quantum
cryptography from Florida Atlantic University,
where he is currently working toward the PhD
degree in computer engineering. He has authored
or coauthored several published papers in the
areas of cryptography and hardware engineering.
His research interests include diverse background
in cryptography, programming, and mathematics.

Reza Azarderakhsh (Member, IEEE) received
the PhD degree in electrical and computer engi-
neering from Western University in 2011. He was
the recipient of the NSERC postdoctoral research
fellowship while working with the Center for
Applied Cryptographic Research and the Depart-
ment of Combinatorics and Optimization, Univer-
sity of Waterloo. He is currently an associate
professor with the Department of Electrical and
Computer Engineering, Florida Atlantic Univer-
sity. His research interests include finite field and
its applications, elliptic curve cryptography, pairing-based cryptography,
lattice-based cryptography, and post-quantum cryptography. He is an
associate editor for the IEEE Transactions on Circuits and Systems.

Mehran Mozaffari-Kermani (Senior Member,
IEEE)) received the BSc degree from the Univer-
sity of Tehran, Iran, and the MESc and PhD
degrees from the University of Western Ontario,
London, Canada, in 2007 and 2011, respectively.
In 2012, he joined the Electrical Engineering
Department, Princeton University, NJ, as an
NSERC postdoctoral research fellow. From 2013
to 2017, he was an assistant professor with the
Rochester Institute of Technology, and starting
2017 he joined the Department of Computer Sci-
ence and Engineering, University of South Florida, where he is currently
an associate professor. He is currently an associate editor for the IEEE
Transactions on Very Large Scale Integration Systems, the ACM Trans-
actions on Embedded Computing Systems, and the IEEE Transactions
on Circuits and Systems - Part |: Regular Papers. He has been the guest
editor for the IEEE Transactions on Dependable and Secure Computing.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

Authorized licensed use limited to: Florida Atlantic University. Downloaded on July 02,2022 at 16:44:05 UTC from IEEE Xplore. Restrictions apply.

