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ABSTRACT

Graph Processing is at the core of many critical emerging workloads
operating on unstructured data, including social network analysis,
bioinformatics, and many others. Many applications operate on
graphs that are constantly changing, i.e., new nodes and edges are
added or removed over time. In this paper, we present JetStream, a
hardware accelerator for evaluating queries over streaming graphs
and capable of handling additions, deletions, and updates of edges.
JetStream extends a recently proposed event-based accelerator for
graph workloads to support streaming updates. It handles both
accumulative and monotonic graph algorithms via an event-driven
computation model that limits accesses to a smaller subset of the
graph vertices, efficiently reuses the prior query results to eliminate
redundancy, and optimizes the memory access pattern for enhanced
memory bandwidth utilization. To the best of our knowledge, Jet-
Stream is the first graph accelerator that supports streaming graphs,
reducing the computation time by 90% compared with cold-start
computation using an existing accelerator. In addition, JetStream
achieves about 18X speedup over KickStarter and GraphBolt soft-
ware frameworks at the large baseline batch sizes that these systems
use with significantly higher speedup at smaller batch sizes.
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1 INTRODUCTION

Graphs are used to represent data in many application domains
because of their ability to represent entities (vertices) and relation-
ships (edges). Real-world graphs such as social networks and web
graphs are often massive and irregular, making it challenging to
achieve good performance on graph analytics workloads. There has
been substantial research to develop graph analytics frameworks
that deliver high performance on shared-memory [31, 39] and dis-
tributed platforms [7, 23]. Recent research has also used GPUs [47]
and custom accelerators [1, 13, 32, 33].

Most graph frameworks optimize the performance of a given
query against a fixed graph. However, in many real-world applica-
tions, we are faced with the streaming graph scenario where the
graph is constantly changing as new entities are created, old entities
are removed, and new interactions take place over time. A stream of
updates in the form of edge/vertex additions/deletions is typically
applied to the graph in batches for efficiency. As the graph evolves,
a straightforward approach is to restart the query from scratch after
applying a batch of graph updates. However, the number of vertices
or edges modified in a batch is typically exceedingly small relative
to the size of the graph. Thus, as the changes only modify a small
subset of the graph for many queries, much of the computation
performed during reevaluation is redundant.

To address this inefficiency, streaming graph systems support
incremental update of query results following changes to the graph,
resulting in order of magnitudes speedups over restarting the query.
Examples of such software systems include Kineograph [8], Tor-
nado [38], and Naiad [29] that can handle only growing graphs
(i.e., no deletions are allowed). By far, the problem of incrementally
supporting deletions is more challenging, and only KickStarter [45],
Graphbolt [26], and DZig [25] support it.

JetStream builds on a recent accelerator (GraphPulse [33]) which
uses an event-driven asynchronous processing model, with reported
speedups of up to 6x relative to BSP-based accelerator (Graphi-
cionado [13]). The event-driven model naturally supports asyn-
chronous graph processing with faster convergence via greater par-
allelism, reduced work, and elimination of synchronization at itera-
tion boundaries. In addition to its state-of-the-art performance, we
chose GraphPulse because it maps incremental update operations
to a series of events naturally within the existing architecture. Jet-
Stream supports all algorithms compatible with delta-accumulative
computation [50], as is the case in GraphPulse.
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The addition of edges is straightforward in the event-driven
model; the added edge simply creates a new event. In contrast,
edge deletion is substantially more difficult for most algorithms be-
cause it is often impossible to determine whether an update should
propagate. We support deletions in two phases: (1) incrementally
transforming query results for the previous version of the graph
into a recoverable state for the updated graph, and (2) bringing the
results to convergence again. Although GraphBolt and KickStarter
also proceed in two phases, they rely on the Bulk Synchronous
Processing (BSP), model which cannot work in JetStream’s asyn-
chronous model. Therefore, we develop new event-based algorithms
where both phases execute in a fully asynchronous fashion. Jet-
Stream serves both the class of accumulative algorithms supported
by GraphBolt and monotonic algorithms supported by KickStarter.

The JetStream design leverages the coalescing queue (a vital
component that enables combining events destined to the same
vertex) from GraphPulse to accelerate streaming by eliminating key
inefficiencies of software streaming frameworks such as KickStarter.
When concurrently processing a batch of deletes, KickStarter per-
forms many random reads and relies on atomic operations to reset
the vertex values to a recoverable state. JetStream eliminates the
above sources of inefficiency by having events carry the update con-
tributions and using coalescing to achieve faster convergence with-
out requiring atomic operations (as delete events to the same vertex
are coalesced). We also leverage asynchronous processing to over-
lap different operations such as edge insertions, re-approximation
of states after delete, and initial query for better efficiency. We
introduce additional optimizations that limit the propagation of
delete events when they are determined to be unnecessary, fur-
ther improving performance. JetStream achieves on average 18X
improvement over state-of-the-art streaming graph software. Fur-
thermore, JetStream outperforms GraphPulse using cold-restart by
a factor of 13X on streaming queries, an advantage that grows for
smaller batch sizes. Lowering the overhead to this level brings us
closer to achieving real-time streaming operation where graphs are
updated on the fly since we do not need to aggregate updates into
large batches to amortize query evaluation costs.

The key contributions of this paper are as follows:

e First Streaming Graph Accelerator: JetStream is the first accel-
erator to support operations on streaming graphs (or dynamic
graphs). This is a burgeoning area of graph analytics for which
JetStream explores architecture support and optimizations.

e New Asynchronous Streaming Algorithms: JetStream supports
the union of GraphBolt and KickStarter (software streaming
graph frameworks that also support edge deletion).

e Large Performance Improvements that improve with smaller
batch sizes: JetStream substantially outperforms both software
frameworks. In addition, its advantage grows as the batch size is
reduced, making it conceivable to work on small batch sizes and
allow near real-time updates.

o Requires only small modifications to GraphPulse: JetStream ex-
tends the event-driven execution approach of GraphPulse. Since
graph mutations can be encapsulated as events, we were able
to design JetStream with only a few extensions to the existing
architecture, and support edge deletion and coalescing as well as
two optimizations for significant performance boost.
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Figure 1: Query evaluation on a streaming graph using an
incremental algorithm (top) and static algorithm (bottom).
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Figure 2: Using intermediate and initial values leads to incor-
rect results for SSSP: (a) an example graph; (b) uses previous
state to recompute; (c) resets impacted vertex.

2 BACKGROUND AND MOTIVATION
2.1 Streaming Graph Analytics

A query evaluation over a streaming graph, as shown in Fig. 1, has
two distinct characteristics. First, it supports streaming updates:
new graph updates also arrive as the query is being evaluated. These
updates are collected in a batch (e.g., A; or Az in Fig. 1) and are
applied only after the query evaluation is complete and its results
reported. Graph updates consist of edge additions and deletions. A
vertex addition can be modeled by addition of the first edge to/from
the vertex while modification of an edge weight is modeled by its
deletion followed by an addition of an edge with the same weight.
Second, query reevaluation leverages the existing state computed
before the updates: after a batch of updates has been applied, the
query evaluation is resumed incrementally to obtain the query re-
sults for the updated graph. In an algorithm (or accelerator) that
supports streaming operation, the reevaluation is performed as
an incremental update of the previous query result computed on
the original graph, shown as approximate states in Fig. 1, to avoid
wasteful redundant computations. As updates continue to arrive,
the incremental computation is performed repeatedly. JetStream
improves upon most prior software streaming algorithms, which
only support streaming edge additions, by allowing edge deletions.
It also improves on most software frameworks by supporting con-
current processing of multiple updates, gaining efficiencies from
combining some of their overheads.

2.2 Incremental Query Evaluation

Incremental reevaluation uses the result of the prior query to find
an intermediate approximation, which becomes the initial state
for computing the query result on the updated graph. Using the
previous result for an approximation can lead to faster convergence
than using a random initial state for the updated graph. Intuitively,
for many query types, only a small fraction of vertices are affected
by graph changes since batch sizes are typically tiny compared
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Figure 3: Conceptual timeline showing vertex values over
time through initial evaluation, recovery, and reevaluation
phases for SSSP on the example graph in Figure. 2.

Algorithm 1 Event-Driven Execution Model for SSSP
V[:] « fill(c0)
Q « insert({{root, 0)})
1: procedure CompuTE(G(V, E), Q)
2 while Q is not empty do
3 (i, 6;) «— pop(Q)
4: temp «— V[i]
5: V]i] « min(V]i], §;) > REDUCE(a, b)
6
7
8
9

>INITIALIZEVERTEX()
> INITIALEVENTS()

if V[i] # temp then > Needs to propagate
for each (u —> v, w) € E|u=ido
8y — Vul+w > PROPAGATE(u, v, W)
Q « insert({v, 6,))
10: end for
11: end if
12: end while

13: end procedure > Converged graph state in V'

to the size of the graph (thousands of edges in graphs with bil-
lions of edges). Thus, a complete restart of the graph computation
ends up doing substantial redundant work. Of course, we need to
have an effective algorithm for identifying which vertices require
recomputation for doing incremental updates.

Motivation and Basic Operation: Monotonic algorithms often
produce incorrect results in the presence of deleted edges. We
consider the example of an edge deletion(A—C) in the graph of
Fig. 2(a) for Shortest Path algorithm. Since the vertices only update
when they receive a shorter path value than their current state, the
graph never reaches the expected result using the previous result
as shown in Fig. 2(b). We call this approximation unrecoverable
because the computation cannot recover to the correct result after
being set into an incorrect state by the edge deletion. If we reset
the target of deletion to its initial value as shown in Fig. 2(c), it
still never reaches the correct result because other vertices (B, D, E)
previously influenced by it are also in incorrect states.

Fig. 3 shows the progress of a query evaluation through different
phases. First, a graph is initialized to an initial state. As computation
progresses, the graph moves through several intermediate states to
reach a final state when the algorithm terminates. Here, the final
state is the correct converged state (static), and all intermediate states
(including the initial state) are recoverable states because the graph
can reach the correct state from there. A recoverable approximation
is equivalent to one of these recoverable states from which the
graph is guaranteed to converge correctly. After applying the graph
mutations, the challenge in incremental graph computation is to
find a recoverable approximation based on the previous converged
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states. For this example, all the vertices possibly influenced through
the deleted edge in the initial evaluation is identified and reset in
the recovery phase to arrive at a recoverable approximation for the
reevaluation. Incremental recomputation on this approximation in
the reevalauation phase leads to the correct result.

Recovery Algorithms: A simple way to find the set of vertices
affected by a deleted edge is to iteratively propagate a tag down-
stream from the target vertex of the deleted edge as in GraphlIn [37].
Note that if a vertex is not affected by an update, the propagation is
not forwarded again. The set of vertices tagged this way definitively
contains all possibly impacted vertices. The tagged vertices can then
be reset to the initial value to acquire a recoverable approximation
for a monotonic convergence. When the query is reevaluated, the
reset vertices converge to correct states based on the mutated graph.
An example for obtaining a recoverable approximation using tag
propagation in the recovery phase is shown in Fig. 3.

JetStream develops event-driven adaptations of vertex tagging
and dependence tracking so that they can be used to extend the
GraphPulse architecture to support incremental computation over
a streaming graph. Monotonically converging algorithms where
vertex value computation is a selection task — such as ShortestPath,
ConnectedComponents, WidestPath, and BFS — benefit from this
approach. Graphs with accumulative update functions - such as
PageRank and Adsorption — uses a simpler recovery technique in
the event-driven approach. Here, the impact of a deleted edge is
negated by sending the total contribution through that edge with
negative polarity. This makes the event-driven approach highly
suited for the incremental computation of these algorithms.

3 JETSTREAM DESIGN OVERVIEW

We present the design of our event-based streaming accelerator
and its underlying algorithms in this section. First, we describe the
event-driven execution model that GraphPulse [33] is based on.
Then, we formalize the problems of building a streaming accelerator
over a static one and describe the JetStream model that solves these
problems.

3.1 Event-based Processing in GraphPulse

JetStream extends GraphPulse to support streaming graphs [33].
GraphPulse employs event-driven execution to eliminate overheads
of shared-memory frameworks (e.g., poor temporal and spatial lo-
cality, atomic memory accesses, and synchronization). The event-
driven execution is based on delta-accumulative incremental com-
putation (DAIC) [50] model. In this model, contributions coming
over different edges (termed delta) can be applied independently
and without any fixed order to compute the vertex state. The model
has two primary components — i) a Repuck task used to compute
vertex state from incoming deltas and previous vertex state; and
ii) a PropacaTE task used to compute the delta over each outgoing
edge. In the event-driven model, lightweight messages called events
carry the deltas to their respective destination vertices. A vertex
recomputes its state only if it receives an event (delta) and generates
a new event only when its state changes from the incoming event.

GraphPulse presents a complete execution model to run an iter-
ative graph algorithm using the event-based approach. Algorithm
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1 shows the event-driven execution model and how the SSSP appli-
cation is mapped to the model. The user defines a Repuce() method
(line 5) expressing the reduction of incoming contribution and ver-
tex state. A Proracartk() function (line 8) is defined for finding the
delta over an outgoing edge and creating new events. INITIALVER-
TEX() and INrTIALEVENTS() methods are defined to initialize the vertex
states, V, and the initial set of events (Q) before the execution starts.
The initial vertex values are set to an IpenTITY value for the REpuck()
function, so that a vertex’s first reduction operation with an events
is bound to change its state and propagate. With the processing of
the initial events, vertex states get updated towards convergence,
and new events are generated and inserted to Q. For each event in Q,
the vertex update task is triggered. When a vertex reaches conver-
gence, its state does not change from incoming events, preventing
new event propagation (line 6). Eventually, Q becomes empty when
all vertices reach convergence terminating the application.
Proper execution and termination of the event-driven model
depend on two properties of the graph algorithms. First, the Re-
ordering Property requires that incoming contributions over edges
can be applied to a vertex in any order and independently. Sec-
ond, the Simplification Property requires that vertex that does not
change state should not impact other vertices, i.e., it should not
propagate, and other vertices should not require its contribution for
computing their states. Many important graph algorithms such as
SSSP, SSWP, BFS, Connected Components, Incremental PageRank,
and many Linear Equation Solvers satisfy these properties and are
supported in GraphPulse. JetStream supports all the algorithms
supported in GraphPulse without any change to the application.

Limitations. We assume that Reordering and Simplification pre-
serve correctness; however, some graph algorithms do not sat-
isfy this condition and thus cannot be expressed using our model.
For example, Graph Coloring, K-Core, and MIS algorithms require
vertex contribution across all incoming edges to update a vertex.
This violates the Simplification Property since contributions from
some neighboring vertices are needed even if their states were un-
changed. If the algorithm requires contributions from neighbors
that are multi-hop away (e.g., Triangle Counting) or a normaliza-
tion step after each iteration (e.g., Label Propagation), then they
violate the Reordering Property because a particular order must be
imposed upon the evaluation of the contributions through some
edges. These algorithms cannot be implemented in GraphPulse
and, hence, JetStream. It should be noted that some algorithms that
are not supported in their common iterative forms may have varia-
tions that may be suitable for event-driven implementations. For
example, PageRank and Adsorption have incremental forms that
are supported in GraphPulse and JetStream. As a rule of thumb, al-
gorithms supported by this model often have the characteristic that
a single edge can update a vertex, and the updates are monotonic.

3.2 Streaming Graph Computation Objective

GraphPulse computes the final converged state of a static graph. We
want to find the new converged state of the graph using JetStream
after some mutation is applied to the graph structure. To formally de-
scribe the objective of JetStream, we consider a graph G° = (V, E%)
being initialized to a set of values I = (Vj : ij =IpEnTITY) and
converging to COG = {cg, 1, ..., Cn—1) for its final state. The IpENTITY
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Figure 4: Propagation of events during processing of stream-
ing edges in SSSP. (a) An example graph. (b) Propagation and
updates from the insertion of edge A — D in the graph. (c)
Propagation of deletes and resetting impacted vertices due
to the deletion of edge A — C in the graph. (d) Recovery of
approximate state after request events are processed.

parameter is application-specific for the graph algorithm; it is the
initial value of the vertices and the non-dominant value for the
REDUCE() operation (Algorithm 1). For streaming algorithms, we
need to compute a new convergence state Cé for the mutated graph,
GY(V, EY), using a recoverable approximation Ag based on Coc. The
approximation Ag = {ag, a1, ..., ap—1) is recoverable if convergence
can be reached for algorithm S starting from this approximation
(Section 2.2). For the selection-type algorithms, The vertex states
progress from the initial value (IpExTiTY) to the direction of conver-
gence monotonically. A more progressed value dominates the Repuce
operation. In a valid approximation, all elements in A must be less
progressed than or equal to the corresponding elements in the even-
tual converged state, CIG. An approximation, A = (Vi, a; =IDENTITY),
set to the initial value is a valid recoverable approximation but an
inefficient one since it is equivalent to computing the graph from
the beginning. Hence, finding a good approximation is critical for
performance. Our proposed approaches in JetStream accomplish
this by expressing the graph mutation as events and restoring the
mutated graph to a recoverable approximation for subsequent pro-
cessing using the event-driven model.

3.3 Event Representation of Graph Mutation

Any modification to the graph structure is expressed using an event
in JetStream. We assume that the modifications are batched, consis-
tent with prior works on streaming graphs. A batch will be queued
as events that are released once the ongoing processing iteration is
complete. This choice to separate the update phase from the process-
ing phase eliminates the need for resolving race conditions between
old and new values as the computation proceeds. Each modified
edge is expressed as an event from the source to the destination of
the edge. The payload (delta) carried by the event is generated by
reading the previous converged state of the source vertex (which
is approximate with respect to the mutated graph) and computing
the propagation value based on this state and the edge attribute.
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Algorithm 2 Converting edge-insertions to events

1: procedure PROCESSINSERTS(G(V, E), Q, A(u — v, w))

2 for each (u - v, w) € Ado > A = list of added edges
3: Oy «— Vul+w > PROPAGATE(a, b)
4: Q « insert({v, b))

5 end for

6: end procedure

Algorithm 3 Converting deletions to events for PageRank

1: procedure PROCESSDELETECUMULATIVE(G(V, E), Q, D{u — v, w))
2 for each (u - v, w) € D do > D = list of deleted edges
3 Sp — —1xV[u]x (1 -a)/deg(u) > PROPAGATE(a, b)
4 Q « insert({v, 6, ))

5 end for

6: end procedure

This event represents the effect of the modified edge with respect
to the previous graph structure. Events are queued and held until
all the modified edges have generated a corresponding event. At
this point, the new graph structure is active, and the events are
processed from the queue. We demonstrate the processing of edge
insertion and deletion events next.

Edge Insertions: are supported naturally by the event-driven
model. The inserted edge did not exist in the previous graph and
had no effect that needs to be reverted. An update along an edge
can be applied to a vertex at any time in the asynchronous model.
Hence, an update coming along a newly-inserted edge is conceptu-
ally similar to an update along an existing edge that was delayed; it
has the same effect and gets processed in the same way. JetStream
computes an update using the old converged state of the source
vertex and the weight of the inserted edge, and queues it as an event
for the destination vertex along with regular events (Algorithm 2).
Fig. 4(b) shows how an edge insertion triggers a chain of updates.
As the new edge (A — D) contributes to vertex D, the vertex gets
updated and propagates further with more events (D — G). Propa-
gation ultimately stops due to monotonicity when the event arrives
at a more progressed receiver via (G — E). If the state of the source
vertex A itself is not stable, subsequent updates to the vertex will be
propagated using the mutated graph along the new edges and send
the correct values downstream eventually. Hence, a graph always
remains in a correct or recoverable state after edge insertions.

Edge Deletions: are not supported by most streaming systems (the
exceptions being Kickstarter and GraphBolt). JetStream supports
deletions as in KickStarter while overcoming some of its perfor-
mance limitations when handling a batch of deletions. Specifically,
JetStream queues edge deletions as events in the same way as in-
sertions. However, edge deletion is more complicated since the
deleted edge’s contribution to the previous converged state must be
reversed. For algorithms with accumulative updates, reverting the
effect of deleted edges is simpler. A vertex propagates an update
downstream for all the updates it receives and accumulates. As a re-
sult, we can infer the combined value of all updates it sent along an
edge during the previous evaluation by looking at its accumulated
state and using the Proracare function. Sending the inverse of its
previous converged state, transformed by the Propacate function,
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Algorithm 4 Processing deletes and recovering approximations of
vertices impacted by deletions for SSSP.

1: procedure PROCESSDELETESSELECTIVE(G(V, E), Q, D(u — v, w))
2 for each (u — v, w) € Ldo

3: Q « insert({v, 0))

4 end for

5: end procedure

6: procedure REseTIMPACTED(G(V, E), Q)

7: X« > List of impacted vertices
8: while Q is not empty do
9: (i, 8;) « pop(Q)
10: if V[i] # IpENTITY then
11: V[i] « IDENTITY > Tag vertex
12: X — XU{i}
13: for each (u > v, w) € E |u=ido
14: Q « insert({v, 0)) > Propagate delete
15: end for
16: end if
17: end while

18: end procedure

19: procedure REAPPROXIMATE(G(V, E), Q, X)

20: for each i € X do > Create events with request flag(p)
21: foreach(u »> v, w) € E|v=ido

22: Q « insert({u, IDENTITY, p))

23: end for

24: end for

25: end procedure

negates the cumulative effect of all updates over this edge. Further
propagation downstream of negative events from the receiver ver-
tices leads to the rollback of all contributions from this edge and
puts the graph in a recoverable state. We create negative events for
the deleted edges as shown in Algorithm 3 to initiate recovery.
For algorithms having selective updates, it is more difficult to
identify which edges contributed to a vertex. The destination vertex
of a deleted edge is reset to its initial value so that it can be updated
later in the reevaluation phase. We queue events with a delete flag
as shown in Algorithm 4. A vertex, upon receiving an event with a
delete flag, will reset itself. This change in the state goes against the
direction of monotonicity. Therefore, when this vertex propagates
its updates to its neighbors, the update events will be discarded by
the receivers in the Repuce function since they already have a more
progressed state. However, this more progressed state may have
resulted from the contribution of the deleted edge. Hence, the graph
stays in an incorrect state if these vertices are not corrected. To solve
this problem, we devise an event-driven edge deletion algorithm
that identifies the potentially affected vertices and efficiently resets
them to acquire a recoverable approximation as we describe next.

3.4 Impacted Vertex Detection and Recovery

To handle an edge deletion correctly, the vertices impacted by a
deletion must be identified, and their states reset to a recoverable
value. Impacted vertices are identified by propagating a delete tag
to all outgoing neighbors of an impacted vertex and tagging them as
impacted in a manner similar to KickStarter [45]. When a deletion
event first arrives at a vertex, we set the vertex state to the initial
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Algorithm 5 Overall processing flow for SSSP.

1: procedure PROCESSSTREAM(G(V, E), Q, A{u — v, w), D(u —
v, W))

2: PROCESSDELETESELECTIVE(G(V, E), Q, D{(u — v, w))

3: X « ReseTIMPACTED(G(V, E), Q) > Queue is empty
> Delete phase ends

4: ReapPrOXIMATE(G(V, E), Q, X)

5 PRrOCESSINSERTIONS(G(V, E), Q, A{u — v, w))
> Switch to new graph structure

6: CompuTe(G(V, E), Q)

7: end procedure > V holds correct result

del. 0 @
RIS 550 ’“
BSE BE QA@

Figure 5: Showing an edge deletion for accumulative algo-
rithms: (a) initial graph with B—C to be deleted; (b) interme-
diate representation; (c) mutated graph.

Identity value (tag it) as shown for vertex C in Figure 4(c). Hence,
textittagged vertices can react to updates from future events. Delete
events are propagated along each outgoing edge. A delete event
cycling back to an already tagged vertex (e.g., G — E) will not
propagate. Multiple delete events queued for the same vertex can
be coalesced since tagging a vertex once is sufficient. When a vertex
is reset, the vertex Id is added to a list. Hence, the set of vertices
tagged this way contains all vertices whose states could have been
potentially influenced by the deleted edge. The process is shown in
Algorithm 4. The list is used to revisit these vertices to recompute
their approximate states as described next.

A new recoverable approximation for the impacted vertices must
be found in case the query cannot progress to some impacted ver-
tices. For example, in Fig. 4(a), a SSSP query running from A cannot
reach E because vertices B and D are already in a correct state, and
will not propagate new events along B — E and D — E after edge
deletion. KickStarter solves this problem by reading all neighbors
states again to reestablish an approximate state for an impacted
vertex. Unfortunately, this approach generates many memory reads
with a random access pattern. Many of the vertices are also read
by multiple deleted vertices creating opportunities for data reuse.
Instead of reading the states of the neighboring vertices directly, we
create a request event to request updates from the neighbors. The
request event has a request-flag bit set and the payload set to Iden-
tity in order to avoid affecting any other events and vertices. When
a vertex detects the request-flag, it must propagate to its neighbors,
even if it does not update itself. The request events are coalesced,
hence, combining the reads for each vertex. Also, when they pass
through the queue, the events are sorted by their destination vertex
ID so that a sequential memory access pattern occurs when they
are processed. Upon receiving the response to the request event,
the impacted vertex will reestablish an approximate state closer to
convergence based on its neighbors’ approximate states.

A second inefficiency persists in other approaches because com-
puting an approximate state from neighbors’ approximate states is
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often wasteful since these approximate states may change again
during query evaluation. To address this problem, we exploit the
asynchronous nature of the model — we can delay the vertex reads
or recomputation until after the effect of the initial events and
inserted edges are applied. We overlap the execution of request
events with query events and edge insertions, so the vertex updates
move the vertex closer to the final converged states.

After the delete phase is over, JetStream revisits each vertex in
the list of impacted vertices and sends request events along each
incoming edge of a vertex at the beginning of the processing phase.
If the impacted vertices are on the path of a propagating query,
their states update to the correct states since their approximate state
(Identity) can be updated by all contributions. If the vertex does
not belong to the query propagation path, the responses to request
events set them to the correct state. Thus, a graph always remains
in a correct state after deletion is processed in this technique. The
pseudocode for processing deletes is shown in Algorithm 4.

3.5 Recomputaion of the Mutated Graph

JetStream execution process uses the original computation tech-
nique of GraphPulse to recompute the graph after setting up the
approximate state and populating the event queue with appropri-
ate events as described above. Because the recovery after delete
is handled differently in the two different types of algorithms (ac-
cumulative vs. monotonic), the processing phases are scheduled
differently for them. We discuss both of them next.

Algorithms with Selective Update. After receiving a batch of
edge updates, we first process the deleted edges and insert deletion
events in the queue to reset the target vertices. In the next phase,
the events are allowed to execute on the previous version of the
graph; all potentially impacted vertices are reset to their initial
value. Afterward, events with request-flags are queued for all the
neighbors of the impacted vertices. We process the inserted edges
at this point to create and queue the events for them. The insertion
events can coalesce with the request events existing in the event-
queue simply by setting their request-flag bit. The graph is then
switched to the new version, and the events in the queue are allowed
to process in the typical computation flow of GraphPulse. The only
difference is that whenever any vertex receives an event with a request
flag, it propagates its state to all its outgoing neighbors even if it does
not change its state. These responses to the reapproximation request
allow the impacted vertices to set their new state using the states of
their neighbors. At the end of this phase, when the queue is empty,
the graph arrives at a correct state, and the process of reevaluation
concludes. The process is shown in Algorithm 5.

Algorithms with Accumulative Update. These algorithms do
not need reset since a deleted edge can be negated with a regular
event with negative polarity. After creating events for the deleted
edges, we load an intermediate version of the graph without the
deleted edges to break any cyclic path in the graph. Algorithms that
propagate updates based on degree, such as PageRank, undergo
changes in the weight of all edges when an edge is added or deleted.
To handle this, we first delete all outgoing edges of the vertex
having an edge added or deleted, turning it into a complete sink for
the intermediate version of the graph. In the example of Fig. 5(a),
any cyclic propagation through vertex B is stopped by deleting
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Algorithm 6 Overall processing flow for PageRank.

1: procedure PROCESSSTREAM(G(V, E), Q, A{u — v, w), D(u —
v, W))
2: PROCESSDELETECUMULATIVE(G(V, E), Q, D{u — v, w))
> Switch to intermediate graph structure
3: ComruTe(G(V, E), Q) > Q empty : Delete phase ends
4: ProcEessINSERTIONS(G(V, E), O, A{u = v, w))
> Switch to new graph structure
5: CompuTE(G(V, E), Q)

6: end procedure > V holds correct result

Host Event Event Event Event

Event
Processor Queues Emit = Scheduler | _ Issue = | Processors
EP EP
< EP EP

" Status
IDMA = .

New Event Insertion
Memory RWy 4

Accelerator Memory
Graph Structure Vertex Properties

Figure 6: Fundamental architecture of GraphPulse [33]

edges to D and E too. All outgoing edges of vertex B are added
to the batch of deleted edges (Fig. 5(b)). We next process these
deleted edges to populate the event queue with negative events.
Next, a computation phase on this intermediate graph effectively
removes all contributions of vertex B from the graph. Creating
the intermediate graph is not expensive since it can be achieved
simply by adjusting the pointers to the edge list to skip the deleted
vertices. We then add back all the edges of vertex B (except the
actually deleted edge B—C) to the batch of inserted edges so that it
resembles the new graph structure (Fig. 5(c)). This batch of edge
additions is processed to create events in the queue. When the
compute phase is rerun on the new version of the graph, the result
is correct for the mutated graph. The steps in this model are shown
in Algorithm 6. We note that the manipulation of the edge addition
or deletion batch only affects the preparation of the streaming batch;
the actual vertex computation remains the same as GraphPulse.

4 JETSTREAM ARCHITECTURE

JetStream is an asynchronous graph processing accelerator lever-
aging the event-driven execution model to operate on streaming
graphs. The decoupled nature of event-driven execution allows the
accelerator to extract abundant parallelism for the computation
flow and utilize memory bandwidth efficiently. A significant per-
formance boost comes from the efficient utilization of low-latency
on-chip memory resources for the transient short-lived commu-
nication data. In addition, specialized communication paths and
scheduling primitives allow the accelerator to operate with very
little overhead for control and synchronization. JetStream extends
the datapath of GraphPulse, an accelerator for static graphs, to
accommodate the model described in Section 3. JetStream adds
new modules for reading and processing streaming data, as well as
re-implements the coalescing queue, and vertex update and propa-
gation logic to account for the new types of events.

This section describes the architectural components of the Graph-
Pulse core and highlights the extensions for JetStream. JetStream’s
architectural changes do not disrupt the regular computation on
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static graphs. As aresult, JetStream can perform both the initial non-
incremental evaluation (like GraphPulse) and streaming evaluation
efficiently. We describe the complete execution flow of JetStream
later in this section. Furthermore, JetStream derives its functional
module from the same programming API defined for GraphPulse;
so minimal additional user effort is necessary to program JetStream.

4.1 GraphPulse Architecture

Since JetStream builds on GraphPulse, we start by over-viewing
the GraphPulse base architecture shown in Fig. 6. The primary
components of the datapath are Event Queues, Event Scheduler,
Processors, and the on-chip routing network connecting the compo-
nents. The processors are connected to the off-chip system memory
for accessing the graph structure and vertex states. Any computa-
tion starts with the vertices set to an identity value and a number
of initial events crafted for setting the vertices to their initial state.
The events are dequeued and processed from the event queues for
processing. The event queue consists of several individual queues,
each holding events for a subset of the vertices, to increase queueing
and dequeuing bandwidth. Each event updates a vertex that may
trigger new events, one for each outgoing edge, that are inserted in
the event queues. The event queues hold one entry for each vertex;
multiple events destined to the same vertex are coalesced by the
queuing logic in the event queue, which is defined as part of the
application. For example, the coalescing logic will retain the incom-
ing event with the least cost for Shortest Path. Processing continues
until no more events are available or another user-specified termi-
nation condition is reached. The size of the event queues limits the
size of the graph being processed since they hold one entry per ver-
tex; GraphPulse supports larger graphs by partitioning them into
multiple slices and swapping in one slice at a time for processing.
GraphPulse incorporates a number of additional optimizations; for
more details, please refer to the GraphPulse paper [33].

The accelerator is designed to work alongside a host as an
ASIC/FPGA-based co-processor with dedicated DRAM memory
and independently addressable memory space. The host processor
allocates and initializes the graph and the initial events in the accel-
erator memory as defined by the programmer via a provided API.
The accelerator performs the graph computation independently
based on configurations received from the host. It alerts the host
when computation finishes so that the graph state can be read back.

In the remainder of this section, we describe the primary Graph-
Pulse components and how JetStream extends them. JetStream
retains the GraphPulse datapath and adds a Stream Reader module
for creating events from streaming data as described in section 3.3.
It extends the vertex update module with a vertex reset logic, a
scheduler with multiple policies, and coalescer logic incorporating
delete event coalescing described in Section 3.4. A detailed view of
the JetStream datapath is shown in Fig. 7, where the shaded com-
ponents indicate modules added to or extended from GraphPulse.

4.2 Event Management

All computations are expressed as contributions along edges and
propagated using events in the event-driven model. Events are light-
weight messages that trigger vertex computation at the destination
vertex. GraphPulse events are tuples containing a target vertex Id



MICRO 21, October 18-22, 2021, Virtual Event, Greece

and a payload. The payload contains the vertex contribution along
the edge. In JetStream, event payloads also contain some flags indi-
cating special tasks (e.g., request flag mentioned in Algorithm 4).
We describe optimizations in Section 5 that add extra data to the
event payload in JetStream.

The event queue is the storage for active events in the system
representing the set of active vertices. GraphPulse employs a fast
on-chip queue capable of in-place coalescing. The queue contains
multiple bins. Each bin is structured into a grid of rows and columns,
and only one vertex is mapped into each cell by vertex index. The
bins behave similar to a direct-mapped cache. During event inser-
tion, if another event already exists in its mapped cell in the queue,
the events are combined with the Reduce operation (coalescing).
Thus, only one event for a vertex can exist in the queue at any time.

The queue is capable of fast parallel insertion of events received
on the input bus. The bins are implemented on Simple Dual-Ported
on-chip memory where one row can be read and written in each
cycle. Furthermore, each bin is equipped with a coalescer pipeline
that can insert one event every cycle even though coalescing may
have multi-cycle latency. During insertion, the coalescer reads the
existing event (if any) in the mapped block on the first cycle. Then,
the existing event is reduced with the new events in the following
cycles and written back.

Events are emitted in batches for processing. Since GraphPulse
supported algorithms allow reordering of edge contributions, events
can be emitted in any order. GraphPulse reads one full row of events
at a time from a bin and puts it into a drain buffer. Events are drained
from one bin at a time in a round-robin fashion. The vertices are
mapped in such a way that a group of vertices whose states reside
in the same DRAM page is also mapped in the same row in the
queue. Thus, processing the events in one row of the queue within a
short period provides a high spatial locality for the graph memory.

JetStream leverages the same queue architecture as GraphPulse.
The coalescer pipelines are extended to combine delete events as
well during the recovery phase. Two delete events can be merged
since they do not carry any data. Additionally, fewer vertices can
be mapped to the queue (for the same on-chip memory size) since
the event payload in JetStream is bigger than GraphPulse. Hence,
JetStream uses smaller-sized graph partitions than GraphPulse.

4.3 Event Scheduler

The GraphPulse event scheduler dequeues events from the queue
and puts them in a buffer. It keeps track of processor occupancy,
and arbitrates events to the processors with the least workload. It
issues the events in the same queue row to the same processor for
enhancing spatial locality. The scheduler also tracks the progress of
the processing engines and the occupancy of the queue. When all
the bins have been drained once, we say that a round is completed.
The scheduler waits for the processors to idle before starting a new
round. Since only one event for a vertex can exist at the time of
emitting event, there cannot be more than one event scheduled for
the same vertex in one round; this eliminates the need for atomic op-
erations and simplifies memory access and synchronization. When
the scheduler detects that the queue is empty and all processors
have completed their assigned workload, it indicates the end of the
computation phase and terminates the application.
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In JetStream, the scheduler is extended to run the execution in
multiple phases. When a streaming batch is ready, the scheduler
starts processing for the recovery phase that precedes the regular
computation phase. The recovery phase starts with populating the
queue with delete events from graph mutation. Then it proceeds like
a regular computation phase and ends when there is no delete event
remaining in the queue. At the end of this phase, the graph is in a
recoverable approximation state. Finally, the scheduler triggers the
creation of addition events from added edges and runs the a regular
computation phase (reevaluation) to obtain the final graph state.

4.4 Event Processing Engine

GraphPulse event processors are independent, parallel, and simple
state machines. They continuously process events that are placed in
their input FIFO buffers by the scheduler. The processors compute
the vertex states using the user-defined REDUCE() method and ap-
ply the updates to the vertex memory. Since the processors receive
events that are closely located in the memory in one batch, they
can prefetch the vertex properties for these events. Each proces-
sor is equipped with an on-chip scratchpad prefetcher that can
prefetch vertex data for all the events in the processing buffer. The
prefetcher scans the buffer and reads the off-chip memory in such
a way that vertex properties residing in the same DRAM memory
page are read in a group, thus increasing memory access efficiency.
The processors read and write vertex data through the scratchpad
memory. The scratchpads can access any memory channel through
an efficient memory bus.

When vertex states change, the processors pass the updates to
one of their event generation streams. The generation streams read
the edges and compute the contributions using the PROPAGATE()
method to pass along the edges. Event generation streams also read
the edge data through an edge cache connected to off-chip memory
bus. Since edge lists are contiguous in memory, a prefetcher requests
next memory blocks smartly based on the edge pointers and the
number of edges in the Edge ID Buffer. The generation streams
are connected to the queue using a crossbar. 32 generators of 8
processing engines share the input ports of the 16x16 crossbar, and
the output ports are shared among the queue bins.

JetStream utilizes the same event processor system during its
regular computation phase. The apply logic is extended with a reset
logic that sets a vertex to IDENTITY (Algorithm 4, line 11) when
it receives a valid delete event during the approximation phase. It
also, writes the vertex index to the Impact Buffer if a vertex resets
its state from a delete event. Additionally, the processing buffer is
increased in width to accommodate larger event size for JetStream.

4.5 Stream Processing Modules

JetStream adds a Stream Reader module that reads the lists of deleted
and inserted edges from main memory and schedules them to the
processing engines during approximation. The list of deletes is read
first as (source, destination, weight) and events are created from
these edges according to Section 3.3. Next, these events are used
to find the sets of impacted vertices. Finally, added edges are read,
and events are created after the approximation is complete.

The Impact Buffer stores the indices of the vertices impacted by
a delete during the approximation phase. The Apply unit sends the
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Figure 7: Detailed JetStream datapath. Blue shows data flow, red shows control signals, green and yellow represent on-chip
and off-chip memory transfers respectively. Shaded modules are new or modified in JetStream.

index of an impacted vertex to the Impact Buffer module that writes
to a list in its internal buffer. The list is written from the buffer to
the main memory in batches. The Impact Buffer module also reads
back the list and creates request events for the impacted vertices as
described in Section 3.5.

4.6 JetStream Execution Flow

Fig. 7 shows the steps and direction of the dataflow during the
life-cycle of an event. The dataflow differs for the initial (static) and
incremental evaluation.

4.6.1 Initial Evaluation. The regular computation phase is inher-
ited from GraphPulse and it is used for the initial static evaluation.
Initialization. We assume that the accelerator starts with the host
processor writing the graph structure, initial vertex states, and a
list of initial events corresponding to the application to the main
memory. Then, during step (©, the Initializer module reads and
inserts the initial events into the queue to make the system ready
for processing.

Event Issue. In step Da, the scheduler requests events from the
queue, and the queue emits events (if any) in batches in b. The
steps in @ execute in a continuous loop. The scheduler holds the
events in a buffer and passes them to the processing buffer in )
where they are staged for execution.

Vertex Update. While the events wait in the queue, the prefetcher
scans the vertex id, computes the memory addresses, and prefetches
all vertex properties (typically located in the same memory page)
to the scratchpad memory in 3. The Apply module takes the event
at the head of the buffer, reads vertex states and edge pointers
from the scratchpad, and applies the update to the event in @.
After writing back the updated value to memory via the scratchpad,
(update value, edge pointer, number of edges) for a vertex is pushed
to the Edge Buffer in (5 to generate the outgoing events only if the
vertex requires propagation (i.e., its state has been updated).
Event Generation. During step ©, the prefetcher computes the
edge address range to be read, and fetches all needed edges (typically
within a single memory page) to the cache. Each generation stream
takes the head of the buffer and loops over all the edges for the
vertex to generate new events in (7). The events are pushed to an
event bus through an on-chip routing network in ®. In step (9 the
event queue continuously scans the event bus to pick up and insert
the events in corresponding bins. This processing cycle repeats
until the queue is empty; this marks the end of evaluation where
the initial graph has been updated to the converged state.
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4.6.2 Incremental Evaluation. The incremental evaluation is added
in JetStream and required for fast evaluation of streaming graphs.

Delete Setup and Preparation. Edge additions are directly sup-
ported as regular events since they do not affect the monotonicity
of the algorithm; we focus on the more difficult deletion support.
The Stream Reader reads the deleted edges first in @ and passes
them to the processing engines through the scheduler (). Reusing
steps @ - (®, the vertex state for the source vertex is read (but not
updated) and the (vertex state, destination, edge weight) is passed
to the generation unit. Step () is used to find the propagated value,
and create a delete event for the destination vertex that is forwarded
to the queue using ®), ©. Note that the computing elements of @
and () are not necessary for the basic model. But they are used
during the optimizations described in Section 5.

Delete Propagation. After all the delete events are queued, a nor-
mal computation cycle (steps (©-() is executed until there remains
no delete events in the queue. The Apply unit and Propagation unit
use the logic defined in Algorithm 4, line 11 and 14. The Apply unit
also writes the Id of a deleted vertex in step ® to the Impact Buffer
during step @.

Finalizing Approximation. After the delete propagation step
concludes, we reschedule the vertices from the Impact Buffer (step
©) and reuse steps -9 once to create request events for their
incoming edges. In this phase, step @ reads the incoming edge
pointers from the memory (in contrast to the outgoing edge pointer
as in other phases). Following this, the Stream Reader reads the
inserted edges, and creates insertion events using 2-(© the same
way as deleted events. This completes the approximation phase.
At this point, the regular computation phase (©-(9) can execute
again to evaluate the modified graph. As further streaming updates
are received, the engine keeps finding recoverable approximation
and rerun computation phase keep processing streaming data.

4.7 Graph Representation and Partition

GraphPulse stores the graph structure in a Compressed Sparse Row
(CSR) format and the vertex states in simple contiguous arrays.
JetStream assumes the same CSR graph storage format. However,
different from GraphPulse, JetStream requires access to the incom-
ing edges for each vertex, which are stored in another CSR structure.
Since the host processor maintains the graph structure, we leave
the task of maintaining the evolving edge list to a suitable soft-
ware graph versioning framework. In the simplest case, we assume
the host writes a new CSR for the mutated graph version to the
accelerator memory and swaps the pointer to the CSR after each
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Figure 8: Dependency tree for the example in Figure 4: (a)
before deletion; (b) after reset; (c) after reevaluation for the
deleted edge A—C.

batch iteration. Thus, JetStream can start using the new version
of the graph. In practice, any graph versioning storage, such as
Version Traveler [20] or GraphOne [21], can be used. JetStream
can interface with any framework that allows a CSR abstraction to
access the internal evolving graph structure, and only the address
translation logic needs to be extended for interfacing.

The hardware queue can accommodate events for a limited num-
ber of vertices. So large graphs are partitioned into slices using
a minimum edge-cut strategy to avoid overwhelming the queue.
GraphPulse processes one slice of the graph at a time in a round-
robin manner and temporarily stores the cross-partition events to
the off-chip memory. After one round over a slice, it is swapped
out by writing the pending events to the off-chip memory. Then,
a new slice is activated; its events are read back from memory
and inserted into the queue. We keep the same partitioning and
swapping technique of GraphPulse, as JetStream extensions are
not dependent on graph structure. Note that the partitions may
not remain optimal as the graph continues to evolve. To reduce the
fraction of edge-cuts, we can periodically re-partition the graphs or
deploy dynamic graph partitioning tools [15, 43] without affecting
the JetStream workflow.

5 OPTIMIZATIONS

We have described a system that uses a tagging approach during
edge deletion (Section 3). Next, we describe extensions to the delete
propagation algorithms to capture a smaller set of impacted vertices.

5.1 Value Aware Propagation (VAP)

A fundamental property of monotonic algorithms is that the updates
propagated from a vertex along its outgoing edges are always less
progressed (closer to IpEnTiTY) than the vertex itself. For example, in
a Shortest Path (SSSP) algorithm, all the distances transmitted via
edges are longer than the vertex’s distance from the root. In typical
selection-based algorithms, a vertex selects only the incoming edge
with the most progressed update to set its state. VAP exploits the
observation that any source vertex that propagates an update that
is less progressed than the destination’s state, can not be the con-
tributor to its state. Thus, when a vertex is impacted, VAP avoids
resetting any neighbor that is more progressed than the resulting
contribution from the impacted source.

Implementing VAP requires changes to the event propagation
and update logic. The JetStream engine already uses a PROPAGATE
logic to compute the value of the events generated along outgoing
edges. This same logic is used to compute the propagated value
along the deleted edge during the creation of delete events. Upon
receiving this event, a receiver vertex compares the event payload
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to its current state. If the received value is less progressed than the
receiver, it can be safely discarded. Otherwise, the vertex resets itself
to the initial value and propagates the updates along its edges using
its previous state. The delete events with value can be coalesced in
the queue using the same REDUCE() function as the one for regular
events. Only the most progressed event will remain, and if that does
not impact the destination vertex, the delete event is not propagated.
This substantially reduces the number of impacted vertices in the
system for applications with distinct edge weights and vertex states

5.2 Dependency Aware Propagation (DAP)

Comparing values in applications where clustering vertices settle
to the same value is futile. For example, a BFS algorithm sets all
nodes to the same value, and VAP cannot exclude any vertex based
on value. For such algorithms, we exploit another observation that
the vertex states depend on the contribution of only one incoming
edge for each vertex. The first contribution that sets a vertex state
to the final value is the one that the vertex depends on. Subsequent
contributions carrying the same update value cannot affect the
vertex. Therefore, deletes propagated along these edges can be
safely discarded. The approximate state is recoverable as long as
the first contributing vertex remains stable. We adapt the notion of
Dependency Tree introduced in KickStarter [45] to the event-based
model for these kinds of applications.

Formalization. We capture the flow of useful contributions across
the graph to identify dependency. We use the notion of a Leads-To
relationship (=) that represents the effect of a vertex on the transi-
tion of a neighbor’s state. Specifically, A = B if the state of B tran-
sitions from the contribution of A. In a cyclic path A - B - C —» A
with a BFS query, if A = B and B = C, then C & A because A
would have already reached the final state and would not transition
from the contribution (futile) from C. Discarding all delete propaga-
tion u — v where u B v still produces a recoverable approximation.
We can represent the Leads-To relationship in the form of a tree.
Note that multiple valid versions of the dependency tree may exist
depending on the order in which events are processed.

Implementation. We add a dependency field to the vertex state
to record the source of the first event that updates it to a stable
value. We also add a field to the event payload that carries the Id of
the source of that event. When an event updates a vertex, the vertex
changes its dependency field to match the source of this event.

While coalescing two events in the queue during regular com-
putation, we retain the source of the event that is dominant in the
Repuce function. We disable coalescing during the recovery phase
not to lose delete events. We extend the queue with an overflow
buffer that stores the extra events when multiple events are received
for the same vertex. The overflow buffer writes to the off-chip mem-
ory in blocks when full and reads back in blocks when issuing
events. These off-chip accesses have low overhead as the number of
delete events is far smaller than the events in a regular computation.

During event processing, a vertex only resets itself and propa-
gates the delete if the dependency field matches the source ID of the
delete event. Other delete events are discarded, greatly pruning the
set of impacted vertices. Fig. 8 shows the vertex states and depen-
dency trees during different stages of the incremental evaluation
for the example graph of Fig. 4.
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Table 1: Experimental configurations.

Software Framework JetStream

Compute 36X Intel Core i9 8% JetStream
Unit @3GHz Processor @ 1GHz
On-chip 24MB L2 64MB eDRAM @22nm
memory Cache 1GHz, 0.8ns latency

Off-chip 4x DDR4 4x DDR3
Bandwidth 19GB/s Channel 17GB/s Channel

Table 2: Input graphs used in the experiments.

Graph Nodes Edges Description

Wikipedia(Wk) [10]  3.56M
Facebook(FB) [41] 3.01M

45.03M Wikipedia Page Links
47.33M Facebook Social Net.
LiveJournal(L]) [4] 484M  68.99M LiveJournal Social Net.
UK-2002(UK) [6] 18.5M  298M  .uk Domain Web Crawl
Twitter(TW) [22] 41.65M 1.46B  Twitter Follower Graph

Overheads. This approach changes the data structure requiring
more memory for vertex states and on-chip events compared to
VAP. However, the dataflow architecture and the control sequence
remain intact. Only the vertex update logic and event coalescing
logic need to be modified. Not coalescing events during recovery
raises the concern of transaction safety if multiple events are issued
to processors concurrently. This is not an issue. Because in this
approach, only one event matching the dependency field can reset a
vertex, and thus only one vertex process will write back to memory.

6 EVALUATION

JetStream is implemented on a cycle-accurate microarchitectural
simulator based on the Structural Simulation Toolkit (SST) [35].
The off-chip memory is modeled with DRAMSim2 [36]. We use a
detailed bus communication, scratchpad, and cache memory model
built within SST to evaluate communication and memory access
characteristics. The event processing and memory system config-
uration of the modeled framework is shown in Table 1. For large
workloads unable to fit in the on-chip memory, we followed the
same partitioning technique as GraphPulse. We used PulP [40] for
edge-cut-based slicing of the graphs.

6.1 Experimental Setup

Our comparison is focused on showing both the advantage stem-
ming from algorithmic support and hardware acceleration. First,
we show the benefit of the incremental reevaluation by compar-
ing the performance with “cold-start” computation of GraphPulse,
where the whole graph is processed from initial states after each
batch of updates. We used the same hardware configuration for
GraphPulse and JetStream. Then, we compare the performance and
characteristics with two software frameworks to show the benefit
of accelerating a streaming graph analytics engine. We compare
with GraphBolt [26] for accumulative algorithms and KickStarter
[45] for monotonic algorithms with selective updates. The system
configuration for software benchmarks is shown in Table 1.
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Table 3: Execution time (in ms) per query on streaming
graphs and speedup over other frameworks.

WK FB LJ UK TW  GMean

Jet 1.63 1.21 4.17 3.87 22,55
SSWP GP 104X 93X 167X 66.7X 43.2X 21.6X
KS 124x 13.1x 8.4Xx  24.2X 5.2% 11.1x

Jet 4.76 4.31 5.36 6.23  15.17
SSSP GP 9.4x  9.95x 133X 734X 355X 20.1%
KS 21.8x 8.7X 6.5x  25.6X  11.2X 12.9%

Jet 2.74 1.24 1.61 8.12 17.75
BFS GP 3.10x 5.35x 7.80x 8.18x 15.1Xx 6.9%
KS 30.1x 831x 11.7x 11.5x 5.57X 11.3%

Jet 1.64 1.44 2.59 507 11.73
CcC GP 129x 13.2x 124X 21.4x 234X 16X
KS 7.62x 8.60x 525X 9.38x 8.51X 7.72X

Jet 5.17 4.29 6.62 6.99 169
PageRank GP 12.8x 195X 19.9x 56.6X 9.70x 19.4x
GB  143x 231X 180X 402X 51.6X 165X

Jet 4.19 5.27 9.84 1210  65.30
Adsorption = GP 578X 3.90x 5.08X 595X 9.41X 5.77x
GB 12.7x 144X 159X 128X 38.6X 17.1x

Workloads. To demonstrate the performance of realistic work-
loads, we select five real-world graph datasets (see Table 2). Among
these workloads, Wikipedia and UK-2002 domains graphs represent
narrow graphs with long paths, and Facebook, Livejournal, and
Twitter graphs represent large, highly connected networks. We run
6 graph algorithms on these datasets for our evaluation. Shortest-
Path (SSSP), WidestPath (SSWP), Breadth-First Search (BFS) and
Connected Components (CC) are the representative applications
for selection based update functions. Incremental PageRank and
Adsorption are evaluated to show the performance of accumula-
tive algorithms. We note that, for our optimization technique with
the embedding of dependency information in events (DAP), the
event size is bigger than GraphPulse and thus requires a smaller
graph slice to fit in the memory. We run 6 slices on Twitter and 3
slices on UK-domain graph for the selective algorithms in JetStream
compared to 3 and 2 slices respectively for GraphPulse.

6.2 Performance and Characteristics

Overall Performance. Table 3 shows the execution time of Jet-
Stream with different workloads for batches of 100K edge updates.
Each batch contains 70% insertions and 30% deletions of edges. The
table also shows the speedup over GraphPulse (GP), KickStarter
(KS), and GraphBolt (GB) for comparative workloads. GraphPulse
demonstrates the cost of complete recomputation of the graph in an
accelerator. JetStream takes 3 to 74 times less than GraphPulse (13x
on average) to reevaluate a graph. This advantage primarily comes
from heavily reduced vertex computation and edge communication
required in JetStream. Fig. 9 shows that JetStream limits the num-
ber of vertex accesses to less than 54% and as low as 3% of what
GraphPulse would require with less than 30% events generated.

Similar speedup in comparison to KickStarter and GraphBolt
shows that the event-driven model is effective across incremental
techniques. We observe up to 30X speedup over KickStarter and
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Figure 11: Utilization of off-chip memory transfers.

400x over GraphBolt. JetStream is 18X faster on average than both.
JetStream’s asynchronous model performs better on the narrow but
long graphs (UK, WK) than the synchronous software frameworks.

Approximation Effectiveness. JetStream adopts a technique sim-
ilar to KickStarter for trimming the set of vertices. KickStarter
employs value-aware and dependency graph (with levels) based
trimming to limit recomputations. The source-based dependency-
aware propagation technique in JetStream often finds smaller set
of impacted vertices. Fig. 10 shows the number of vertices reset in
JetStream and KickStarter for the same 30K batch of deletions.

Memory access efficiency. The ability to prefetch and utilize
memory effectively is one of the major source of speed up in Graph-
Pulse. The caches use 64-bytes lines which may not all be accessed.
We show in Fig. 11 the ratio of bytes read into the computation en-
gine from cache/prefetcher to bytes read from memory into caches
to demonstrate how efficiently the off-chip data transfers were uti-
lized as an indication of spatial locality. JetStream uses the same
memory prefetching and edge cache structures already built into the
GraphPulse datapath. Since the active tasks (events) in JetStream are
fewer and sparse in JetStream, it cannot harvest spatial locality as
well as GraphPulse. As a result, the memory access utilization ratio
is less than one-third of GraphPulse. However, having fewer com-
putational tasks still makes JetStream significantly faster during
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incremental computation. Optimizing the memory access efficiency
of JetStream is a potential avenue for future improvements.

Effects of Optimizations. We show the effects of the optimiza-
tions in terms of speedup over full recomputation in GraphPulse in
Fig. 12. The baseline JetStream model is conceptually simple. How-
ever, without a mechanism to restrict tagging to only the affected
vertices, it tags too many vertices in the graph, often leading to
work comparable to full recomputation for most applications. VAP
performs sufficiently well for SSSP and SSWP, but fails to provide
a noticeable advantage for BFS and CC. The latter two applications
have many vertices set to the same value, making the VAP optimiza-
tion ineffective. DAP alleviates this problem and works well for all
applications. However, VAP has the advantage over DAP in that it
does not expand the event size to include source information.

Sensitivity to Batch Size. In Fig. 13, we have shown how the
performance of the engine varies with different batch sizes. Taking
a 100K batch size as the baseline, we showed the speed up for
different batches for PageRank and SSSP running on LiveJournal
graph. The speedup is based on JetStream’s runtime for 100K batch
size. JetStream speeds up significantly as the batch size gets smaller
because it has little overhead for incremental data maintenance.
JetStream can handle computations very fast for smaller batches
where the number of changes or computations is low. JetStream’s
speedup grows orders of magnitude faster that KickStarter. This
time is only the processing time, and the end-to-end performance
may have other overheads to receive and batch the updates.

Sensitivity to Batch Composition. Edge deletions require more
processing than edge additions in JetStream. An approximation
phase is required to revert the effects of a deleted edge on the graph,
which may propagate to many vertices for some critical edges. All
the impacted vertices need to be reprocessed in the recomputation
phase. Edge addition resembles regular events during the recompu-
tation phase, and their effects are usually localized. Fig. 14 shows
the effect of the composition of a batch on the run-time for SSSP
and CC. Note that the run-times are normalized to JetStream’s run-
time for a 50-50 batch. An insertion-only batch converges 3 to 4
times faster on average than a deletion-only batch of the same size.
Run-time increases as the ratio of deleted edges increases. Kick-
Starter, too, demonstrates faster convergence with fewer deletions,
but there is no concrete dependence of the run time on the ratio
of deletions. KickStarter attempts to approximate the value of an
impacted vertex before propagating the tag. JetStream attempts to
minimize tagging using DAP optimization but only approximates
after all tags are propagated. On the other hand, for PageRank and
Adsorption in JetStream, the addition or deletion of one edge also
mutates the other edges (weight) for a vertex, and both types of
updates are handled similarly. Therefore, such algorithms are not
noticeably affected by batch composition.

6.3 Hardware Cost and Power Analysis

We model JetStream using the same configuration as GraphPulse:
64MB on-chip memory for queue, and 8 processing pipelines with
2KB scratchpad and 1KB edge-cache on each. We use CACTI 7 [5]
for power and area estimate for all memory elements. The queue
memory is modeled in 22nm ITRS-HP SRAM logic. The biggest
component of the communication network is a 16x16 NoC between
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the event generation streams and the queues. Each port of the NoC
is shared by several generator or queue ports.A breakdown of the
total power and area estimate for the accelerator is shown in Table 4.
The number in parenthesis is the increase over similarly configured
GraphPulse. The overall increase in area and power is around 3%
and 1% respectively.

JetStream reuses most architectural components of GraphPulse,
including the event queue, prefetcher, and cache. Memory elements
have the same physical size but contain fewer events due to the
larger event size. As a result, there are some resource overheads due
to larger buffers and interconnects. However, the dynamic energy
is lower because JetStream processes fewer vertices propagating
events (many vertices are already converged). Overhead from the
buffers and communication buses also increases due to the larger
event size. Floating point units account for the bulk of the process-
ing and coalescing logic and remain the same in input size. Thus,
the extra processing logic for JetStream adds only a small power and
area overhead. The processing time in JetStream is shorter, making
JetStream ~13 times more energy-efficient than full recomputation
with GraphPulse. The total area of JetStream is about 200mm? with
a 28nm technology.

7 RELATED WORK

Software Frameworks for Streaming Graphs: A number of stream-
ing graph frameworks have been developed that are based on the
BSP [42] model similar to a software framework like Pregel [24].
Of these frameworks, Kineograph [8], Tornado [38], Naiad [29],
and Tripoline [19] are limited to growing graphs. Kickstarter [45],
GraphBolt [26], and DZiG [25] support both addition and deletion
of edges. Maiter [50] is a graph analytics framework for delta-
accumulative computation which is the basis of the event-driven
model. There are also designs of graph representations to support

Table 4: Power and area of the accelerator components

# Power(mW) Area(mm?)
Static  Dynamic Total
Queue 64 117 (+1%)  20.7 (-6%) 8815 (~0%) 192 (+1%)
Scratchpad 8  0.35 (~0%) 1.2 (+6%) 121 (+4%)  0.21 (~0%)
Network 91 (+78%) 5.4 (+58%) 97 (+77%) 5.7 (+84%)
Proc. Logic - - 1.8(+40%) 0.7 (+51%)
Total - - 8926 (+1%) 199 (+3%)

Figure 13: Sensitivity to batch size. Run-
time shown as speedup over JetStream
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high-throughput graph updates, such as Aspen [11], STINGER [12],
and Version Traveller [20]. Other works handling changing graphs
include GraphTau [16], Vora et al. [44], Chronos [14]. These works
consider scenarios where graph versions are available a priori.

Accelerating Graph Processing: Template-based [3, 32] graph ac-
celerators process hundreds of vertices in parallel to mask memory
latency. Graphicionado [13] is a pipelined architecture that opti-
mizes vertex-centric graph models using a fast temporary memory
space to improve locality. GraphPulse [33] uses an event-driven
model that expresses incremental updates as events. Swarm [18]
allows speculative execution to increase parallelism and its exten-
sions, Spatial Hints [17], improve memory locality using applica-
tion knowledge to map tasks to processing elements. Chronos [1]
provides another hardware acceleration framework based on spec-
ulative execution. Graph processing systems for FPGAs include
ForeGraph [9], Zhou et al. [51, 52] etc. GraSU [46] provides the first
FPGA-based high-throughput graph update library for dynamic
graphs. PDES-A [34] is an FPGA-based accelerator for event-driven
computation targeted at parallel discrete event simulation.

To efficiently handle vertex updates number of techniques have
been proposed. Coup [48] exploits commutative-updates to reduce
read and write traffic while PHI [28] exploits commutativity to coa-
lesce updates in private cache to reduce on-chip traffic. HATS [27]
proposes a hardware assisted traversal scheduler for locality-aware
scheduling. Finally, there has been recent works that focus on ar-
chitectures for PIM-based graph processing, such as Tesseract [2],
GraphPIM [30], GraphP [49], and GraphQ [53].

8 CONCLUDING REMARKS

We present the first accelerator for streaming graphs. JetStream ex-
tends a recently introduced event-driven accelerator, GraphPulse,
to enable reuse of intermediate states to avoid a complete cold-
start recomputation on the updated graph. JetStream supports edge
additions and deletions for both monotonic and accumulative algo-
rithms. It achieves average speedup of 13X over hardware accelera-
tor and 18X over software frameworks at baseline batch sizes. This
advantage increases substantially for small batch sizes.
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