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ABSTRACT
Graph Processing is at the core of many critical emerging workloads

operating on unstructured data, including social network analysis,

bioinformatics, and many others. Many applications operate on

graphs that are constantly changing, i.e., new nodes and edges are

added or removed over time. In this paper, we present JetStream, a

hardware accelerator for evaluating queries over streaming graphs

and capable of handling additions, deletions, and updates of edges.

JetStream extends a recently proposed event-based accelerator for

graph workloads to support streaming updates. It handles both

accumulative and monotonic graph algorithms via an event-driven

computation model that limits accesses to a smaller subset of the

graph vertices, efficiently reuses the prior query results to eliminate

redundancy, and optimizes the memory access pattern for enhanced

memory bandwidth utilization. To the best of our knowledge, Jet-
Stream is the first graph accelerator that supports streaming graphs,

reducing the computation time by 90% compared with cold-start

computation using an existing accelerator. In addition, JetStream
achieves about 18× speedup over KickStarter and GraphBolt soft-

ware frameworks at the large baseline batch sizes that these systems

use with significantly higher speedup at smaller batch sizes.
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1 INTRODUCTION
Graphs are used to represent data in many application domains

because of their ability to represent entities (vertices) and relation-

ships (edges). Real-world graphs such as social networks and web

graphs are often massive and irregular, making it challenging to

achieve good performance on graph analytics workloads. There has

been substantial research to develop graph analytics frameworks

that deliver high performance on shared-memory [31, 39] and dis-

tributed platforms [7, 23]. Recent research has also used GPUs [47]

and custom accelerators [1, 13, 32, 33].

Most graph frameworks optimize the performance of a given

query against a fixed graph. However, in many real-world applica-

tions, we are faced with the streaming graph scenario where the

graph is constantly changing as new entities are created, old entities

are removed, and new interactions take place over time. A stream of

updates in the form of edge/vertex additions/deletions is typically

applied to the graph in batches for efficiency. As the graph evolves,

a straightforward approach is to restart the query from scratch after

applying a batch of graph updates. However, the number of vertices

or edges modified in a batch is typically exceedingly small relative

to the size of the graph. Thus, as the changes only modify a small

subset of the graph for many queries, much of the computation

performed during reevaluation is redundant.

To address this inefficiency, streaming graph systems support

incremental update of query results following changes to the graph,

resulting in order of magnitudes speedups over restarting the query.

Examples of such software systems include Kineograph [8], Tor-

nado [38], and Naiad [29] that can handle only growing graphs

(i.e., no deletions are allowed). By far, the problem of incrementally

supporting deletions is more challenging, and only KickStarter [45],

Graphbolt [26], and DZig [25] support it.

JetStream builds on a recent accelerator (GraphPulse [33]) which
uses an event-driven asynchronous processingmodel, with reported

speedups of up to 6× relative to BSP-based accelerator (Graphi-

cionado [13]). The event-driven model naturally supports asyn-

chronous graph processing with faster convergence via greater par-

allelism, reduced work, and elimination of synchronization at itera-

tion boundaries. In addition to its state-of-the-art performance, we

chose GraphPulse because it maps incremental update operations

to a series of events naturally within the existing architecture. Jet-

Stream supports all algorithms compatible with delta-accumulative

computation [50], as is the case in GraphPulse.
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The addition of edges is straightforward in the event-driven

model; the added edge simply creates a new event. In contrast,

edge deletion is substantially more difficult for most algorithms be-

cause it is often impossible to determine whether an update should

propagate. We support deletions in two phases: (1) incrementally

transforming query results for the previous version of the graph

into a recoverable state for the updated graph, and (2) bringing the

results to convergence again. Although GraphBolt and KickStarter

also proceed in two phases, they rely on the Bulk Synchronous

Processing (BSP), model which cannot work in JetStream’s asyn-

chronousmodel. Therefore, we develop new event-based algorithms

where both phases execute in a fully asynchronous fashion. Jet-
Stream serves both the class of accumulative algorithms supported

by GraphBolt and monotonic algorithms supported by KickStarter.

The JetStream design leverages the coalescing queue (a vital

component that enables combining events destined to the same

vertex) fromGraphPulse to accelerate streaming by eliminating key

inefficiencies of software streaming frameworks such as KickStarter.

When concurrently processing a batch of deletes, KickStarter per-

forms many random reads and relies on atomic operations to reset

the vertex values to a recoverable state. JetStream eliminates the

above sources of inefficiency by having events carry the update con-

tributions and using coalescing to achieve faster convergence with-

out requiring atomic operations (as delete events to the same vertex

are coalesced). We also leverage asynchronous processing to over-

lap different operations such as edge insertions, re-approximation

of states after delete, and initial query for better efficiency. We

introduce additional optimizations that limit the propagation of

delete events when they are determined to be unnecessary, fur-

ther improving performance. JetStream achieves on average 18×

improvement over state-of-the-art streaming graph software. Fur-

thermore, JetStream outperforms GraphPulse using cold-restart by

a factor of 13× on streaming queries, an advantage that grows for

smaller batch sizes. Lowering the overhead to this level brings us

closer to achieving real-time streaming operation where graphs are

updated on the fly since we do not need to aggregate updates into

large batches to amortize query evaluation costs.

The key contributions of this paper are as follows:

• First Streaming Graph Accelerator: JetStream is the first accel-

erator to support operations on streaming graphs (or dynamic

graphs). This is a burgeoning area of graph analytics for which

JetStream explores architecture support and optimizations.

• New Asynchronous Streaming Algorithms: JetStream supports

the union of GraphBolt and KickStarter (software streaming

graph frameworks that also support edge deletion).

• Large Performance Improvements that improve with smaller
batch sizes: JetStream substantially outperforms both software

frameworks. In addition, its advantage grows as the batch size is

reduced, making it conceivable to work on small batch sizes and

allow near real-time updates.

• Requires only small modifications to GraphPulse: JetStream ex-

tends the event-driven execution approach of GraphPulse. Since

graph mutations can be encapsulated as events, we were able

to design JetStream with only a few extensions to the existing

architecture, and support edge deletion and coalescing as well as

two optimizations for significant performance boost.
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Figure 1: Query evaluation on a streaming graph using an
incremental algorithm (top) and static algorithm (bottom).
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Figure 2: Using intermediate and initial values leads to incor-
rect results for SSSP: (a) an example graph; (b) uses previous
state to recompute; (c) resets impacted vertex.

2 BACKGROUND AND MOTIVATION
2.1 Streaming Graph Analytics
A query evaluation over a streaming graph, as shown in Fig. 1, has

two distinct characteristics. First, it supports streaming updates:

new graph updates also arrive as the query is being evaluated. These

updates are collected in a batch (e.g., ∆1 or ∆2 in Fig. 1) and are

applied only after the query evaluation is complete and its results

reported. Graph updates consist of edge additions and deletions. A
vertex addition can be modeled by addition of the first edge to/from

the vertex while modification of an edge weight is modeled by its

deletion followed by an addition of an edge with the same weight.

Second, query reevaluation leverages the existing state computed

before the updates: after a batch of updates has been applied, the

query evaluation is resumed incrementally to obtain the query re-

sults for the updated graph. In an algorithm (or accelerator) that

supports streaming operation, the reevaluation is performed as

an incremental update of the previous query result computed on

the original graph, shown as approximate states in Fig. 1, to avoid

wasteful redundant computations. As updates continue to arrive,

the incremental computation is performed repeatedly. JetStream
improves upon most prior software streaming algorithms, which

only support streaming edge additions, by allowing edge deletions.

It also improves on most software frameworks by supporting con-

current processing of multiple updates, gaining efficiencies from

combining some of their overheads.

2.2 Incremental Query Evaluation
Incremental reevaluation uses the result of the prior query to find

an intermediate approximation, which becomes the initial state

for computing the query result on the updated graph. Using the

previous result for an approximation can lead to faster convergence

than using a random initial state for the updated graph. Intuitively,

for many query types, only a small fraction of vertices are affected

by graph changes since batch sizes are typically tiny compared
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Figure 3: Conceptual timeline showing vertex values over
time through initial evaluation, recovery, and reevaluation
phases for SSSP on the example graph in Figure. 2.

Algorithm 1 Event-Driven Execution Model for SSSP

V [:] ← f il l (∞) ▷InitializeVertex()

Q ← inser t ({ ⟨root, 0⟩ }) ▷ InitialEvents()

1: procedure Compute(G(V , E), Q )

2: while Q is not empty do
3: ⟨i, δi ⟩ ← pop(Q )
4: temp ← V [i]
5: V [i] ←min(V [i], δi ) ▷ Reduce(a, b)

6: if V [i] , temp then ▷ Needs to propagate

7: for each ⟨u → v, w ⟩ ∈ E | u = i do
8: δv ← V [u] +w ▷ Propagate(u, v, w )

9: Q ← inser t (⟨v, δv ⟩)
10: end for
11: end if
12: end while
13: end procedure ▷ Converged graph state in V

to the size of the graph (thousands of edges in graphs with bil-

lions of edges). Thus, a complete restart of the graph computation

ends up doing substantial redundant work. Of course, we need to

have an effective algorithm for identifying which vertices require

recomputation for doing incremental updates.

Motivation and Basic Operation: Monotonic algorithms often

produce incorrect results in the presence of deleted edges. We

consider the example of an edge deletion(A→C) in the graph of

Fig. 2(a) for Shortest Path algorithm. Since the vertices only update

when they receive a shorter path value than their current state, the

graph never reaches the expected result using the previous result

as shown in Fig. 2(b). We call this approximation unrecoverable
because the computation cannot recover to the correct result after

being set into an incorrect state by the edge deletion. If we reset

the target of deletion to its initial value as shown in Fig. 2(c), it

still never reaches the correct result because other vertices (B,D,E)
previously influenced by it are also in incorrect states.

Fig. 3 shows the progress of a query evaluation through different

phases. First, a graph is initialized to an initial state. As computation

progresses, the graph moves through several intermediate states to
reach a final state when the algorithm terminates. Here, the final

state is the correct converged state (static), and all intermediate states

(including the initial state) are recoverable states because the graph
can reach the correct state from there. A recoverable approximation
is equivalent to one of these recoverable states from which the

graph is guaranteed to converge correctly. After applying the graph

mutations, the challenge in incremental graph computation is to

find a recoverable approximation based on the previous converged

states. For this example, all the vertices possibly influenced through

the deleted edge in the initial evaluation is identified and reset in

the recovery phase to arrive at a recoverable approximation for the

reevaluation. Incremental recomputation on this approximation in

the reevalauation phase leads to the correct result.

Recovery Algorithms: A simple way to find the set of vertices

affected by a deleted edge is to iteratively propagate a tag down-

stream from the target vertex of the deleted edge as in GraphIn [37].

Note that if a vertex is not affected by an update, the propagation is

not forwarded again. The set of vertices tagged this way definitively

contains all possibly impacted vertices. The tagged vertices can then

be reset to the initial value to acquire a recoverable approximation

for a monotonic convergence. When the query is reevaluated, the

reset vertices converge to correct states based on the mutated graph.

An example for obtaining a recoverable approximation using tag

propagation in the recovery phase is shown in Fig. 3.

JetStream develops event-driven adaptations of vertex tagging

and dependence tracking so that they can be used to extend the

GraphPulse architecture to support incremental computation over

a streaming graph. Monotonically converging algorithms where

vertex value computation is a selection task – such as ShortestPath,

ConnectedComponents, WidestPath, and BFS – benefit from this

approach. Graphs with accumulative update functions – such as

PageRank and Adsorption – uses a simpler recovery technique in

the event-driven approach. Here, the impact of a deleted edge is

negated by sending the total contribution through that edge with

negative polarity. This makes the event-driven approach highly

suited for the incremental computation of these algorithms.

3 JETSTREAM DESIGN OVERVIEW
We present the design of our event-based streaming accelerator

and its underlying algorithms in this section. First, we describe the

event-driven execution model that GraphPulse [33] is based on.

Then, we formalize the problems of building a streaming accelerator

over a static one and describe the JetStreammodel that solves these

problems.

3.1 Event-based Processing in GraphPulse
JetStream extends GraphPulse to support streaming graphs [33].

GraphPulse employs event-driven execution to eliminate overheads

of shared-memory frameworks (e.g., poor temporal and spatial lo-

cality, atomic memory accesses, and synchronization). The event-

driven execution is based on delta-accumulative incremental com-

putation (DAIC) [50] model. In this model, contributions coming

over different edges (termed delta) can be applied independently

and without any fixed order to compute the vertex state. The model

has two primary components – i) a Reduce task used to compute

vertex state from incoming deltas and previous vertex state; and

ii) a Propagate task used to compute the delta over each outgoing

edge. In the event-driven model, lightweight messages called events
carry the deltas to their respective destination vertices. A vertex

recomputes its state only if it receives an event (delta) and generates
a new event only when its state changes from the incoming event.

GraphPulse presents a complete execution model to run an iter-

ative graph algorithm using the event-based approach. Algorithm
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1 shows the event-driven execution model and how the SSSP appli-

cation is mapped to the model. The user defines a Reduce() method

(line 5) expressing the reduction of incoming contribution and ver-

tex state. A Propagate() function (line 8) is defined for finding the

delta over an outgoing edge and creating new events. InitialVer-

tex() and InitialEvents()methods are defined to initialize the vertex

states,V , and the initial set of events (Q) before the execution starts.

The initial vertex values are set to an Identity value for the Reduce()

function, so that a vertex’s first reduction operation with an events

is bound to change its state and propagate. With the processing of

the initial events, vertex states get updated towards convergence,

and new events are generated and inserted toQ . For each event inQ ,

the vertex update task is triggered. When a vertex reaches conver-

gence, its state does not change from incoming events, preventing

new event propagation (line 6). Eventually,Q becomes empty when

all vertices reach convergence terminating the application.

Proper execution and termination of the event-driven model

depend on two properties of the graph algorithms. First, the Re-
ordering Property requires that incoming contributions over edges

can be applied to a vertex in any order and independently. Sec-

ond, the Simplification Property requires that vertex that does not

change state should not impact other vertices, i.e., it should not

propagate, and other vertices should not require its contribution for

computing their states. Many important graph algorithms such as

SSSP, SSWP, BFS, Connected Components, Incremental PageRank,

and many Linear Equation Solvers satisfy these properties and are

supported in GraphPulse. JetStream supports all the algorithms

supported in GraphPulse without any change to the application.

Limitations.We assume that Reordering and Simplification pre-

serve correctness; however, some graph algorithms do not sat-

isfy this condition and thus cannot be expressed using our model.

For example, Graph Coloring, K-Core, and MIS algorithms require

vertex contribution across all incoming edges to update a vertex.

This violates the Simplification Property since contributions from

some neighboring vertices are needed even if their states were un-

changed. If the algorithm requires contributions from neighbors

that are multi-hop away (e.g., Triangle Counting) or a normaliza-

tion step after each iteration (e.g., Label Propagation), then they

violate the Reordering Property because a particular order must be

imposed upon the evaluation of the contributions through some

edges. These algorithms cannot be implemented in GraphPulse
and, hence, JetStream. It should be noted that some algorithms that

are not supported in their common iterative forms may have varia-

tions that may be suitable for event-driven implementations. For

example, PageRank and Adsorption have incremental forms that

are supported in GraphPulse and JetStream. As a rule of thumb, al-

gorithms supported by this model often have the characteristic that

a single edge can update a vertex, and the updates are monotonic.

3.2 Streaming Graph Computation Objective
GraphPulse computes the final converged state of a static graph.We

want to find the new converged state of the graph using JetStream
after somemutation is applied to the graph structure. To formally de-

scribe the objective of JetStream, we consider a graphG0 = (V ,E0)
being initialized to a set of values IG = ⟨∀j : i j =Identity⟩ and
converging toC0

G = ⟨c0, c1, ..., cn−1⟩ for its final state. The Identity
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Figure 4: Propagation of events during processing of stream-
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to the deletion of edge A � C in the graph. (d) Recovery of
approximate state after request events are processed.

parameter is application-specific for the graph algorithm; it is the

initial value of the vertices and the non-dominant value for the

Reduce() operation (Algorithm 1). For streaming algorithms, we

need to compute a new convergence stateC1

G for the mutated graph,

G1(V ,E1), using a recoverable approximationAG based onC0

G . The

approximationAG = ⟨a0,a1, ...,an−1⟩ is recoverable if convergence
can be reached for algorithm S starting from this approximation

(Section 2.2). For the selection-type algorithms, The vertex states

progress from the initial value (Identity) to the direction of conver-

gence monotonically. Amore progressed value dominates the Reduce

operation. In a valid approximation, all elements inAG must be less
progressed than or equal to the corresponding elements in the even-

tual converged state,C1

G . An approximation,A = ⟨∀i,ai =Identity⟩,
set to the initial value is a valid recoverable approximation but an

inefficient one since it is equivalent to computing the graph from

the beginning. Hence, finding a good approximation is critical for

performance. Our proposed approaches in JetStream accomplish

this by expressing the graph mutation as events and restoring the

mutated graph to a recoverable approximation for subsequent pro-

cessing using the event-driven model.

3.3 Event Representation of Graph Mutation
Any modification to the graph structure is expressed using an event

in JetStream. We assume that the modifications are batched, consis-

tent with prior works on streaming graphs. A batch will be queued

as events that are released once the ongoing processing iteration is

complete. This choice to separate the update phase from the process-

ing phase eliminates the need for resolving race conditions between

old and new values as the computation proceeds. Each modified

edge is expressed as an event from the source to the destination of

the edge. The payload (delta) carried by the event is generated by

reading the previous converged state of the source vertex (which

is approximate with respect to the mutated graph) and computing

the propagation value based on this state and the edge attribute.
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Algorithm 2 Converting edge-insertions to events

1: procedure ProcessInserts(G(V , E), Q, A ⟨u → v, w ⟩)
2: for each ⟨u → v, w ⟩ ∈ A do ▷ A = list of added edges

3: δv ← V [u] +w ▷ Propagate(a, b)

4: Q ← inser t (⟨v, δv ⟩)
5: end for
6: end procedure

Algorithm 3 Converting deletions to events for PageRank

1: procedure ProcessDeleteCumulative(G(V , E), Q, D ⟨u � v, w ⟩)
2: for each ⟨u → v, w ⟩ ∈ D do ▷ D = list of deleted edges

3: δv ← −1 ×V [u] × (1 − α )/deд(u) ▷ Propagate(a, b)

4: Q ← inser t (⟨v, δv ⟩)
5: end for
6: end procedure

This event represents the effect of the modified edge with respect

to the previous graph structure. Events are queued and held until

all the modified edges have generated a corresponding event. At

this point, the new graph structure is active, and the events are

processed from the queue. We demonstrate the processing of edge

insertion and deletion events next.

Edge Insertions: are supported naturally by the event-driven

model. The inserted edge did not exist in the previous graph and

had no effect that needs to be reverted. An update along an edge

can be applied to a vertex at any time in the asynchronous model.

Hence, an update coming along a newly-inserted edge is conceptu-

ally similar to an update along an existing edge that was delayed; it

has the same effect and gets processed in the same way. JetStream
computes an update using the old converged state of the source

vertex and the weight of the inserted edge, and queues it as an event

for the destination vertex along with regular events (Algorithm 2).

Fig. 4(b) shows how an edge insertion triggers a chain of updates.

As the new edge (A � D) contributes to vertex D, the vertex gets
updated and propagates further with more events (D � G). Propa-
gation ultimately stops due to monotonicity when the event arrives

at a more progressed receiver via (G � E). If the state of the source
vertexA itself is not stable, subsequent updates to the vertex will be

propagated using the mutated graph along the new edges and send

the correct values downstream eventually. Hence, a graph always

remains in a correct or recoverable state after edge insertions.

Edge Deletions: are not supported by most streaming systems (the

exceptions being Kickstarter and GraphBolt). JetStream supports

deletions as in KickStarter while overcoming some of its perfor-

mance limitations when handling a batch of deletions. Specifically,

JetStream queues edge deletions as events in the same way as in-

sertions. However, edge deletion is more complicated since the

deleted edge’s contribution to the previous converged state must be

reversed. For algorithms with accumulative updates, reverting the

effect of deleted edges is simpler. A vertex propagates an update

downstream for all the updates it receives and accumulates. As a re-

sult, we can infer the combined value of all updates it sent along an

edge during the previous evaluation by looking at its accumulated

state and using the Propagate function. Sending the inverse of its

previous converged state, transformed by the Propagate function,

Algorithm 4 Processing deletes and recovering approximations of

vertices impacted by deletions for SSSP.

1: procedure ProcessDeletesSelective(G(V , E), Q, D ⟨u → v, w ⟩)
2: for each ⟨u → v, w ⟩ ∈ L do
3: Q ← inser t (⟨v, 0⟩)
4: end for
5: end procedure

6: procedure ResetImpacted(G(V , E), Q )

7: X ← � ▷ List of impacted vertices

8: while Q is not empty do
9: (i, δi ) ← pop(Q )
10: if V [i] , Identity then
11: V [i] ← Identity ▷ Tag vertex

12: X ← X ∪ {i }
13: for each (u → v, w ) ∈ E | u = i do
14: Q ← inser t (⟨v, 0⟩) ▷ Propagate delete

15: end for
16: end if
17: end while
18: end procedure

19: procedure Reapproximate(G(V , E), Q, X )

20: for each i ∈ X do ▷ Create events with request flag(ρ)
21: for each (u → v, w ) ∈ E | v = i do
22: Q ← inser t (⟨u, Identity, ρ ⟩)
23: end for
24: end for
25: end procedure

negates the cumulative effect of all updates over this edge. Further

propagation downstream of negative events from the receiver ver-

tices leads to the rollback of all contributions from this edge and

puts the graph in a recoverable state. We create negative events for

the deleted edges as shown in Algorithm 3 to initiate recovery.

For algorithms having selective updates, it is more difficult to

identify which edges contributed to a vertex. The destination vertex

of a deleted edge is reset to its initial value so that it can be updated

later in the reevaluation phase. We queue events with a delete flag
as shown in Algorithm 4. A vertex, upon receiving an event with a

delete flag, will reset itself. This change in the state goes against the

direction of monotonicity. Therefore, when this vertex propagates

its updates to its neighbors, the update events will be discarded by

the receivers in the Reduce function since they already have a more

progressed state. However, this more progressed state may have

resulted from the contribution of the deleted edge. Hence, the graph

stays in an incorrect state if these vertices are not corrected. To solve

this problem, we devise an event-driven edge deletion algorithm

that identifies the potentially affected vertices and efficiently resets

them to acquire a recoverable approximation as we describe next.

3.4 Impacted Vertex Detection and Recovery
To handle an edge deletion correctly, the vertices impacted by a

deletion must be identified, and their states reset to a recoverable

value. Impacted vertices are identified by propagating a delete tag

to all outgoing neighbors of an impacted vertex and tagging them as

impacted in a manner similar to KickStarter [45]. When a deletion

event first arrives at a vertex, we set the vertex state to the initial
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Algorithm 5 Overall processing flow for SSSP.

1: procedure ProcessStream(G(V , E), Q, A ⟨u � v, w ⟩, D ⟨u �
v, w ⟩)

2: ProcessDeleteSelective(G(V , E), Q, D ⟨u � v, w ⟩)
3: X ← ResetImpacted(G(V , E), Q ) ▷ Queue is empty

▷ Delete phase ends

4: Reapproximate(G(V , E), Q, X )

5: ProcessInsertions(G(V , E), Q, A ⟨u � v, w ⟩)
▷ Switch to new graph structure

6: Compute(G(V , E), Q )

7: end procedure ▷ V holds correct result

(a) (b) (c)

AA

BB

DD

CC

EE

AA

BB

DD

CC

EE

B→D
B→E

add

AA

BB

DD

CC

EE

B→C
B→D
B→E

del.

Figure 5: Showing an edge deletion for accumulative algo-
rithms: (a) initial graph with B�C to be deleted; (b) interme-
diate representation; (c) mutated graph.

Identity value (tag it) as shown for vertex C in Figure 4(c). Hence,

textittagged vertices can react to updates from future events. Delete

events are propagated along each outgoing edge. A delete event

cycling back to an already tagged vertex (e.g., G → E) will not
propagate. Multiple delete events queued for the same vertex can

be coalesced since tagging a vertex once is sufficient. When a vertex

is reset, the vertex Id is added to a list. Hence, the set of vertices

tagged this way contains all vertices whose states could have been

potentially influenced by the deleted edge. The process is shown in

Algorithm 4. The list is used to revisit these vertices to recompute

their approximate states as described next.

A new recoverable approximation for the impacted vertices must

be found in case the query cannot progress to some impacted ver-

tices. For example, in Fig. 4(a), a SSSP query running fromA cannot

reach E because vertices B and D are already in a correct state, and

will not propagate new events along B → E and D → E after edge

deletion. KickStarter solves this problem by reading all neighbors

states again to reestablish an approximate state for an impacted

vertex. Unfortunately, this approach generates many memory reads

with a random access pattern. Many of the vertices are also read

by multiple deleted vertices creating opportunities for data reuse.

Instead of reading the states of the neighboring vertices directly, we

create a request event to request updates from the neighbors. The

request event has a request-flag bit set and the payload set to Iden-

tity in order to avoid affecting any other events and vertices. When

a vertex detects the request-flag, it must propagate to its neighbors,

even if it does not update itself. The request events are coalesced,

hence, combining the reads for each vertex. Also, when they pass

through the queue, the events are sorted by their destination vertex

ID so that a sequential memory access pattern occurs when they

are processed. Upon receiving the response to the request event,
the impacted vertex will reestablish an approximate state closer to

convergence based on its neighbors’ approximate states.

A second inefficiency persists in other approaches because com-

puting an approximate state from neighbors’ approximate states is

often wasteful since these approximate states may change again

during query evaluation. To address this problem, we exploit the

asynchronous nature of the model – we can delay the vertex reads

or recomputation until after the effect of the initial events and

inserted edges are applied. We overlap the execution of request

events with query events and edge insertions, so the vertex updates

move the vertex closer to the final converged states.

After the delete phase is over, JetStream revisits each vertex in

the list of impacted vertices and sends request events along each

incoming edge of a vertex at the beginning of the processing phase.

If the impacted vertices are on the path of a propagating query,

their states update to the correct states since their approximate state

(Identity) can be updated by all contributions. If the vertex does

not belong to the query propagation path, the responses to request

events set them to the correct state. Thus, a graph always remains

in a correct state after deletion is processed in this technique. The

pseudocode for processing deletes is shown in Algorithm 4.

3.5 Recomputaion of the Mutated Graph
JetStream execution process uses the original computation tech-

nique of GraphPulse to recompute the graph after setting up the

approximate state and populating the event queue with appropri-

ate events as described above. Because the recovery after delete

is handled differently in the two different types of algorithms (ac-

cumulative vs. monotonic), the processing phases are scheduled

differently for them. We discuss both of them next.

Algorithms with Selective Update. After receiving a batch of

edge updates, we first process the deleted edges and insert deletion

events in the queue to reset the target vertices. In the next phase,

the events are allowed to execute on the previous version of the

graph; all potentially impacted vertices are reset to their initial

value. Afterward, events with request-flags are queued for all the

neighbors of the impacted vertices. We process the inserted edges

at this point to create and queue the events for them. The insertion

events can coalesce with the request events existing in the event-

queue simply by setting their request-flag bit. The graph is then

switched to the new version, and the events in the queue are allowed

to process in the typical computation flow of GraphPulse. The only
difference is that whenever any vertex receives an event with a request
flag, it propagates its state to all its outgoing neighbors even if it does
not change its state. These responses to the reapproximation request

allow the impacted vertices to set their new state using the states of

their neighbors. At the end of this phase, when the queue is empty,

the graph arrives at a correct state, and the process of reevaluation

concludes. The process is shown in Algorithm 5.

Algorithms with Accumulative Update. These algorithms do

not need reset since a deleted edge can be negated with a regular

event with negative polarity. After creating events for the deleted

edges, we load an intermediate version of the graph without the

deleted edges to break any cyclic path in the graph. Algorithms that

propagate updates based on degree, such as PageRank, undergo

changes in the weight of all edges when an edge is added or deleted.

To handle this, we first delete all outgoing edges of the vertex

having an edge added or deleted, turning it into a complete sink for

the intermediate version of the graph. In the example of Fig. 5(a),

any cyclic propagation through vertex B is stopped by deleting
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Algorithm 6 Overall processing flow for PageRank.

1: procedure ProcessStream(G(V , E), Q, A ⟨u � v, w ⟩, D ⟨u �
v, w ⟩)

2: ProcessDeleteCumulative(G(V , E), Q, D ⟨u � v, w ⟩)
▷ Switch to intermediate graph structure

3: Compute(G(V , E), Q ) ▷ Q empty : Delete phase ends

4: ProcessInsertions(G(V , E), Q, A ⟨u � v, w ⟩)
▷ Switch to new graph structure

5: Compute(G(V , E), Q )

6: end procedure ▷ V holds correct result
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Figure 6: Fundamental architecture of GraphPulse [33]

edges to D and E too. All outgoing edges of vertex B are added

to the batch of deleted edges (Fig. 5(b)). We next process these

deleted edges to populate the event queue with negative events.

Next, a computation phase on this intermediate graph effectively

removes all contributions of vertex B from the graph. Creating

the intermediate graph is not expensive since it can be achieved

simply by adjusting the pointers to the edge list to skip the deleted

vertices. We then add back all the edges of vertex B (except the

actually deleted edge B�C) to the batch of inserted edges so that it

resembles the new graph structure (Fig. 5(c)). This batch of edge

additions is processed to create events in the queue. When the

compute phase is rerun on the new version of the graph, the result

is correct for the mutated graph. The steps in this model are shown

in Algorithm 6. We note that the manipulation of the edge addition

or deletion batch only affects the preparation of the streaming batch;

the actual vertex computation remains the same as GraphPulse.

4 JETSTREAM ARCHITECTURE
JetStream is an asynchronous graph processing accelerator lever-

aging the event-driven execution model to operate on streaming

graphs. The decoupled nature of event-driven execution allows the

accelerator to extract abundant parallelism for the computation

flow and utilize memory bandwidth efficiently. A significant per-

formance boost comes from the efficient utilization of low-latency

on-chip memory resources for the transient short-lived commu-

nication data. In addition, specialized communication paths and

scheduling primitives allow the accelerator to operate with very

little overhead for control and synchronization. JetStream extends

the datapath of GraphPulse, an accelerator for static graphs, to

accommodate the model described in Section 3. JetStream adds

new modules for reading and processing streaming data, as well as

re-implements the coalescing queue, and vertex update and propa-

gation logic to account for the new types of events.

This section describes the architectural components of theGraph-
Pulse core and highlights the extensions for JetStream. JetStream’s

architectural changes do not disrupt the regular computation on

static graphs. As a result, JetStream can perform both the initial non-

incremental evaluation (like GraphPulse) and streaming evaluation

efficiently. We describe the complete execution flow of JetStream
later in this section. Furthermore, JetStream derives its functional

module from the same programming API defined for GraphPulse;
so minimal additional user effort is necessary to program JetStream.

4.1 GraphPulse Architecture
Since JetStream builds on GraphPulse, we start by over-viewing

the GraphPulse base architecture shown in Fig. 6. The primary

components of the datapath are Event Queues, Event Scheduler,

Processors, and the on-chip routing network connecting the compo-

nents. The processors are connected to the off-chip system memory

for accessing the graph structure and vertex states. Any computa-

tion starts with the vertices set to an identity value and a number

of initial events crafted for setting the vertices to their initial state.

The events are dequeued and processed from the event queues for

processing. The event queue consists of several individual queues,

each holding events for a subset of the vertices, to increase queueing

and dequeuing bandwidth. Each event updates a vertex that may

trigger new events, one for each outgoing edge, that are inserted in

the event queues. The event queues hold one entry for each vertex;

multiple events destined to the same vertex are coalesced by the

queuing logic in the event queue, which is defined as part of the

application. For example, the coalescing logic will retain the incom-

ing event with the least cost for Shortest Path. Processing continues
until no more events are available or another user-specified termi-

nation condition is reached. The size of the event queues limits the

size of the graph being processed since they hold one entry per ver-

tex; GraphPulse supports larger graphs by partitioning them into

multiple slices and swapping in one slice at a time for processing.

GraphPulse incorporates a number of additional optimizations; for

more details, please refer to the GraphPulse paper [33].
The accelerator is designed to work alongside a host as an

ASIC/FPGA-based co-processor with dedicated DRAM memory

and independently addressable memory space. The host processor

allocates and initializes the graph and the initial events in the accel-

erator memory as defined by the programmer via a provided API.

The accelerator performs the graph computation independently

based on configurations received from the host. It alerts the host

when computation finishes so that the graph state can be read back.

In the remainder of this section, we describe the primary Graph-
Pulse components and how JetStream extends them. JetStream
retains the GraphPulse datapath and adds a Stream Reader module

for creating events from streaming data as described in section 3.3.

It extends the vertex update module with a vertex reset logic, a

scheduler with multiple policies, and coalescer logic incorporating

delete event coalescing described in Section 3.4. A detailed view of

the JetStream datapath is shown in Fig. 7, where the shaded com-

ponents indicate modules added to or extended from GraphPulse.

4.2 Event Management
All computations are expressed as contributions along edges and

propagated using events in the event-driven model. Events are light-

weight messages that trigger vertex computation at the destination

vertex. GraphPulse events are tuples containing a target vertex Id
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and a payload. The payload contains the vertex contribution along

the edge. In JetStream, event payloads also contain some flags indi-

cating special tasks (e.g., request flag mentioned in Algorithm 4).

We describe optimizations in Section 5 that add extra data to the

event payload in JetStream.

The event queue is the storage for active events in the system

representing the set of active vertices. GraphPulse employs a fast

on-chip queue capable of in-place coalescing. The queue contains

multiple bins. Each bin is structured into a grid of rows and columns,

and only one vertex is mapped into each cell by vertex index. The

bins behave similar to a direct-mapped cache. During event inser-

tion, if another event already exists in its mapped cell in the queue,

the events are combined with the Reduce operation (coalescing).

Thus, only one event for a vertex can exist in the queue at any time.

The queue is capable of fast parallel insertion of events received

on the input bus. The bins are implemented on Simple Dual-Ported
on-chip memory where one row can be read and written in each

cycle. Furthermore, each bin is equipped with a coalescer pipeline

that can insert one event every cycle even though coalescing may

have multi-cycle latency. During insertion, the coalescer reads the

existing event (if any) in the mapped block on the first cycle. Then,

the existing event is reduced with the new events in the following

cycles and written back.

Events are emitted in batches for processing. Since GraphPulse
supported algorithms allow reordering of edge contributions, events

can be emitted in any order.GraphPulse reads one full row of events

at a time from a bin and puts it into a drain buffer. Events are drained
from one bin at a time in a round-robin fashion. The vertices are

mapped in such a way that a group of vertices whose states reside

in the same DRAM page is also mapped in the same row in the

queue. Thus, processing the events in one row of the queue within a

short period provides a high spatial locality for the graph memory.

JetStream leverages the same queue architecture as GraphPulse.
The coalescer pipelines are extended to combine delete events as

well during the recovery phase. Two delete events can be merged

since they do not carry any data. Additionally, fewer vertices can

be mapped to the queue (for the same on-chip memory size) since

the event payload in JetStream is bigger than GraphPulse. Hence,
JetStream uses smaller-sized graph partitions than GraphPulse.

4.3 Event Scheduler
The GraphPulse event scheduler dequeues events from the queue

and puts them in a buffer. It keeps track of processor occupancy,

and arbitrates events to the processors with the least workload. It

issues the events in the same queue row to the same processor for

enhancing spatial locality. The scheduler also tracks the progress of

the processing engines and the occupancy of the queue. When all

the bins have been drained once, we say that a round is completed.

The scheduler waits for the processors to idle before starting a new

round. Since only one event for a vertex can exist at the time of

emitting event, there cannot be more than one event scheduled for

the same vertex in one round; this eliminates the need for atomic op-

erations and simplifies memory access and synchronization. When

the scheduler detects that the queue is empty and all processors

have completed their assigned workload, it indicates the end of the

computation phase and terminates the application.

In JetStream, the scheduler is extended to run the execution in

multiple phases. When a streaming batch is ready, the scheduler

starts processing for the recovery phase that precedes the regular

computation phase. The recovery phase starts with populating the

queue with delete events from graph mutation. Then it proceeds like

a regular computation phase and ends when there is no delete event
remaining in the queue. At the end of this phase, the graph is in a

recoverable approximation state. Finally, the scheduler triggers the

creation of addition events from added edges and runs the a regular

computation phase (reevaluation) to obtain the final graph state.

4.4 Event Processing Engine
GraphPulse event processors are independent, parallel, and simple

state machines. They continuously process events that are placed in

their input FIFO buffers by the scheduler. The processors compute

the vertex states using the user-defined Reduce() method and ap-

ply the updates to the vertex memory. Since the processors receive

events that are closely located in the memory in one batch, they

can prefetch the vertex properties for these events. Each proces-

sor is equipped with an on-chip scratchpad prefetcher that can

prefetch vertex data for all the events in the processing buffer. The

prefetcher scans the buffer and reads the off-chip memory in such

a way that vertex properties residing in the same DRAM memory

page are read in a group, thus increasing memory access efficiency.

The processors read and write vertex data through the scratchpad

memory. The scratchpads can access any memory channel through

an efficient memory bus.

When vertex states change, the processors pass the updates to

one of their event generation streams. The generation streams read

the edges and compute the contributions using the Propagate()

method to pass along the edges. Event generation streams also read

the edge data through an edge cache connected to off-chip memory

bus. Since edge lists are contiguous inmemory, a prefetcher requests

next memory blocks smartly based on the edge pointers and the

number of edges in the Edge ID Buffer. The generation streams

are connected to the queue using a crossbar. 32 generators of 8

processing engines share the input ports of the 16×16 crossbar, and

the output ports are shared among the queue bins.

JetStream utilizes the same event processor system during its

regular computation phase. The apply logic is extended with a reset
logic that sets a vertex to Identity (Algorithm 4, line 11) when

it receives a valid delete event during the approximation phase. It

also, writes the vertex index to the Impact Buffer if a vertex resets
its state from a delete event. Additionally, the processing buffer is
increased in width to accommodate larger event size for JetStream.

4.5 Stream Processing Modules
JetStream adds a Stream Reader module that reads the lists of deleted

and inserted edges from main memory and schedules them to the

processing engines during approximation. The list of deletes is read

first as ⟨source, destination, weight⟩ and events are created from

these edges according to Section 3.3. Next, these events are used

to find the sets of impacted vertices. Finally, added edges are read,

and events are created after the approximation is complete.

The Impact Buffer stores the indices of the vertices impacted by

a delete during the approximation phase. The Apply unit sends the
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Figure 7: Detailed JetStream datapath. Blue shows data flow, red shows control signals, green and yellow represent on-chip
and off-chip memory transfers respectively. Shaded modules are new or modified in JetStream.

index of an impacted vertex to the Impact Buffer module that writes

to a list in its internal buffer. The list is written from the buffer to

the main memory in batches. The Impact Buffer module also reads

back the list and creates request events for the impacted vertices as

described in Section 3.5.

4.6 JetStream Execution Flow
Fig. 7 shows the steps and direction of the dataflow during the

life-cycle of an event. The dataflow differs for the initial (static) and

incremental evaluation.

4.6.1 Initial Evaluation. The regular computation phase is inher-

ited from GraphPulse and it is used for the initial static evaluation.

Initialization. We assume that the accelerator starts with the host

processor writing the graph structure, initial vertex states, and a

list of initial events corresponding to the application to the main

memory. Then, during step 0○, the Initializer module reads and

inserts the initial events into the queue to make the system ready

for processing.

Event Issue. In step 1○a, the scheduler requests events from the

queue, and the queue emits events (if any) in batches in 1○b. The

steps in 1○ execute in a continuous loop. The scheduler holds the

events in a buffer and passes them to the processing buffer in 2○
where they are staged for execution.

Vertex Update. While the events wait in the queue, the prefetcher

scans the vertex id, computes the memory addresses, and prefetches

all vertex properties (typically located in the same memory page)

to the scratchpad memory in 3○. The Apply module takes the event
at the head of the buffer, reads vertex states and edge pointers

from the scratchpad, and applies the update to the event in 4○.

After writing back the updated value to memory via the scratchpad,

⟨update value, edge pointer, number of edges⟩ for a vertex is pushed
to the Edge Buffer in 5○ to generate the outgoing events only if the

vertex requires propagation (i.e., its state has been updated).

Event Generation. During step 6○, the prefetcher computes the

edge address range to be read, and fetches all needed edges (typically

within a single memory page) to the cache. Each generation stream

takes the head of the buffer and loops over all the edges for the

vertex to generate new events in 7○. The events are pushed to an

event bus through an on-chip routing network in 8○. In step 9○ the

event queue continuously scans the event bus to pick up and insert

the events in corresponding bins. This processing cycle repeats

until the queue is empty; this marks the end of evaluation where

the initial graph has been updated to the converged state.

4.6.2 Incremental Evaluation. The incremental evaluation is added

in JetStream and required for fast evaluation of streaming graphs.

Delete Setup and Preparation. Edge additions are directly sup-

ported as regular events since they do not affect the monotonicity

of the algorithm; we focus on the more difficult deletion support.

The Stream Reader reads the deleted edges first in A○ and passes

them to the processing engines through the scheduler ( 2○). Reusing

steps 3○ - 5○, the vertex state for the source vertex is read (but not

updated) and the ⟨vertex state, destination, edge weight⟩ is passed
to the generation unit. Step 7○ is used to find the propagated value,

and create a delete event for the destination vertex that is forwarded

to the queue using 8○, 9○. Note that the computing elements of 4○
and 7○ are not necessary for the basic model. But they are used

during the optimizations described in Section 5.

Delete Propagation. After all the delete events are queued, a nor-
mal computation cycle (steps 0○- 9○) is executed until there remains

no delete events in the queue. The Apply unit and Propagation unit
use the logic defined in Algorithm 4, line 11 and 14. The Apply unit
also writes the Id of a deleted vertex in step B○ to the Impact Buffer
during step 4○.

Finalizing Approximation. After the delete propagation step

concludes, we reschedule the vertices from the Impact Buffer (step
C○) and reuse steps 2○- 9○ once to create request events for their

incoming edges. In this phase, step 4○ reads the incoming edge

pointers from the memory (in contrast to the outgoing edge pointer

as in other phases). Following this, the Stream Reader reads the
inserted edges, and creates insertion events using 2○- 9○ the same

way as deleted events. This completes the approximation phase.

At this point, the regular computation phase ( 0○- 9○) can execute

again to evaluate the modified graph. As further streaming updates

are received, the engine keeps finding recoverable approximation

and rerun computation phase keep processing streaming data.

4.7 Graph Representation and Partition
GraphPulse stores the graph structure in a Compressed Sparse Row
(CSR) format and the vertex states in simple contiguous arrays.

JetStream assumes the same CSR graph storage format. However,

different from GraphPulse, JetStream requires access to the incom-

ing edges for each vertex, which are stored in another CSR structure.

Since the host processor maintains the graph structure, we leave

the task of maintaining the evolving edge list to a suitable soft-

ware graph versioning framework. In the simplest case, we assume

the host writes a new CSR for the mutated graph version to the

accelerator memory and swaps the pointer to the CSR after each
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Figure 8: Dependency tree for the example in Figure 4: (a)
before deletion; (b) after reset; (c) after reevaluation for the
deleted edge A→C.

batch iteration. Thus, JetStream can start using the new version

of the graph. In practice, any graph versioning storage, such as

Version Traveler [20] or GraphOne [21], can be used. JetStream
can interface with any framework that allows a CSR abstraction to

access the internal evolving graph structure, and only the address
translation logic needs to be extended for interfacing.

The hardware queue can accommodate events for a limited num-

ber of vertices. So large graphs are partitioned into slices using

a minimum edge-cut strategy to avoid overwhelming the queue.

GraphPulse processes one slice of the graph at a time in a round-

robin manner and temporarily stores the cross-partition events to

the off-chip memory. After one round over a slice, it is swapped

out by writing the pending events to the off-chip memory. Then,

a new slice is activated; its events are read back from memory

and inserted into the queue. We keep the same partitioning and

swapping technique of GraphPulse, as JetStream extensions are

not dependent on graph structure. Note that the partitions may

not remain optimal as the graph continues to evolve. To reduce the

fraction of edge-cuts, we can periodically re-partition the graphs or

deploy dynamic graph partitioning tools [15, 43] without affecting

the JetStream workflow.

5 OPTIMIZATIONS
We have described a system that uses a tagging approach during

edge deletion (Section 3). Next, we describe extensions to the delete

propagation algorithms to capture a smaller set of impacted vertices.

5.1 Value Aware Propagation (VAP)
A fundamental property ofmonotonic algorithms is that the updates

propagated from a vertex along its outgoing edges are always less
progressed (closer to Identity) than the vertex itself. For example, in

a Shortest Path (SSSP) algorithm, all the distances transmitted via

edges are longer than the vertex’s distance from the root. In typical

selection-based algorithms, a vertex selects only the incoming edge

with the most progressed update to set its state. VAP exploits the

observation that any source vertex that propagates an update that

is less progressed than the destination’s state, can not be the con-

tributor to its state. Thus, when a vertex is impacted, VAP avoids

resetting any neighbor that is more progressed than the resulting

contribution from the impacted source.

Implementing VAP requires changes to the event propagation

and update logic. The JetStream engine already uses a Propagate

logic to compute the value of the events generated along outgoing

edges. This same logic is used to compute the propagated value

along the deleted edge during the creation of delete events. Upon

receiving this event, a receiver vertex compares the event payload

to its current state. If the received value is less progressed than the

receiver, it can be safely discarded. Otherwise, the vertex resets itself

to the initial value and propagates the updates along its edges using

its previous state. The delete events with value can be coalesced in

the queue using the same reduce() function as the one for regular

events. Only the most progressed event will remain, and if that does

not impact the destination vertex, the delete event is not propagated.

This substantially reduces the number of impacted vertices in the

system for applications with distinct edge weights and vertex states

5.2 Dependency Aware Propagation (DAP)
Comparing values in applications where clustering vertices settle

to the same value is futile. For example, a BFS algorithm sets all

nodes to the same value, and VAP cannot exclude any vertex based

on value. For such algorithms, we exploit another observation that

the vertex states depend on the contribution of only one incoming

edge for each vertex. The first contribution that sets a vertex state

to the final value is the one that the vertex depends on. Subsequent

contributions carrying the same update value cannot affect the

vertex. Therefore, deletes propagated along these edges can be

safely discarded. The approximate state is recoverable as long as

the first contributing vertex remains stable. We adapt the notion of

Dependency Tree introduced in KickStarter [45] to the event-based

model for these kinds of applications.

Formalization. We capture the flow of useful contributions across
the graph to identify dependency. We use the notion of a Leads-To
relationship (Z⇒) that represents the effect of a vertex on the transi-

tion of a neighbor’s state. Specifically, A Z⇒ B if the state of B tran-

sitions from the contribution of A. In a cyclic path A � B � C � A
with a BFS query, if A Z⇒ B and B Z⇒ C , then C YZ⇒ A because A

would have already reached the final state and would not transition

from the contribution (futile) from C. Discarding all delete propaga-

tionu � v whereu YZ⇒ v still produces a recoverable approximation.

We can represent the Leads-To relationship in the form of a tree.
Note that multiple valid versions of the dependency tree may exist

depending on the order in which events are processed.

Implementation. We add a dependency field to the vertex state

to record the source of the first event that updates it to a stable

value. We also add a field to the event payload that carries the Id of

the source of that event. When an event updates a vertex, the vertex

changes its dependency field to match the source of this event.

While coalescing two events in the queue during regular com-

putation, we retain the source of the event that is dominant in the

Reduce function. We disable coalescing during the recovery phase
not to lose delete events. We extend the queue with an overflow

buffer that stores the extra events whenmultiple events are received

for the same vertex. The overflow buffer writes to the off-chip mem-

ory in blocks when full and reads back in blocks when issuing

events. These off-chip accesses have low overhead as the number of

delete events is far smaller than the events in a regular computation.

During event processing, a vertex only resets itself and propa-

gates the delete if the dependency field matches the source ID of the

delete event. Other delete events are discarded, greatly pruning the

set of impacted vertices. Fig. 8 shows the vertex states and depen-

dency trees during different stages of the incremental evaluation

for the example graph of Fig. 4.
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Table 1: Experimental configurations.

Software Framework JetStream

Compute

Unit

36× Intel Core i9

@3GHz

8× JetStream

Processor @ 1GHz

On-chip

memory

24MB L2

Cache

64MB eDRAM @22nm

1GHz, 0.8ns latency

Off-chip

Bandwidth

4× DDR4

19GB/s Channel

4× DDR3

17GB/s Channel

Table 2: Input graphs used in the experiments.

Graph Nodes Edges Description

Wikipedia(Wk) [10] 3.56M 45.03M Wikipedia Page Links

Facebook(FB) [41] 3.01M 47.33M Facebook Social Net.

LiveJournal(LJ) [4] 4.84M 68.99M LiveJournal Social Net.

UK-2002(UK) [6] 18.5M 298M .uk Domain Web Crawl

Twitter(TW) [22] 41.65M 1.46B Twitter Follower Graph

Overheads. This approach changes the data structure requiring

more memory for vertex states and on-chip events compared to

VAP. However, the dataflow architecture and the control sequence

remain intact. Only the vertex update logic and event coalescing

logic need to be modified. Not coalescing events during recovery

raises the concern of transaction safety if multiple events are issued

to processors concurrently. This is not an issue. Because in this

approach, only one event matching the dependency field can reset a

vertex, and thus only one vertex process will write back to memory.

6 EVALUATION
JetStream is implemented on a cycle-accurate microarchitectural

simulator based on the Structural Simulation Toolkit (SST) [35].

The off-chip memory is modeled with DRAMSim2 [36]. We use a

detailed bus communication, scratchpad, and cache memory model

built within SST to evaluate communication and memory access

characteristics. The event processing and memory system config-

uration of the modeled framework is shown in Table 1. For large

workloads unable to fit in the on-chip memory, we followed the

same partitioning technique as GraphPulse. We used PulP [40] for

edge-cut-based slicing of the graphs.

6.1 Experimental Setup
Our comparison is focused on showing both the advantage stem-

ming from algorithmic support and hardware acceleration. First,

we show the benefit of the incremental reevaluation by compar-

ing the performance with "cold-start" computation of GraphPulse,
where the whole graph is processed from initial states after each

batch of updates. We used the same hardware configuration for

GraphPulse and JetStream. Then, we compare the performance and

characteristics with two software frameworks to show the benefit

of accelerating a streaming graph analytics engine. We compare

with GraphBolt [26] for accumulative algorithms and KickStarter

[45] for monotonic algorithms with selective updates. The system

configuration for software benchmarks is shown in Table 1.

Table 3: Execution time (in ms) per query on streaming
graphs and speedup over other frameworks.

WK FB LJ UK TW GMean

Jet 1.63 1.21 4.17 3.87 22.55

SSWP GP 10.4× 9.3× 16.7× 66.7× 43.2× 21.6×

KS 12.4× 13.1× 8.4× 24.2× 5.2× 11.1×

Jet 4.76 4.31 5.36 6.23 15.17

SSSP GP 9.4× 9.95× 13.3× 73.4× 35.5× 20.1×

KS 21.8× 8.7× 6.5× 25.6× 11.2× 12.9×

Jet 2.74 1.24 1.61 8.12 17.75

BFS GP 3.10× 5.35× 7.80× 8.18× 15.1× 6.9×

KS 30.1× 8.31× 11.7× 11.5× 5.57× 11.3×

Jet 1.64 1.44 2.59 5.07 11.73

CC GP 12.9× 13.2× 12.4× 21.4× 23.4× 16×

KS 7.62× 8.60× 5.25× 9.38× 8.51× 7.72×

Jet 5.17 4.29 6.62 6.99 169

PageRank GP 12.8× 19.5× 19.9× 56.6× 9.70× 19.4×

GB 143× 231× 180× 402× 51.6× 165×

Jet 4.19 5.27 9.84 12.10 65.30

Adsorption GP 5.78× 3.90× 5.08× 5.95× 9.41× 5.77×

GB 12.7× 14.4× 15.9× 12.8× 38.6× 17.1×

Workloads. To demonstrate the performance of realistic work-

loads, we select five real-world graph datasets (see Table 2). Among

these workloads, Wikipedia and UK-2002 domains graphs represent

narrow graphs with long paths, and Facebook, Livejournal, and

Twitter graphs represent large, highly connected networks. We run

6 graph algorithms on these datasets for our evaluation. Shortest-

Path (SSSP), WidestPath (SSWP), Breadth-First Search (BFS) and

Connected Components (CC) are the representative applications

for selection based update functions. Incremental PageRank and

Adsorption are evaluated to show the performance of accumula-

tive algorithms. We note that, for our optimization technique with

the embedding of dependency information in events (DAP), the

event size is bigger than GraphPulse and thus requires a smaller

graph slice to fit in the memory. We run 6 slices on Twitter and 3

slices on UK-domain graph for the selective algorithms in JetStream
compared to 3 and 2 slices respectively for GraphPulse.

6.2 Performance and Characteristics
Overall Performance. Table 3 shows the execution time of Jet-
Stream with different workloads for batches of 100K edge updates.

Each batch contains 70% insertions and 30% deletions of edges. The

table also shows the speedup over GraphPulse (GP), KickStarter

(KS), and GraphBolt (GB) for comparative workloads. GraphPulse

demonstrates the cost of complete recomputation of the graph in an

accelerator. JetStream takes 3 to 74 times less than GraphPulse (13×

on average) to reevaluate a graph. This advantage primarily comes

from heavily reduced vertex computation and edge communication

required in JetStream. Fig. 9 shows that JetStream limits the num-

ber of vertex accesses to less than 54% and as low as 3% of what

GraphPulse would require with less than 30% events generated.

Similar speedup in comparison to KickStarter and GraphBolt

shows that the event-driven model is effective across incremental

techniques. We observe up to 30× speedup over KickStarter and
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Figure 11: Utilization of off-chip memory transfers.

400× over GraphBolt. JetStream is 18× faster on average than both.

JetStream’s asynchronous model performs better on the narrow but

long graphs (UK, WK) than the synchronous software frameworks.

Approximation Effectiveness. JetStream adopts a technique sim-

ilar to KickStarter for trimming the set of vertices. KickStarter

employs value-aware and dependency graph (with levels) based

trimming to limit recomputations. The source-based dependency-

aware propagation technique in JetStream often finds smaller set

of impacted vertices. Fig. 10 shows the number of vertices reset in

JetStream and KickStarter for the same 30K batch of deletions.

Memory access efficiency. The ability to prefetch and utilize

memory effectively is one of the major source of speed up inGraph-
Pulse. The caches use 64-bytes lines which may not all be accessed.

We show in Fig. 11 the ratio of bytes read into the computation en-

gine from cache/prefetcher to bytes read from memory into caches

to demonstrate how efficiently the off-chip data transfers were uti-

lized as an indication of spatial locality. JetStream uses the same

memory prefetching and edge cache structures already built into the

GraphPulse datapath. Since the active tasks (events) in JetStream are

fewer and sparse in JetStream, it cannot harvest spatial locality as

well as GraphPulse. As a result, the memory access utilization ratio

is less than one-third of GraphPulse. However, having fewer com-

putational tasks still makes JetStream significantly faster during

incremental computation. Optimizing the memory access efficiency

of JetStream is a potential avenue for future improvements.

Effects of Optimizations. We show the effects of the optimiza-

tions in terms of speedup over full recomputation in GraphPulse in

Fig. 12. The baseline JetStream model is conceptually simple. How-

ever, without a mechanism to restrict tagging to only the affected

vertices, it tags too many vertices in the graph, often leading to

work comparable to full recomputation for most applications. VAP

performs sufficiently well for SSSP and SSWP, but fails to provide

a noticeable advantage for BFS and CC. The latter two applications

have many vertices set to the same value, making the VAP optimiza-

tion ineffective. DAP alleviates this problem and works well for all

applications. However, VAP has the advantage over DAP in that it

does not expand the event size to include source information.

Sensitivity to Batch Size. In Fig. 13, we have shown how the

performance of the engine varies with different batch sizes. Taking

a 100K batch size as the baseline, we showed the speed up for

different batches for PageRank and SSSP running on LiveJournal

graph. The speedup is based on JetStream’s runtime for 100K batch

size. JetStream speeds up significantly as the batch size gets smaller

because it has little overhead for incremental data maintenance.

JetStream can handle computations very fast for smaller batches

where the number of changes or computations is low. JetStream’s

speedup grows orders of magnitude faster that KickStarter. This

time is only the processing time, and the end-to-end performance

may have other overheads to receive and batch the updates.

Sensitivity to Batch Composition. Edge deletions require more

processing than edge additions in JetStream. An approximation

phase is required to revert the effects of a deleted edge on the graph,

which may propagate to many vertices for some critical edges. All

the impacted vertices need to be reprocessed in the recomputation

phase. Edge addition resembles regular events during the recompu-

tation phase, and their effects are usually localized. Fig. 14 shows

the effect of the composition of a batch on the run-time for SSSP

and CC. Note that the run-times are normalized to JetStream’s run-

time for a 50-50 batch. An insertion-only batch converges 3 to 4

times faster on average than a deletion-only batch of the same size.

Run-time increases as the ratio of deleted edges increases. Kick-

Starter, too, demonstrates faster convergence with fewer deletions,

but there is no concrete dependence of the run time on the ratio

of deletions. KickStarter attempts to approximate the value of an

impacted vertex before propagating the tag. JetStream attempts to

minimize tagging using DAP optimization but only approximates

after all tags are propagated. On the other hand, for PageRank and

Adsorption in JetStream, the addition or deletion of one edge also

mutates the other edges (weight) for a vertex, and both types of

updates are handled similarly. Therefore, such algorithms are not

noticeably affected by batch composition.

6.3 Hardware Cost and Power Analysis
We model JetStream using the same configuration as GraphPulse:

64MB on-chip memory for queue, and 8 processing pipelines with

2KB scratchpad and 1KB edge-cache on each. We use CACTI 7 [5]

for power and area estimate for all memory elements. The queue

memory is modeled in 22nm ITRS-HP SRAM logic. The biggest

component of the communication network is a 16x16 NoC between
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the event generation streams and the queues. Each port of the NoC

is shared by several generator or queue ports.A breakdown of the

total power and area estimate for the accelerator is shown in Table 4.

The number in parenthesis is the increase over similarly configured

GraphPulse. The overall increase in area and power is around 3%

and 1% respectively.

JetStream reuses most architectural components of GraphPulse,

including the event queue, prefetcher, and cache. Memory elements

have the same physical size but contain fewer events due to the

larger event size. As a result, there are some resource overheads due

to larger buffers and interconnects. However, the dynamic energy

is lower because JetStream processes fewer vertices propagating

events (many vertices are already converged). Overhead from the

buffers and communication buses also increases due to the larger

event size. Floating point units account for the bulk of the process-

ing and coalescing logic and remain the same in input size. Thus,

the extra processing logic for JetStream adds only a small power and

area overhead. The processing time in JetStream is shorter, making

JetStream ∼13 times more energy-efficient than full recomputation

with GraphPulse. The total area of JetStream is about 200mm2
with

a 28nm technology.

7 RELATEDWORK
Software Frameworks for Streaming Graphs: A number of stream-

ing graph frameworks have been developed that are based on the

BSP [42] model similar to a software framework like Pregel [24].

Of these frameworks, Kineograph [8], Tornado [38], Naiad [29],

and Tripoline [19] are limited to growing graphs. Kickstarter [45],

GraphBolt [26], and DZiG [25] support both addition and deletion

of edges. Maiter [50] is a graph analytics framework for delta-

accumulative computation which is the basis of the event-driven

model. There are also designs of graph representations to support

Table 4: Power and area of the accelerator components

#

Power(mW)

Area(mm2
)

Static Dynamic Total

Queue 64 117 (+1%) 20.7 (-6%) 8815 (∼0%) 192 (+1%)

Scratchpad 8 0.35 (∼0%) 1.2 (+6%) 12.1 (+4%) 0.21 (∼0%)

Network 91 (+78%) 5.4 (+58%) 97 (+77%) 5.7 (+84%)

Proc. Logic - - 1.8 (+40%) 0.7 (+51%)

Total - - 8926 (+1%) 199 (+3%)

high-throughput graph updates, such as Aspen [11], STINGER [12],

and Version Traveller [20]. Other works handling changing graphs

include GraphTau [16], Vora et al. [44], Chronos [14]. These works

consider scenarios where graph versions are available a priori.

Accelerating Graph Processing: Template-based [3, 32] graph ac-

celerators process hundreds of vertices in parallel to mask memory

latency. Graphicionado [13] is a pipelined architecture that opti-

mizes vertex-centric graph models using a fast temporary memory

space to improve locality. GraphPulse [33] uses an event-driven

model that expresses incremental updates as events. Swarm [18]

allows speculative execution to increase parallelism and its exten-

sions, Spatial Hints [17], improve memory locality using applica-

tion knowledge to map tasks to processing elements. Chronos [1]

provides another hardware acceleration framework based on spec-

ulative execution. Graph processing systems for FPGAs include

ForeGraph [9], Zhou et al. [51, 52] etc. GraSU [46] provides the first

FPGA-based high-throughput graph update library for dynamic

graphs. PDES-A [34] is an FPGA-based accelerator for event-driven

computation targeted at parallel discrete event simulation.

To efficiently handle vertex updates number of techniques have

been proposed. Coup [48] exploits commutative-updates to reduce

read and write traffic while PHI [28] exploits commutativity to coa-

lesce updates in private cache to reduce on-chip traffic. HATS [27]

proposes a hardware assisted traversal scheduler for locality-aware

scheduling. Finally, there has been recent works that focus on ar-

chitectures for PIM-based graph processing, such as Tesseract [2],

GraphPIM [30], GraphP [49], and GraphQ [53].

8 CONCLUDING REMARKS
We present the first accelerator for streaming graphs. JetStream ex-

tends a recently introduced event-driven accelerator, GraphPulse,
to enable reuse of intermediate states to avoid a complete cold-

start recomputation on the updated graph. JetStream supports edge

additions and deletions for both monotonic and accumulative algo-

rithms. It achieves average speedup of 13× over hardware accelera-

tor and 18× over software frameworks at baseline batch sizes. This

advantage increases substantially for small batch sizes.
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