
Breaking the 𝑂 (
√
𝑛)-Bit Barrier:

Byzantine Agreement with Polylog Bits Per Party
Elette Boyle

elette.boyle@idc.ac.il

IDC

Herzliya, Israel

Ran Cohen

rancohen@ccs.neu.edu

Northeastern University

Boston, USA

Aarushi Goel

aarushig@cs.jhu.edu

Johns Hopkins University

Baltimore, USA

ABSTRACT
Byzantine agreement (BA), the task of 𝑛 parties to agree on one

of their input bits in the face of malicious agents, is a powerful

primitive that lies at the core of a vast range of distributed protocols.

Interestingly, in BA protocols with the best overall communication,

the demands of the parties are highly unbalanced: the amortized

cost is 𝑂̃ (1) bits per party, but some parties must send Ω(𝑛) bits.
In best known balanced protocols, the overall communication is

sub-optimal, with each party communicating 𝑂̃ (
√
𝑛).

In this work, we ask whether asymmetry is inherent for optimiz-

ing total communication. In particular, is BA possible where each
party communicates only 𝑂̃ (1) bits? Our contributions in this line

are as follows:

• We define a cryptographic primitive—succinctly reconstructed
distributed signatures (SRDS)—that suffices for constructing 𝑂̃ (1)
balanced BA. We provide two constructions of SRDS from differ-

ent cryptographic and Public-Key Infrastructure (PKI) assump-

tions.

• The SRDS-based BA follows a paradigm of boosting from “almost-

everywhere” agreement to full agreement, and does so in a single

round. Complementarily, we prove that PKI setup and crypto-

graphic assumptions are necessary for such protocols in which

every party sends 𝑜 (𝑛) messages.

• We further explore connections between a natural approach to-

ward attaining SRDS and average-case succinct non-interactive

argument systems (SNARGs) for a particular type of NP-

Complete problems (generalizing Subset-Sum and Subset-

Product).

Our results provide new approaches forward, as well as limita-

tions and barriers, towards minimizing per-party communication

of BA. In particular, we construct the first two BA protocols with

𝑂̃ (1) balanced communication, offering a tradeoff between setup

and cryptographic assumptions, and answering an open question

presented by King and Saia (DISC’09).

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODC ’21, July 26–30, 2021, Virtual Event, Italy
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8548-0/21/07. . . $15.00

https://doi.org/10.1145/3465084.3467897

CCS CONCEPTS
• Security and privacy→ Cryptography; • Theory of compu-
tation→ Computational complexity and cryptography.

KEYWORDS
cryptographic protocols; Byzantine agreement; communication

complexity

ACM Reference Format:
Elette Boyle, Ran Cohen, and Aarushi Goel. 2021. Breaking the𝑂 (

√
𝑛)-Bit

Barrier: Byzantine Agreement with Polylog Bits Per Party. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing (PODC ’21),
July 26–30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 12 pages.

https://doi.org/10.1145/3465084.3467897

1 INTRODUCTION
The problem of Byzantine agreement (BA) [50, 55] asks for a set of
𝑛 parties to agree on one of their input bits, even facing malicious

corruptions. BA is a surprisingly powerful primitive that lies at

the core of virtually every interactive protocol tolerating malicious

adversaries, ranging from other types of consensus primitives such

as broadcast [50, 55] and blockchain protocols (e.g., [22]), to secure

multiparty computation (MPC) [5, 21, 39, 56, 60]. In this work, we

study BA in a standard context, where a potentially large set of 𝑛

parties runs the protocol within a synchronous network, and secu-

rity is guaranteed facing a constant fraction of statically corrupted

parties.

Understanding the required communication complexity of BA

as a function of 𝑛 is the subject of a rich line of research. For the

relaxed goal of almost-everywhere agreement [34], i.e., agreement

of all but 𝑜 (1) fraction of the parties, the full picture is essentially

understood. The influential work of King et al. [48] showed a solu-

tion roughly ideal in every dimension: in which each party speaks

to 𝑂̃ (1) other parties (i.e., polylog degree of communication graph,

a.k.a. communication locality [13]), and communicates a total of

𝑂̃ (1) bits throughout the protocol, in 𝑂̃ (1) rounds;1 further, the
solution does not require cryptographic and/or trusted setup as-

sumptions and is given in the full-information model. The main

challenge in BA thus becomes extending almost-everywhere to full

agreement.

In this regime, our current knowledge becomes surprisingly

disconnected. While it is known how to employ cryptography and

setup assumptions to compute BAwith 𝑂̃ (1) locality [11, 13, 20], the
number of bits that must be communicated by each party is large,

1
We follow the standard practice in large-scale cryptographic protocols, where 𝑂̃

hides polynomial factors in log𝑛 and in the security parameter 𝜅 , see e.g., [29, 30].

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

319

https://doi.org/10.1145/3465084.3467897
https://doi.org/10.1145/3465084.3467897

Ω(𝑛).2 BA with amortized 𝑂̃ (1) per-party communication (and

computation) can be achieved [1, 15, 22]; however, the structure

of these protocols is wildly unbalanced: with some parties who

must each communicate with Θ(𝑛) parties and send Ω(𝑛) bits. The
existence of “central parties” who communicate a large amount

facilitates fast convergence in these protocols. When optimizing

per-party communication, the best BA solutions degrade to Θ̃(
√
𝑛)

bits/party, with suboptimal 𝑂̃ (𝑛3/2) overall communication [45, 47].

This intriguing gap leads us to the core question studied in this

paper: Is such an imbalance inherent? More specifically:

Is it possible to achieve Byzantine agreement with
(balanced) per-party communication of 𝑂̃ (1)?

Before addressing our results, it is beneficial to consider the rel-

evant lower bounds. It is well known that any deterministic BA
protocol requires Ω(𝑛2) communication [33] (and furthermore,

the connectivity of the underlying communication graph must be

Ω(𝑛) [32, 35]). This result extends to randomized BA protocols,

in the special case of very strong adversarial (adaptive, strongly
rushing

3
) capabilities [1]. Most closely related is the lower bound

of Holtby et al. [41], who showed that without trusted setup as-

sumptions, at least one party must send Ω(3

√
𝑛) messages.

4
But,

the bound in [41] applies only to a restricted setting of protocols

with static message filtering, where every party decides on the set

of parties it will listen to before the beginning of each round (as a

function of its internal view at the end of the previous round). We

note that while the almost-everywhere agreement protocol in [48]

falls into the static-filtering model, all other scalable BA protocols

mentioned above crucially rely on dynamic message filtering (which
is based on incoming messages’ content). This leaves the feasibility

question open.

1.1 Our Results
We perform an in-depth investigation of boosting from almost-

everywhere to full agreement with 𝑂̃ (1) communication per party.

Motivated by the 𝑂̃ (1)-locality protocol of Boyle et al. [13], we

first achieve an intermediate step of certified almost-everywhere
agreement, where almost all of the parties reach agreement, and, in

addition, hold a certificate for the agreed value. [13] showed how to

boost certified almost-everywhere agreement to full agreement in

a single round, where every party communicates with 𝑂̃ (1) parties.
Our initial observation is that the protocol from [13] achieves

low communication aside from one expensive piece: the distributed

generation of the certificate, which is of size Θ(𝑛), and its dissemi-

nation. We thus target this step and explore.

Our contributions can be summarized as follows.

• SRDS and balanced BA. We define a minimal ad-hoc crypto-

graphic primitive whose existence implies 𝑂̃ (1) balanced BA:

succinctly reconstructed distributed signatures (SRDS). We provide

two constructions of SRDS, each based on a different flavor of

a public-key infrastructure (PKI): (1) from one-way functions

2
In fact, the constructions in [11, 13, 20] are for MPC protocols that enable secure

computation of any function with 𝑂̃ (1) locality; these protocols are defined over

point-to-point networks, and so also provide a solution for the specific task of BA.

3
A strongly rushing adversary in [1] can adaptively corrupt a party that has sent

a message𝑚 and replace the message with another𝑚′, as long as no honest party

received𝑚.

4
The lower bound in [41] easily extends to a public setup such as a common

reference string.

in a “trusted-PKI” model, and (2) from collision-resistant hash

functions (CRH) and a strong form of cryptographic succinct

non-interactive arguments of knowledge (SNARKs)
5
in a model

with a “bare PKI” and a common random string (CRS). Roughly,

trusted-PKI setup assumes that parties’ keys are generated prop-

erly, whereas bare PKI further supports the case where corrupt

parties may generate keys maliciously. We elaborate on the dif-

ference between the PKI models in Section 1.2.

• Necessity of setup for one-shot “boost.” Our SRDS-based BA
follows a paradigm of boosting from almost-everywhere to full

agreement, and does so in a single communication round. Com-

plementarily, we prove two lower bounds for any such one-shot

boost in which every party sends 𝑜 (𝑛) messages. The first shows

that some form of PKI (or stronger setup, such as correlated ran-

domness
6
) is necessary for this task. The second shows that given

only PKI setup (as opposed to stronger, correlated-randomness

setup), then computational assumptions (namely, at least one-way

functions) are additionally required.

In contrast to prior lower bounds (e.g., [1, 41]), this holds even

against a static adversary, andwhere parties can exercise dynamic

filtering (i.e., without placing limitations on how parties can

select to whom to listen).

• Connections to succinct arguments. We further explore con-

nections between a natural approach toward attaining SRDS in

weaker PKI models and average-case succinct non-interactive ar-
gument (SNARG) systems

7
for a particular type of NP-Complete

problems (generalizing Subset-Sum and Subset-Product). This

can be interpreted as a barrier toward this approach for construct-

ing SRDS without heavy “SNARG-like” tools.

Collectively, our results provide an initial mapping for the feasibility

landscape of BA with 𝑂̃ (1) per-party communication, including

new approaches forward, as well as limitations and barriers. Our

approach yields two BA protocols with 𝑂̃ (1) communication per

party, offering a tradeoff between the setup assumptions and the

cryptographic assumptions. These results answer an open question

presented by King and Saia [46], asking whether cryptography

can be used to construct BA with 𝑜 (
√
𝑛) communication per party.

Our BA results are summarized in Table 1 alongside other almost-

everywhere to everywhere agreement protocols.

1.2 Technical Overview
We now proceed to present our results in greater detail.

Succinctly reconstructed distributed signatures. Our first contri-
bution is identifying and formalizing a cryptographic primitive

that enables boosting from almost-everywhere agreement to full

agreement on a value, with low per-party communication.

5
A SNARK [6, 53] is a proof system that enables a prover holding a witness 𝑤 to

some public NP statement 𝑥 to convince a verifier that it indeed knows 𝑤 by sending

a single message. The proof string is succinct in the sense that it is much shorter than

the witness 𝑤, and knowledge is formalized via an efficient extractor that succeeds

extracting 𝑤 from a malicious prover 𝑃∗ with roughly the same probability that 𝑃∗

convinces an honest verifier.

6
In the correlated-randomness model a trusted dealer samples 𝑛 secret strings

from a joint distribution and delivers to each party its corresponding secret string, e.g.,

a setup for threshold signatures.

7
Similarly to a SNARK, a SNARG allows a prover holding a witness 𝑤 to some

public NP statement 𝑥 to convince a verifier that 𝑥 belongs to the language; however,

as opposed to a SNARK, here the prover does not prove that it knows 𝑤 (only that

such a witness exists), hence there is no requirement to extract the witness from a

cheating prover.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

320

protocol rounds per party
max com. setup assumptions

cryptographic
filtering
message

corruptions
adversarial remark

HKK’08 [41] Ω (3
√
𝑛) crs static static lower bound

KS’09 [46] 𝑂 (1) 𝑂̃ (𝑛 ·
√
𝑛) - - dynamic static

KS’11 [47] polylog(𝑛) 𝑂̃ (
√
𝑛) - - dynamic adaptive

KLST’11 [45] polylog(𝑛) 𝑂̃ (
√
𝑛) - - dynamic static

BGH’13 [15] 𝑂 (1) 𝑂̃ (𝑛) - - dynamic static

BGT’13 [13] 1 𝑂̃ (𝑛) pki owf dynamic static

CM’19 [22]
†

Exp𝑂 (1) 𝑂̃ (𝑛) trusted-pki RO+unique-sig dynamic adaptive

ACD
+
’19 [1]

†
Exp𝑂 (1) 𝑂̃ (𝑛) trusted-pki bilinear maps dynamic adaptive

CKS’20 [26]
†

Exp𝑂 (1) 𝑂̃ (𝑛) trusted-pki vrf dynamic adaptive asynchronous

BKLL’20 [8]
†

Exp𝑂 (1) 𝑂̃ (𝑛) trusted-pki fhe+nizk dynamic adaptive asynchronous

1 Ω (𝑛) crs dynamic static lower bound

This work 1 𝑂̃ (1) pki+crs snarks
∗
+crh dynamic static

1 𝑂̃ (1) trusted pki owf dynamic static

Table 1: Comparison of protocols boosting from almost-everywhere to full agreement, tolerating (1/3 − 𝜖) · 𝑛 corruptions. The 𝑂̃ notation hides polynomial
terms in the security parameter𝜅 and in log𝑛. crs stand for a common random string, pki stands for bare pki, and trusted pki stands for honestly generated pki. By
snarks∗ we refer to SNARKs with linear extraction, i.e., where the size of the extractor is linear in the size of the prover. RO stands for random oracle and unique-
sig for unique signatures. vrf stand for verifiable pseudorandom functions, fhe for fully homomorphic encryption, and nizk for non-interactive zero-knowledge
proofs. Static corruptions are done before the protocol begins but can be a function of the trusted setup; adaptive corruptions can occur during the course of the
protocol. (†) The protocols from [1, 8, 22, 26] reach agreement from scratch (hence also from almost-everywhere agreement) with amortized 𝑂̃ (1) communication
per party; the expected round complexity is constant and termination is guaranteed in polylog(𝑛) rounds.

The primitive—succinctly reconstructed distributed signatures
(SRDS)—is a new type of a distributed signature scheme, with a

natural motivation: allowing a set of parties to jointly produce

a signature on some message 𝑚, which can serve as a succinct

certificate for proving that a majority of the parties agree on 𝑚.

Interestingly, this task does not seem to be attained by existing

distributed signature notions, such as multi-signatures [42], ag-
gregate signatures [10], or threshold signatures [31]. For example,

while multi-signatures (and, similarly, aggregate signatures) can

succinctly combine signatures of many parties, to verify the sig-

nature, the (length-Θ(𝑛)!) vector of contributing-parties identities
must also be communicated.

8
Threshold signatures are implied by

SRDS but also do not suffice: while identities of the signers are no

longer needed to verify a combined signature, this information is

necessary to reconstruct the combined signature in the first place

(even within specific existing schemes, e.g., [9, 37]).

An SRDS scheme is based on a PKI for signatures, where every

party is set with a secret signing key and a public verification key.
9

The parties may receive additional setup information that may

contain, for example, public parameters for the signature scheme

or a common random string (CRS), depending on the actual con-

struction. Given a message𝑚, every party can locally generate a

signature on𝑚, and signatures on the same message can be suc-

cinctly aggregated into a new signature. The new aspect is that

given a combined signature and a message𝑚, it is possible to verify

whether is was aggregated from a “large” number of “base” sig-

natures on𝑚, and both aggregation and verification can be done

succinctly.

8
Indeed, the verification algorithm of multi-signatures (and aggregate signatures)

must receive the set of parties who signed the message. This is precisely the culprit

for the large Θ̃(𝑛) per-party communication within the low-locality protocol of [13].

9
As mentioned, we will distinguish between a bare PKI, where every party locally

chooses its keys and corrupted parties can set their keys as a function of all verification

keys (and any additional public information), and a trusted PKI, which is honestly

generated (either locally or by a trusted party) and where corrupted parties cannot

change their verification keys. See further discussion below.

Three properties are required from an SRDS scheme: robustness
means that an adversary cannot prevent the honest parties from

generating an accepting signature on a message; unforgeability
prevents an adversary controlling a minority from forging a signa-

ture; and succinctness requires that the “final” signature (including
all information needed for verification) is short (of size 𝑂̃ (1)) and
can be incrementally reconstructed from “base” signatures in small

batches of size polylog(𝑛).10 An SRDS scheme is 𝑡-secure if it satis-
fies the above properties even facing 𝑡 colluding adversarial parties.

As mentioned earlier, we present two constructions of SRDS in

Section 2.2, offering a tradeoff between setup assumptions and

cryptographic assumptions.

Balanced BA from SRDS. We demonstrate how to attain 𝑂̃ (1)-
balanced BA against 𝛽𝑛 corruptions (for 𝛽 < 1/3) given black-box

access to any 𝛽𝑛-secure SRDS scheme. We begin by presenting a

distilled version of the “certified almost-everywhere agreement”

approach from [13] that we tailor for Byzantine agreement, where

only correctness matters and privacy is not required.
11

(1) The parties execute the almost-everywhere agreement protocol

of King et al. [48]; this establishes a polylog(𝑛)-degree commu-

nication tree (which is essentially a sparse overlay network) in

which each node is assigned with a committee of polylog(𝑛)
parties. The guarantees are that the polylog(𝑛)-size supreme
committee (i.e., the committee assigned to the root) has a 2/3
honest majority and almost all of the parties are connected to

the supreme committee via the communication tree.

(2) The supreme committee executes a BA protocol on their inputs

to agree on the output 𝑦, and, in addition, runs a coin-tossing

10
polylog(𝑛) denotes log𝑐 (𝑛) for some constant 𝑐 > 1.

11
The focus of [13] was on MPC and required stronger assumptions and additional

rounds; in particular, a naïve use of their MPC protocol cannot lead to communication-

balanced BA as it requires all parties to send information to a designated polylog(𝑛)-
size set, the so-called supreme committee.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

321

protocol to agree on a random seed 𝑠 . Next, the supreme com-

mittee propagates the pair (𝑦, 𝑠) to almost all of the parties.
(3) Once a party receives the pair (𝑦, 𝑠), the party signs it (in [13],

using a multi-signature scheme), and sends the signature back

to the supreme committee that aggregates all the signatures.

The aggregated signature attesting to (𝑦, 𝑠) is then distributed

to almost all of the parties.
Once this form of certified almost-everywhere agreement on

(𝑦, 𝑠) is reached, full agreement can be obtained in one round using

the same approach as in [13] (see Section 3 for details). The protocol

from [13] achieves 𝑂̃ (1) locality. However, recall that even though

the size of a multi-signature might itself be “small,” the verification

algorithm additionally requires a list of contributing parties, where

the description size of this list will need to be proportional to 𝑛.

Hence, the effective size of the aggregated signature, and thus per-

party communication, is stuck at Θ(𝑛).
At this point the new notion of SRDS comes into the picture. We

use the succinctness property of SRDS combined with the commu-

nication tree established by the protocol from [48] to bound the

size of the aggregated signatures by 𝑂̃ (1). In essence, the parties

aggregate the signatures in a recursive manner up the communica-

tion tree such that in each step at most polylog(𝑛) signatures are
aggregated.

This technique introduces additional subtleties that must be ad-

dressed. For example, since the partially aggregated signature can

no longer afford to describe the set of contributing parties, it is

essential to make sure that the same “base” signature is not aggre-

gated multiple times (this may allow the adversary to achieve more

influence on the final aggregated signature than its proportional

fraction of “base” signatures).

Theorem 1.1 (balanced BA, informal). Let 𝛽 < 1/3 be a con-
stant. Assuming the existence of 𝛽𝑛-secure SRDS, there exists an
𝑛-party, 𝛽𝑛-resilient BA protocol that terminates after polylog(𝑛)
rounds, and where every party communicates polylog(𝑛) · poly(𝜅)
bits.

We note that our BA protocol is the first to establish a polylog(𝑛)-
degree communication graph where every party has an “honest

path” to a 2/3-honest committee, such that the per-party commu-

nication required for establishing it is 𝑂̃ (1). Such a communication

graph can be used to design a broadcast protocol where the total

communication is just 𝑂̃ (1). It can also be used to design secure

multiparty computation protocols (MPC) that scale well with the

number of parties using fully homomorphic encryption (encryption

schemes that allow computation over ciphertexts). As a result, we

can obtain the following corollaries (we defer the proof to the full

version of our paper [12]).

Corollary 1.2 (informal). Let 𝛽 < 1/3 be a constant. Assuming
the existence of 𝛽𝑛-secure SRDS:
(1) Broadcast: There exists a 𝛽𝑛-resilient 1-bit broadcast protocol

such that ℓ protocol executions (potentially with different senders)
require ℓ · polylog(𝑛) · poly(𝜅) bits of communication per party.

(2) MPC: Assuming fully homomorphic encryption, a function 𝑓 :

({0, 1}ℓin)𝑛 → {0, 1}ℓout can be securely computed with guaran-
teed output delivery tolerating a static, malicious 𝛽𝑛-adversary,
such that the total communication complexity (of all parties) is
𝑛 · polylog(𝑛) · poly(𝜅) · (ℓin + ℓout) bits.

One remark regarding the corruption model is in place. In this

work we consider static adversaries that choose the set of corrupted
parties before the beginning of the protocol. As mentioned above,

our constructions are based on some form of trusted setup, which,

as we prove below, is necessary. We emphasize that (as standard) we

avoid trivialized settings, e.g., where the trusted setup determines

a polylog(𝑛)-degree communication tree for achieving full agree-
ment, by considering the adversarial model where the adversary

can corrupt the parties adaptively during the setup phase given the

setup information of the corrupted parties and any public setup

information. During the online phase the adversary is static and

cannot corrupt additional parties.

Necessity of PKI for single-round boost of almost-everywhere agree-
ment. Our SRDS-based BA protocol (Theorem 1.1) shows how to

boost almost-everywhere agreement to full agreement in a single

round with small communication. Both our constructions crucially

rely on a public-key infrastructure (PKI) that enables each party

to publish its verification key on a bulletin board. We show that

this setup assumption is necessary for this task. That is, given only
public setup—i.e., the common reference string model—this task is

not possible.

We note that the lower bound of Holtby et al. [41] does not

translate to our setting, as it considers static message filtering,

where every party chooses to whom to listen in a given round

based on its view prior to that round. The lower bound in [41]

shows that dynamic filtering, i.e., where filtering can also be based

on the content of received messages, is required (at least in the

CRS model). We present the first such lower bound in the dynamic-

filtering model.

Theorem 1.3 (no single-shot boost in CRS model, informal).

There is no single-round protocol from almost-everywhere to every-
where agreement in the CRS model where every party sends sublinear
(i.e., 𝑜 (𝑛)) many messages.

Recall that almost-everywhere agreement guarantees that all

parties agree on the common output aside from a 𝑜 (𝑛)-size set of
isolated parties, whose identities are unknown to the remaining

honest parties. In the setting of static filtering, one can prove contin-

ued isolation of these parties for any low-communication protocol

in a relatively clean manner [41]: The probability that an honest

party 𝑃𝑖 will send messages to an honest isolated 𝑃 𝑗 is independent
of the event that 𝑃 𝑗 will choose to process messages from 𝑃𝑖 in

this round, thus placing a birthday-type bound on information suc-

cessfully being conveyed. With dynamic filtering, however, 𝑃 𝑗 may

process messages dependent on some property of this message, e.g.,

whether it contains particular authentication, which may only be

contained in honest messages.
12

In such case, there is strong bias

toward accepting honest messages, and one must work harder to

ensure that isolated parties do not reach agreement.

We refer the reader to the full version of our paper [12] for the

proof of this theorem.

On the different PKI models. As discussed above, SRDS implies a

single-round boost of almost-everywhere to full agreement, which

in turn (by Theorem 1.3) requires some form of private-coin setup.

Given this, one of our goals is to minimize the trust assumptions in

12
In general, message filtering should be via a simple and “light” test, e.g., counting

how many messages arrived, or verifying a signature. We refer to [11] for a discussion

on message filtering in protocols over incomplete graphs.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

322

the setup phase. Our SNARK-based construction offers the minimal

setup requirement—a bare PKI—where every party locally generates

its own signature keys and publishes the verification key on a

bulletin board. The adversary can adaptively corrupt parties and

change their keys as a function of all the public setup information

(including the honest parties’ verification keys and the CRS, in case

it exists). This is the prevalent PKI model that has appeared in, e.g.,

[16, 17, 43, 44].

Our OWF-based construction, on the other hand, assumes an

honestly generated PKI, where the adversary cannot alter the cor-

rupted parties’ keys. Such a setup assumption is normally captured

by a trusted party who samples the keys for all the parties, and

provides each party with its secret key as well as all public keys;

see, e.g., [1, 18, 19, 25, 51]. We note that our trusted-PKI setup is

weaker than a full blown trusted party in two aspects: First, the

distribution from which the trusted party samples the values is a

product distribution, i.e., parties’ keys are independent and second,

we consider public-coin sampling in the sense that the sampling

coins are revealed to the corresponding party (i.e., intermediate

key-generation values are not kept hidden).

Necessity of OWF for single-round boost in PKI model. Theorem
1.3 states the necessity of private-coin setup for single-round proto-

cols (from almost-everywhere agreement to full agreement) where

every party sends 𝑜 (𝑛) messages. In the PKI model, where the

public/private keys of each party are independently generated, we

further prove that cryptographic assumptions are necessary. Intu-
itively, if one-way functions (OWF) do not exist, an adversary can

invert the PKI algorithm with noticeable probability to find a pre-

image for each public key. In this case, the adversary can carry

out the attack for the CRS model, discussed above. We prove the

following theorem in our full version [12].

Theorem 1.4 (OWF needed for single-shot boost in PKI

model, informal). If OWF do not exist, there is no single-round
protocol from almost-everywhere to everywhere agreement in the
trusted PKI model where every party sends sublinear many messages.

Connection to succinct arguments. Our SRDS construction from

CRH and SNARKs works with minimal setup requirements, but

relies on relatively undesirable cryptographic assumptions (in par-

ticular, SNARKs are a non-falsifiable [38] assumption). On the other

hand, our construction from one-way functions uses light compu-

tational assumptions, but (as with many other works in this area,

e.g., [1, 18, 19, 25]) requires a stronger assumption of trusted PKI. A

clear goal is to obtain SRDS from better computational assumptions

within a better setupmodel, ultimately reducing to bare PKI, or even

more fine-grained intermediate models such as registered PKI13 (see
[9, 52] and a discussion in [4]). A natural approach toward doing

so is to build upon one of the closest existing relatives within this

setting: multi-signatures.
Recall that multi-signatures almost provide the required proper-

ties of SRDS in this setting, in that they support succinct aggregation

of signatures, with the sole issue that multi-signature verification

requires knowledge of the set of parties who contributed to it—

information that requires Θ(𝑛) bits to describe. Multi-signatures

13
In the registered PKI, every party can arbitrarily choose its public key (just like in

bare PKI), but in order to publish it, the party must prove knowledge of a corresponding

secret key.

have been constructed from (standard) falsifiable assumptions in

the registered-PKI model, e.g., [52]. A natural approach toward

constructing SRDS within this model is thus to simply augment

a multi-signature scheme with some method of succinctly con-

vincing the verifier that a given multi-signature is composed of

signatures from sufficiently many parties. In the full version [12],

we demonstrate challenges toward such an approach, by showing

that in some cases this necessitates a form of cryptographic succinct

non-interactive arguments.

2 SUCCINCTLY RECONSTRUCTED
DISTRIBUTED SIGNATURES

In this section, we introduce a new notion of a distributed sig-

nature scheme for 𝑛 parties, which can be used to obtain low-

communication BA. As discussed earlier, every party has sign-

ing/verification keys based on some form of PKI, and the partiesmay

receive additional setup information consisting of public parame-

ters for the underlying signature scheme and potentially a common

random string (CRS). We allow the adversary to adaptively corrupt

a subset of the parties before the protocol begins, based on the

setup information and all 𝑛 verification keys. We consider two PKI

models; a bare PKI, where the adversary can choose the corrupted

parties’ keys, and a trusted PKI, where the keys are honestly gener-

ated and cannot be changed. We do not permit adaptive corruptions

once the parties start signing messages.

In Section 2.1, we define the new signature scheme and the

security requirements. Later, in Section 2.2, we present two con-

structions of this primitive.

2.1 Definition
We start by presenting the syntax of the definition, and later, define

the required properties from the scheme: succinctness, robustness,

and unforgeability.

Definition 2.1 (SRDS syntax). A succinctly reconstructed dis-
tributed signatures schemewithmessage spaceM and signature space
X for a set of parties P = {𝑃1, . . . , 𝑃𝑛}, is defined by a quintuple of
PPT algorithms (Setup, KeyGen, Sign, Aggregate, Verify) as follows:
• Setup(1𝜅 , 1𝑛) → pp: On input the security parameter 𝜅 and the
number of parties 𝑛, the setup algorithm outputs public parameters
pp.
• KeyGen(pp) → (vk, sk): On input the public parameters pp, the
key-generation algorithm outputs a verification key vk and a sign-
ing key sk.
• Sign(pp, 𝑖, sk,𝑚) → 𝜎 : On input the public parameters pp, the
signer’s identity 𝑖 , a signing key sk, and a message𝑚 ∈ M, the
signing algorithm outputs a signature 𝜎 ∈ X ∪ {⊥}.
• Aggregate(pp, {vk1, . . . , vk𝑛},𝑚, {𝜎1, . . . , 𝜎𝑞}) → 𝜎 : On input
the public parameters pp, the set of all verification keys {vk𝑖 }𝑖∈[𝑛] ,
a message 𝑚 ∈ M, and a set of signatures {𝜎𝑖 }𝑖∈[𝑞] for some
𝑞 = poly(𝑛), the aggregation algorithm outputs a signature
𝜎 ∈ X ∪ {⊥}.
• Verify(pp, {vk1, . . . , vk𝑛},𝑚, 𝜎)) → 𝑏: On input the public pa-
rameters pp, the set of all verification keys {vk𝑖 }𝑖∈[𝑛] , a message
𝑚 ∈ M, and a signature 𝜎 ∈ X, the verification algorithm outputs
a bit 𝑏 ∈ {0, 1}, representing accept or reject.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

323

We assume without loss of generality that each signature en-

codes the index 𝑖 of the corresponding verification key vk𝑖 , and

each aggregated signature encodes information about the maxima

and minima of the indices associated with verification keys corre-

sponding to the base signatures that are aggregated within them.
14

Given a base signature/aggregated signature, let max(𝜎) denote
the function that extracts the maximum index associated with 𝜎

and min(𝜎) denote the function that extracts the minimum index

associated with 𝜎 (in case of a base signature, both max(𝜎) and
min(𝜎) will return the same value).

Remark (Notation 𝑛). Here, we use 𝑛 to denote the number of

parties in the SRDS scheme. Looking ahead, the effective number

of parties in the SRDS used in our BA protocol in Section 3 will be

larger than the actual participants of the protocol.

We proceed to define three properties of an SRDS scheme: suc-
cinctness, robustness, and unforgeability. We define these properties

with respect to any 𝑡 < 𝑛/3 corruptions. Although the definitions

can be stated for 𝑡 < 𝑛/2, we opted for the former for clarity and

concreteness, as both our BA protocol (Section 3) and our SRDS

constructions (Section 2.2) support 𝑛/3 corruptions.

Succinctness. We require that the size of each signature is 𝑂̃ (1).
This holds both for signatures in the support of Sign and of

Aggregate. In order for parties to jointly perform the signature

aggregation process with low communication, we also require

that the aggregate algorithm can be decomposed into two algo-

rithms Aggregate
1
and Aggregate

2
. Depending on the set of input

signatures {𝜎𝑖 }𝑖∈[𝑞] and the verification keys, the first algorithm

Aggregate
1
deterministically outputs a subset of the signatures 𝑆sig.

The second (possibly randomized) algorithm Aggregate
2
then ag-

gregates these signatures without relying on the verification keys.

In particular, the input to the randomized step Aggregate
2
is short.

Looking ahead at the BA protocol in Section 3, subsets of the

parties will collectively run the aggregation algorithm. Although

the inputs to the aggregation algorithm need not be kept private, it

could be the case that the randomness used should remain secret.

For this reason, the computation of Aggregate
2
in the BA construc-

tion will be carried out using an MPC protocol; to keep the overall

communication of every party 𝑂̃ (1), we require the circuit size

representing Aggregate
2
to be 𝑂̃ (1). The goal of Aggregate

1
is to

deterministically filter out invalid inputs (using the verification

keys), such that Aggregate
2
only depends on the verified signa-

tures and not on the 𝑛 verification keys (otherwise the circuit size

will be too large).

Definition 2.2 (succinctness). An 𝑛-party SRDS scheme is suc-
cinct if it satisfies the following:
(1) Size of Signatures: There exists 𝛼 (𝑛, 𝜅) ∈ poly(log𝑛, 𝜅) such

that X ⊆ {0, 1}𝛼 (𝑛,𝜅) .
(2) Decomposability: The Aggregate algorithm can be decomposed

into 2 algorithms Aggregate
1
and Aggregate

2
, such that the fol-

lowing hold:
• Aggregate

1
(pp, {vk1, . . . , vk𝑛},𝑚, {𝜎1, . . . , 𝜎𝑞}) → 𝑆sig,

where 𝑆sig is of size poly(log𝑛, 𝜅) and Aggregate
1
is deter-

ministic.

14
Both our constructions presented in Section 2.2 achieve this property.

• Aggregate
2
(pp,𝑚, 𝑆sig) → 𝜎 , i.e., aggregate the signatures in

𝑆sig into a new signature 𝜎 .

Robustness. Informally, a scheme is robust if no adversary can

prevent sufficiently many honest parties from generating an ac-

cepting signature on a message. We define robustness as a game

between a challenger and an adversary A. The game is formally

defined in Figure 1 and comprises of three phases. In the setup and
corruption phase, the challenger generates the public parameters

pp and a pair of signature keys for every party. Given pp and all

verification keys vk1, . . . , vk𝑛 , the adversary can adaptively corrupt

a subset of (up to) 𝑡 parties and learn their secret keys. In the case

of a bare PKI (but not of trusted PKI), the adversary can replace

the verification key of any corrupted party by another key of its

choice. Unless specified otherwise, we consider the bare PKI to be

the default setup model.

In the robustness challenge phase, the adversary chooses a tree

𝑇 describing the order in which the signatures of all the parties

are to be aggregated. The nodes on level 0 correspond to set of all

parties who generate signatures (i.e., all virtual parties in the BA

protocol). We slightly abuse notation and refer to level-1 nodes as

leaf nodes, as they correspond to the actual leaves in the communi-

cation tree of [48]. For our application in the BA protocol in Section

3, we require this tree to be an “(𝑛,I)-party almost-everywhere-

communication tree” (see Definition 2.3), where 𝑛 is the number

of parties and I is the set of corrupt parties.
15

Furthermore, we

assume that level-0 nodes are indexed and ordered by the parties

in such a way that when the tree topology is expressed flat as a

planar graph (no crossovers), then the IDs of level-0 nodes are in

increasing order. Looking ahead, we will show that this property of

the tree is sufficient for our BA protocol in Section 3. The adversary

also chooses messages𝑚 ∈ M and {𝑚𝑖 }𝑖∈N , whereN is the subset

of honest parties that are assigned to leaf nodes that do not have a

good path (i.e., where more than a third of the parties assigned to

at least one of the nodes on the path are corrupt) to the root.

Given signatures of parties inN on the respective𝑚𝑖 ’s and of the

remaining honest parties on𝑚, the adversary computes signatures

of all corrupt parties. The challenger and adversary then interac-

tively aggregate all these signatures in the order specified by the

tree 𝑇 . In particular, partially aggregated signatures corresponding

to intermediate nodes in the tree that consist of a majority of honest

parties, are computed by the challenger, while partially aggregated

signatures corresponding to the remaining nodes are chosen by the

adversary.

Finally, in the output phase, the challenger runs the verification
algorithm on the message 𝑚 and the final aggregated signature

obtained in the root of the tree, and A wins if the verification fails.

We say that an SRDS scheme is robust if no adversary can win this

game except with negligible probability.

We start by formally describing the properties of an (𝑛,I)-party
almost-everywhere-communication tree, which is a slight variant

of the tree described in King et al. [48].

15
This tree is a combinatorial object that was first defined by King et al. [48]. They

also proposed an interactive protocol that allows the parties to collectively build such

a tree on the fly. This tree and that protocol will be an integral part of our BA protocol

in Section 3.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

324

Definition 2.3 ((𝑛,I)-party almost-everywhere-communica-

tion tree). Let I ⊆ [𝑛] be a subset of size 𝑡 for 𝑡 < 𝑛/3. A di-
rected rooted tree 𝑇 = (𝑉 , 𝐸) is an (𝑛,I)-party almost-everywhere-
communication tree if the following properties are satisfied:

(1) The height of𝑇 is ℓ∗ ∈ 𝑂 (log𝑛/log log𝑛). Each node 𝑣 from level
ℓ > 1 has log𝑛 children in level ℓ − 1.

(2) Each node on level ℓ > 1 is assigned a set of log3 𝑛 parties.
(3) A node is good if less than a third of the parties assigned to it are

in I. Then, it holds that the root is good.
(4) All but a 3/log𝑛 fraction of the leaves have a good path (consist-

ing of good nodes) to the root.
(5) The nodes on level 0 correspond to the 𝑛 parties.
(6) Each party (on level 0) is assigned to exactly one leaf node (on

level 1).
(7) There are 𝑛/log5 𝑛 leaf nodes and each leaf node is assigned a set

of log5 𝑛 parties.

Experiment Exptrobust
mode,Π,A (𝜅,𝑛, 𝑡)

The experiment Expt
robust

is a game between a challenger and the

adversary A. The game is parametrized by an SRDS scheme Π and

proceeds as follows:

A. Setup and corruption. In the first phase, the challenger gen-

erates the public parameters and the signature keys for the

parties. Given the public information, A can adaptively corrupt

parties, learn their secret information, and potentially change

their public keys.

(1) Compute pp← Setup(1𝜅 , 1𝑛) .
(2) For every 𝑖 ∈ [𝑛], compute (vk𝑖 , sk𝑖) ← KeyGen(pp) .
(3) Invoke A on (1𝜅 , 1𝑛, pp, {vk1, . . . , vk𝑛 }) and set I = ∅.
(4) As long as |I | ≤ 𝑡 and A requests to corrupt a party 𝑃𝑖 :

(a) Send sk𝑖 to A and receive back vk
′
𝑖 .

(b) If mode = b-pki, set vk𝑖 = vk
′
𝑖 .

(c) Set I = I ∪ {𝑖 }.
B. Robustness challenge. In this phase, A tries to break the

robustness of the scheme.

(1) A chooses an (𝑛, I)-party almost-everywhere-

communication tree 𝑇 = (𝑉 , 𝐸) (as per Definition 2.3), in

which level-0 nodes indexed and ordered by the parties in

such a way that when the tree topology is expressed flat as a

planar graph (no crossovers), then the IDs of level-0 nodes

are in increasing order. Let N be the set of honest parties

assigned to the leaf nodes that do not have a good path to

the root.

(2) A also chooses a message𝑚 ∈ M and a message𝑚𝑖 ∈ M
for each 𝑖 ∈ N.

(3) For every 𝑖 ∈ [𝑛] \ (I ∪ N) , let 𝜎𝑖 ← Sign(pp, 𝑖, sk𝑖 ,𝑚)
and for every 𝑖 ∈ N, let 𝜎𝑖 ← Sign(pp, 𝑖, sk𝑖 ,𝑚𝑖) .

(4) Send {𝜎𝑖 }𝑖∈[𝑛]\I to A and receive back {𝜎𝑖 }𝑖∈I .
(5) For each ℓ = {2, . . . , height(𝑇) } and every node 𝑣 on level ℓ :

• If 𝑣 is a good node, compute

𝜎𝑣 ← Aggregate(pp, {vk1, . . . , vk𝑛 },𝑚, {𝜎𝑢 }𝑢∈child(𝑣)),
where child(𝑣) ⊆ 𝑉 refers to the set of children of the

node 𝑣 ∈ 𝑉 , and send 𝜎𝑣 to A.

• Else, if 𝑣 is a bad node, receive 𝜎𝑣 from A.

C. Output Phase. Output Verify(pp, {vk1, . . . , vk𝑛 },𝑚, 𝜎root) ,
where root is the root node in𝑇 .

Figure 1: Robustness experiment for SRDS

Definition 2.4 (Robustness). Let 𝑡 < 𝑛/3. An SRDS scheme Π is
𝑡-robustwith a bare PKI (resp., with a trusted PKI) if formode = b-pki

(resp.,mode = tr-pki) and for any (stateful) PPT adversaryA it holds
that:

Pr

[
Expt

robust

mode,Π,A (𝜅, 𝑛, 𝑡) = 0

]
≤ negl(𝜅, 𝑛).

The experiment Exptrobust
mode,Π,A is defined in Figure 1.

We note that robustness is a strictly stronger notion than com-
pleteness. In a complete scheme correctness is guaranteed if all the

parties are honest. In a robust scheme, even if a subset of parties

are corrupted, as long as there are sufficiently many honest par-

ties, correctness is still guaranteed. Hence, any signature scheme

satisfying robustness, immediately satisfies completeness.

Unforgeability. Informally, a scheme is unforgeable if no adver-

sary can use signatures of a large majority of the honest parties on

a message𝑚 and of a few honest parties on messages of its choice

to forge an aggregated SRDS signature on a message other than𝑚.

In a similar way to robustness, we consider an unforgeability

game between a challenger and an adversary. The setup and corrup-
tion phase is identical to that in the robustness game. In the forgery
challenge phase, the adversary chooses a set S ⊆ [𝑛] \ I such that

|S ∪ I| < 𝑛/3, and messages𝑚 and {𝑚𝑖 }𝑖∈S . Given signatures of

all honest parties outside of S on the message𝑚 and a signature

of each honest party 𝑃𝑖 in S on the message 𝑚𝑖 , the adversary

outputs a signature 𝜎 . In the output phase, the challenger checks
whether 𝜎 is a valid signature on a message different than𝑚; if so,

the adversary wins. An SRDS scheme is unforgeable if no adversary

can win the game except for negligible probability.

Definition 2.5 (Unforgeability). Let 𝑡 < 𝑛/3. An SRDS scheme
Π is 𝑡-unforgeable with a bare PKI (resp., with a trusted PKI) if for
mode = b-pki (resp., mode = tr-pki) and for every (stateful) PPT
adversary A it holds that

Pr

[
Expt

forge

mode,Π,A (𝜅, 𝑛, 𝑡) = 1

]
≤ negl(𝜅, 𝑛).

The experiment Exptforge
mode,Π,A is defined in Figure 2.

Experiment Exptforge
mode,Π,A (𝜅,𝑛, 𝑡)

The experiment Expt
forge

is a game between a challenger and the adver-

sary A. The game is parametrized by an SRDS scheme Π and consists

of the following phases:

A. Setup and Corruption. As in the robustness experiment in

Figure 1.

B. Forgery Challenge. In this phase, the adversary tries to forge

a signature.

(a) A chooses a subset S ⊆ [𝑛] \ I such that |S ∪ I | < 𝑛/3.
It also chooses messages𝑚 and {𝑚𝑖 }𝑖∈S fromM.

(b) For every 𝑖 ∈ S, compute 𝜎𝑖 ← Sign(pp, 𝑖, sk𝑖 ,𝑚𝑖) .
(c) For every 𝑖 ∉ (S ∪ I) , compute 𝜎𝑖 ← Sign(pp, 𝑖, sk𝑖 ,𝑚) .
(d) Send {𝜎𝑖 }𝑖∈[𝑛]\I to A and get back 𝜎′ ∈ X and𝑚′ ∈ M.

C. Output Phase. Output 1 if and only if

Verify(pp, {vk1, . . . , vk𝑛 },𝑚′, 𝜎′) = 1 and𝑚′ ≠𝑚.

Figure 2: Forgery experiment for SRDS

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

325

We note that as described, the security definition is only for

one-time SRDS signatures. Although this is sufficient for our ap-

plications in Section 3, it is possible to extend the definition and

provide the adversary an oracle access to signatures of honest par-

ties on messages of its choice. However, in that case, the adversary

must choose the set S before getting oracle access.

Security. We say that an SRDS scheme is secure in the respective

PKI model, if it satisfies all the above properties.

Definition 2.6 (Secure SRDS). Let 𝑡 < 𝑛/3. An SRDS scheme Π
is 𝑡-secure with a bare PKI (resp., with a trusted PKI) if it is succinct,
𝑡-unforgeable and 𝑡-robust with a bare PKI (resp., with a trusted PKI).

2.2 SRDS Constructions
In this section, we present a high-level overview of our two con-

structions of SRDS that offer a tradeoff between cryptographic

and setup assumptions. The first assumes one-way functions in

the trusted-PKI model, and the second assumes collision-resistant

hash functions (CRH) and succinct non-interactive arguments of

knowledge (SNARKs) with linear extraction in the common random

string (CRS) and bare-PKI model. Due to space constraints, we defer

formal descriptions to the full version of our paper [12].

SRDS from One-Way Functions. Our first construction is influ-

enced by the “sortition approach” of Algorand [22] and merely

requires one-way functions (OWF); however, the public-key in-

frastructure (PKI) is assumed to be honestly generated (either by

the parties themselves or by an external trusted third party), and

corrupted parties cannot alter their keys. The construction is based

on digital signatures augmented with an oblivious key-generation

algorithm for sampling a verification key without knowing the

corresponding signing key.
16

Lamport’s signatures [49], which are

based on OWF, can easily be adjusted to support this property.

To establish the PKI, every party decides whether to generate its

public verification key obliviously or together with a signing key

by tossing a biased coin, such that with overwhelming probability

all but polylog(𝑛) keys are generated obliviously. Since those with

the ability to sign are determined at random (as part of the trusted

PKI), only parties who hold a signing key can sign messages. The

oblivious key-generation algorithm ensures that an adversary who

only sees a list of verification keys, cannot distinguish between the

keys that have a corresponding signing key and ones that do not.

As a result, even if the adversary chooses the set of corrupt parties

after the keys are sampled, with a high probability, the fraction

of honest parties will be preserved in the signing subset. SRDS

signature-aggregation is done by concatenation, and verification of

an SRDS signature requires counting how many valid signatures

were signed on the message.

It would be desirable to reduce the trust assumption in estab-

lishing the PKI, e.g., by using verifiable pseudorandom functions

(VRF) [54] as done in [22]. However, this approach [22] is defined

within a blockchain model where a fresh random string (the hash

of the recent block) is assumed to be consistently available to all

16
We note that standard signatures can be used if we strengthen the model as-

sumptions, e.g., by assuming that a party can securely erase its signature key, or by

considering a trusted party that only provides the verification keys to some parties.

We opted not to rely on stronger model assumption since we can establish signatures

with oblivious key generation from the minimal assumption of one-way functions.

parties later in the protocol and serves as the seed for the sortition;

equivalently, that parties have access to a common random string

(CRS) independent of corrupted parties’ public keys. Without this ex-

tra model assumption, their VRF approach does not apply. We note

that several recent consensus protocols [1, 8, 18, 19, 25, 26, 58, 59]

also follow the sortition approach of [22]; however, similar to our

first construction, their PKI is assumed to be honestly generated by

a trusted third party.

Theorem 2.7 (SRDS from OWF and trusted PKI, informal).

Let 𝛽 < 1/3 and assume that one-way functions exist. Then, there
exists a 𝛽𝑛-secure SRDS in the trusted-PKI model.

SRDS from CRH and SNARKs. Our second construction is based

on a weaker bare-PKI setup, in which each party locally computes

its signature keys, and the adversary can corrupt parties and change

their keys as a function of honest parties’ public keys.

In a simplified case where all of the nodes in the almost-

everywhere communication tree are honest, a naïve construction

would be to have all parties sign the message using their private

keys and send the signature to their respective leaf nodes. The leaf

nodes would then count the number of verified signatures received

and send the message and the counter to their parents. In a recur-

sive way, each node would simply add the counters received from

its child nodes and send it to its parent. As a result, the root node

would get a final count of the total number of verified signatures.

This approach completely breaks, however, if even one node is

not honest. To enforce an honest behavior of the nodes, we need

to make sure that the aggregation is done in a verifiable way, i.e.,

ensure that the bad nodes send a valid count of the number of

signatures aggregated so far.

Towards this, our first idea is to require each node to attach a

“succinct proof” of honest behavior to their messages. In particular,

in addition to the message𝑚 and count 𝑐 that a leaf node sends to

its parent, it must also send a proof to convince the parent that it

knows 𝑐 distinct signatures on the message𝑚. Similarly, nodes on

the next level must prove that they received sufficiently many valid

proofs from the leaf nodes and so on. To verify, it is sufficient to

check at the root node, whether sufficiently many “base” signatures

were aggregated. Such a solution, however, requires proof systems

that support recursive composition. For this reason, we use proof-
carrying data (PCD) systems [23].

A PCD system extends the notion of succinct non-interactive
arguments of knowledge (SNARKs) to the distributed setting by

allowing recursive composition in a succinct way. Informally, every

party can generate a succinct proof on some statement, certifying

that it satisfies a given local propertywith respect to its private input

and previously received messages (statements and their proofs).

Bitansky et al. [7] proved that PCD systems for logarithmic-depth

DAGs exist assuming SNARKs with linear extraction, i.e., where the
size of the extractor is linear in the size of the prover.

17
Extractability

assumptions of this kind have been considered in, e.g., [14, 27, 40,

57]. Since PCD systems allow for propagation of information up a

communication tree in a succinct and publicly verifiable way, they

seem to exactly capture our requirements for SRDS.

17
We note that although SNARKs with linear extraction are a stronger assumption

than standard SNARKs (with polynomial extraction), standard SNARKs techniques do

not separate the two notions.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

326

This simple idea, however, is vulnerable to an adversary that

generates a valid-looking aggregate signature by using multiple

copies of the same signature. Indeed, since the partially aggregated

signature must be succinct, the parties cannot afford to keep track

of which base signatures were already incorporated, leaving them

vulnerable to a repeat occurrence. We protect against such an attack

by encoding additional information in the partially aggregated

signatures using collision-resistant hash functions (CRH).

Theorem 2.8 (SRDS from CRH, SNARKs, and bare PKI, infor-

mal). Let 𝛽 < 𝑛/3 and assume that CRH and SNARKs with linear
extraction exist. Then, there exists a 𝛽𝑛-secure SRDS in the CRS and
bare-PKI model.

3 BALANCED COMMUNICATION-EFFICIENT
BYZANTINE AGREEMENT

In this section, we consider Byzantine agreement protocols with

𝑂̃ (1) communication per party. We show how to use succinctly

reconstructed distributed signatures (SRDS) to boost almost-

everywhere agreement to full agreement in a balanced way via

a single communication round. In particular, we show how to com-

bine SRDS with the protocol of Boyle et al. [13] to obtain BA with

balanced 𝑂̃ (1) communication. We prove the following theorem in

the full version of our paper [12].

Theorem 3.1 (Theorem 1.1, restated). Let 𝛽 < 1/3 and assume
existence of a 𝛽𝑛-secure SRDS scheme in the bare-PKI model (resp.,
trusted PKI model). Then, there exists a 𝛽𝑛-resilient BA protocol for
generating the SRDS setup and the relevant PKI, such that:
• The round complexity and communication locality are
polylog(𝑛); every party communicates polylog(𝑛) · poly(𝜅)
bits.
• The adversary can adaptively corrupt the parties based on the
public setup and the PKI before the onset of the protocol. For
bare PKI, the adversary can additionally replace the corrupted
parties’ public keys.

By instantiating Theorem 3.1 with our SRDS constructions from

Section 2.2, we get the following corollaries.

Corollary 3.2. Let 𝛽 < 1/3. Assuming OWF, there exists a 𝛽𝑛-
resilient BA protocol in the trusted-PKI model with balanced 𝑂̃ (1)
communication per party.

Corollary 3.3. Let 𝛽 < 1/3. Assuming CRH and SNARKs with
linear extraction, there exists a 𝛽𝑛-resilient BA protocol in the bare-PKI
and CRS model with balanced 𝑂̃ (1) communication per party.

In Section 3.1, we define the sub-functionalities to be used in the

BA protocol and in Section 3.2 we give our protocol.

3.1 Functionalities used in the Protocol
We start by describing the sub-functionalities used in our construc-

tion. Due to space constraints, we defer formal specification of

these functionalities to the full version of the paper [12].

Almost-everywhere communication. The functionality 𝑓ae-comm

is a reactive functionality that abstracts the properties obtained

by the protocol from [48]. In the first invocation, the adversary

specifies a special communication tree that allows all honest parties

to communicate, except for a 𝑜 (1) fraction of isolated parties D ⊂

[𝑛]. In all subsequent calls the “supreme committee,” i.e., the parties

associated with the root of the tree, can send messages to all of

the parties but D. We use a slightly modified version of the (𝑛,I)-
party almost-everywhere-communication tree defined in Section 2.

Specifically, in Definition 2.3, each party was assigned to a single

leaf node of the tree. Here, each party in the BA protocol will be

assigned to multiple leaf nodes (but will participate in the SRDS

aggregation as multiple “virtual” parties, one for each appearance).

Definition 3.4 ((𝑛,I) almost-everywhere-communication

tree with repeated parties). Let I ⊆ [𝑛] be a subset of size 𝛽𝑛 for
a constant 𝛽 < 1/3. A directed rooted tree 𝑇 = (𝑉 , 𝐸) is an (𝑛,I)-
almost-everywhere-communication tree with repeated parties if it
satisfies the first four properties of an (𝑛,I)-party almost-everywhere-
communication tree (Definition 2.3) and additionally, the following
properties are satisfied:

(1) Each leaf node of the tree is assigned a set of log5 𝑛 parties.
(2) Each party is assigned to 𝑂 (log4 𝑛) nodes at each level.

As observed in [13], the fact that 1 − 𝑜 (1) fraction of the leaves

are on good paths to the root implies that for a 1 − 𝑜 (1) fraction of

the parties, a majority of the leaf nodes that they are assigned to

are good. The protocol of King et al. [48] securely realizes 𝑓ae-comm

in the authenticated-channels model tolerating a computationally

unbounded, malicious adversary statically corrupting 𝛽𝑛 parties, for

a constant 𝛽 < 1/3. Every invocation requires polylog(𝑛) rounds,
and every party sends and processes polylog(𝑛) bits. Throughout all
invocations, every party sends to, and processes messages received

from, polylog(𝑛) other parties.
Byzantine agreement. We consider the standard Byzantine agree-

ment functionality 𝑓
ba

(to be used within small committees in the

larger protocol). Every party sends its input to the trusted party

who forwards the input value to the adversary. If more than 𝑛 − 𝑡
inputs equal the same value 𝑦 ∈ {0, 1}, then deliver 𝑦 as the out-

put for every party. Otherwise, let the adversary choose the value

𝑦 ∈ {0, 1} to be delivered.

The 𝑛-party BA protocol of Garay and Moses [36] realizes

𝑓
ba

over authenticated channels tolerating a computationally un-

bounded, malicious adversary statically corrupting 𝑡 < 𝑛/3 parties
using 𝑡 + 1 rounds and poly(𝑛) communication complexity. An

immediate corollary is that for 𝑛′ = polylog(𝑛), the 𝑛′-party BA

functionality 𝑓
ba

can be instantiated using polylog(𝑛) rounds and
polylog(𝑛) communication complexity.

Coin tossing. The coin-tossing functionality 𝑓ct samples a uni-

formly distributed 𝑠 ∈ {0, 1}𝜅 and delivers 𝑠 to all the parties. The

protocol of Chor et al. [24] realizes 𝑓ct over a broadcast channel

assuming an honest majority (by having each party verifiably se-

cret share (VSS) a random value, and later reconstruct all values

and XOR them). By instantiating the broadcast channel using the

protocol of [36], 𝑛′ = polylog(𝑛) parties can agree on a random

𝜅-bit string in polylog(𝑛) rounds and polylog(𝑛) · poly(𝜅) commu-

nication.

Signature aggregation. The signature-aggregation functionality

𝑓aggr-sig is an 𝑛
′
-party functionality, where every party 𝑃𝑖 provides

a message𝑚𝑖 and a set of signatures. The functionality first deter-

mines the set of signatures received from a majority of the parties

and aggregates only those signatures to obtain a new signature 𝜎 ,

which is delivered as the output for every party.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

327

Protocol 𝜋
ba

• Common Input: An SRDS scheme and a pseudo-random function (PRF) family F = {𝐹𝑠 }𝑠∈{0,1}𝜅 mapping elements of [𝑛] to subsets of [𝑛]
of size polylog(𝑛) .
• Private Input: Every 𝑃𝑖 , for 𝑖 ∈ [𝑛], has input 𝑥𝑖 ∈ {0, 1}.
• Setup: Let 𝑧 = 𝑂 (log4 𝑛) , 𝑧∗ = 𝑂 (log5 𝑛) and let pp← Setup(1𝜅 , 1𝑛·𝑧) . Every party 𝑃𝑖 locally computes (vk𝑖,𝑗 , sk𝑖,𝑗) ← KeyGen(pp) for
every 𝑗 ∈ [𝑧]. The public output consists of pp and the set of public keys vk = {vk𝑖,𝑗 }𝑖∈[𝑛], 𝑗∈[𝑧] . We assume that there exists a mapping

idmap : [𝑛] × [𝑧] → [𝑛 · 𝑧] that maps the each (𝑖, 𝑗) above to a virtual ID 𝑖∗ ∈ [𝑛 · 𝑧], such that virtual IDs of the parties assigned and

corresponding to the 𝑘 th leaf node belong in the range [(𝑘 − 1) · 𝑧∗ + 1, 𝑘 · 𝑧∗] (This ensures that when the tree topology is expressed flat as a

planar graph (no crossovers), then the virtual IDs of the leaf nodes are in increasing order.).

• Hybrid Model: The protocol is defined in the (𝑓ae-comm, 𝑓ba, 𝑓ct, 𝑓aggr-sig)-hybrid model.

• The Protocol:
(1) Every party invokes 𝑓ae-comm and receives back its local view in the communication tree𝑇 = (𝑉 , 𝐸) . Let C denote supreme committee, i.e.,

the parties assigned to the root node.

(2) Every party 𝑃𝑖 in the supreme committee (i.e., with 𝑖 ∈ C) proceeds as follows. Invoke 𝑓
ba

on its input value 𝑥𝑖 to receive back 𝑦 ∈ {0, 1} and
invoke 𝑓ct to receive back 𝑠 ∈ {0, 1}𝜅 .

(3) The parties in the supreme committee C send (𝑦, 𝑠) to 𝑓ae-comm. For every 𝑖 ∈ [𝑛] denote the output of party 𝑃𝑖 as (𝑦𝑖 , 𝑠𝑖) .
(4) Every party 𝑃𝑖 signs the received message (𝑦𝑖 , 𝑠𝑖) for each virtual identity 𝑗 ∈ [𝑧] as 𝜎𝑖,𝑗 ← Sign(pp, idmap(𝑖, 𝑗), sk𝑖,𝑗 , (𝑦𝑖 , 𝑠𝑖)) . Let

𝐿𝑖 = {𝑣𝑖1 , . . . , 𝑣𝑖𝑧 } ⊆ 𝑉 be the subset of leaves assigned to 𝑃𝑖 . For each 𝑗 ∈ [𝑧], 𝑃𝑖 sends 𝜎𝑖,𝑗 to all the parties assigned to the leaf node 𝑣𝑖 𝑗 .
(5) Denote by party(𝑣) the set of parties assigned to a node 𝑣 ∈ 𝑉 . Similarly, denote by child(𝑣) and parent(𝑣) the set of children nodes and

parent node of 𝑣 ∈ 𝑉 , resp. Let range(𝑣) denote the range of virtual IDs of the parties assigned to the leaf nodes that have a path to node

𝑣 ∈ 𝑉 . For each level ℓ = 1, . . . , ℓ∗ and for each node 𝑣 on level ℓ , the protocol proceeds as follows:

(a) For each 𝑖 ∈ party(𝑣) , let 𝑆𝑖,ℓ,1
sig

be the set of signatures received by 𝑃𝑖 in the previous round (for ℓ = 1, i.e., for leaf nodes, from each 𝑃 𝑗

with 𝑣 ∈ 𝐿𝑗 ; for ℓ > 1, from every party 𝑃 𝑗 assigned to a child node of 𝑣).
(b) Every 𝑃𝑖 with 𝑖 ∈ party(𝑣) broadcasts the set 𝑆𝑖,ℓ,1

sig
to all the parties in party(𝑣) . Let 𝑆𝑖,ℓ,2

sig
be the union of all sets received from the parties

in party(𝑣) .
(c) Every 𝑃𝑖 with 𝑖 ∈ party(𝑣) computes Aggregate

1
(pp, {vk1,1, . . . , vk𝑛,𝑧 }, (𝑦𝑖 , 𝑠𝑖), 𝑆𝑖,ℓ,2

sig
) → 𝑆

𝑖,ℓ,3
sig

. If ℓ = 1, for each sig in 𝑆
𝑖,ℓ,3
sig

it checks if

min(sig) = max(sig) and if min(sig) ∈ range(𝑣) and if ℓ > 1, it checks if ∃𝑣′ ∈ child(𝑣) such that the range [min(sig),max(sig)] falls
within the range range(𝑣′) . If this check fails for any sig, it updates 𝑆

𝑖,ℓ,3
sig

= 𝑆
𝑖,ℓ,3
sig
\ {sig}. It invokes 𝑓aggr-sig on input ((𝑦𝑖 , 𝑠𝑖), 𝑆𝑖,ℓ,3

sig
) to

obtain the aggregated signature 𝜎𝑣 .
(d) If ℓ < ℓ∗, for each 𝑖 ∈ party(𝑣) , party 𝑃𝑖 sends 𝜎𝑣 to all parties in parent(𝑣) .

(6) Let 𝜎root be the signature obtained by the supreme committee. The parties in the supreme committee send (𝑦, 𝑠, 𝜎root) to 𝑓ae-comm. Let the

output of party 𝑃𝑖 for 𝑖 ∈ [𝑛] be (𝑦′𝑖 , 𝑠′𝑖 , 𝜎′𝑖)
(7) Each party 𝑃𝑖 (for 𝑖 ∈ [𝑛]) computes C𝑖 = 𝐹𝑠′

𝑖
(𝑖) , and sends (𝑦′

𝑖
, 𝑠′

𝑖
, 𝜎′

𝑖
) to every party in C𝑖 , where 𝐹 is a pseudo-random function.

(8) A party 𝑃 𝑗 that receives a valid message (𝑦, 𝑠, 𝜎) from a party 𝑃𝑖 , satisfying 𝑗 ∈ 𝐹𝑠 (𝑖) and Verify(pp, {vk1,1, . . . , vk𝑛,𝑧 }, (𝑦, 𝑠), 𝜎) = 1, outputs

𝑦 and halts.

Figure 3: Byzantine agreement with balanced polylog communication

Assuming the existence of OWF, the protocol of Damgård and

Ishai [28] can be used to realize the 𝑛′-party functionality 𝑓aggr-sig,

for 𝑛′ = polylog(𝑛), over secure channels, tolerating a malicious ad-

versary corrupting aminority of the parties. In addition, if the size of

set 𝑆sig is 𝑂̃ (1) the protocol requires polylog(𝑛) ·poly(𝜅) communi-

cation. In our construction, this functionality is used by the parties

assigned to a node (in the almost-everywhere communication-tree

obtained from 𝑓ae-comm) for aggregating signatures received from

parties assigned to their children. FromDefinition 3.4, we know that

each node only has log(𝑛) child nodes and each node is assigned

polylog(𝑛) parties. Therefore, 𝑓aggr-sig is only used for aggregating

at most polylog(𝑛) signatures. Note that in [28] a broadcast channel
is also required and the resulting protocol is constant round. For

𝑛′ = polylog(𝑛) the broadcast can be realized by a deterministic

protocol, e.g., from [36], and the resulting protocol has polylog(𝑛)
rounds and polylog(𝑛) · poly(𝜅) communication.

3.2 Byzantine Agreement Protocol
Having defined all the sub-functionalities, we are now ready to

present our BA protocol in Figure 3.

The parties communicate in a way that mimics almost-

everywhere agreement. As described in Definition 3.4, each party

is assigned to 𝑧 = 𝑂 (log4 𝑛) leaf nodes and 𝑧∗ = 𝑂 (log5 𝑛) parties

are assigned to each leaf node in the communication tree. Since

each party will send a signature to every leaf node it is assigned

to, it is essential to ensure that the same fraction of signatures is

generated by corrupted parties as their fraction in the party-set.

For this reason, we allocate 𝑧 “virtual identities” to every party.

The SRDS is used for 𝑛 · 𝑧 virtual identities and each party samples

separate SRDS keys for each of its virtual identities.

Once certified almost-everywhere agreement on (𝑦, 𝑠) is reached,
full agreement is obtained as in [13]. Every party 𝑃𝑖 sends its SRDS-

signed pair (𝑦, 𝑠), to a (pseudo)random subset of polylog(𝑛) parties
defined by a pseudorandom function (PRF) 𝐹 on the seed 𝑠 and its

identity 𝑖 . Receiving parties verify the SRDS on (𝑦, 𝑠) and that it

was supposed to receive a message from the sender (using 𝑠). The

complete proof is deferred to the full version [12].

ACKNOWLEDGMENTS
E. Boyle’s research is supported in part by ISF grant 1861/16 and

AFOSR Award FA9550-17-1-0069 and ERC project HSS (852952).

R. Cohen’s research is supported in part by NSF grant 1646671. A.

Goel’s work was done in part while visiting the FACT Center at IDC

Herzliya, Israel. Her research is supported in part by an NSF CNS

grant 1814919, NSF CAREER award 1942789 and Johns Hopkins

University Catalyst award.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

328

REFERENCES
[1] Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling

Ren, and Elaine Shi. 2019. Communication Complexity of Byzantine Agreement,

Revisited. In Proceedings of the 38th Annual ACM Symposium on Principles of
Distributed Computing (PODC). 317–326.

[2] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. 2019.

Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(n
2)

Communication, and Optimal Resilience. In Financial Cryptography and Data
Security. 320–334.

[3] Gilad Asharov, Abhishek Jain, Adriana López-Alt, Eran Tromer, Vinod Vaikun-

tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Com-

munication, Computation and Interaction via Threshold FHE. In 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT). 483–501.

[4] Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key

model and a general forking lemma. In Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS). 390–399.

[5] Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness

Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-

tended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing (STOC). 1–10.

[6] Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin,

Aviad Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. Journal
of Cryptology 30, 4 (2017), 989–1066.

[7] Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recur-

sive composition and bootstrapping for SNARKs and proof-carrying data. In

Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC).
111–120.

[8] Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asynchro-

nous Byzantine Agreement with Subquadratic Communication. In Proceedings of
the 18th Theory of Cryptography Conference (TCC), part I. 353–380.

[9] Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind

Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In Proceed-
ings of the 6th International Conference on the Theory and Practice of Public-Key
Cryptography (PKC). 31–46.

[10] Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and

Verifiably Encrypted Signatures from Bilinear Maps. In 22nd International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT).
416–432.

[11] Elette Boyle, Ran Cohen, Deepesh Data, and Pavel Hubáček. 2018. Must the

Communication Graph of MPC Protocols be an Expander?. In 38th Annual Inter-
national Cryptology Conference (CRYPTO), part III. 243–272.

[12] Elette Boyle, Ran Cohen, and Aarushi Goel. 2020. Breaking the 𝑂 (
√
𝑛)-Bits

Barrier: Byzantine Agreement with Polylog Bits Per-Party. Cryptology ePrint

Archive, Report 2020/130. https://eprint.iacr.org/2020/130.

[13] Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. 2013. Communication Local-

ity in Secure Multi-party Computation - How to Run Sublinear Algorithms in a

Distributed Setting. In Proceedings of the 10th Theory of Cryptography Conference
(TCC). 356–376.

[14] Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. 2018. The

Bottleneck Complexity of Secure Multiparty Computation. In Proceedings of the
45th International Colloquium on Automata, Languages, and Programming (ICALP).
24:1–24:16.

[15] Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. 2013. Fast Byzantine

agreement. In Proceedings of the 32th Annual ACM Symposium on Principles of
Distributed Computing (PODC). 57–64.

[16] Ran Canetti. 2004. Universally Composable Signature, Certification, and Authen-

tication. In 17th IEEE Computer Security Foundations Workshop, (CSFW). 219.
[17] Ran Canetti, Daniel Shahaf, and Margarita Vald. 2016. Universally Composable

Authentication and Key-Exchange with Global PKI. In Proceedings of the 19th
International Conference on the Theory and Practice of Public-Key Cryptography
(PKC), part II. 265–296.

[18] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2019. Consensus Through Herd-

ing. In 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), part I. 720–749.

[19] T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2020. Sublinear-Round Byzantine

Agreement Under Corrupt Majority. In Proceedings of the 23rd International
Conference on the Theory and Practice of Public-Key Cryptography (PKC), part II.
246–265.

[20] Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,

Rafail Ostrovsky, and Vassilis Zikas. 2015. The Hidden Graph Model: Commu-

nication Locality and Optimal Resiliency with Adaptive Faults. In Proceedings
of the 6th Annual Innovations in Theoretical Computer Science (ITCS) conference.
153–162.

[21] David Chaum, Claude Crépeau, and Ivan Damgård. 1988. Multiparty Uncondi-

tionally Secure Protocols (Extended Abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC). 11–19.

[22] Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed

ledger. Theoretical Computer Science 777 (2019), 155–183.
[23] Alessandro Chiesa and Eran Tromer. 2010. Proof-Carrying Data and Hearsay

Arguments from Signature Cards. In Innovations in Computer Science - ICS. 310–
331.

[24] Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Verifi-

able Secret Sharing and Achieving Simultaneity in the Presence of Faults (Ex-

tended Abstract). In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing (STOC). 383–395.

[25] Ran Cohen, Iftach Haitner, Nikolaos Makriyannis, Matan Orland, and Alex

Samorodnitsky. 2019. On the Round Complexity of Randomized Byzantine

Agreement. In Proceedings of the 33rd International Symposium on Distributed
Computing (DISC). 12:1–12:17.

[26] Shir Cohen, Idit Keidar, and Alexander Spiegelman. 2020. Not a COINcidence:

Sub-Quadratic Asynchronous Byzantine Agreement WHP. In Proceedings of the
34th International Symposium on Distributed Computing (DISC). 25:1–25:17.

[27] Ivan Damgård, Sebastian Faust, and Carmit Hazay. 2012. Secure Two-Party

Computation with Low Communication. In Proceedings of the 9th Theory of
Cryptography Conference (TCC). 54–74.

[28] Ivan Damgård and Yuval Ishai. 2005. Constant-Round Multiparty Computa-

tion Using a Black-Box Pseudorandom Generator. In 24th Annual International
Cryptology Conference (CRYPTO). 378–394.

[29] Ivan Damgård and Yuval Ishai. 2006. Scalable Secure Multiparty Computation.

In 25th Annual International Cryptology Conference (CRYPTO). 501–520.
[30] Ivan Damgård, Yuval Ishai, Mikkel Krøigaard, Jesper Buus Nielsen, and Adam D.

Smith. 2008. Scalable Multiparty Computation with Nearly Optimal Work and

Resilience. In 27th Annual International Cryptology Conference (CRYPTO). 241–
261.

[31] Yvo Desmedt and Yair Frankel. 1989. Threshold Cryptosystems. In 8th Annual
International Cryptology Conference (CRYPTO). 307–315.

[32] Danny Dolev. 1982. The Byzantine Generals Strike Again. J. Algorithms 3, 1
(1982), 14–30.

[33] Danny Dolev and Rüdiger Reischuk. 1985. Bounds on Information Exchange for

Byzantine Agreement. J. ACM 32, 1 (1985), 191–204.

[34] Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. 1988. Fault

Tolerance in Networks of Bounded Degree. SIAM J. Comput. 17, 5 (1988), 975–
988.

[35] Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. 1986. Easy Impossibility

Proofs for Distributed Consensus Problems. Distributed Computing 1, 1 (1986),

26–39.

[36] Juan A. Garay and Yoram Moses. 1993. Fully polynomial Byzantine agreement

in t+1 rounds. In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing (STOC). 31–41.

[37] Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2001. Robust

Threshold DSS Signatures. Inf. Comput. 164, 1 (2001), 54–84.
[38] Craig Gentry and Daniel Wichs. 2011. Separating succinct non-interactive argu-

ments from all falsifiable assumptions. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC). 99–108.

[39] Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any

Mental Game or A Completeness Theorem for Protocols with Honest Majority.

In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC).
218–229.

[40] Divya Gupta and Amit Sahai. 2014. On Constant-Round Concurrent Zero-

Knowledge from a Knowledge Assumption. In INDOCRYPT. 71–88.
[41] Dan Holtby, Bruce M. Kapron, and Valerie King. 2008. Lower bound for scalable

Byzantine Agreement. Distributed Computing 21, 4 (2008), 239–248.

[42] K. Itakura and K. Nakamura. 1983. A public-key cryptosystem suitable for digital

multisignatures. NEC Research & Development 71 (1983), 1–8.
[43] Jonathan Katz and Chiu-Yuen Koo. 2006. On Expected Constant-Round Protocols

for Byzantine Agreement. In 25th Annual International Cryptology Conference
(CRYPTO). 445–462.

[44] Dafna Kidron and Yehuda Lindell. 2011. Impossibility Results for Universal

Composability in Public-Key Models and with Fixed Inputs. Journal of Cryptology
24, 3 (2011), 517–544.

[45] Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. 2011. Load

Balanced Scalable Byzantine Agreement through Quorum Building, with Full

Information. In Proceedings of the 12th International Conference on Distributed
Computing and Networking (ICDCN). 203–214.

[46] Valerie King and Jared Saia. 2009. From Almost Everywhere to Everywhere:

Byzantine Agreement with 𝑂̃ (𝑛3/2) Bits. In Proceedings of the 23th International
Symposium on Distributed Computing (DISC). 464–478.

[47] Valerie King and Jared Saia. 2011. Breaking the 𝑂 (𝑛2) bit barrier: scalable
Byzantine agreement with an adaptive adversary. J. ACM 58, 4 (2011), 18:1–

18:24.

[48] Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. 2006. Scalable leader

election. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 990–999.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

329

https://eprint.iacr.org/2020/130

[49] Leslie Lamport. 1979. Constructing Digital Signatures from a One Way Function
(sri international ed.). Technical Report CSL-98. SRI International.

[50] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine

Generals Problem. ACM Transactions on Programming Languages and Systems 4,
3 (1982), 382–401.

[51] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. 2006. On the composition of

authenticated Byzantine Agreement. J. ACM 53, 6 (2006), 881–917.

[52] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters.

2013. Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted

Signatures Without Random Oracles. Journal of Cryptology 26, 2 (2013), 340–373.

[53] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In Proceedings of the 35th
Annual Symposium on Foundations of Computer Science (FOCS). 436–453.

[54] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random Func-

tions. In Proceedings of the 40th Annual Symposium on Foundations of Computer
Science (FOCS). 120–130.

[55] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching Agree-

ment in the Presence of Faults. J. ACM 27, 2 (1980), 228–234.

[56] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty

Protocols with Honest Majority (Extended Abstract). In Proceedings of the 30th
Annual Symposium on Foundations of Computer Science (FOCS). 73–85.

[57] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge

Imply Time/Space Efficiency. In Proceedings of the 5th Theory of Cryptography
Conference (TCC). 1–18.

[58] Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. 2020. Round-Efficient

Byzantine Broadcast Under Strongly Adaptive and Majority Corruptions. In

Proceedings of the 18th Theory of Cryptography Conference (TCC), part I. 412–456.
[59] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. 2020. Expected

Constant Round Byzantine Broadcast Under Dishonest Majority. In Proceedings
of the 18th Theory of Cryptography Conference (TCC), part I. 381–411.

[60] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended Ab-

stract). In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS). 160–164.

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26–30, 2021, Virtual Event, Italy

330

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Succinctly Reconstructed Distributed Signatures
	2.1 Definition
	2.2 SRDS Constructions

	3 Balanced Communication-Efficient Byzantine Agreement
	3.1 Functionalities used in the Protocol
	3.2 Byzantine Agreement Protocol

	Acknowledgments
	References

