Session 6: Byzantine Agreement and Broadcast

Breaking the O(+/n)-Bit Barrier:
Byzantine Agreement with Polylog Bits Per Party

PODC 21, July 26-30, 2021, Virtual Event, Italy

Elette Boyle Ran Cohen Aarushi Goel
elette.boyle@idc.ac.il rancohen@ccs.neu.edu aarushig@cs.jhu.edu
IDC Northeastern University Johns Hopkins University
Herzliya, Israel Boston, USA Baltimore, USA
ABSTRACT CCS CONCEPTS

Byzantine agreement (BA), the task of n parties to agree on one
of their input bits in the face of malicious agents, is a powerful
primitive that lies at the core of a vast range of distributed protocols.
Interestingly, in BA protocols with the best overall communication,
the demands of the parties are highly unbalanced: the amortized
cost is O(1) bits per party, but some parties must send Q(n) bits.
In best known balanced protocols, the overall communication is
sub-optimal, with each party communicating O(~y/n).

In this work, we ask whether asymmetry is inherent for optimiz-
ing total communication. In particular, is BA possible where each
party communicates only O(1) bits? Our contributions in this line
are as follows:

o We define a cryptographic primitive—succinctly reconstructed
distributed signatures (SRDS)—that suffices for constructing 0(1)
balanced BA. We provide two constructions of SRDS from differ-
ent cryptographic and Public-Key Infrastructure (PKI) assump-
tions.

e The SRDS-based BA follows a paradigm of boosting from “almost-
everywhere” agreement to full agreement, and does so in a single
round. Complementarily, we prove that PKI setup and crypto-
graphic assumptions are necessary for such protocols in which
every party sends o(n) messages.

o We further explore connections between a natural approach to-
ward attaining SRDS and average-case succinct non-interactive
argument systems (SNARGs) for a particular type of NP-
Complete problems (generalizing Subset-Sum and Subset-
Product).

Our results provide new approaches forward, as well as limita-

tions and barriers, towards minimizing per-party communication

of BA. In particular, we construct the first two BA protocols with

O(1) balanced communication, offering a tradeoff between setup

and cryptographic assumptions, and answering an open question

presented by King and Saia (DISC’09).

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

PODC °21, July 26-30, 2021, Virtual Event, Italy

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8548-0/21/07...$15.00
https://doi.org/10.1145/3465084.3467897

319

« Security and privacy — Cryptography; « Theory of compu-
tation — Computational complexity and cryptography.

KEYWORDS

cryptographic protocols; Byzantine agreement; communication
complexity

ACM Reference Format:

Elette Boyle, Ran Cohen, and Aarushi Goel. 2021. Breaking the O(+/n)-Bit
Barrier: Byzantine Agreement with Polylog Bits Per Party. In Proceedings of
the 2021 ACM Symposium on Principles of Distributed Computing (PODC °21),
FJuly 26-30, 2021, Virtual Event, Italy. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3465084.3467897

1 INTRODUCTION

The problem of Byzantine agreement (BA) [50, 55] asks for a set of
n parties to agree on one of their input bits, even facing malicious
corruptions. BA is a surprisingly powerful primitive that lies at
the core of virtually every interactive protocol tolerating malicious
adversaries, ranging from other types of consensus primitives such
as broadcast [50, 55] and blockchain protocols (e.g., [22]), to secure
multiparty computation (MPC) [5, 21, 39, 56, 60]. In this work, we
study BA in a standard context, where a potentially large set of n
parties runs the protocol within a synchronous network, and secu-
rity is guaranteed facing a constant fraction of statically corrupted
parties.

Understanding the required communication complexity of BA
as a function of n is the subject of a rich line of research. For the
relaxed goal of almost-everywhere agreement [34], i.e., agreement
of all but 0(1) fraction of the parties, the full picture is essentially
understood. The influential work of King et al. [48] showed a solu-
tion roughly ideal in every dimension: in which each party speaks
to O(1) other parties (i.e., polylog degree of communication graph,
a.k.a. communication locality [13]), and communicates a total of
O(1) bits throughout the protocol, in O(1) rounds;! further, the
solution does not require cryptographic and/or trusted setup as-
sumptions and is given in the full-information model. The main
challenge in BA thus becomes extending almost-everywhere to full
agreement.

In this regime, our current knowledge becomes surprisingly
disconnected. While it is known how to employ cryptography and
setup assumptions to compute BA with O(1) locality [11, 13, 20], the
number of bits that must be communicated by each party is large,

'We follow the standard practice in large-scale cryptographic protocols, where o
hides polynomial factors in log n and in the security parameter k, see e.g., [29, 30].

https://doi.org/10.1145/3465084.3467897
https://doi.org/10.1145/3465084.3467897

Session 6: Byzantine Agreement and Broadcast

Q(n).? BA with amortized O(1) per-party communication (and
computation) can be achieved [1, 15, 22]; however, the structure
of these protocols is wildly unbalanced: with some parties who
must each communicate with ©(n) parties and send Q(n) bits. The
existence of “central parties” who communicate a large amount
facilitates fast convergence in these protocols. When optimizing
per-party communication, the best BA solutions degrade to ©(~y/n)
bits/party, with suboptimal O(n*/2) overall communication [45, 47].

This intriguing gap leads us to the core question studied in this
paper: Is such an imbalance inherent? More specifically:

Is it possible to achieve Byzantine agreement with
(balanced) per-party communication of O(1)?

Before addressing our results, it is beneficial to consider the rel-
evant lower bounds. It is well known that any deterministic BA
protocol requires Q(n?) communication [33] (and furthermore,
the connectivity of the underlying communication graph must be
Q(n) [32, 35]). This result extends to randomized BA protocols,
in the special case of very strong adversarial (adaptive, strongly
rushing®) capabilities [1]. Most closely related is the lower bound
of Holtby et al. [41], who showed that without trusted setup as-
sumptions, at least one party must send Q(+/n) messages.* But,
the bound in [41] applies only to a restricted setting of protocols
with static message filtering, where every party decides on the set
of parties it will listen to before the beginning of each round (as a
function of its internal view at the end of the previous round). We
note that while the almost-everywhere agreement protocol in [48]
falls into the static-filtering model, all other scalable BA protocols
mentioned above crucially rely on dynamic message filtering (which
is based on incoming messages’ content). This leaves the feasibility
question open.

1.1 Our Results

We perform an in-depth investigation of boosting from almost-
everywhere to full agreement with O(1) communication per party.
Motivated by the O(1)-locality protocol of Boyle et al. [13], we
first achieve an intermediate step of certified almost-everywhere
agreement, where almost all of the parties reach agreement, and, in
addition, hold a certificate for the agreed value. [13] showed how to
boost certified almost-everywhere agreement to full agreement in
a single round, where every party communicates with O(1) parties.

Our initial observation is that the protocol from [13] achieves
low communication aside from one expensive piece: the distributed
generation of the certificate, which is of size ©(n), and its dissemi-
nation. We thus target this step and explore.

Our contributions can be summarized as follows.

e SRDS and balanced BA. We define a minimal ad-hoc crypto-
graphic primitive whose existence implies O(1) balanced BA:
succinctly reconstructed distributed signatures (SRDS). We provide
two constructions of SRDS, each based on a different flavor of
a public-key infrastructure (PKI): (1) from one-way functions

2In fact, the constructions in [11, 13, 20] are for MPC protocols that enable secure
computation of any function with o(1) locality; these protocols are defined over
point-to-point networks, and so also provide a solution for the specific task of BA.

3A strongly rushing adversary in [1] can adaptively corrupt a party that has sent
a message m and replace the message with another m’, as long as no honest party
received m.

4The lower bound in [41] easily extends to a public setup such as a common
reference string.

320

PODC 21, July 26-30, 2021, Virtual Event, Italy

in a “trusted-PKI” model, and (2) from collision-resistant hash
functions (CRH) and a strong form of cryptographic succinct
non-interactive arguments of knowledge (SNARKs)® in a model
with a “bare PKI” and a common random string (CRS). Roughly,
trusted-PKI setup assumes that parties’ keys are generated prop-
erly, whereas bare PKI further supports the case where corrupt
parties may generate keys maliciously. We elaborate on the dif-
ference between the PKI models in Section 1.2.

e Necessity of setup for one-shot “boost.” Our SRDS-based BA

follows a paradigm of boosting from almost-everywhere to full
agreement, and does so in a single communication round. Com-
plementarily, we prove two lower bounds for any such one-shot
boost in which every party sends o(n) messages. The first shows
that some form of PKI (or stronger setup, such as correlated ran-
domness®) is necessary for this task. The second shows that given
only PKI setup (as opposed to stronger, correlated-randomness
setup), then computational assumptions (namely, at least one-way
functions) are additionally required.
In contrast to prior lower bounds (e.g., [1, 41]), this holds even
against a static adversary, and where parties can exercise dynamic
filtering (i.e., without placing limitations on how parties can
select to whom to listen).

e Connections to succinct arguments. We further explore con-
nections between a natural approach toward attaining SRDS in
weaker PKI models and average-case succinct non-interactive ar-
gument (SNARG) systems’ for a particular type of NP-Complete
problems (generalizing Subset-Sum and Subset-Product). This
can be interpreted as a barrier toward this approach for construct-
ing SRDS without heavy “SNARG-like” tools.

Collectively, our results provide an initial mapping for the feasibility
landscape of BA with O(1) per-party communication, including
new approaches forward, as well as limitations and barriers. Our
approach yields two BA protocols with O(1) communication per
party, offering a tradeoff between the setup assumptions and the
cryptographic assumptions. These results answer an open question
presented by King and Saia [46], asking whether cryptography
can be used to construct BA with o(+/n) communication per party.
Our BA results are summarized in Table 1 alongside other almost-
everywhere to everywhere agreement protocols.

1.2 Technical Overview

We now proceed to present our results in greater detail.
Succinctly reconstructed distributed signatures. Our first contri-
bution is identifying and formalizing a cryptographic primitive
that enables boosting from almost-everywhere agreement to full
agreement on a value, with low per-party communication.

5A SNARK [6, 53] is a proof system that enables a prover holding a witness w to
some public NP statement x to convince a verifier that it indeed knows w by sending
a single message. The proof string is succinct in the sense that it is much shorter than
the witness w, and knowledge is formalized via an efficient extractor that succeeds
extracting w from a malicious prover P* with roughly the same probability that P*
convinces an honest verifier.

®In the correlated-randomness model a trusted dealer samples n secret strings
from a joint distribution and delivers to each party its corresponding secret string, e.g.,
a setup for threshold signatures.

7Similarly to a SNARK, a SNARG allows a prover holding a witness w to some
public NP statement x to convince a verifier that x belongs to the language; however,
as opposed to a SNARK, here the prover does not prove that it knows w (only that
such a witness exists), hence there is no requirement to extract the witness from a
cheating prover.

Session 6: Byzantine Agreement and Broadcast

PODC 21, July 26-30, 2021, Virtual Event, Italy

protocol rounds max com. tup cryptogx:aphic message adversa.rial remark
per party assumptions filtering corruptions
HKK’08 [41] Q(+n) crs static static lower bound
KS’09 [46] 0(1) O(n-+n) - - dynamic static
KS’11 [47] polylog(n) O(v/n) - - dynamic adaptive
KLST’11 [45] polylog(n) O(vn) - - dynamic static
BGH’13 [15] 0(1) O(n) - - dynamic static
BGT’13 [13] 1 O(n) pki owf dynamic static
CcM19 [22]F Exp O(1) O(n) trusted-pki RO-+unique-sig ~ dynamic adaptive
ACD*19[1]7 Exp O(1) O(n) trusted-pki bilinear maps dynamic adaptive
CKS’20 [26]7 Exp O(1) O(n) trusted-pki vrf dynamic adaptive asynchronous
BKLL'20 [8]7 Exp O(1) O(n) trusted-pki fhe+nizk dynamic adaptive asynchronous
1 Q(n) crs dynamic static lower bound
This work 1 o) (1) pki-crs snarks*+crh dynamic static
1 o(1) trusted pki owf dynamic static

Table 1: Comparison of protocols boosting from almost-everywhere to full agreement, tolerating (1/3 — €) - n corruptions. The O notation hides polynomial
terms in the security parameter x and in log n. crs stand for a common random string, pki stands for bare pki, and trusted pki stands for honestly generated pki. By
snarks" we refer to SNARKSs with linear extraction, i.e., where the size of the extractor is linear in the size of the prover. RO stands for random oracle and unique-
sig for unique signatures. vrf stand for verifiable pseudorandom functions, fhe for fully homomorphic encryption, and nizk for non-interactive zero-knowledge
proofs. Static corruptions are done before the protocol begins but can be a function of the trusted setup; adaptive corruptions can occur during the course of the

protocol. () The protocols from [1, 8, 22, 26] reach agreement from scratch (hence also from almost-everywhere agreement) with amortized O(1) communication
per party; the expected round complexity is constant and termination is guaranteed in polylog(n) rounds.

The primitive—succinctly reconstructed distributed signatures
(SRDS)—is a new type of a distributed signature scheme, with a
natural motivation: allowing a set of parties to jointly produce
a signature on some message m, which can serve as a succinct
certificate for proving that a majority of the parties agree on m.
Interestingly, this task does not seem to be attained by existing
distributed signature notions, such as multi-signatures [42], ag-
gregate signatures [10], or threshold signatures [31]. For example,
while multi-signatures (and, similarly, aggregate signatures) can
succinctly combine signatures of many parties, to verify the sig-
nature, the (length-©(n)!) vector of contributing-parties identities
must also be communicated.® Threshold signatures are implied by
SRDS but also do not suffice: while identities of the signers are no
longer needed to verify a combined signature, this information is
necessary to reconstruct the combined signature in the first place
(even within specific existing schemes, e.g., [9, 37]).

An SRDS scheme is based on a PKI for signatures, where every
party is set with a secret signing key and a public verification key.?
The parties may receive additional setup information that may
contain, for example, public parameters for the signature scheme
or a common random string (CRS), depending on the actual con-
struction. Given a message m, every party can locally generate a
signature on m, and signatures on the same message can be suc-
cinctly aggregated into a new signature. The new aspect is that
given a combined signature and a message m, it is possible to verify
whether is was aggregated from a “large” number of “base” sig-
natures on m, and both aggregation and verification can be done
succinctly.

8Indeed, the verification algorithm of multi-signatures (and aggregate signatures)
must receive the set of parties who signed the message. This is precisely the culprit
for the large ©(n) per-party communication within the low-locality protocol of [13].

? As mentioned, we will distinguish between a bare PKI, where every party locally
chooses its keys and corrupted parties can set their keys as a function of all verification
keys (and any additional public information), and a trusted PKI, which is honestly
generated (either locally or by a trusted party) and where corrupted parties cannot
change their verification keys. See further discussion below.

321

Three properties are required from an SRDS scheme: robustness
means that an adversary cannot prevent the honest parties from
generating an accepting signature on a message; unforgeability
prevents an adversary controlling a minority from forging a signa-
ture; and succinctness requires that the “final” signature (including
all information needed for verification) is short (of size O(1)) and
can be incrementally reconstructed from “base” signatures in small
batches of size polylog(n).1% An SRDS scheme is t-secure if it satis-
fies the above properties even facing t colluding adversarial parties.
As mentioned earlier, we present two constructions of SRDS in
Section 2.2, offering a tradeoff between setup assumptions and
cryptographic assumptions.

Balanced BA from SRDS. We demonstrate how to attain O(1)-
balanced BA against fin corruptions (for f < 1/3) given black-box
access to any fin-secure SRDS scheme. We begin by presenting a
distilled version of the “certified almost-everywhere agreement”
approach from [13] that we tailor for Byzantine agreement, where
only correctness matters and privacy is not required.!!

(1) The parties execute the almost-everywhere agreement protocol
of King et al. [48]; this establishes a polylog(n)-degree commu-
nication tree (which is essentially a sparse overlay network) in
which each node is assigned with a committee of polylog(n)
parties. The guarantees are that the polylog(n)-size supreme
committee (i.e., the committee assigned to the root) has a 2/3
honest majority and almost all of the parties are connected to
the supreme committee via the communication tree.

The supreme committee executes a BA protocol on their inputs
to agree on the output y, and, in addition, runs a coin-tossing

@

©polylog(n) denotes log® (n) for some constant ¢ > 1.

1 The focus of [13] was on MPC and required stronger assumptions and additional
rounds; in particular, a naive use of their MPC protocol cannot lead to communication-
balanced BA as it requires all parties to send information to a designated polylog(n)-
size set, the so-called supreme committee.

Session 6: Byzantine Agreement and Broadcast

protocol to agree on a random seed s. Next, the supreme com-
mittee propagates the pair (y, s) to almost all of the parties.

(3) Once a party receives the pair (y, s), the party signs it (in [13],
using a multi-signature scheme), and sends the signature back
to the supreme committee that aggregates all the signatures.
The aggregated signature attesting to (y, s) is then distributed
to almost all of the parties.

Once this form of certified almost-everywhere agreement on
(y, s) is reached, full agreement can be obtained in one round using
the same approach as in [13] (see Section 3 for details). The protocol
from [13] achieves O(1) locality. However, recall that even though
the size of a multi-signature might itself be “small,” the verification
algorithm additionally requires a list of contributing parties, where
the description size of this list will need to be proportional to n.
Hence, the effective size of the aggregated signature, and thus per-
party communication, is stuck at ©(n).

At this point the new notion of SRDS comes into the picture. We
use the succinctness property of SRDS combined with the commu-
nication tree established by the protocol from [48] to bound the
size of the aggregated signatures by O(1). In essence, the parties
aggregate the signatures in a recursive manner up the communica-
tion tree such that in each step at most polylog(n) signatures are
aggregated.

This technique introduces additional subtleties that must be ad-
dressed. For example, since the partially aggregated signature can
no longer afford to describe the set of contributing parties, it is
essential to make sure that the same “base” signature is not aggre-
gated multiple times (this may allow the adversary to achieve more
influence on the final aggregated signature than its proportional
fraction of “base” signatures).

THEOREM 1.1 (BALANCED BA, INFORMAL). Let § < 1/3 be a con-
stant. Assuming the existence of pn-secure SRDS, there exists an
n-party, fpn-resilient BA protocol that terminates after polylog(n)
rounds, and where every party communicates polylog(n) - poly(k)
bits.

We note that our BA protocol is the first to establish a polylog(n)-
degree communication graph where every party has an “honest
path” to a 2/3-honest committee, such that the per-party commu-
nication required for establishing it is O(1). Such a communication
graph can be used to design a broadcast protocol where the total
communication is just O(1). It can also be used to design secure
multiparty computation protocols (MPC) that scale well with the
number of parties using fully homomorphic encryption (encryption
schemes that allow computation over ciphertexts). As a result, we
can obtain the following corollaries (we defer the proof to the full
version of our paper [12]).

COROLLARY 1.2 (INFORMAL). Let f < 1/3 be a constant. Assuming
the existence of fn-secure SRDS:

(1) Broadcast: There exists a fn-resilient 1-bit broadcast protocol
such that ¢ protocol executions (potentially with different senders)
require ¢ - polylog(n) - poly (k) bits of communication per party.

(2) MPC: Assuming fully homomorphic encryption, a function f :
({0, 1}fn)™ — {0, 1}out can be securely computed with guaran-
teed output delivery tolerating a static, malicious fn-adversary,
such that the total communication complexity (of all parties) is
n - polylog(n) - poly(k) - (fin + fout) bits.

322

PODC 21, July 26-30, 2021, Virtual Event, Italy

One remark regarding the corruption model is in place. In this
work we consider static adversaries that choose the set of corrupted
parties before the beginning of the protocol. As mentioned above,
our constructions are based on some form of trusted setup, which,
as we prove below, is necessary. We emphasize that (as standard) we
avoid trivialized settings, e.g., where the trusted setup determines
a polylog(n)-degree communication tree for achieving full agree-
ment, by considering the adversarial model where the adversary
can corrupt the parties adaptively during the setup phase given the
setup information of the corrupted parties and any public setup
information. During the online phase the adversary is static and
cannot corrupt additional parties.

Necessity of PKI for single-round boost of almost-everywhere agree-
ment. Our SRDS-based BA protocol (Theorem 1.1) shows how to
boost almost-everywhere agreement to full agreement in a single
round with small communication. Both our constructions crucially
rely on a public-key infrastructure (PKI) that enables each party
to publish its verification key on a bulletin board. We show that
this setup assumption is necessary for this task. That is, given only
public setup—i.e., the common reference string model—this task is
not possible.

We note that the lower bound of Holtby et al. [41] does not
translate to our setting, as it considers static message filtering,
where every party chooses to whom to listen in a given round
based on its view prior to that round. The lower bound in [41]
shows that dynamic filtering, i.e., where filtering can also be based
on the content of received messages, is required (at least in the
CRS model). We present the first such lower bound in the dynamic-
filtering model.

THEOREM 1.3 (NO SINGLE-SHOT BOOST IN CRS MODEL, INFORMAL).
There is no single-round protocol from almost-everywhere to every-
where agreement in the CRS model where every party sends sublinear
(i.e., 0(n)) many messages.

Recall that almost-everywhere agreement guarantees that all
parties agree on the common output aside from a o(n)-size set of
isolated parties, whose identities are unknown to the remaining
honest parties. In the setting of static filtering, one can prove contin-
ued isolation of these parties for any low-communication protocol
in a relatively clean manner [41]: The probability that an honest
party P; will send messages to an honest isolated P; is independent
of the event that P; will choose to process messages from P; in
this round, thus placing a birthday-type bound on information suc-
cessfully being conveyed. With dynamic filtering, however, P; may
process messages dependent on some property of this message, e.g.,
whether it contains particular authentication, which may only be
contained in honest messages.'? In such case, there is strong bias
toward accepting honest messages, and one must work harder to
ensure that isolated parties do not reach agreement.

We refer the reader to the full version of our paper [12] for the
proof of this theorem.

On the different PKI models. As discussed above, SRDS implies a
single-round boost of almost-everywhere to full agreement, which
in turn (by Theorem 1.3) requires some form of private-coin setup.
Given this, one of our goals is to minimize the trust assumptions in

12In general, message filtering should be via a simple and “light” test, e.g., counting
how many messages arrived, or verifying a signature. We refer to [11] for a discussion
on message filtering in protocols over incomplete graphs.

Session 6: Byzantine Agreement and Broadcast

the setup phase. Our SNARK-based construction offers the minimal
setup requirement—a bare PKI—where every party locally generates
its own signature keys and publishes the verification key on a
bulletin board. The adversary can adaptively corrupt parties and
change their keys as a function of all the public setup information
(including the honest parties’ verification keys and the CRS, in case
it exists). This is the prevalent PKI model that has appeared in, e.g.,
[16, 17, 43, 44].

Our OWF-based construction, on the other hand, assumes an
honestly generated PKI, where the adversary cannot alter the cor-
rupted parties’ keys. Such a setup assumption is normally captured
by a trusted party who samples the keys for all the parties, and
provides each party with its secret key as well as all public keys;
see, e.g., [1, 18, 19, 25, 51]. We note that our trusted-PKI setup is
weaker than a full blown trusted party in two aspects: First, the
distribution from which the trusted party samples the values is a
product distribution, i.e., parties’ keys are independent and second,
we consider public-coin sampling in the sense that the sampling
coins are revealed to the corresponding party (i.e., intermediate
key-generation values are not kept hidden).

Necessity of OWF for single-round boost in PKI model. Theorem
1.3 states the necessity of private-coin setup for single-round proto-
cols (from almost-everywhere agreement to full agreement) where
every party sends o(n) messages. In the PKI model, where the
public/private keys of each party are independently generated, we
further prove that cryptographic assumptions are necessary. Intu-
itively, if one-way functions (OWF) do not exist, an adversary can
invert the PKI algorithm with noticeable probability to find a pre-
image for each public key. In this case, the adversary can carry
out the attack for the CRS model, discussed above. We prove the
following theorem in our full version [12].

THEOREM 1.4 (OWF NEEDED FOR SINGLE-SHOT BOOST IN PKI
MODEL, INFORMAL). If OWF do not exist, there is no single-round
protocol from almost-everywhere to everywhere agreement in the
trusted PKI model where every party sends sublinear many messages.

Connection to succinct arguments. Our SRDS construction from
CRH and SNARKs works with minimal setup requirements, but
relies on relatively undesirable cryptographic assumptions (in par-
ticular, SNARKSs are a non-falsifiable [38] assumption). On the other
hand, our construction from one-way functions uses light compu-
tational assumptions, but (as with many other works in this area,
e.g., [1, 18, 19, 25]) requires a stronger assumption of trusted PKI. A
clear goal is to obtain SRDS from better computational assumptions
within a better setup model, ultimately reducing to bare PKI, or even
more fine-grained intermediate models such as registered PKI'3 (see
[9, 52] and a discussion in [4]). A natural approach toward doing
so is to build upon one of the closest existing relatives within this
setting: multi-signatures.

Recall that multi-signatures almost provide the required proper-
ties of SRDS in this setting, in that they support succinct aggregation
of signatures, with the sole issue that multi-signature verification
requires knowledge of the set of parties who contributed to it—
information that requires ®(n) bits to describe. Multi-signatures

BIn the registered PKI, every party can arbitrarily choose its public key (just like in

bare PKI), but in order to publish it, the party must prove knowledge of a corresponding
secret key.

323

PODC 21, July 26-30, 2021, Virtual Event, Italy

have been constructed from (standard) falsifiable assumptions in
the registered-PKI model, e.g., [52]. A natural approach toward
constructing SRDS within this model is thus to simply augment
a multi-signature scheme with some method of succinctly con-
vincing the verifier that a given multi-signature is composed of
signatures from sufficiently many parties. In the full version [12],
we demonstrate challenges toward such an approach, by showing
that in some cases this necessitates a form of cryptographic succinct
non-interactive arguments.

2 SUCCINCTLY RECONSTRUCTED
DISTRIBUTED SIGNATURES

In this section, we introduce a new notion of a distributed sig-
nature scheme for n parties, which can be used to obtain low-
communication BA. As discussed earlier, every party has sign-
ing/verification keys based on some form of PKI, and the parties may
receive additional setup information consisting of public parame-
ters for the underlying signature scheme and potentially a common
random string (CRS). We allow the adversary to adaptively corrupt
a subset of the parties before the protocol begins, based on the
setup information and all n verification keys. We consider two PKI
models; a bare PKI, where the adversary can choose the corrupted
parties’ keys, and a trusted PKI, where the keys are honestly gener-
ated and cannot be changed. We do not permit adaptive corruptions
once the parties start signing messages.

In Section 2.1, we define the new signature scheme and the
security requirements. Later, in Section 2.2, we present two con-
structions of this primitive.

2.1 Definition

We start by presenting the syntax of the definition, and later, define
the required properties from the scheme: succinctness, robustness,
and unforgeability.

DEFINITION 2.1 (SRDS sYNTAX). A succinctly reconstructed dis-
tributed signatures scheme with message space M and signature space
X for a set of parties P = {P1, ..., Pn}, is defined by a quintuple of
PPT algorithms (Setup, KeyGen, Sign, Aggregate, Verify) as follows:

e Setup(1%,1™) — pp: On input the security parameter k and the
number of parties n, the setup algorithm outputs public parameters
pp-

e KeyGen(pp) — (vk,sk): On input the public parameters pp, the
key-generation algorithm outputs a verification key vk and a sign-
ing key sk.

e Sign(pp, i,sk,m) — o: On input the public parameters pp, the
signer’s identity i, a signing key sk, and a message m € M, the
signing algorithm outputs a signature c € X U {L}.

o Aggregate(pp, {vki,...,vkp},m,{01,...,04}) — o: On input
the public parameters pp, the set of all verification keys {vki}ie[n)
a message m € M, and a set of signatures {oi};c[q) for some
q = poly(n), the aggregation algorithm outputs a signature
oceXU{L}

o Verify(pp, {vki,...,vkn},m,0)) — b: On input the public pa-
rameters pp, the set of all verification keys {vki};e[n], a message
m € M, and a signature o € X, the verification algorithm outputs
a bitb € {0, 1}, representing accept or reject.

Session 6: Byzantine Agreement and Broadcast

We assume without loss of generality that each signature en-
codes the index i of the corresponding verification key vk;, and
each aggregated signature encodes information about the maxima
and minima of the indices associated with verification keys corre-
sponding to the base signatures that are aggregated within them.!4
Given a base signature/aggregated signature, let max(o) denote
the function that extracts the maximum index associated with o
and min(o) denote the function that extracts the minimum index
associated with o (in case of a base signature, both max(o) and
min (o) will return the same value).

Remark (Notation n). Here, we use n to denote the number of
parties in the SRDS scheme. Looking ahead, the effective number
of parties in the SRDS used in our BA protocol in Section 3 will be
larger than the actual participants of the protocol.

We proceed to define three properties of an SRDS scheme: suc-
cinctness, robustness, and unforgeability. We define these properties
with respect to any ¢ < n/3 corruptions. Although the definitions
can be stated for t < n/2, we opted for the former for clarity and
concreteness, as both our BA protocol (Section 3) and our SRDS
constructions (Section 2.2) support n/3 corruptions.

Succinctness. We require that the size of each signature is O(1).
This holds both for signatures in the support of Sign and of
Aggregate. In order for parties to jointly perform the signature
aggregation process with low communication, we also require
that the aggregate algorithm can be decomposed into two algo-
rithms Aggregate; and Aggregate,. Depending on the set of input
signatures {0i};c[4] and the verification keys, the first algorithm
Aggregate,; deterministically outputs a subset of the signatures Ssg.
The second (possibly randomized) algorithm Aggregate, then ag-
gregates these signatures without relying on the verification keys.
In particular, the input to the randomized step Aggregate, is short.

Looking ahead at the BA protocol in Section 3, subsets of the
parties will collectively run the aggregation algorithm. Although
the inputs to the aggregation algorithm need not be kept private, it
could be the case that the randomness used should remain secret.
For this reason, the computation of Aggregate, in the BA construc-
tion will be carried out using an MPC protocol; to keep the overall
communication of every party 0(1), we require the circuit size
representing Aggregate, to be O(1). The goal of Aggregate, is to
deterministically filter out invalid inputs (using the verification
keys), such that Aggregate, only depends on the verified signa-
tures and not on the n verification keys (otherwise the circuit size
will be too large).

DEFINITION 2.2 (SUCCINCTNESS). An n-party SRDS scheme is suc-
cinct if it satisfies the following:

(1) Size of Signatures: There exists a(n,x) € poly(logn, k) such
that X C {0, 1}2(nK)

(2) Decomposability: The Aggregate algorithm can be decomposed
into 2 algorithms Aggregate; and Aggregate,, such that the fol-
lowing hold:

o Aggregate, (pp, {vki,...,vkn},m,{01,...,04}) sigs
where Ssig is of size poly(logn, k) and Aggregate; is deter-
ministic.

- S

14Both our constructions presented in Section 2.2 achieve this property.

324

PODC 21, July 26-30, 2021, Virtual Event, Italy

o Aggregate,(pp, m, Ssig) — 0, i.e, aggregate the signatures in
Ssig into a new signature o.

Robustness. Informally, a scheme is robust if no adversary can
prevent sufficiently many honest parties from generating an ac-
cepting signature on a message. We define robustness as a game
between a challenger and an adversary A. The game is formally
defined in Figure 1 and comprises of three phases. In the setup and
corruption phase, the challenger generates the public parameters
pp and a pair of signature keys for every party. Given pp and all
verification keys vki, . .., vkp, the adversary can adaptively corrupt
a subset of (up to) t parties and learn their secret keys. In the case
of a bare PKI (but not of trusted PKI), the adversary can replace
the verification key of any corrupted party by another key of its
choice. Unless specified otherwise, we consider the bare PKI to be
the default setup model.

In the robustness challenge phase, the adversary chooses a tree
T describing the order in which the signatures of all the parties
are to be aggregated. The nodes on level 0 correspond to set of all
parties who generate signatures (i.e., all virtual parties in the BA
protocol). We slightly abuse notation and refer to level-1 nodes as
leaf nodes, as they correspond to the actual leaves in the communi-
cation tree of [48]. For our application in the BA protocol in Section
3, we require this tree to be an “(n, I')-party almost-everywhere-
communication tree” (see Definition 2.3), where n is the number
of parties and I is the set of corrupt parties.!> Furthermore, we
assume that level-0 nodes are indexed and ordered by the parties
in such a way that when the tree topology is expressed flat as a
planar graph (no crossovers), then the IDs of level-0 nodes are in
increasing order. Looking ahead, we will show that this property of
the tree is sufficient for our BA protocol in Section 3. The adversary
also chooses messages m € M and {m; };c n;, where N is the subset
of honest parties that are assigned to leaf nodes that do not have a
good path (i.e., where more than a third of the parties assigned to
at least one of the nodes on the path are corrupt) to the root.

Given signatures of parties in N on the respective m;’s and of the
remaining honest parties on m, the adversary computes signatures
of all corrupt parties. The challenger and adversary then interac-
tively aggregate all these signatures in the order specified by the
tree T. In particular, partially aggregated signatures corresponding
to intermediate nodes in the tree that consist of a majority of honest
parties, are computed by the challenger, while partially aggregated
signatures corresponding to the remaining nodes are chosen by the
adversary.

Finally, in the output phase, the challenger runs the verification
algorithm on the message m and the final aggregated signature
obtained in the root of the tree, and A wins if the verification fails.
We say that an SRDS scheme is robust if no adversary can win this
game except with negligible probability.

We start by formally describing the properties of an (n, I')-party
almost-everywhere-communication tree, which is a slight variant
of the tree described in King et al. [48].

15This tree is a combinatorial object that was first defined by King et al. [48]. They
also proposed an interactive protocol that allows the parties to collectively build such
a tree on the fly. This tree and that protocol will be an integral part of our BA protocol
in Section 3.

Session 6: Byzantine Agreement and Broadcast

DEFINITION 2.3 ((n, 1)-PARTY ALMOST-EVERYWHERE-COMMUNICA-
TION TREE). Let I C [n] be a subset of sizet fort < n/3. A di-
rected rooted tree T = (V,E) is an (n, I)-party almost-everywhere-
communication tree if the following properties are satisfied:

(1) The height of T is £* € O(log n/loglogn). Each node v from level
¢ > 1 haslogn children in level £ — 1.

(2) Each node on level ¢ > 1 is assigned a set of log® n parties.

(3) A node is good if less than a third of the parties assigned to it are
in I. Then, it holds that the root is good.

(4) All but a 3/logn fraction of the leaves have a good path (consist-
ing of good nodes) to the root.

(5) The nodes on level 0 correspond to the n parties.

(6) Each party (on level 0) is assigned to exactly one leaf node (on
level 1).

(7) There are n/log® n leaf nodes and each leaf node is assigned a set
of log® n parties.

robust
tmode,H,‘?((K’ n, t)

The experiment Exp is a game between a challenger and the
adversary A. The game is parametrized by an SRDS scheme IT and
proceeds as follows:

Experiment Exp

trobust

A. Setup and corruption. In the first phase, the challenger gen-
erates the public parameters and the signature keys for the
parties. Given the public information, A can adaptively corrupt
parties, learn their secret information, and potentially change
their public keys.

(1) Compute pp « Setup(1%,1™).

(2) Forevery i € [n], compute (vk;, sk;) < KeyGen(pp).

(3) Invoke A on (1%, 1", pp, {vky,...,vk,}) and set 7 = 0.

(4) Aslongas |7| <t and A requests to corrupt a party P;:

(a) Send sk; to A and receive back vk/.
(b) If mode = b-pki, set vk; = vki.
(c) Set I =1 U {i}.

B. Robustness challenge. In this phase, A tries to break the
robustness of the scheme.

(1) A chooses an (n,I)-party almost-everywhere-
communication tree T = (V, E) (as per Definition 2.3), in
which level-0 nodes indexed and ordered by the parties in
such a way that when the tree topology is expressed flat as a
planar graph (no crossovers), then the IDs of level-0 nodes
are in increasing order. Let N be the set of honest parties
assigned to the leaf nodes that do not have a good path to
the root.

A also chooses a message m € M and a message m; € M

for eachi € N.

(3) For every i € [n]\ (£ UN), let o; « Sign(pp, i, ski, m)
and for every i € N, let o; « Sign(pp, i, ski, m;).

(4) Send {0; }ie[n)\s to A and receive back {o; }icr.

(5) Foreach? = {2,..., height(T)} and every node v on level ¢:
e If v is a good node, compute

@)

0y — Aggregate(pp, {vki,...,vkn}, m, {0y }uechild(o))

where child(v) C V refers to the set of children of the
node v € V, and send o, to A.
e Else, if v is a bad node, receive o, from A.
C. Output Phase. Output Verify(pp, {vki,...,vkn}, m, 0root),
where root is the root node in T.

PODC 21, July 26-30, 2021, Virtual Event, Italy

DEFINITION 2.4 (ROBUSTNESS). Lett < n/3. An SRDS schemell is
t-robust with a bare PKI (resp., with a trusted PKI) if for mode = b-pki
(resp., mode = tr-pki) and for any (stateful) PPT adversary A it holds
that:

Pr Exptrobust

mode,H,ﬂ(K’ n,t) = 0| < negl(k, n).

trobust

The experiment Expt 2 4"

is defined in Figure 1.

We note that robustness is a strictly stronger notion than com-
pleteness. In a complete scheme correctness is guaranteed if all the
parties are honest. In a robust scheme, even if a subset of parties
are corrupted, as long as there are sufficiently many honest par-
ties, correctness is still guaranteed. Hence, any signature scheme
satisfying robustness, immediately satisfies completeness.

Unforgeability. Informally, a scheme is unforgeable if no adver-
sary can use signatures of a large majority of the honest parties on
a message m and of a few honest parties on messages of its choice
to forge an aggregated SRDS signature on a message other than m.

In a similar way to robustness, we consider an unforgeability
game between a challenger and an adversary. The setup and corrup-
tion phase is identical to that in the robustness game. In the forgery
challenge phase, the adversary chooses a set S C [n] \ 7 such that
|S U I| < n/3, and messages m and {m;};cs. Given signatures of
all honest parties outside of S on the message m and a signature
of each honest party P; in S on the message m;, the adversary
outputs a signature o. In the output phase, the challenger checks
whether o is a valid signature on a message different than mj if so,
the adversary wins. An SRDS scheme is unforgeable if no adversary
can win the game except for negligible probability.

DEFINITION 2.5 (UNFORGEABILITY). Lett < n/3. An SRDS scheme
IT is t-unforgeable with a bare PKI (resp., with a trusted PKI) if for
mode = b-pki (resp., mode = tr-pki) and for every (stateful) PPT
adversary A it holds that

forge
Pr Exptmoie’nﬂ(lc, n,t) = 1| < negl(x, n).
The experiment Expt '8 is defined in Figure 2.
P p mode,IL, A & :

forge

mode, I, A (K’ n, t)

Experiment Expt

The experiment Expt™'8¢ is a game between a challenger and the adver-
sary A. The game is parametrized by an SRDS scheme II and consists
of the following phases:
A. Setup and Corruption. As in the robustness experiment in
Figure 1.
B. Forgery Challenge. In this phase, the adversary tries to forge
a signature.
(a) A chooses a subset S C [n]\ I such that |[SU I'| < n/3.
It also chooses messages m and {m; };cs from M.
(b) For every i € S, compute o; < Sign(pp, i, sk;, m;).
(c) Foreveryi ¢ (S U I), compute o; « Sign(pp, i, sk, m).
(d) Send {0i }ic[n)\r to A and get back 0’ € X and m" € M.
C. Output Phase. Output 1 if and only if
Verify (pp, {vki,...,vkn},m’,0’) = 1and m’ # m.

Figure 1: Robustness experiment for SRDS

325

Figure 2: Forgery experiment for SRDS

Session 6: Byzantine Agreement and Broadcast

We note that as described, the security definition is only for
one-time SRDS signatures. Although this is sufficient for our ap-
plications in Section 3, it is possible to extend the definition and
provide the adversary an oracle access to signatures of honest par-
ties on messages of its choice. However, in that case, the adversary
must choose the set S before getting oracle access.

Security. We say that an SRDS scheme is secure in the respective
PKI model, if it satisfies all the above properties.

DEFINITION 2.6 (SECURE SRDS). Lett < n/3. An SRDS scheme I1
is t-secure with a bare PKI (resp., with a trusted PKI) if it is succinct,
t-unforgeable and t-robust with a bare PKI (resp., with a trusted PKI).

2.2 SRDS Constructions

In this section, we present a high-level overview of our two con-
structions of SRDS that offer a tradeoff between cryptographic
and setup assumptions. The first assumes one-way functions in
the trusted-PKI model, and the second assumes collision-resistant
hash functions (CRH) and succinct non-interactive arguments of
knowledge (SNARKSs) with linear extraction in the common random
string (CRS) and bare-PKI model. Due to space constraints, we defer
formal descriptions to the full version of our paper [12].

SRDS from One-Way Functions. Our first construction is influ-
enced by the “sortition approach” of Algorand [22] and merely
requires one-way functions (OWF); however, the public-key in-
frastructure (PKI) is assumed to be honestly generated (either by
the parties themselves or by an external trusted third party), and
corrupted parties cannot alter their keys. The construction is based
on digital signatures augmented with an oblivious key-generation
algorithm for sampling a verification key without knowing the
corresponding signing key.!® Lamport’s signatures [49], which are
based on OWF, can easily be adjusted to support this property.
To establish the PKI, every party decides whether to generate its
public verification key obliviously or together with a signing key
by tossing a biased coin, such that with overwhelming probability
all but polylog(n) keys are generated obliviously. Since those with
the ability to sign are determined at random (as part of the trusted
PKI), only parties who hold a signing key can sign messages. The
oblivious key-generation algorithm ensures that an adversary who
only sees a list of verification keys, cannot distinguish between the
keys that have a corresponding signing key and ones that do not.
As a result, even if the adversary chooses the set of corrupt parties
after the keys are sampled, with a high probability, the fraction
of honest parties will be preserved in the signing subset. SRDS
signature-aggregation is done by concatenation, and verification of
an SRDS signature requires counting how many valid signatures
were signed on the message.

It would be desirable to reduce the trust assumption in estab-
lishing the PKI, e.g., by using verifiable pseudorandom functions
(VRF) [54] as done in [22]. However, this approach [22] is defined
within a blockchain model where a fresh random string (the hash
of the recent block) is assumed to be consistently available to all

16We note that standard signatures can be used if we strengthen the model as-
sumptions, e.g., by assuming that a party can securely erase its signature key, or by
considering a trusted party that only provides the verification keys to some parties.
We opted not to rely on stronger model assumption since we can establish signatures
with oblivious key generation from the minimal assumption of one-way functions.

326

PODC 21, July 26-30, 2021, Virtual Event, Italy

parties later in the protocol and serves as the seed for the sortition;
equivalently, that parties have access to a common random string
(CRS) independent of corrupted parties’ public keys. Without this ex-
tra model assumption, their VRF approach does not apply. We note
that several recent consensus protocols [1, 8, 18, 19, 25, 26, 58, 59]
also follow the sortition approach of [22]; however, similar to our
first construction, their PKI is assumed to be honestly generated by
a trusted third party.

THEOREM 2.7 (SRDS FROM OWF AND TRUSTED PKI, INFORMAL).
Let B < 1/3 and assume that one-way functions exist. Then, there
exists a fn-secure SRDS in the trusted-PKI model.

SRDS from CRH and SNARKs. Our second construction is based
on a weaker bare-PKI setup, in which each party locally computes
its signature keys, and the adversary can corrupt parties and change
their keys as a function of honest parties’ public keys.

In a simplified case where all of the nodes in the almost-
everywhere communication tree are honest, a naive construction
would be to have all parties sign the message using their private
keys and send the signature to their respective leaf nodes. The leaf
nodes would then count the number of verified signatures received
and send the message and the counter to their parents. In a recur-
sive way, each node would simply add the counters received from
its child nodes and send it to its parent. As a result, the root node
would get a final count of the total number of verified signatures.
This approach completely breaks, however, if even one node is
not honest. To enforce an honest behavior of the nodes, we need
to make sure that the aggregation is done in a verifiable way, i.e.,
ensure that the bad nodes send a valid count of the number of
signatures aggregated so far.

Towards this, our first idea is to require each node to attach a
“succinct proof” of honest behavior to their messages. In particular,
in addition to the message m and count c that a leaf node sends to
its parent, it must also send a proof to convince the parent that it
knows c distinct signatures on the message m. Similarly, nodes on
the next level must prove that they received sufficiently many valid
proofs from the leaf nodes and so on. To verify, it is sufficient to
check at the root node, whether sufficiently many “base” signatures
were aggregated. Such a solution, however, requires proof systems
that support recursive composition. For this reason, we use proof-
carrying data (PCD) systems [23].

A PCD system extends the notion of succinct non-interactive
arguments of knowledge (SNARKSs) to the distributed setting by
allowing recursive composition in a succinct way. Informally, every
party can generate a succinct proof on some statement, certifying
that it satisfies a given local property with respect to its private input
and previously received messages (statements and their proofs).
Bitansky et al. [7] proved that PCD systems for logarithmic-depth
DAGs exist assuming SNARKs with linear extraction, i.e., where the
size of the extractor is linear in the size of the prover.!” Extractability
assumptions of this kind have been considered in, e.g., [14, 27, 40,
57]. Since PCD systems allow for propagation of information up a
communication tree in a succinct and publicly verifiable way, they
seem to exactly capture our requirements for SRDS.

7We note that although SNARKs with linear extraction are a stronger assumption
than standard SNARKSs (with polynomial extraction), standard SNARKSs techniques do
not separate the two notions.

Session 6: Byzantine Agreement and Broadcast

This simple idea, however, is vulnerable to an adversary that
generates a valid-looking aggregate signature by using multiple
copies of the same signature. Indeed, since the partially aggregated
signature must be succinct, the parties cannot afford to keep track
of which base signatures were already incorporated, leaving them
vulnerable to a repeat occurrence. We protect against such an attack
by encoding additional information in the partially aggregated
signatures using collision-resistant hash functions (CRH).

THEOREM 2.8 (SRDS rFrOM CRH, SNARKS, AND BARE PKI, INFOR-
MAL). Let f < n/3 and assume that CRH and SNARKs with linear
extraction exist. Then, there exists a fn-secure SRDS in the CRS and
bare-PKI model.

3 BALANCED COMMUNICATION-EFFICIENT
BYZANTINE AGREEMENT

In this section, we consider Byzantine agreement protocols with
O(1) communication per party. We show how to use succinctly
reconstructed distributed signatures (SRDS) to boost almost-
everywhere agreement to full agreement in a balanced way via
a single communication round. In particular, we show how to com-
bine SRDS with the protocol of Boyle et al. [13] to obtain BA with
balanced O(1) communication. We prove the following theorem in
the full version of our paper [12].

THEOREM 3.1 (THEOREM 1.1, RESTATED). Let ff < 1/3 and assume
existence of a fn-secure SRDS scheme in the bare-PKI model (resp.,
trusted PKI model). Then, there exists a fin-resilient BA protocol for
generating the SRDS setup and the relevant PKI, such that:

e The round complexity and communication locality are
polylog(n); every party communicates polylog(n) - poly(x)
bits.

o The adversary can adaptively corrupt the parties based on the
public setup and the PKI before the onset of the protocol. For
bare PKI, the adversary can additionally replace the corrupted
parties’ public keys.

By instantiating Theorem 3.1 with our SRDS constructions from
Section 2.2, we get the following corollaries.

COROLLARY 3.2. Let ff < 1/3. Assuming OWE, there exists a fn-
resilient BA protocol in the trusted-PKI model with balanced 0(1)
communication per party.

COROLLARY 3.3. Let f§ < 1/3. Assuming CRH and SNARKs with
linear extraction, there exists a fn-resilient BA protocol in the bare-PKI
and CRS model with balanced O(1) communication per party.

In Section 3.1, we define the sub-functionalities to be used in the
BA protocol and in Section 3.2 we give our protocol.

3.1 Functionalities used in the Protocol

We start by describing the sub-functionalities used in our construc-
tion. Due to space constraints, we defer formal specification of
these functionalities to the full version of the paper [12].
Almost-everywhere communication. The functionality fie-comm
is a reactive functionality that abstracts the properties obtained
by the protocol from [48]. In the first invocation, the adversary
specifies a special communication tree that allows all honest parties
to communicate, except for a 0(1) fraction of isolated parties D C

327

PODC 21, July 26-30, 2021, Virtual Event, Italy

[n]. In all subsequent calls the “supreme committee,” i.e., the parties
associated with the root of the tree, can send messages to all of
the parties but 9. We use a slightly modified version of the (n, I')-
party almost-everywhere-communication tree defined in Section 2.
Specifically, in Definition 2.3, each party was assigned to a single
leaf node of the tree. Here, each party in the BA protocol will be
assigned to multiple leaf nodes (but will participate in the SRDS
aggregation as multiple “virtual” parties, one for each appearance).

DEFINITION 3.4 ((n,Z) ALMOST-EVERYWHERE-COMMUNICATION
TREE WITH REPEATED PARTIES). Let I C [n] be a subset of size fn for
a constant f < 1/3. A directed rooted tree T = (V,E) isan (n,I)-
almost-everywhere-communication tree with repeated parties if it
satisfies the first four properties of an (n, I')-party almost-everywhere-
communication tree (Definition 2.3) and additionally, the following
properties are satisfied:

(1) Each leaf node of the tree is assigned a set oflog> n parties.
(2) Each party is assigned to O(log* n) nodes at each level.

As observed in [13], the fact that 1 — o(1) fraction of the leaves
are on good paths to the root implies that for a 1 — 0(1) fraction of
the parties, a majority of the leaf nodes that they are assigned to
are good. The protocol of King et al. [48] securely realizes fae-comm
in the authenticated-channels model tolerating a computationally
unbounded, malicious adversary statically corrupting fin parties, for
a constant f < 1/3. Every invocation requires polylog(n) rounds,
and every party sends and processes polylog(n) bits. Throughout all
invocations, every party sends to, and processes messages received
from, polylog(n) other parties.

Byzantine agreement. We consider the standard Byzantine agree-
ment functionality f;, (to be used within small committees in the
larger protocol). Every party sends its input to the trusted party
who forwards the input value to the adversary. If more than n — ¢
inputs equal the same value y € {0, 1}, then deliver y as the out-
put for every party. Otherwise, let the adversary choose the value
y € {0, 1} to be delivered.

The n-party BA protocol of Garay and Moses [36] realizes
fba over authenticated channels tolerating a computationally un-
bounded, malicious adversary statically corrupting ¢t < n/3 parties
using ¢ + 1 rounds and poly(n) communication complexity. An
immediate corollary is that for n’ = polylog(n), the n’-party BA
functionality f},, can be instantiated using polylog(n) rounds and
polylog(n) communication complexity.

Coin tossing. The coin-tossing functionality fi samples a uni-
formly distributed s € {0, 1}* and delivers s to all the parties. The
protocol of Chor et al. [24] realizes f. over a broadcast channel
assuming an honest majority (by having each party verifiably se-
cret share (VSS) a random value, and later reconstruct all values
and XOR them). By instantiating the broadcast channel using the
protocol of [36], n” = polylog(n) parties can agree on a random
Kk-bit string in polylog(n) rounds and polylog(n) - poly(x) commu-
nication.

Signature aggregation. The signature-aggregation functionality
faggr-sig is an n’-party functionality, where every party P; provides
a message m; and a set of signatures. The functionality first deter-
mines the set of signatures received from a majority of the parties
and aggregates only those signatures to obtain a new signature o,
which is delivered as the output for every party.

Session 6: Byzantine Agreement and Broadcast

PODC 21, July 26-30, 2021, Virtual Event, Italy

of size polylog(n).
e Private Input: Every P;, fori € [n], has input x; € {0,1}.

idmap : [n] X [z] —

e The Protocol:

the parties assigned to the root node.
invoke fct to receive back s € {0, 1}*.
L= {Ulllg)

(5) Denote

v € V.Foreachlevel t =1,...,

in party(v).

obtain the aggregated signature o,

output of party P; for i € [n] be (y;,s;
(7) Each party P; (forl € [n]) computes é

yand halts

Protocol mp,

e Common Input: An SRDS scheme and a pseudo-random function (PRF) family # = {Fs }se (o1} mapping elements of [n] to subsets of [r]

e Setup: Let z = O(log* n), z* = O(log® n) and let pp « Setup(1%, 1"%). Every party P; locally computes (vki,j, sk; j) < KeyGen(pp) for

every j € [z]. The public output consists of pp and the set of public keys vk = {vk; j };c[n] je[z]- We assume that there exists a mapping
[n - z] that maps the each (i, j) above to a virtual ID i* € [n - z], such that virtual IDs of the parties assigned and
corresponding to the k™ leaf node belong in the range [(k — 1) - z* + 1, k - z*] (This ensures that when the tree topology is expressed flat as a

planar graph (no crossovers), then the virtual IDs of the leaf nodes are in increasing order.).
¢ Hybrid Model: The protocol is defined in the (fae-comms foas fcts faggr-sig) -hybrid model.

(1) Every party invokes fae-comm and receives back its local view in the communication tree T = (V, E). Let C denote supreme committee, i.e.,
(2) Every party P; in the supreme committee (i.e., with i € C) proceeds as follows. Invoke f;, on its input value x; to receive back y € {0,1} and

(3) The parties in the supreme committee C send (y, s) to fae-comm. For every i € [n] denote the output of party P; as (y;, si).
(4) Every party P; signs the received message (y;,s;) for each virtual identity j € [z] as o;; < Sign(pp, idmap(i, j), sk; j, (yi, si)). Let

,0i, } € V be the subset of leaves assigned to P;. For each j € [z], P; sends o; ; to all the parties assigned to the leaf node v; .
y party(o) the set of parties assigned to a node v € V. Similarly, denote by Chl|d(’ﬂ

parent node of v € V, resp. Let range(v) denote the range of virtual IDs of the parties assigned to the leaf nodes that have a path to node
¢* and for each node v on level ¢, the protocol proceeds as follows:
(a) For each i € party(v), let S”F’l be the set of signatures received by P; in the previous round (for ¢ = 1, i.e., for leaf nodes, from each P;

with v € Lj; for £ > 1, from every party P; assigned to a child node of v).
(b) Every P; Wlth i € party(v) broadcasts the set S b [! to all the parties in party (o). Let S L e ? be the union of all sets received from the parties

(c) Every P; with i € party(v) computes Aggregate; (pp, {vki,...
min(sig) = max(sig) and if min(sig) € range(v) andif £ > 1, it checks if 30" € child(v) such that the range [min(sig), max(sig)] falls
within the range range(¢’). If this check fails for any sig, it updates 5% = 5463

(d) If £ < ¢*, for each i € party(v), party P; sends oy, to all parties in parent(v).
(6) Let oroot be the signature obtained by the supreme committee. The parties in the supreme committee send (y, s, Oroot) tO fae-comm- Let the

Fy (i), and sends (y;, s}, 0}) to every party in C;, where F is a pseudo-random function.
8) A party P; that receives a valid message (y, s, cr) from a party P;, satlsf ing j € Fs(i) and Verify , {vkig, ..
party ge (Y. party ymg Y (PP

) and parent(v) the set of children nodes and

vknz} (i, 50), S ”)

sig S:ig’s. If £ = 1, for each sig in Ssiig’s it checks if

51(3) to

\ {sig}. It invokes faggrsig on input ((y;, s;), s

sig sig

., vknz}, (y,s),0) =1, outputs

Figure 3: Byzantine agreement with balanced polylog communication

Assuming the existence of OWF, the protocol of Damgard and
Ishai [28] can be used to realize the n’-party functionality fager-sig,
for n” = polylog(n), over secure channels, tolerating a malicious ad-
versary corrupting a minority of the parties. In addition, if the size of
set Ssig is O(1) the protocol requires polylog(n) - poly(x) communi-
cation. In our construction, this functionality is used by the parties
assigned to a node (in the almost-everywhere communication-tree
obtained from fye-comm) for aggregating signatures received from
parties assigned to their children. From Definition 3.4, we know that
each node only has log(n) child nodes and each node is assigned
polylog(n) parties. Therefore, fagor-sig is only used for aggregating
at most polylog(n) signatures. Note that in [28] a broadcast channel
is also required and the resulting protocol is constant round. For

’ = polylog(n) the broadcast can be realized by a deterministic
protocol, e.g., from [36], and the resulting protocol has polylog(n)
rounds and polylog(n) - poly(x) communication.

3.2 Byzantine Agreement Protocol

Having defined all the sub-functionalities, we are now ready to
present our BA protocol in Figure 3.

The parties communicate in a way that mimics almost-
everywhere agreement. As described in Definition 3.4, each party
is assigned to z = O(log* n) leaf nodes and z* = O(log® n) parties

328

are assigned to each leaf node in the communication tree. Since
each party will send a signature to every leaf node it is assigned
to, it is essential to ensure that the same fraction of signatures is
generated by corrupted parties as their fraction in the party-set.
For this reason, we allocate z “virtual identities” to every party.
The SRDS is used for n - z virtual identities and each party samples
separate SRDS keys for each of its virtual identities.

Once certified almost-everywhere agreement on (y, s) is reached,
full agreement is obtained as in [13]. Every party P; sends its SRDS-
signed pair (y, s), to a (pseudo)random subset of polylog(n) parties
defined by a pseudorandom function (PRF) F on the seed s and its
identity i. Receiving parties verify the SRDS on (y,s) and that it
was supposed to receive a message from the sender (using s). The
complete proof is deferred to the full version [12].

ACKNOWLEDGMENTS

E. Boyle’s research is supported in part by ISF grant 1861/16 and
AFOSR Award FA9550-17-1-0069 and ERC project HSS (852952).
R. Cohen’s research is supported in part by NSF grant 1646671. A.
Goel’s work was done in part while visiting the FACT Center at IDC
Herzliya, Israel. Her research is supported in part by an NSF CNS
grant 1814919, NSF CAREER award 1942789 and Johns Hopkins
University Catalyst award.

Session 6: Byzantine Agreement and Broadcast

REFERENCES

(1]

A

[5

=

l6

=

[9

=

[10]

[11

[12

[13]

[14]

(15

(7

(18]

[19]

[20]

[21]

Ittai Abraham, T.-H. Hubert Chan, Danny Dolev, Kartik Nayak, Rafael Pass, Ling
Ren, and Elaine Shi. 2019. Communication Complexity of Byzantine Agreement,
Revisited. In Proceedings of the 38th Annual ACM Symposium on Principles of
Distributed Computing (PODC). 317-326.

Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and Ling Ren. 2019.

Synchronous Byzantine Agreement with Expected O(1) Rounds, Expected O(nz)
Communication, and Optimal Resilience. In Financial Cryptography and Data
Security. 320-334.

Gilad Asharov, Abhishek Jain, Adriana Lopez-Alt, Eran Tromer, Vinod Vaikun-
tanathan, and Daniel Wichs. 2012. Multiparty Computation with Low Com-
munication, Computation and Interaction via Threshold FHE. In 31st Annual
International Conference on the Theory and Applications of Cryptographic Tech-
niques (EUROCRYPT). 483-501.

Mihir Bellare and Gregory Neven. 2006. Multi-signatures in the plain public-Key
model and a general forking lemma. In Proceedings of the 13th ACM Conference
on Computer and Communications Security (CCS). 390-399.

Michael Ben-Or, Shafi Goldwasser, and Avi Wigderson. 1988. Completeness
Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Ex-
tended Abstract). In Proceedings of the 20th Annual ACM Symposium on Theory
of Computing (STOC). 1-10.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, Shafi Goldwasser, Huijia Lin,
Aviad Rubinstein, and Eran Tromer. 2017. The Hunting of the SNARK. Journal
of Cryptology 30, 4 (2017), 989-1066.

Nir Bitansky, Ran Canetti, Alessandro Chiesa, and Eran Tromer. 2013. Recur-
sive composition and bootstrapping for SNARKs and proof-carrying data. In
Proceedings of the 45th Annual ACM Symposium on Theory of Computing (STOC).
111-120.

Erica Blum, Jonathan Katz, Chen-Da Liu-Zhang, and Julian Loss. 2020. Asynchro-
nous Byzantine Agreement with Subquadratic Communication. In Proceedings of
the 18th Theory of Cryptography Conference (TCC), part I. 353-380.

Alexandra Boldyreva. 2003. Threshold Signatures, Multisignatures and Blind
Signatures Based on the Gap-Diffie-Hellman-Group Signature Scheme. In Proceed-
ings of the 6th International Conference on the Theory and Practice of Public-Key
Cryptography (PKC). 31-46.

Dan Boneh, Craig Gentry, Ben Lynn, and Hovav Shacham. 2003. Aggregate and
Verifiably Encrypted Signatures from Bilinear Maps. In 22nd International Confer-
ence on the Theory and Applications of Cryptographic Techniques (EUROCRYPT).
416-432.

Elette Boyle, Ran Cohen, Deepesh Data, and Pavel Hubacek. 2018. Must the
Communication Graph of MPC Protocols be an Expander?. In 38th Annual Inter-
national Cryptology Conference (CRYPTO), part III. 243-272.

Elette Boyle, Ran Cohen, and Aarushi Goel. 2020. Breaking the O(+/n)-Bits
Barrier: Byzantine Agreement with Polylog Bits Per-Party. Cryptology ePrint
Archive, Report 2020/130. https://eprint.iacr.org/2020/130.

Elette Boyle, Shafi Goldwasser, and Stefano Tessaro. 2013. Communication Local-
ity in Secure Multi-party Computation - How to Run Sublinear Algorithms in a
Distributed Setting. In Proceedings of the 10th Theory of Cryptography Conference
(TCC). 356-376.

Elette Boyle, Abhishek Jain, Manoj Prabhakaran, and Ching-Hua Yu. 2018. The
Bottleneck Complexity of Secure Multiparty Computation. In Proceedings of the
45th International Colloquium on Automata, Languages, and Programming (ICALP).
24:1-24:16.

Nicolas Braud-Santoni, Rachid Guerraoui, and Florian Huc. 2013. Fast Byzantine
agreement. In Proceedings of the 32th Annual ACM Symposium on Principles of
Distributed Computing (PODC). 57-64.

Ran Canetti. 2004. Universally Composable Signature, Certification, and Authen-
tication. In 17th IEEE Computer Security Foundations Workshop, (CSFW). 219.
Ran Canetti, Daniel Shahaf, and Margarita Vald. 2016. Universally Composable
Authentication and Key-Exchange with Global PKI. In Proceedings of the 19th
International Conference on the Theory and Practice of Public-Key Cryptography
(PKC), part II. 265-296.

T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2019. Consensus Through Herd-
ing. In 38th Annual International Conference on the Theory and Applications of
Cryptographic Techniques (EUROCRYPT), part I. 720-749.

T.-H. Hubert Chan, Rafael Pass, and Elaine Shi. 2020. Sublinear-Round Byzantine
Agreement Under Corrupt Majority. In Proceedings of the 23rd International
Conference on the Theory and Practice of Public-Key Cryptography (PKC), part II.
246-265.

Nishanth Chandran, Wutichai Chongchitmate, Juan A. Garay, Shafi Goldwasser,
Rafail Ostrovsky, and Vassilis Zikas. 2015. The Hidden Graph Model: Commu-
nication Locality and Optimal Resiliency with Adaptive Faults. In Proceedings
of the 6th Annual Innovations in Theoretical Computer Science (ITCS) conference.
153-162.

David Chaum, Claude Crépeau, and Ivan Damgard. 1988. Multiparty Uncondi-
tionally Secure Protocols (Extended Abstract). In Proceedings of the 20th Annual
ACM Symposium on Theory of Computing (STOC). 11-19.

329

[22]

[23

[24]

[25]

[26

[27

[28

[29

'S
=

[31

[32

[33

(34

[35

[37

[38

[39

[40

N
fury

[42

[43

(44

[45

[46

N
)

(48

PODC 21, July 26-30, 2021, Virtual Event, Italy

Jing Chen and Silvio Micali. 2019. Algorand: A secure and efficient distributed
ledger. Theoretical Computer Science 777 (2019), 155-183.

Alessandro Chiesa and Eran Tromer. 2010. Proof-Carrying Data and Hearsay
Arguments from Signature Cards. In Innovations in Computer Science - ICS. 310~
331.

Benny Chor, Shafi Goldwasser, Silvio Micali, and Baruch Awerbuch. 1985. Verifi-
able Secret Sharing and Achieving Simultaneity in the Presence of Faults (Ex-
tended Abstract). In Proceedings of the 17th Annual ACM Symposium on Theory
of Computing (STOC). 383-395.

Ran Cohen, Iftach Haitner, Nikolaos Makriyannis, Matan Orland, and Alex
Samorodnitsky. 2019. On the Round Complexity of Randomized Byzantine
Agreement. In Proceedings of the 33rd International Symposium on Distributed
Computing (DISC). 12:1-12:17.

Shir Cohen, Idit Keidar, and Alexander Spiegelman. 2020. Not a COINcidence:
Sub-Quadratic Asynchronous Byzantine Agreement WHP. In Proceedings of the
34th International Symposium on Distributed Computing (DISC). 25:1-25:17.
Ivan Damgéard, Sebastian Faust, and Carmit Hazay. 2012. Secure Two-Party
Computation with Low Communication. In Proceedings of the 9th Theory of
Cryptography Conference (TCC). 54-74.

Ivan Damgérd and Yuval Ishai. 2005. Constant-Round Multiparty Computa-
tion Using a Black-Box Pseudorandom Generator. In 24th Annual International
Cryptology Conference (CRYPTO). 378-394.

Ivan Damgard and Yuval Ishai. 2006. Scalable Secure Multiparty Computation.
In 25th Annual International Cryptology Conference (CRYPTO). 501-520.

Ivan Damgard, Yuval Ishai, Mikkel Kroigaard, Jesper Buus Nielsen, and Adam D.
Smith. 2008. Scalable Multiparty Computation with Nearly Optimal Work and
Resilience. In 27th Annual International Cryptology Conference (CRYPTO). 241—
261.

Yvo Desmedt and Yair Frankel. 1989. Threshold Cryptosystems. In 8th Annual
International Cryptology Conference (CRYPTO). 307-315.

Danny Dolev. 1982. The Byzantine Generals Strike Again. J. Algorithms 3, 1
(1982), 14-30.

Danny Dolev and Riidiger Reischuk. 1985. Bounds on Information Exchange for
Byzantine Agreement. J. ACM 32, 1 (1985), 191-204.

Cynthia Dwork, David Peleg, Nicholas Pippenger, and Eli Upfal. 1988. Fault
Tolerance in Networks of Bounded Degree. SIAM J. Comput. 17, 5 (1988), 975-
988.

Michael J. Fischer, Nancy A. Lynch, and Michael Merritt. 1986. Easy Impossibility
Proofs for Distributed Consensus Problems. Distributed Computing 1, 1 (1986),
26-39.

Juan A. Garay and Yoram Moses. 1993. Fully polynomial Byzantine agreement
in t+1 rounds. In Proceedings of the 25th Annual ACM Symposium on Theory of
Computing (STOC). 31-41.

Rosario Gennaro, Stanislaw Jarecki, Hugo Krawczyk, and Tal Rabin. 2001. Robust
Threshold DSS Signatures. Inf. Comput. 164, 1 (2001), 54-84.

Craig Gentry and Daniel Wichs. 2011. Separating succinct non-interactive argu-
ments from all falsifiable assumptions. In Proceedings of the 43rd Annual ACM
Symposium on Theory of Computing (STOC). 99-108.

Oded Goldreich, Silvio Micali, and Avi Wigderson. 1987. How to Play any
Mental Game or A Completeness Theorem for Protocols with Honest Majority.
In Proceedings of the 19th Annual ACM Symposium on Theory of Computing (STOC).
218-229.

Divya Gupta and Amit Sahai. 2014. On Constant-Round Concurrent Zero-
Knowledge from a Knowledge Assumption. In INDOCRYPT. 71-88.

Dan Holtby, Bruce M. Kapron, and Valerie King. 2008. Lower bound for scalable
Byzantine Agreement. Distributed Computing 21, 4 (2008), 239-248.

K. Itakura and K. Nakamura. 1983. A public-key cryptosystem suitable for digital
multisignatures. NEC Research & Development 71 (1983), 1-8.

Jonathan Katz and Chiu-Yuen Koo. 2006. On Expected Constant-Round Protocols
for Byzantine Agreement. In 25th Annual International Cryptology Conference
(CRYPTO). 445-462.

Dafna Kidron and Yehuda Lindell. 2011. Impossibility Results for Universal
Composability in Public-Key Models and with Fixed Inputs. Journal of Cryptology
24,3 (2011), 517-544.

Valerie King, Steven Lonargan, Jared Saia, and Amitabh Trehan. 2011. Load
Balanced Scalable Byzantine Agreement through Quorum Building, with Full
Information. In Proceedings of the 12th International Conference on Distributed
Computing and Networking (ICDCN). 203-214.

Valerie King and Jared Saia. 2009. From Almost Everywhere to Everywhere:
Byzantine Agreement with O(n®/?) Bits. In Proceedings of the 23th International
Symposium on Distributed Computing (DISC). 464-478.

Valerie King and Jared Saia. 2011. Breaking the O(n?) bit barrier: scalable
Byzantine agreement with an adaptive adversary. J. ACM 58, 4 (2011), 18:1—
18:24.

Valerie King, Jared Saia, Vishal Sanwalani, and Erik Vee. 2006. Scalable leader
election. In Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 990-999.

https://eprint.iacr.org/2020/130

Session 6: Byzantine Agreement and Broadcast PODC ’21, July 26-30, 2021, Virtual Event, Italy

[49] Leslie Lamport. 1979. Constructing Digital Signatures from a One Way Function [56] Tal Rabin and Michael Ben-Or. 1989. Verifiable Secret Sharing and Multiparty
(sri international ed.). Technical Report CSL-98. SRI International. Protocols with Honest Majority (Extended Abstract). In Proceedings of the 30th

[50] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. 1982. The Byzantine Annual Symposium on Foundations of Computer Science (FOCS). 73-85.
Generals Problem. ACM Transactions on Programming Languages and Systems 4, [57] Paul Valiant. 2008. Incrementally Verifiable Computation or Proofs of Knowledge
3 (1982), 382-401. Imply Time/Space Efficiency. In Proceedings of the 5th Theory of Cryptography

[51] Yehuda Lindell, Anna Lysyanskaya, and Tal Rabin. 2006. On the composition of Conference (TCC). 1-18.
authenticated Byzantine Agreement. 7. ACM 53, 6 (2006), 881-917. [58] Jun Wan, Hanshen Xiao, Srinivas Devadas, and Elaine Shi. 2020. Round-Efficient

[52] Steve Lu, Rafail Ostrovsky, Amit Sahai, Hovav Shacham, and Brent Waters. Byzantine Broadcast Under Strongly Adaptive and Majority Corruptions. In
2013. Sequential Aggregate Signatures, Multisignatures, and Verifiably Encrypted Proceedings of the 18th Theory of Cryptography Conference (TCC), part I. 412-456.
Signatures Without Random Oracles. Journal of Cryptology 26, 2 (2013), 340-373. [59] Jun Wan, Hanshen Xiao, Elaine Shi, and Srinivas Devadas. 2020. Expected

[53] Silvio Micali. 1994. CS Proofs (Extended Abstracts). In Proceedings of the 35th Constant Round Byzantine Broadcast Under Dishonest Majority. In Proceedings
Annual Symposium on Foundations of Computer Science (FOCS). 436-453. of the 18th Theory of Cryptography Conference (TCC), part I. 381-411.

[54] Silvio Micali, Michael O. Rabin, and Salil P. Vadhan. 1999. Verifiable Random Func- [60] Andrew Chi-Chih Yao. 1982. Protocols for Secure Computations (Extended Ab-
tions. In Proceedings of the 40th Annual Symposium on Foundations of Computer stract). In Proceedings of the 23rd Annual Symposium on Foundations of Computer
Science (FOCS). 120-130. Science (FOCS). 160-164.

[55] Marshall C. Pease, Robert E. Shostak, and Leslie Lamport. 1980. Reaching Agree-
ment in the Presence of Faults. 7. ACM 27, 2 (1980), 228-234.

330

	Abstract
	1 Introduction
	1.1 Our Results
	1.2 Technical Overview

	2 Succinctly Reconstructed Distributed Signatures
	2.1 Definition
	2.2 SRDS Constructions

	3 Balanced Communication-Efficient Byzantine Agreement
	3.1 Functionalities used in the Protocol
	3.2 Byzantine Agreement Protocol

	Acknowledgments
	References

