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Abstract. Induced subgraph isomorphism search finds the occurrences of
embedded subgraphs within a single large data graph that are strictly isomorphic
to a given query graph. Labeled graphs contain object types and are a primary
input source to this core search problem, which applies to systems like graph
databases for answering queries. In recent years, researchers have employed GPU
parallel solutions to this problem to help accelerate runtimes by utilizing the
filtering-and-joining framework, which first filters vertices that cannot be part
of the solution then joins partial solutions with candidate edges until full iso-
morphisms are determined. However, the performance of current GPU-based
solutions is hindered by limited filtering effectiveness and presence of extrane-
ous computations. This paper presents G-Morph, a fast GPU-based induced sub-
graph isomorphism search system for labeled graphs. Our filtering-and-joining
system parallelizes both phases by upfront eliminating irrelevant vertices via a
novel space-efficient vertex signature hashing strategy and efficiently joining par-
tial solutions through use of a novel sliding window algorithm (slide-join) that
provides overflow protection for larger input. Together these techniques greatly
reduce extraneous computations by reducing Cartesian products and improving
edge verification while supporting large scan operations (split-scan). G-Morph
outperforms the state-of-the-art GPU-based GSI and CPU-based VF3 systems
on labeled real-world graphs achieving speedups of up to 15.78× and 43.56×
respectively.

Keywords: Graph databases · Subgraph isomorphism · Breadth-first search ·
GPU programming · Parallel computing

1 Introduction

Labeled real-world graphs are ubiquitous and naturally arise as social networks [9],
knowledge graphs [23], information networks [22], and various other types. These
schemaless graphs are processed to extract insightful analytics in real time. Designing
efficient, cost-effective graph analysis systems that process structurally diverse graphs
has become an important research problem that is receiving considerable attention.

Given a query graph Gq and data graph Gd, one such graph analysis problem sub-
graph isomorphism search is deployed when one is interested in finding subgraphs
of Gd that are isomorphic (i.e. same structure with labels) to Gq. Chemical sub-
structure search [18], protein-protein interaction network search [5], and RDF graph
databases [28] are select applications that benefit from subgraph search systems.
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Fig. 1. Example with vertex labels (colors) & edge labels and results table M .

Root

v0

X

v2

v5

v3

X

v4

v1

M

v9

X

v8

X

v7

v5

X

v8

v3

X

v4

X

v9

v6

M

u0:

u1:

u2:

u3:

Fig. 2. Search tree for Fig. 1 graph with filtering based on vertex label per level. X is a pruned
endpoint andM is a valid match.

Consider Fig. 1 with Gq, the query graph, and Gd, the data graph. The subgraph
search system finds isomorphic subgraph matches M where rows are matches m
with corresponding label-preserving vertex mappings u �→ v. This work handles both
induced and non-induced versions of this search problem. In Fig. 1(c), the system would
only return m = 2 if only induced matches are allowed since m = 2 does not contain
extra edges between mapped data vertices. The match at m = 1 would be omitted
because the non-edge (u3, u1) in Gq is not a valid match to the edge (v1, v5) in Gd.

Traditional subgraph isomorphism search algorithms [7,8,11,25,30] are generally
based on a 2-phase filtering-and-verifying design [15]. The filtering phase performs
vertex elimination to filter out initial nonsolution vertices. The verifying phase performs
recursive backtracking to traverse a search tree (Fig. 2) such that each level of the tree
represents a query vertex map and each path from the root to leaf in the tree represents
a possible match. Existing algorithms explore novel methods of pruning the search tree.

Subgraph isomorphism search is NP-hard [21] and considered a computationally
demanding problem to solve. In recent years, progress has been made to accelerate
runtimes via deployment on distributed [20] and multithreaded platforms [6,17,19].
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Table 1. Comparison of filtering-and-joining strategies.

System Filter Join (edges) Join (M table)

GpSM [24] Initialize-recurse Verify-write Verify-write

GSI [29] Local indexing N/A Prealloc-combine

G-Morph Local+cycle indexing Slide-join Verify-write

Specifically, the graphics processing unit (GPU) has shown to be an efficient and
cost-effective platform to implement parallel graph algorithms [14,27]. With design
principles of avoiding warp divergence [10] and favoring coalesced memory accesses,
subgraph search on GPUs that run in single-instruction multiple data (SIMD) fashion
has seen promising results with systems including GpSM [24], GunrockSM [26], and
GSI [29].

GPU-accelerated systems are based on a 2-phase filtering-and-joining strategy
where the joining phase is a parallelism friendly form of verifying. The filtering phase
analyzes each vertex in Gd and determines via filtering strategies if data vertex vi is a
member of the query candidate set C(uj), that is, if vi ∈ C(uj), and adds only relevant
data vertex candidates to each query candidate set. The joining phase takes as input the
candidate vertices and performs a parallel set join operation between adjacent candidate
vertices to incrementally build valid partial matches until final matches M are realized.

Problems. Existing GPU-based systems propose different parallel strategies that handle
both filtering and joining phases, but are prone to contribute to extraneous computations
in both phases. Effective filtering of irrelevant vertices as well as efficient filtering in
terms of time and space are key to eliminate extraneous search paths. The joining phase
is prone to extraneous edge verification depending on algorithms used.

Current filtering strategies employed byGpSM andGSI (Table 1) present a tradeoff
between filtering time and space required. GpSM’s initalize-recurse suffers from mul-
tiple execution rounds but benefits from no metadata overhead. GSI’s local indexing
uses precomputed signatures to perform faster filtering but signatures used are prone to
higher storage costs and only index immediate neighbors.

Joining consists of candidate edge and M table construction. The duplication of
edge verification, the determination of adjacency between candidate vertices, when con-
structing candidate edges is a performance issue. GpSM’s verify-write (Table 1) is
employed in both joining parts, which involves duplicate verification by counting the join
size before writing results to an allocated array. GSI’s vertex-centric prealloc-combine
avoids duplicate joins via preallocation, but lacks candidate edges for fast lookups.

Our Approach. In this paper we present G-Morph, an efficient GPU-based, filtering-
and-joining subgraph isomorphism search system of labeled graphs, the first to support
both induced and non-induced matches. Our design goal is to exploit labels to quickly
eliminate irrelevant vertices and to improve edge verification, both of which limit extra-
neous computations. We propose joining phase algorithms that complement our filtering
strategy while utilizing GPU parallelism and coalesced memory accesses.

We propose a novel space-efficient vertex signature local+cycle indexing strategy
(Table 1) that leverages vertex properties of labeled graphs and stores them as hash
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codes used for fast membership decisions. Compared withGpSM, local+cycle indexing
quickly filters in one round. Comprised local (LOC) and triangle cycle (TRI) hash codes
facilitate fast filtering with integer-wise metadata (a compact alternative of GSI).

We propose a novel sliding window algorithm slide-join for efficient joining, which
builds candidate edges without duplicate edge verification (an improvement of GpSM)
and offers overflow protection by segmenting the Cartesian product space. Utilizing
efficient candidate edges with slide-join can lead to speedups over the GSI vertex-
centric strategy. Additionally, split-scan is employed to support large scans [2].

Experiments show that our system achieves significant speedups over current state-
of-the-art CPU- and GPU- based systems on labeled graphs. On labeled real-world
graphs, G-Morph handily outperforms the best available GPU-based GSI and CPU-
based VF3 algorithms delivering speedups of up to 15.78× and 43.56× respectively.

2 Preliminaries: Subgraph Isomorphism Search

Our goal is to find all subgraph isomorphisms, i.e. matches, of a single large data graph
Gd such that each instance is subgraph isomorphic to a given query graph Gq . This
paper considers undirected labeled graphs supporting both vertex and edge labels.

Definition 1 (Labeled Graph). A labeled graph is defined as 4-tuple G = (V,E,L, l),
where V is a set of vertices, E ⊆ V ×V is a set of edges, L is a vertex labeling function,
and l is an edge labeling function.

Definition 2 (Graph Isomorphism). Given two labeled graphs Ga = (Va, Ea, La, la)
and Gb = (Vb, Eb, Lb, lb), Ga is graph isomorphic to Gb iff a bijective function f :
Ga �→ Gb exists such that:

(i) ∀ u ∈ Va, La(u) = Lb( f(u) )
(ii) ∀ (u, v) ∈ Ea, (f(u), f(v)) ∈ Eb ∧ la( (u, v) ) = lb( (f(u), f(v)) )
(iii) ∀ (f(u), f(v)) ∈ Eb, (u, v) ∈ Ea ∧ lb((f(u), f(v))) = la((u, v))

Definition 3 (Subgraph Isomorphism). Given two labeled graphs Gq = (Vq,
Eq, Lq, lq) and Gd = (Vd, Ed, Ld, ld), Gq is subgraph isomorphic to Gd if an injective
function f : Gq �→ Gd exists such that:

(i) ∀ v ∈ Vq, f(v) ∈ Gd ∧ Lq(v) = Ld(f(v))
(ii) ∀ (u, v) ∈ Eq, (f(u), f(v)) ∈ Ed ∧ lq(u, v) = ld(f(u), f(v))

Graph and subgraph isomorphism are decision problems. However, practical real-
world applications benefit more from listing the matches of subgraphs found via sub-
graph isomorphism search, which is the problem studied here.

Definition 4 (Subgraph Isomorphism Search). Given two labeled graphs Gq =
(Vq, Eq, Lq, lq) and Gd = (Vd, Ed, Ld, ld), subgraph isomorphism search finds all
matches, m ∈ M , of Gd, where a match is a representative subgraph of Gd that is
subgraph isomorphic to Gq.
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Table 2. Notation.

Symbol Definition

C Set(Vq) Total candidate set of all data vertices ∀u ∈ Vq

C(u) Candidate set of data vertices for query vertex u

N(u) Neighbor set of u ∈ V

deg(u) Degree of vertex u

M ′, M Partial matches table, Final matches table

m ∈ M Subgraph isomorphism match instance

freq(L(u)) Count of unique vertices labeled by L

L, |L| Set of vertex labels, Count of distinct vertex labels

�, |�| Set of edge labels, Count of distinct edge labels

V S List(V ) Total vertex signature list ∀u ∈ V

V S(u) Vertex signature of u ∈ V

∨, ⊕ Bitwise OR, Bitwise XOR

<< (n, m) Rotational left shift n by m bits

E Hash code in definitions

Definition 5 (Induced Subgraph Isomorphism Search). Given labeled graphs Gq =
(Vq, Eq, Lq, lq) andGd = (Vd, Ed, Ld, ld), induced subgraph isomorphism search finds
all matches, m ∈ M , of Gd, where a match is a representative subgraph of Gd that is
graph isomorphic to Gq.

The stricter induced version of the search problem prohibits extra edges between
mapped vertices ∀m ∈ M that do not appear in the Gq, i.e. ∀m ∈ M , there is a valid
match of both edges and non-edges between Gq and m. Table 2 contains key notations.

3 Vertex Signature Hashing

We define our space-efficient vertex signature V S(u) used as our local+cycle indexing
strategy, which comprises of two hash codes for high filtering power to help reduce
extraneous computations in joining. We later discuss & evaluate our implementation.

3.1 Vertex Signature

The vertex signature encodes local and cycle properties of v, exploits surrounding N(v)
information for local filtering to extract data that is specific to v ∈ Vd, and is used for
filtering purposes w.r.t. u ∈ Vq. Additionally, cycle properties are utilized to express
refined filtering with triangles that local properties would not be able to exploit.

Definition 6 (Local Label Encoding - LOC). Given a vertex u ∈ V and hash function
f , a local label encoding (LOC) is an n-length bit-vector hash code Eloc that incorpo-
rates neighboring edge/vertex label pairs ∀v ∈ N(u), l((u, v)) and L(v), s.t. Eloc is the
bitwise ∨ result computed as:
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Fig. 3. Example depictions of LOC and TRI.

Eloc = f( l( (u, v0) ), L(v0) ) ∨ f( l( (u, v1) ), L(v1) ) · · · ∨
f( l( (u, v|N(u)|−1) ), L(v|N(u)|−1) ).

Example 1 (Local Label Encoding). Given Fig. 3(a), where L(v0) = A, L(v1) = R,
L(v2) = G, L(v3) = B, l( (v0, v1) ) = α, l( (v0, v2) ) = β, and l( (v0, v3) ) = γ,
assume n = 8, vertex and edge labels map to integers, and hash function f(x, y) =<<
(1, y ∗ |�| + x), the Eloc at vertex v0 is:

Eloc = f( α,R ) ∨ f( β,G ) ∨ f( γ,B )
= [0, 0, 0, 0, 1, 0, 0, 0] ∨ [0, 1, 0, 0, 0, 0, 0, 0] ∨ [0, 0, 0, 0, 0, 0, 1, 0]
= [0, 1, 0, 0, 1, 0, 1, 0]

Definition 7 (Triangle Edge Encoding - TRI). Given a vertex u ∈ V and hash func-
tion g, ∀ v ∈ N(v), a triangle edge encoding (TRI) is an n-length bit-vector hash code
Etri that encapsulates vertex and edge labels of immediate triangles of u such that u,
a, and b form a triangle, which is a subgraph 
 where a ∈ N(u), b ∈ N(u), and there
exists an edge, i.e. triangle edge, between a and b. ∀
 ∈ N(u), Etri is the bitwise ∨
result computed as:

Etri = g ( L(a0), L(b0), l( (a0, b0) ) ) ∨ g ( L(a1), L(b1), l( (a1, b1) ) ) · · · ∨
g ( L(a|�|−1), L(b|�|−1), l( (a|�|−1, b|�|−1) ) ).

Example 2 (Triangle Edge Encoding). Given Fig. 3(b), assume n = 8, vertex
and edge labels map to integers, and hash function g(x, y, z) =<< (1, ( (x ⊕ y)
mod |L| ) ∗ |�| + z), the Etri at vertex v0 is:

Etri = g(G,C, ζ) ∨ g(R,B, ε)
= [1, 0, 0, 0, 0, 0, 0, 0] ∨ [0, 0, 0, 0, 0, 0, 0, 1]
= [1, 0, 0, 0, 0, 0, 0, 1]

Definition 8 (Vertex Signature). Given a vertex u ∈ V , a vertex signature is a 2-tuple
V S(u) = (Eloc, Etri) that represents a |Eloc| + |Etri|-length bit-vector encoding of u.
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3.2 Implementation and Evaluation

We store hash codes Eloc and Etri as 64-bit unsigned integers regardless of |L| and |�|
as a general-purpose, space-efficient strategy using f and g previously defined. Data
signatures ∀v ∈ Vd are generated offline while query signatures ∀u ∈ Vq are generated
at runtime, which are compared against each other to determine C(u) membership:

1 typedef unsigned long long u l l 64;
2 bool dve r t ex i s cand ida te(u l l 64 on l ine , u l l 64 o f f l i n e ) {
3 return on l i ne & o f f l i n e == on l i ne;
4 }

Our filtering in G-Morph (GM) differs from GSI [29] with size flexibility since
GSI stores 2-bit counts per vertex sized 2|L| ∗ |�|, which may become large if directly
implemented with large unique label counts. GM guarantees matching vertex labels,
which saves space, differs from [29,31], and is used to optimize joining. Our TRI fil-
tering strategy is based on triangles rather than connecting edges [31] and utilizes the
XOR operator, |L|, and |�| to evenly distribute possible input combinations.

We compared GM filtering against the filtering described in GSI. We used graphs
identified in Table 4 (later in the paper) with 64-bit unsigned integers for both LOC and
TRI, sized |Eloc|+|Etri| = 128 bits, which equaledGSI’s signature 2|L|∗|�| = 128 bits
with dataset |L| = 8 & |�| = 8. Exact label and max degree filtering were applied with
a uniquely labeled triangle query. Minimum candidate sizes (Table 3) were obtained.

Table 3. GM vs. GSI: comparing filtering effectiveness.

Graph |Vd| GM (min(|C(u)|)) GSI (min(|C(u)|))
CM 23k 37 59

AM 335k 132 392

DB 317k 442 695

EN 37k 139 167

BK 58k 98 164

GO 197k 570 745

FB 22k 158 181

GM filters more candidates in this scenario due to the distinct pair labeling of the
query graph when signature sizes match. We see the addition of TRI is effective and
helps filter additional candidates that would otherwise be unfiltered. We acknowledge
that GSI may filter more vertices in other scenarios but with a space penalty of larger
signature sizes.

4 G-Morph

In this section, we describe G-Morph, an efficient GPU-based induced subgraph iso-
morphism search system. We begin with a high-level overview then transition to
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Fig. 4. Subgraph isomorphism search with G-Morph.

describe the specific algorithms used within each stage. G-Morph uses the filtering-
and-joining framework with control flow in Fig. 4. Inputs of a query graph Gq =
(Vq, Eq, Lq, lq) and a larger data graph Gd = (Vd, Ed, Ld, ld), which are compressed
sparse row (CSR) undirected graphs, are used to output M containing matches.

The filtering phase utilizes additional inputs, the offline & online vertex signature
lists V S List(Vd)& V S List(Vq), respectively. V S List(Vd) is generated if null. The
2D array sized O(|Vq||Vd|) stores true at index (i, j) if Vd(j) is a candidate of Vq(i)
(false otherwise). After elimination, this phase generates the compacted C Set(Vq)
(line 9) that stores numerical data for vertex candidates ∀u ∈ Vq.

The joining phase first computes a join order via BFS of Gq. The first node and sub-

sequent branches are selected according to adopted function Rank(u) = freq(Ld(u))
deg(u)

[11], which favors higher degree query vertices with less frequently occurring Gd

labels. C Set(Vq) is the input in vertex joining that joins adjacent candidate vertices
together to form the label-compliant candidate edges (line 13). Lastly, using join order,
the candidate edges are connected together to build partial M ′ and final M matches.

4.1 Parallel Filtering

The filtering procedure accepts inputs V S List(Vq) and V S List(Vd), which are
the online and offline vertex signatures, respectively, with the goal of populating
C Set(Vq), the 2D array that stores candidate vertices. Our vertex signature strat-
egy utilizes LOC and TRI bit-vector encodings described in Sect. 3, which offer fast,
branchless, vertex elimination in parallel on the GPU.

A host procedure launches a kernel (see Fig. 5) ∀u ∈ Vq with |Vd| threads per
launch. C(u) ∈ C Set(Vq) is passed to the kernel to set C(u) elements to true or
false (i.e. filtered). Vertices v ∈ Vd must pass a vertex label filter (line 6) to proceed to



410 B. Rowe and R. Gupta

Fig. 5. Parallel filtering kernel.

encoding comparisons (see Sect. 3) to reduce signature memory accesses; comparisons
occur in the order of LOC then TRI. Line 11 guarantees that deg(v) is greater than or
equal to deg(u), otherwise, v is filtered. A barrier synchronizes kernel launches per u.

4.2 Split-Scan Compaction

The compaction procedure converts the Boolean arrays of C Set(Vq) to newly allo-
cated compacted numerical arrays, i.e., each true at i is replaced by vi and each false
no longer occupies space between numerical values. The algorithm used to generate
the output indices array to compact C Set(Vq) is split-scan, a wrapper for an ordinary
GPU-based scan. The advantage of split-scan is that it bypasses thread limits per scan.

The split-scan algorithm works as follows on the example in Fig. 6. It first finds the
size of each split by dividing the input array size by 2 until the size is less than or equal
to a threshold value (e.g. max thread count). The first row of Fig. 6 is the input array,
middle rows are intermediate values, and the last row has the output. The split size is
4 (by color); X is a value yet to be accessed. An exclusive scan is run on each split
iteratively with adjustments from each last value (e.g. 0 + 2, 1 + 4, and 1 + 5).

Fig. 6. Example of split-scan with intermediate values shown.
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Compaction iterates each C(u) ∈ C Set(Vq) and uses split-scan to generate the
array of indices necessary to compact C Set(Vq) sized as the last value of split-scan.
Kernels are launched with original and split-scan arrays to populate compacted arrays.

4.3 Slide-Join

Given compacted C Set(Vq) and edge-based join order, the vertex joining step per-
forms adjacency checks in C(u1) × C(u2) for each edge (u1, u2) in the join order.
Our sliding window algorithm slide-join performs edge verification once and provides
overflow protection for larger input via segmentation.

Candidate edges adopt a CSR-like data structure [24]. The candidate edges of a
given (u1, u2) comprise of arrays: row offsets (abbr. ver), column indices (abbr. edg),
and destination values (abbr. val). The last panel (Fig. 7) depicts a final structure.

Slide-join builds CSR-like structures per join order edge (u1, u2) that represents
candidate edges (vi, vj) ∈ C(u1) × C(u2). The Cartesian product size is compared
against a max threshold to determine segment usage. It creates the adjacency (abbr. adj)
array in parallel where the value at i ∗ |C(u2)|+ j is 1 if vi ∈ C(u1) is adjacent to vj ∈
C(u2) s.t. lq((u1, u2)) = ld((vi, vj)) (0 otherwise) then compacts adj via split-scan.
We launch additional kernels to populate each CSR-like array. If the threshold value is
exceeded, this process is performed by segment of the C(u1) against all of C(u2) with
the window size calculated s.t. its value by |C(u2)| cannot exceed the threshold to build
partial structures. Finally, kernels coalesce partials together and reindex ver in parallel.

Figure 7 illustrates slide-join with segmented candidate edge building. The window
size is 2 and each partial structure is built iteratively. The first panel depicts (v0, v1),

Fig. 7. Depiction of slide-join to join vertices and build candidate edges of a query edge.
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(v2, v1) and (v2, v3) as valid candidate edges from adj array using the indexing rules.
The last panel depicts the final coalesced structure with reindexed ver values.

4.4 Edge Joining

Lastly, we build M from built candidate edges. Iteratively using the join order, partial
matches M ′ are built until final matches M are realized. Our adopted edge joining
[12,24] strategy counts the number of matches per row in M ′ then allocates enough
memory to write out the matches to M ; split-scan determines the write address.

Specifically, this step first builds M ′ with initially two columns representing the
first candidate edge. Subsequent candidate edges are iteratively joined to M ′, growing
column width size, using joining rules between existing M ′ and the next connecting
C(ui) of the join order, which is done via edge verification kernels with binary search
of potential extensions and split-scan for write addresses in M ′. Processing continues
until partial solutions grow to the final M table after iterating all join order edges.

Furthermore, our system supports both induced and non-induced matching logic
determined by the user and offers split-scan to exploit the sorted candidate edges
of slide-join for edge verification. We avoid duplicate checks with guaranteed label
matches and use a strided memory layout of M for coalesced memory accesses since
each row is accessed by a contiguous thread index.

5 Experimental Evaluation

We evaluate G-Morph with real-world and synthetic graphs by measuring runtimes;
scalability is measured by varying query and data sizes. We used some graphs from the
Stanford Large Network Dataset Collection (SNAP) [16] repository. Synthetic graphs
were generated with PaRMAT [13]. All graphs are undirected with self-loops removed.
G-Morph outputs correct, exact solutions and was extensively compared against the
output of Boost VF2 [1] and tested systems.

The experiments were performed on a machine with one GPU and one CPU –
NVIDIA GeForce RTX 2080 Ti with 68 SMs and 11GB of GDDR6 RAM, 8-core Intel
Core i7-9700K running Ubuntu 18.04, kernel 4.15.0-106-generic, with 32GB DDR4
RAM and solid-state storage, and CUDA Toolkit 10.2. All runtimes presented are aver-
ages over five repetitions of the same experiment. Graph load times and offline metadata
generation times on all systems were not factored in and runtimes were calculated when
the final solution was stored into memory.
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A B
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Fig. 8. Query graphs: Q0 is needed to evaluate TRI while Q1 and Q2 are generic pattern types
previously used in other similar evaluations [19].
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Table 4. SNAP graph datasets used in evaluation.

ca-CondMat com-Amazon com-DBLP email-Enron loc-Brightkite

ID CM AM DB EN BK

|Vd| 23k 335k 317k 37k 58k

|Ed| 93k 926k 1.05M 184k 214k

loc-Gowalla musae-Facebook web-Google web-NotreDame web-Stanford

ID GO FB WG WN WS

|Vd| 197k 22k 876k 326k 282k

|Ed| 950k 171k 5.11M 1.50M 2.31M

Table 5. Comparison on real-world graphs as runtimes (ms).

Graph GM-TL GM-L GSI VF3 VF3P

CM 1.04 1.10 8.47 1.35 80

AM 2.80 3.20 44.17 43.16 10,668

DB 3.46 3.82 40.31 41.31 9,491

EN 0.954 0.952 10.39 4.00 132

BK 0.980 0.983 11.74 4.12 269

GO 2.88 3.33 31.65 47.41 3,602

FB 0.89 0.90 9.13 3.45 79.9

WG 19.71 19.93 115.10 385.80 180,628

WN 3.57 3.93 36.60 33.37 6,254

WS 5.38 5.56 54.86 168.17 8,515

WG5 102.27 170.25 118.91 1,633 400,946

WN5 10.85 15.62 38.5 109.21 18,210

WS5 42.46 42.61 71.55 1,827 29,288

EN1 N/A 542.19* 163.32 23,620 N/A

GO1 N/A 9,961* 1,802 167,743 N/A
*LOC off due to unlabeled graph.

5.1 Real-World Graphs

The experiments in this section were designed to measure the effectiveness of our over-
all strategy for real-world graphs. We obtain runtimes to measure the performance ofG-
Morph against a variety of real-world SNAP datasets (Table 4). All graphs were undi-
rected; web-type graphs were converted for evaluation. Data graph labeling: |L| = 10
& |�| = 5 for graphs with no suffix number (e.g. EN), |L| = |�| = 5 for graphs suffixed
with “5” (e.g.WG5), and |L| = |�| = 1 for graphs suffixed with “1” (e.g. EN1). Query
graph: Q0 (Fig. 8(a)) with distinct edge labels (unlabeled in “1” suffixed graphs).

We measure G-Morph (GM) under two modes: (1) GM-TL (LOC & TRI on) and
(2)GM-L (LOC on, TRI off).GM is compared against the best existing systems – GPU-
based GSI [4] and CPU-based VF3 [3]. The multithreaded version of VF3, VF3P, was
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used with 8 threads. Table 5 shows thatGM outperformsGSI, VF3, and VF3P for most
graphs. GM-TL achieved a max speedup of 15.78× vs. GSI, AM. It obtained speedups
of 43.56× vs. VF3, EN1 and 9165× vs. VF3P, WG.

GM-TL outperforms GM-L due to indexing triangles. WG5 experienced the great-
est benefit from TRI usage, which proves the effectiveness of TRI especially in larger
graphs (WG is the largest tested w.r.t. |Vd|). GM-L alone outperforms GSI in most
cases, suggesting TRI is optional for smaller graphs if more space is needed since LOC
with slide-join often produce ample speedups.

Although this paper’s focus is labeled graphs, two unlabeled experiments (EN1 &
GO1) were run for completeness with LOC & TRI off. GM easily outperformed VF3
in these unlabeled experiments, but GSI outperformed GM in this case. VF3P crashed
with no results here and VF3P also experienced relatively slow runtimes throughout.

5.2 Scalability

This subsection measures G-Morph performance against other systems by increasing
the data graph and query graph size, respectively. All experiments have LOC enabled
while the experiment using Q0 also has TRI enabled.

Data Graph Size: We study the scalability of G-Morph with varying data graph size.
Five input RMAT graphs started at size |Vd| = 50k and |Ed| = 200k and doubly scaled
|Vd| & |Ed| (largest |Vd| = 250k and |Ed| = 1M). The same datasets were run vs.
three query patterns (Fig. 8). The labeling scheme was: Q0 as |L| = |�| = 3, Q1 as
|L| = |�| = 5, and Q2 as |L| = 7 & |�| = 3. Gd used the same labeling counts per
query graph.G-Morph (GM) is compared againstGSI and VF3 with induced matches.
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(b) Tree Q1 as Input.
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(c) Path Q2 as Input.

Fig. 9. Scalability with increasing data size.
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Fig. 10. Scalability with increasing query size.

Figure 9 shows results across all query graphs from Fig. 8 with runtimes (ms)
against dataset sizes. GM outperforms the best existing systems with promising scala-
bility. GM speedups are significant against smaller datasets but level out as they scale.
GM achieves speedups up to 23.15×, 6.47×, and 5.34× vs.GSI on respective patterns.
Speedups vs. VF3 were around 47.39×, 4.14×, and 1.39× on respective patterns.

Query Graph Size: We measure GM scalability with varying query size. Path queries
with an incrementing size were used against an RMAT dataset (|Vd| = 100k, |Ed| =
2M, |L| = 10, |�| = 5). Vq were distinctly labeled; Eq labeled with incrementing value
mod|�|. Experimental configuration: induced mode off vs. GSI and on vs. VF3.

GM outperformed both GSI and VF3 in these experiments too. Figure 10 shows
promising scalability of GM against GSI and especially VF3. GM’s runtime increases
very slowly with query size, especially against VF3 with induced matches. GM’s
speedups against GSI and VF3 were 2.6× and 8.19×, respectively, for the query size
of 9.
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6 Conclusions

We presented G-Morph, an efficient GPU-based subgraph isomorphism search system
on labeled graphs. We proposed a novel space-efficient vertex signature strategy that can
be implemented as integers with good filtering power of proposed LOC and TRI codes
implementing local+cycle indexing. By reducing downstream Cartesian products and
improving edge verification, extraneous computations are limited. We also proposed
a novel joining procedure slide-join, a sliding window algorithm that avoids duplicate
edge verification and offers overflow protection; split-scan handles large scans. Experi-
ments on labeled real-world graphs show G-Morph outperforming both GSI and VF3.
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