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Abstract

A discrete and periodic complex Ginzburg-Landau equation, coupled to a discrete
mean equation, is systematically derived from a driven and dissipative oscillator model,
close to the onset of a supercritical Hopf bifurcation. The oscillator model is inspired
by recent experiments exploring active vibrations of quasi-one-dimensional lattices of
self-propelled millimetric droplets bouncing on a vertically vibrating fluid bath. Our
systematic derivation provides a direct link between the constitutive properties of the
lattice system and the coefficients of the resultant amplitude equations, paving the
way to compare the emergent nonlinear dynamics—namely discrete bright and dark
solitons, breathers, and traveling waves—against experiments. Further, the amplitude
equations allow us to rationalize the successive bifurcations leading to these distinct
dynamical states. The framework presented herein is expected to be applicable to a
wider class of oscillators characterized by the presence of a dynamic coupling potential
between particles. More broadly, our results point to deeper connections between

nonlinear oscillators and the physics of active and driven matter.



1 Introduction

The celebrated complex Ginzburg-Landau equation (CGLE) [1, 2] is a generic model de-
scribing the dynamics of spatially extended, dissipative systems near a Hopf bifurcation.
In contrast to the potentially complex, high-dimensional microscopic equations regulating a
particular physical system, amplitude equations [3, 4] such as the CGLE are typically cast
in terms of only a few macroscopic variables, or order parameters [5, 6, 7, 8, 9]. In gen-
eral, the form of such effective models may be posited on phenomenological grounds, their
structure determined through a combination of linear stability and symmetry arguments
[3]. This universal approach can, however, obfuscate the connection between the coeffi-
cients of the amplitude equation and the physical parameters of the system under study.
A more robust approach sacrifices derivational simplicity in favor of obtaining the ampli-
tude equation(s) directly from the underlying microscopic equations of the system, typically
continuous nonlinear partial differential equations [10, 11, 12, 13]. However, for systems
which are fundamentally discrete—for example, nonlinear oscillators—amplitude equations
are typically posited as discretized versions of their continuous counterparts, seldom derived
in a systematic manner from the original governing equations [14, 15, 16].

We herein present a rigorous framework to systematically derive a discrete and periodic
complex Ginzburg-Landau equation (ACGLE) for a driven and dissipative nonlinear oscilla-
tor, close to the onset of a supercritical Hopf bifurcation. The oscillator model is inspired by
recent experiments exploring the active vibrations of a hydrodynamic lattice of self-propelled
millimetric droplets [17, 18]. The coefficients appearing in our dCGLE are directly related
to the constitutive properties of the physical lattice system, paving the way to compare the
numerical results of the resultant amplitude equations—mnamely the emergence of discrete
bright and dark solitons, breathers, and travelling waves—against experiments. Further, the
amplitude equations allow us to rationalize the successive bifurcations leading to these dis-
tinct dynamical states. Although we present the case of the hydrodynamic lattice, we propose
that the framework presented herein is applicable to a wider class of oscillators characterized
by the presence of a dynamic coupling potential between particles. On a fundamental level,

our results suggest deeper connections between nonlinear and nonlocal oscillators and the



physics of active and driven matter [8, 19, 20].

1.1 The hydrodynamic active lattice

This study is motivated by experiments of quasi-one-dimensional lattices of millimetric
droplets, bouncing synchronously and periodically on the surface of a vertically vibrating
fluid bath and confined to an annular channel [17]; see Figure 1. (For a broader perspective
of the physics of bouncing droplets, see [21, 22, 23] and references therein.) Upon successive
impacts, each droplet excites a field of standing waves whose decay time, T}, increases with
the vertical acceleration of the bath and diverges at the Faraday threshold [24, 25]. The
superposition of the wave fields generated by each droplet forms the global lattice wave field,
which acts as an inter-droplet potential, mediating the spatiotemporal coupling of the lattice.
This wave-mediated coupling represents a distinguishing feature of this new class of coupled
oscillator: the waves produced at each droplet impact give rise to an effective self-generated,
dynamic coupling potential between droplets, one that evolves continuously with the droplet
motion.

For sufficiently weak vibrational forcing, the droplets exhibit stationary bouncing in a cir-
cular, equispaced lattice. Above a critical vertical acceleration of the bath (or, alternatively,
critical decay time, T)y), the droplets destabilize to small lateral perturbations, oscillating
about their equilibrium position (Figures 1b and 1c). Physically, these oscillations emerge
due to the competition between droplet self-propulsion—arising through the propulsive force
enacted on each droplet by the local slope of the lattice wave field—and wave-mediated, non-
local coupling between droplets. Oscillations of the lattice are further offset by dissipative
effects due to drag. That self-propulsion is achieved and sustained by the continual exchange
of energy of the droplet with its environment—in this case, the vibrating bath—renders this
hydrodynamic lattice a novel example of an inertial active system [26, 27, 28, 29].

As shown in experiments [17], oscillations of the lattice follow the onset of either a super-
critical or subcritical Hopf bifurcation, depending primarily on the proximity of neighboring
droplets. Our focus here is on the supercritical case, for which periodic, small-amplitude,
out-of-phase oscillations arise beyond the bifurcation point, initially uniform over all droplets.

(When the bifurcation is subcritical, the dynamics are profoundly different: in experiments,
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Figure 1: (a) Overhead perspective of a chain of 40 equispaced, millimetric droplets of silicone
oil, confined to an annular channel and surrounded by a shallow layer of fluid. The reflected
color in the channel emphasises the deformation of the fluid surface as droplets impact the
bath and excite subcritical Faraday waves. (b) A subset of droplet polar positions obtained
from experiments for a lattice consisting of 20 droplets [17]. Each droplet undergoes out-of-
phase oscillations with respect to its neighbor, following a supercritical (Hopf) bifurcation
[18]. (c) The instantaneous positions of all 20 droplets in the lattice for the same experiment
as (b). The net result of the instability is the out-of-phase oscillations of two decahedral

sub-lattices, colored red and blue.

the system approaches a distant attractor and the emergent dynamics manifest as a self-
sustaining, nonlinear solitary-like wave [17].) The dependence of the form of these bifur-
cations on the parameters of the lattice system, and the ensuing dynamics of the uniform,
periodic state, was characterized via a weakly nonlinear analysis of a mathematical model
describing the droplet lattice [18]. Upon further increase of the vibrational forcing, this
periodic state can itself destabilize, leading to spatial modulations of the droplet oscilla-
tion amplitude, a phenomenon not captured by the analysis presented in [18]. To explore
and rationalize the onset and resultant dynamics of these spatial modulations, we present a
generalized weakly nonlinear theory of the lattice, in the vicinity of the supercritical Hopf
bifurcation. We proceed to briefly summarize the results of [18] as they pertain to our

derivation of the governing amplitude equations presented herein.



1.2 Lattice model and linear theory

Model—The principal assumption underpinning the hydrodynamic lattice model [18] is that
the horizontal motion of each of the N droplets in the lattice may be averaged over one
bouncing period, which we denote Tx. This stroboscopic approximation [30] effectively elim-
inates the droplets’ synchronous vertical motion from consideration. To further simplify
matters, we assume that the droplets lie on a circle of constant radius, R, which, in exper-
iments, is determined by the inner and outer radii of the annular channel. Combining this
motion with the stroboscopic approximation yields the following equation of motion for the
circumferential position, x,(t), of each droplet in the lattice [18]:

mi, + Di, = —mg? : (la)
x

=Tn

Dots denote differentiation with respect to time, ¢, and the space variable, = € [0, L = 27 R],
is directed along the circumference of the circle on which the droplets lie. According to
equation (1a), the motion of each droplet of mass m is thus governed by a balance between
inertia, a linear drag with drag coefficient D, and the time-averaged propulsive wave force
enacted on each droplet by the local slope of the lattice wave field, h(z,t). By periodicity,
h(z,t) = h(z + L,t). The remaining parameter, g, is acceleration due to gravity. It is to
be understood that h(x,t) is the stroboscopic global lattice wave field—the time-averaged
superposition of wave fields generated by each individual droplet in the lattice—projected
onto the circle.

A distinguishing feature of the hydrodynamic lattice is that the propulsive wave force
enacted on each droplet depends explicitly on the prior trajectory of every droplet in the
lattice [18, 24, 25, 30]. The time-dependent evolution of the lattice wave field, h, may be
described by

oh 1
—h = 1b
ot T, T 2 Z’H (1v)
where the wave kernel, H (), is the quasistatic wave field generated by stationary bouncing of
each individual droplet, time-averaged over Tr and projected onto the circle [18]. Prompted

by the fundamental aspects of the fluid system [17], our theory requires only that H(x)
be sufficiently smooth and periodic with H(z) = H(x + L), exhibiting variations over a



characteristic wavelength, A, and an exponential spatial decay with lengthscale l4; see Figure
2(b) for a prototypical example. (A candidate wave kernel satisfying these properties is
presented in §3.) In summary, equation (1b) represents a balance between the rate-of-change
of h, wave dissipation, and the superposition of waves generated about the instantaneous
position of each droplet in the lattice.

The dynamical system (1) is non-dimensionalized via the scalings

. A2 hoT.
t="TF=tof, =\ h:—h hoh, — H=—FL
D g() to

H.

Upon dropping the carets, we arrive at the dimensionless system [18]
oh
Tp + Tp = —%(fn,t), (2a)
—+uh ZHx—xm (2b)

where v = to/T) is the dimensionless dissipation rate of the wave field. Recalling that the
decay time, T);, may be regarded as a proxy for the vertical vibrational acceleration of the
bath [24, 25], v plays the role of a control, or bifurcation, parameter in the dimensionless
system (2). While v is convenient for algebraic manipulations, we will interpret our results
in terms of the dimensionless memory parameter, M = 1/v, where the influence of prior
droplet dynamics increases with M. For future reference, we provide a list of the salient
dimensionless parameters related to the lattice model (2) in Table 1.

Linear theory—We consider a static, equispaced lattice with droplet positions x,, = né
and h = v~} Zﬁzl H(z—md), where § = 2rR/AN is the droplet arc-length separation along
the circle of dimensionless radius R/A. The critical value of M above which the wave force
promotes sustained self-propulsion of the droplets, and hence oscillations of the lattice, is
determined from the linear stability of the lattice system (2). We summarize the key results;
full details are presented in [18].

Coinciding with experiments [17], we consider small perturbations of the droplet positions
of the form

xn(t) = nd + n[Aexp(ikna + A\t) +cc], n<1, (3)

with a concomitant perturbation to the wave field, h. Here o = 27 /N is the angular spacing

of the droplets, A is a complex amplitude, i is the imaginary unit, and c.c. denotes complex



Parameter

Definition

Lattice model (2)
T,

N

h

H

a=21/N;d=aR/\=ary
v M =1/v

e=\V.—v;Vv.=1/M,

ke we

droplet positions

number of droplets

stroboscopic lattice wave field

single-droplet quasistatic wave kernel with characteristic
wavelength, A\, decay length, l;, and amplitude, A
droplet angular separation; droplet arc-length separation
dissipation rate of wave field; memory parameter
perturbation parameter; instability threshold for super-
critical Hopf bifurcation

critical wavenumber and angular frequency at supercriti-

cal Hopf bifurcation

Amplitude equations (9)

p=aje; e
A, B,
Cqs 04 Vis D;

bifurcation parameter for amplitude equations; threshold
for onset of spatial modulations

nth droplet oscillation amplitude and rotational drift
group speed; growth coefficients; coupling coefficients; dif-

fusion coefficients

Table 1: List of salient parameters in the lattice model (2), amplitude equations (9), and

stability analysis thereof.



conjugation of the preceding term. The eigenvalues, A, for each integer wavenumber, £,

satisfy the dispersion relation Dy (Ax;v) = 0 [18], where

Co Ck
D) = N2+ N+ — —
k(Aesv) s k+y A, + v

(4)

and the real constants ¢ are defined as

cp = Z cos(kna)H" (nd).

n=1
By symmetry considerations, we need only consider discrete wavenumbers in the interval
k € [0,N], where N = | N/2]. Notably, the coefficients c, depend on both the number of
droplets, N, and the droplet separation, ¢.

After rearranging Dy (Ay;v) = 0 and writing v = 1/M, the eigenvalues, \i, describing
the asymptotic linear stability of the equispaced lattice are roots of the cubic polynomial

Gk (Ag; M), where
Ge( Ak M) = MX] + (M + 1)X; + (coM? + 1)Ae + M (co — cx). (5)

As the memory parameter, M, is increased, the lattice becomes asymptotically unstable if,
for some wavenumber, k, there is at least one eigenvalue, Ag, for which Re(A;) > 0. We
note, however, that a fundamental property of the lattice system is its rotational invariance,
characterized by the neutrally stable eigenvalue A\g = 0. As we shall see in §1.3, this invariance
gives rise to a discrete mean equation coupled to our dCGLE describing the rotational drift
of the lattice.

As discussed in [18], the stability of the lattice system, whose eigenvalues are the roots
of (5), depends in a non-trivial way on the droplet separation parameter, 0, through the
coefficients ¢;. Specifically, the lattice can destabilize via two distinct mechanisms, depending
primarily on the droplet separation, ¢: (i) an oscillatory instability, wherein the real part of
a pair of complex-conjugate eigenvalues transitions from negative to positive as M increases
through M = M. = 1/v., or (ii) a so-called “geometrical instability,” independent of the
memory parameter, M, brought on by geometrical frustration of the lattice wave field. We
focus our attention in this paper on case (i), which arises when ¢ < ¢ for all k£ [18]. In

Figure 2(a), we present an oscillatory instability arising for N = 20 droplets: as the control
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parameter, M, is increased, a single wavenumber k. = N/2 first touches Re(\z.) = 0 for
some critical value of M = M., while Im()\;,) = w. # 0, corresponding to an oscillatory
instability of the lattice. In terms of the coefficients ¢, and critical memory, M., the angular
frequency, w,, satisfies w? = coM, + 1/M,. [18]. Further, that the system destabilizes to a
pair of complex-conjugate eigenvalues points to a Hopf bifurcation [31].

The existence of a Hopf bifurcation was confirmed in [18] by an accompanying weakly
nonlinear stability analysis of the equispaced lattice. The analysis presented in [18] demon-
strates that, just beyond the instability threshold (0 < M — M. < 1), each droplet evolves

according to
2, =nd + [D(T) + O(e)] + € [A(T)eFeroteed) 1 c.c.] + O(e?), (6)

where 0 < € = /v, — v < 1. The slowly varying complex amplitude A(T"), a function of the

slow timescale T' = %t, is governed by a Stuart-Landau equation

dA
ﬁ = O'lA — 5'2|A|2A (7&)

with an accompanying equation governing the evolution of the rotational drift, D, of the
lattice, namely
dD

ar - 3| AJ%. (7b)

The origin of this rotational drift may be traced back to the £ = 0 mode of the dispersion
relation (5), corresponding to rotational invariance. As alluded to earlier, we will find an
analogous equation in the amplitude equations presented in §1.3.

The complex coefficients o1, G2, and 73 in equations (7) are defined in terms of the
parameters of the lattice system (2) [18]. We shall see how they are related to the coefficients
of the amplitude equations derived in this paper in §1.3. For now, we note that, consistent
with the linear instability of the lattice system (2), the coefficient oy satisfies Re(oy) >
0, corresponding to exponential growth of the oscillation amplitude. Whether the Hopf
bifurcation is super- or sub-critical depends on the sign of Re(dq): For Re(gy) > 0, the
bifurcation is supercritical, and subcritical when Re(d2) < 0. Further, when k. = N/2, it is
found that 73 = 0, in which case D = constant, corresponding to an arbitrary shift of the

droplet equilibrium positions.



The stability of the equispaced lattice and its complex dependence on the system param-
eters, is summarized in Figure 2(c). Each region of parameter space is color-coded according
to the type of instability that arises for a lattice of N = 20 droplets as ¢ and the dimension-
less spatial decay length of the wave kernel, [ = [;/\, are varied independently. Of particular
interest here are the green regions, indicating a supercritical Hopf bifurcation. A crucial fea-
ture of the stability analysis just described is the value of the critical wavenumber, k. [18].
When the Hopf bifurcation is supercritical, it is found that k. = |N/2| (except near the
boundaries with subcritical Hopf bifurcations), a fact that we will exploit in §1.3. Further,
when N is odd, a symmetry-breaking, oscillatory-rotary motion of the lattice arises, which
will manifest in §1.3 as a non-zero group speed in our dCGLE.

Numerical simulations of the hydrodynamic active lattice (2) beyond the supercritical
Hopf bifurcation (when v < v, or, equivalently, M > M.) reveal the onset of a second
bifurcation where spatially uniform, small-amplitude oscillations of the droplet positions
give way to spatio-temporal modulations in the droplet oscillation amplitude, arising via a
long-wavelength instability. To capture this second bifurcation, and the ensuing dynamics,
the weakly nonlinear analysis leading to the amplitude equations (7) must be generalized to

account for spatial, as well as temporal, effects.

1.3 The amplitude equations governing the lattice vibrations

Starting from the lattice system (2), we use the asymptotic method of multiple scales [32]
to derive a generalized set of amplitude equations, accounting for both spatial and temporal
modulations of the droplet oscillation amplitude and rotational drift. Specifically, we show

that each droplet position evolves according to
T, =n0+¢ [An(T)ei(kC"a+th) + c.c. + B,(T)] + O(£%), (8)

where A, is the slowly varying complex amplitude of the nth droplet in the lattice, B, is
the rotational drift, and T = &%t is the slow time scale. As is typical in the method of
multiple scales, eliminating secular terms at successive orders of € yields a coupled system

of equations for A, and B,, resulting in a dCGLE coupled to a discrete mean equation:

dA,
dT

+ ILL2CQVA7L - UlAn - U2|An|2An + M’VIAHVBH + MQDlAAm (9&)
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Figure 2: (a) Behavior of the eigenvalues of (4) in the case of a supercritical Hopf bifurcation
for N = 20 droplets. At a critical threshold M = M., a single wavenumber k. = 10
first touches Re(A,) = 0. (b) The prototypical wave-field kernel, H(z), used in numerical
simulations presented herein (see §3.3 for details). (c) Regime diagram summarising the
stability of an equispaced lattice of N = 20 droplets as the parameters [ and § are varied
independently [17, 18], as derived from (5) and (7). We delineate regimes of super- and
sub-critical Hopf bifurcations, as well as geometric frustration of the equispaced lattice. The
diamond indicates the parameter values used in (a) and (b), specifically § = [ = 1.6.

dB,
dT

The operators V and A, defined in §2, are discrete gradient and Laplacian operators, re-

= 1> DyAB,, + 2uRe [12 A, VAX] + pys| A, . (9b)

spectively. In terms of the dissipation rate, v, and the number of droplets, N, the control
parameter, u, in the amplitude equations (9) that arises from our analysis is defined

a 2m

e NVv.—v

Our theory is valid for p = O(1) or, equivalently, « ~ . (We note that this condition

N:

requires that N is sufficiently large.) Spatially uniform oscillations for which A,,(T") = A(T)

11



and B, (T) = B(T) are also captured by our theory, in which case the amplitude equations
(9) reduce in form to the Stuart-Landau equations (7) with D = ¢B. Table 1 provides a
reference list of relevant parameters appearing in the amplitude equations (9).

We pause to emphasize a few aspects of the system (9). With regards to the coefficients,
the group speed, ¢,, growth coefficients, o; (i = 1, 2), coupling coefficients, ; (i = 1,2, 3), and
the diffusion coefficients, D; (i = 1,2), are determined as part of the multiple scales analysis
and are directly related to the physical parameters of the lattice system (2) (see Appendix
A for their algebraic forms). Notably, Dy > 0 and 73 are both real, while the remaining
parameters are all complex with Re(o;) > 0 and Re(D;) > 0. Notably, oo = 72 + O(«),
which is consistent with (7a) as @ — 0 and the absence of spatial effects. Further, a keen
eye will note that the drift term, B,,, appears at O(¢) in the expansion (8), whereas the drift
is an O(1) term in (6). As discussed in Appendix A, this change arises since 73 = ary; when
ke S |N/2] and a ~ € < 1, resulting in 73 = O(1); hence, the drift, D, appearing in (6) is
promoted to higher order, specifically O(e).

We note that, in our system, discreteness originates at the level of the underlying micro-
scopic equations (2), and thus is a connate characteristic of the resultant amplitude equations
(9). This feature is in contrast with discrete versions of the CGLE motivated by a direct
discretization of the continuous CGLE using standard finite difference operators [14, 15, 16].
Similarly, periodicity arises from the periodicity of the lattice, rather than being imposed
ex post facto through periodic boundary conditions [33, 34]. Interestingly, the system (9) is
the discrete and periodic analogue of the amplitude equations describing a host of disparate

physical phenomena presented elsewhere [35, 36, 37, 38].

1.4 Outline

This paper is organized as follows. For the interested reader, we provide further details of the
multiple scales procedure involved in deriving the amplitude equations (9) from the lattice
model (2) in §2. We then proceed to analyze the successive bifurcations of the system (9) in
§3, rationalizing the onset of the second bifurcation leading to a long-wavelength instability
of time-periodic oscillations of the lattice, and eventually to spatiotemporal chaos. Numerical

solutions of the amplitude equations (9) beyond the second bifurcation are presented in §4,
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demonstrating their rich dynamical behavior in the form of traveling waves, bright and dark
solitons, and dark breathers, prompting future comparison with experiments. A review of

our results is presented in §5, along with a discussion of future directions.

2 Mechanics of the weakly nonlinear analysis

The weakly nonlinear analysis leading to the derivation of the amplitude equations (9) as-
sumes slowly varying spatial and temporal modulations of the oscillation amplitude of each
droplet. For a supercritical Hopf bifurcation, stable, small-amplitude oscillations arise when
v is only slightly below the critical threshold, v. (corresponding to M slightly above M.,);
specifically we consider 0 < € = /1, — v < 1 and small perturbations from the equispaced
lattice configuration z,, = nd and h = v ! Zazl H(x — mod). We then pose the following

asymptotic multiple-scales expansions

00 N [e%S)
Ty ~ no + E ezt T), h~— E H(x —md) + E e hD(x,t,T), (10)
Ve ;
m=1 i=1

i=1
where the slow time-scale is T = £2t.

Following the typical recipe for the method of multiple scales, inserting (10) into the
lattice system (2) leads to a hierarchy of problems for 2 and h® at successive orders of
€. A series of solvability conditions must then be satisfied at each order of € to guarantee
the suppression of secular terms that would otherwise lead to unbounded solutions and a
violation of the multiple-scales ansatz. Satisfying the solvability condition arising at O(g3)
leads to the amplitude equations (9). Before arriving there, however, there are several aspects
of the current problem that complicate the weakly nonlinear, multiple-scales analysis of the
lattice system (2). Our derivation falls into three stages: (i) we first solve for the wave field
perturbations, h¥), allowing us to project the wave force onto the droplet trajectories, :vﬁf);
(ii) we next exploit the spatial decay of the wave kernel, H, and the assumed slowly varying
spatial effects to approximate the nonlocal inter-droplet dynamics by p-nearest-neighbor
interactions, where p is determined by the decay length of the wave and the spacing of the
lattice; (iii) finally, we consider the limit of weak asymmetry when the number of droplets

is large (equivalently, when k. departs slightly from N/2). We elaborate on these three key
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ideas below, with a full account provided in Appendix A.

2.1 Solving for the wave field

Our first point of interest is at O(e), where we have the system

0%zl oz ) & Oh)
Zon oy 2 " — — 11
ot? + ot Ve mZ::lH ((n—=m)o) or | _.s (112)
(1) al
on_ +vh D = = " 2WH (2 — md). 11b
0 e ()
m=1

At this stage in conventional multiple-scales analyses of nonlinear oscillators [31, 32|, one

is typically interested in solving for the perturbed oscillator position, xg) , alone. In the

present case, however, we must also contend with equation (11b) governing the free surface
perturbation, (). In order to project the dynamics entirely onto the droplet trajectories,
xS), our first key idea is to use the form of (11b) to define the auxiliary variables, X,
satisfying [18]

X
aatn + v, X, = 2V, (12)

A particular solution of (11b) is then

) = — Z X H' (x — md). (13)

m=1
We neglect the homogeneous solution of (11b), which decays exponentially on the fast time-
scale, t. Now that h") is expressed in terms of the auxiliary variables, X, through equation
(13), the linear system (11) may be recast as a dynamical system for 2 and X,,. Specifically,
substituting (13) into (11a) yields £,z = 0, where z(!) = <x§1), o ,x%?) and the linear

operator, L, is defined as

82$£Ll) 31‘,(11) N %(11) )
Loal) = =i+ =+ D0 | = X | MG — ). (14)
m=1

Informed by the ansatz (3), we now seek a solution to £,z") = 0 of the form

An(T) 1
_Llwm%mﬂm+—&@%“®

x(l) _ An<T)ei(1€cna+WCt) _|_ c.C. + Bn<T)’ Xn — -
Vc + 1wC VC

n
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where we recall that the critical wavenumber of instability, k., and angular frequency, w,,
are determined from linear theory (§1.2). We note that the presence of the subscript n in
both the complex amplitude, A,,, and mean, B,,, generalizes the spatially uniform expansion
(6), which simply leads to a Stuart-Landau equation [18]. By inserting (15) into (14), we
find that

ign IV .
Lz = { . > (A, — An_m)el’“cmaﬂ”(m&} +c.c.
N
+ = Z (B, — Bu_m)H"(md), (16)
¢ m=1

where ¢, = k.na + w.t. We note that, en route to obtaining (16), we first write A,,_,, =
(Ap—m — A,) + A, and then simplify the resultant expression using the properties of the
dispersion relation, namely Dy (A; v.) = Do(0;v,.) = 0.

2.2 Approximating discrete convolutions

We now arrive at the second key idea, which lies at the heart of our analysis: approximating
the discrete convolutions arising in equation (16). When A, and B, are spatially uniform
(i.e. independent of n), the right-hand side of (16) is identically zero. To allow for spatial
variations, we approximately satisfy (16) at this order by approximating the discrete con-
volutions. Recalling the angular spacing parameter, « = 27 /N, we assume a distinguished
limit between the relative sizes of o and . Specifically, we assume o ~ ¢ and thus set
a = pe, where = O(1) is the control parameter arising in the amplitude equations (9).
This limiting case allows us to approximate convolutions by spatially local terms.

The following approximation technique applies to any 27-periodic function F'(#) that
is slowly varying (that is, the derivatives of F' are all of size O(1)) and to any periodic
function G(z) = G(x + L) exhibiting exponential spatial decay. By denoting F,, = F'(ma),

we approximate convolutions of the form

> FumG(md), (17)

m=1

by first introducing an interpolating polynomial of degree 2p passing through the points
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Fop, ..., Fairp. Asjustified in Appendix B, for |m| < p = O(1), we may then express
m2
Fom=F,—amVF, + a27AFn + O(a?), (18)

where V and A are the central finite difference operators approximating the first and second
derivatives of F'(f) using 2p + 1 points spaced « apart. The difference stencils for p = 1 and
p = 2 are listed in Appendix B.

We then exploit the assumed exponential decay of G to extend the polynomial approxi-
mation (18) outside of the interval m = —p, ..., p, only incurring exponentially small errors
when substituting into the convolution, provided that p is sufficiently large. It follows that

the convolution (17) may be approximated by

N
> FimG(md) =
m=1
N N N
Fy Y G(md) = aVF, Y anG(md) + a’AF, Yy buG(md) + 0(a®), (19)
m=1 m=1 m=1

where the periodic coefficients a,, = a,,+ny and b,, = b,y are odd and even, respectively,
defined as

2

1
Uy =M and bm=§m for |m| < N/2,

with an/, = 0 and by, = N?/8 for N even.

The coupling integer p > 0 is chosen so that |G(£pd)| < 1; due to the exponential decay
of G over the length scale [, this condition is equivalent to exp(—pd/l) < 1. Moreover, if p
becomes too large then the neglected terms in (18) may also be large since ap may not be
sufficiently small: hence, p must also satisfy ap < 1. For the case where N is large (o < 1)
and [ ~ ¢, p=1 and 2 adequately satisfy both of these conditions. We note that the larger
the value of p, the greater the level of coupling between droplets in the resultant amplitude
equations (9), where p = 1 corresponds to nearest-neighbor interactions.

Employing the slowly varying approximation (19) in (16) yields the sought-after approx-
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imation to the discrete convolutions. Specifically, we obtain

VApeitn & : AA,eitn & ;
(1) n —ikemocg gt 2 n —ikemag i
L,x" + {—OK—VC i, E 1 A€ H (m5) + o —yc i, El bme H (mé) + c.c.

AB, &
+ oﬂy—” > b H"(md) = O(a®). (20)

m=1
We note that there is not a VB, term in (20) as the symmetry of the wave kernel, H,
determines that its coefficient vanishes, specifically Zizl amH"(md) = 0. Recalling our
assumption that o ~ ¢, terms of O(a") in equations (20) are consequently promoted to
O(e™*1), appearing as secular terms (either those constant in t or proportional to el*") on
the right-hand of the expansion of equation (2a). Thus, the AA,, and AB,, terms in equation

(20) are destined to become the diffusion-like terms in the amplitude equations (9).

2.3 The limit of weak asymmetry

Finally, our third key idea is to use the observed property of the supercritical Hopf bifur-
cations, outlined in Figure 2(a), that k. < [IV/2]. We first define xy = N/2 — k., where we
typically find that y = 0 or x = 1/2. Then, by recalling that o = 27/N, we use the form
k. = N/2 — x to recast the VA, coefficient in (20) as

N
A (—1)™ sin(may ) H" (md),
m=1

lov

V. + 1w,

«

N
Z ame—ikcmaHH(m(s) _
1

V. + 1w, =

which is an even function of a for y # 0, and vanishes otherwise. In the former case, this
term is expected to be of size O(a?) as a — 0, which may be verified numerically. Further,

we are prompted to define the O(1) group velocity

5 _ 1 ZN: ame " Femaq " (md)

I« — V. + iw,
which vanishes when k. = N/2. We then acknowledge—as a corollary of our second key
idea—that the term o?¢,V A, appears as a secular term at O(£%), ultimately resulting in the
advective term in our dCGLE (9a). (We note that ¢, is divided by a further coefficient to
yield the ¢, in (9); see Appendix A for clarification.) In this final step, equation (20) reduces

to L,x) = O(e3), verifying our ansatz for z.
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As shown in Appendix A, a combination of the foregoing three key ideas is used to sys-
tematically derive the amplitude equations (9) from the lattice system (2). The remaining
terms involving time derivatives and the nonlinear coupling terms in (9) are obtained by
eliminating higher-order secular terms, both those that are promoted from O(e?) and others
that appear at O(g?). We now proceed to analyze the stability of the amplitude equations
(9), elucidating the second bifurcation leading to spatiotemporal modulation of the droplet
oscillation amplitude and drift as the control parameter, p, is decreased from infinity (cor-

responding to v < v,).

3 Stability of periodic oscillations

As discussed in §§1.2 and 1.3, we are concerned with the stability of the hydrodynamic lattice
beyond the threshold of the supercritical Hopf bifurcation, specifically for v < v, or equiv-
alently, for u < oco. In this section, we elucidate the mechanism leading to a modulational
instability of the spatially uniform solution of the amplitude equations (9). The onset of
spatial amplitude modulations in the canonical complex Ginzburg-Landau equation is the
eponymous Benjamin-Feir-Newell (BFN) instability, after its discovery in describing the in-
stability of periodic surface gravity (Stokes) waves [39, 40]. As we shall see, in our system,
this instability takes a slightly different form due to the coupling of the complex amplitude,
A, with the mean, B,,. In what follows, we conduct a linear stability of the amplitude equa-
tions (9), the computations for which are standard [2], but lengthy. We therefore highlight
only the key features here.

3.1 Linear stability

In the case of a supercritical Hopf bifurcation, where Re(ds) ~ Re(oz) > 0 when a < 1,

there exists a spatially uniform solution to (9) of the form
A(T) = pexp(iQT) and BO(T) = pysp*T + constant, (21)

where the modulus and angular frequency of the complex amplitude are

p=+/Re(o1)/Re(oy) and Q= Im(o103)/Re(0s).
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We now consider small perturbations about the spatially uniform state of the form

where 0 < |A,| ~ |B,| < 1. Substituting this ansatz into (9) and neglecting terms of
quadratic order and higher, we obtain a linear system governing the perturbations A, and
B,,, supplemented by an additional equation for C,, = ZZ. The resulting linear system
may then be diagonalized by considering a discrete Fourier transform in n. Specifically, we

consider solutions of the form

=2

N-1 - N-1
Zn _ Z Ageifna’ En _ Bgeifna’ 671 _ Z C«geiﬁna’
£=0 0 £=0

s
I

where the wavenumber, £, is an integer. Under this transformation, we obtain

dA; .
— =M A 22
where Ag = (Ag, Bg, C’g)T and
—u2c,Ve — pPoy + 2D A pmi Ve —pPoy
M () = 1p* (V3 Ve + 73) 12 D2 A po*(12Ve + ) - (23)
—p°a3 piVe  —pcyNe — pos + P Di A

For the case of nearest-neighbor interactions (p = 1), the Fourier symbols, V¢ and A, of

the difference operators, V and A, are defined as

v — slea) q A -

« 0%

2(cos(éa) — 1)'

2

The eigenvalues, Ag ) (for j = 1,2,3), of M¢(p) determine the stability of the spatially
uniform state (21), where the dependence of Ag ) on 1 is presented in Figure 3. The onset of
instability is determined by the eigenvalue (or one of a pair of complex-conjugate eigenvalues)
of M¢(p) with maximal real part; we denote this eigenvalue as A¢(p) for each wavenumber,
¢ e€{0,1,...,N —1}. At a given value of g > 0, the perturbed system (22) is neutrally
stable if Re(A¢(p)) < 0 for all £, and unstable otherwise. We first note, however, that the
rotational and temporal invariance of the spatially uniform state (21) implies that Ag = 0

has multiplicity two. The remaining eigenvalue for £ = 0 is —2p*Re(0y) = —2Re(0;) < 0,
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Stable " Stable

(=
S

(b) 1 , . , 1

Figure 3: The linear stability of the periodic state for N = 36 (left) and N = 37 (right)
computed for nearest-neighbor interactions (p = 1). (a) The case & = 1. The real part of
the eigenvalues Aﬁj ) for j = 1,2,3 as a function of u, where the asymptotic behavior for
i > 1 is given in equation (24). The transition from stable (grey shading) to unstable as
decreases determines the instability threshold for £ = 1 (red circle). For N = 37, spurious
instability is predicted by the amplitude equations (9) for u > 1, a regime inconsistent with
the po = O(1) assumption. (b) The instability threshold, s, as a function of the wavenumber,
¢, for £ < N/2. The long-wave mode, £ = 1 (red circle), is the first to destabilize as p is

decreased.

corresponding to a stable perturbation from the periodic state for all ;4 > 0. Hence, if an
instability to the periodic state arises, then it is for £ # 0, corresponding to the emergence
of a nontrivial spatial pattern. Moreover, for u > 1 and £ # 0, the diagonal elements of the
matrix M¢(p) dominate, from which we infer that the eigenvalues of M¢(p) are approximated
by

AV ~ 12DoAg, AP ~ 1 2(DiAe — ¢, V), AP ~ 1A(DiAe — V), (24)

corresponding to advection and diffusion of perturbations. We recall that Re(D;) > 0,
Dy > 0, and A¢ < 0 for & # 0. Hence, for ¢, = 0 (arising when k. = N/2), all three

eigenvalues have negative real part for u > 1 (as evidenced in Figure 3 for N = 36). However,
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for ¢, # 0, there are regimes in which the spatially uniform state is spuriously predicted to
be unstable for x> 1 (a regime inconsistent with our g = O(1) assumption), as presented
in Figure 3 for N = 37. To sidestep this spurious prediction, we therefore define p1¢ > 0 as
the largest value of p at which Re(A¢(pe)) = 0 and Re(A¢(p)) is a decreasing function of
at = e (see Figure 3(a) for reference). In the p = O(1) regime of interest, the system is

therefore unstable to perturbations for u < p1, = maxg .

3.2 The onset of spatial modulations

A crucial feature of the system (9) is the coupling of the complex amplitude, A,,, with the
mean, B,,, which acts to drive the instability of the spatially uniform state (21). We observe
that variations in B, act as a source term in the amplitude, A,, thus promoting spatial
variations in A,. For large u, the diffusion term in (9a) counteracts the growth of spatial
variations of A,,, but this smoothing effect may become subdominant to the source term when
1 is sufficiently small. Likewise, a similar competition between diffusion and the excitation
of spatial variations in B, driven by variations in A, is apparent in equation (9b). As a
consequence, this coupling provides a positive feedback loop for the emergence of spatial
variations, whereas a BFN-like mechanism instead relies on sufficiently small dissipation. In
fact, a true BEN instability only arises in the system (9) when the coupling coefficients, ~;,
and the group speed, c,, vanish. A necessary condition for instability in this artificial case
is Re(o2 D7) < 0 [15].

By numerically computing the eigenvalues of M¢(u), we observe that, similar to the BEN
instability, the amplitude equations (9) exhibit a long-wave instability at £ = 1 (see Figure
3); hence, in the cases considered here, we have p. = pi. To capture this phenomenon
analytically, we consider the special where N is even and k. = N/2, resulting in ¢, = 0 and
v3 = 0. In this case, the spatially uniform state destabilizes via a real eigenvalue, for which
the corresponding value of y, satisfies det M¢(pe) = 0. This condition is satisfied by e = 0

or when p¢ has a positive solution to
[|D1|2D2A§} 1t —202A [1>2Ag Re(0,D}) + V2 Re('ﬁngl)] 12— 4p*V2 Im(0577) Tm(72) = 0,
As Ve = —Vn_¢ and A¢ and Ay_¢, the coefficients of this equation are invariant under the
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mapping { = N — &, so peg = pun—¢ for all . Moreover, to elucidate the dependence of fi¢
on &, we consider the limiting case £a < 1. In this limit, we observe that Vg ~ A ~ —E%

yielding pe = kpV/'2/€, where k is a real and positive root of the quartic polynomial
P(r) = [|Di[*Dy| 5* + | Dz Re(02D}) + Re(7{72D1) | #* ~ Im(027}) Tm(72).

If P has a real and positive root then the form pe ~ £ suggests that the first wavenumber
to destabilize is £ = 1 (or £ = N — 1, by symmetry); this long-wave instability is thus

consistent with our slowly varying approximation of convolutions (see §2).

3.3 Dependence on changes to the wave field and lattice parame-

ters

We proceed to explore the dependence of p. on the inter-droplet spacing, §, and spatial
decay length, [, of the wave kernel, H. Motivated by the form of the wave field arising
in the bouncing-droplet system [24], a candidate wave kernel that satisfies the assumed
periodicity, exponential decay and quasi-monochromaticity may be derived by projecting
the form of the dimensionless radially symmetric wave F(r) = AJy(27r)sech(r/l) onto a
circle of circumference 27y = No, where ro = R/\ [18]. Here J; is the Bessel function of
the first kind with order zero and A is the amplitude of the wave. The resultant algebraic

form of the wave kernel is

H(z) = F (2r0 sin ;) , (25)

To

where an example of this wave kernel is given in Figure 2(b). For the numerical results
presented herein, we consider A = 0.1 [18]. We note that the qualitative features of these
results do not depend on the value of A; increasing A simply serves to increase the amplitude
of the wave field accompanying the equispaced lattice, the main consequence of which is a
concomitant decrease in the critical memory, M..

As presented in Figure 4, the dependence of the onset of spatial modulations on the
system parameters, [ and §, can be quite intricate. Near the boundaries between super- and
sub-critical Hopf bifurcations (where geometric and subcritical Hopf instabilities arise in the

white regions in Figure 4), p. can be very large—a feature that appears to be correlated
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with k. departing from N/2—inconsistent with the gy = O(1) assumption under which the
amplitude equations (9) were derived. Away from these boundaries, we observe regions in
which p. = O(1); indeed, simulation of the lattice system (2) reveals favorable agreement of
the numerical and theoretical instability threshold. (This agreement improves as a = 27 /N
becomes smaller, consistent with our assumptions; see supplementary material.) Near the
middle of each ‘band’ in which supercritical Hopf bifurcations arise, we observe that u. = 0,
corresponding to the prediction of unconditional stability of the spatially uniform solution
(21). Finally, we remark that . = O(1) is most apparent for [ ~ §, a regime in which the
inter-droplet coupling is dominated by nearest-neighbor interactions, as might be anticipated
from our local approximation of convolutions (see §2). When [ is much smaller than 4, each
droplet only interacts weakly with all other droplets (including its nearest neighbors), and

spatial variations are less propitious.

4 Numerical solutions

We proceed to explore the nonlinear dynamics predicted by the amplitude equations (9)
beyond the onset of spatial variations, p < p.. The amplitude equations are evolved using
a spectral method over the droplet number, n, and a fourth-order Runge-Kutta method in
time, for which the linear terms are transformed using an integrating factor (see Appendix C
for details) [41]. Initially considering u just below the instability threshold, 0 < p. —p < 1,
we evolve the amplitude equations (9) from the initial condition A, = p + (sin(na) and
B, = (sin(na) (¢ < 1) until a periodic state is attained. Thereafter, we decrement p
by 0.02 and initialize the following simulation at the final values obtained in the preceding
simulation. The MATLAB code used to simulate these dynamical states is provided in the
supplementary material.

As suggested by Figure 4, there is a vast parameter space we could explore with equations
(9) by varying the parameters [, §, and N. To fix ideas, we focus on the case of two adjacent
droplet numbers, N = 40 and N = 41, and set [ = 0 = 2.6, which serves to elucidate
the key phenomenology exhibited by the amplitude equations (9). A deeper exploration of

the parameter space is reserved for future work. Before we present the solutions, we note
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Figure 4: The onset of spatial modulations for N = 40 droplets, as predicted by the linear
stability analysis of the amplitude equations (9) for the wave kernel defined in equation (25)
and p = 1 nearest neighbors. (a) When the initial instability of the equidistant lattice arises
via a supercritical Hopf bifurcation, we color-code each value of the spacing parameter, 9,
and the decay length, [, by min(u,, 2), where spatial instabilities arise for p1 < .. Our theory
is valid when p, = O(1). When p. = 0, the periodic state is predicted to be unconditionally
stable. Large values of p, (i.e. those exceeding the threshold of 2) arise near the boundary
between super- and sub-critical Hopf bifurcations. (b) The corresponding value of k., as
predicted by the linear stability analysis, demonstrating the correlation between large p.

and k. < N/2.

that the only variable parameter in the amplitude equations (9) is u, since the coefficients
are fixed for a particular choice of wave kernel (25) and constituent parameters [, J, and
N. Thus, varying p corresponds to traversing a particular path through parameter space, in
contrast to varying each coefficient in the amplitude equations independently. As we shall
see, this variation in p gives rise to a series of bifurcations between qualitatively different

dynamical behaviors.
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In the case of 40 droplets (see Figure 5), close to the onset of spatial modulations at
i = p., we first observe a time-independent solution for |A,| (panel (i)), which destabilizes
into a periodic, breather-like state (panel (ii)) with dips apparent in |A,|. These dips persist
as pe — p is increased (panels (iii) and (iv)), but |A,| is instead constant in time. When
e — p is sufficiently large (panels (v) and beyond), a robust stationary bright soliton emerges
over a large range of yu, before destabilizing far from the instability threshold (panel (vii)),
leading to chaotic fluctuations in the soliton form. We note that when N = 40, the group
speed, ¢4, is identically zero. For N = 41 droplets and non-zero group speed (Figure 6),
similar dynamical transitions occur, although the asymmetry of the system instead yields
traveling waves and propagating solitons (panels (i) and (vii)). Notably, we also observe
parameter regimes for which dark breathers (panel (ii)) and dark solitons (panels (iii)—(v))
arise, characterized by the sharp dips in the amplitude, | A, (7|, towards zero, which are not
present when N = 40. All of the aforementioned features arise over a large range of N, and
thus appear to be canonical features of the discrete amplitude equations (9). We also note
that the jumps in the bounds of |A,| and B,, are indicative of hysteresis between dynamical

states, an effect to be explore in greater detail elsewhere.

5 Discussion & conclusion

In this paper, we have presented a rigorous mathematical framework to derive a discrete set
of amplitude equations from a driven and dissipative oscillator model, inspired by the physics
of droplet lattices bouncing on a vibrating fluid bath. Our systematic derivation provides
a direct link between the constitutive properties of the lattice model (2) (specifically, the
wave kernel, H) and the coefficients arising in the amplitude equations (9). A linear stability
of the amplitude equations (9) reveals the importance of the coupling to the discrete mean
equation (9b) in destabilising the system from a spatially uniform state, leading to spatial
modulations in the droplet amplitude following a second bifurcation, similar in spirit to
the BFN instability. Beyond this second bifurcation, numerical solutions of the amplitude
equations (9) reveal a fascinating family of dynamical behaviours including bright and dark

solitons, breather states, and traveling waves. As computational models of the droplet
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Figure 5: The nonlinear dynamics predicted by the amplitude equations (9) for N = 40
droplets and p < p. = 0.851. (a) The upper and lower bounds of |A4,(7")| attained over
the entire simulation. We identify seven dynamical regimes, which are denoted by Roman
numerals and divided by the dotted vertical lines. (b) The upper and lower bounds of
0B,(T) = B,(T) — (B,(T)) attained over the entire simulation, where angled brackets
denote the average over n. (¢) Snapshots of |A,| (T fixed) for each dynamical regime, where
e — p takes values (i) 0.03, (ii) 0.08, (iii) 0.12, (iv) 0.14, (v) 0.2, (vi) 0.4, and (vii) 0.48. (d)
Corresponding spacetime plots of |A,,(T")| for the parameter values in (¢). The dashed lines
correspond to the snapshot time, 7" = 1200. The system parameters here 6 = 2.6, [ = 2.6,
and p = 1 nearest neighbors, yielding k. = 20 and v, = 1.585.

system advance [42], the predictions of the amplitude equations may be compared against
direct numerical simulations of the droplet dynamics, paving the way for further experimental
investigation [17]. In particular, a tantalizing prospect is to hunt for the emergence of so-

called chimera states [43, 44|, thought to be ubiquitous in coupled oscillators subject to
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Figure 6: The nonlinear dynamics predicted by the amplitude equations (9) for N = 41

droplets and p < p. = 0.852. (a) The upper and lower bounds of |A,(7")| attained over
the entire simulation. We identify seven dynamical regimes, which are denoted by Roman
numerals and divided by the dotted vertical lines. (b) The upper and lower bounds of
0B, (T) = B,(T) — (B,(T)) attained over the entire simulation, where angled brackets
denote the average over n. (¢) Snapshots of |A,| (T fixed) for each dynamical regime, where
f1c — ju takes values (i) 0.014, (ii) 0.04, (iii) 0.06, (iv) 0.08, (v) 0.1, (vi) 0.15, and (vii) 0.3. (d)
Corresponding spacetime plots of |A,,(T")| for the parameter values in (¢). The dashed lines

correspond to the snapshot time, 7' = 1200. The system parameters here 6 = 2.6, [ = 2.6,

and p = 1 nearest neighbors, yielding k. = 20 and v. = 1.582.

non-local coupling, but have been shown to exist in only a handful of experimental systems
to date [45, 46, 47, 48].

We conclude with the proposition that the framework used to derive the amplitude equa-
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tions (9) applies to a more general class of oscillator model of canonical form

G i = —%@;m t), (26a)
N
Ph=> H(z— ), (26b)
m=1

with the linear operator P = 0/0t + v in equation (2b) serving as a particular example.
The novelty of the model (26) is that the inter-particle coupling potential, h, is dynamic,
continuously evolving with the particle motion, rather than being fixed in space or with
respect to the particles. Other potential choices of P are numerous, and could lead to an
even richer family of dynamics. For a particular choice of P, if the bifurcation leading to
instability of the oscillator is of supercritical Hopf type, then one should expect a complex
Ginzburg-Landau equation in the vicinity of the bifurcation point. However, the precise
form of the amplitude equations will change depending on the type of primary bifurcation
that arises and the inherent symmetries of the system [1, 3]. Such an investigation may lead
to further insights into the dynamics and pattern-forming behaviour of active particles in

complex environments [26].

Appendix A Derivation of the Ginzburg-Landau and
mean equations

Further details are provided of the multiple-scales expansion leading to the complex Ginzburg-
Landau and mean equations (9). The general procedure toward obtaining equations (9) is to
substitute the asymptotic expansions (10) into (2) and gather successive powers of €. At each
successive order, we suppress resonant terms proportional to €?»®) (where ¢,,(t) = k.na+wet)
or those constant in ¢. To extract all relevant terms at each order, we must introduce aux-
iliary variables to solve for the free surface, h, and also expand convolutions in the manner
summarized in §2. For notational efficiency, we denote H,,, = H(md), H! = H'(md), and so
forth.
At leading order we obtain

Oh) 1 &
- O (p) = E —
T 0, h'%(x) v 2 H(z —md), (27)

r=nd
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reflecting the fact that the free-surface gradient beneath each droplet vanishes in the steady-
state. Consequently, all odd-derivatives of h(®) vanish beneath each droplet at equilibrium,
a fact we will make repeated use of in simplifying the forthcoming terms in arising our
expansion.

The problem at O(e) has already been discussed in §2 and thus we proceed directly to
O(g?), remembering that terms from (20) are promoted to O(e?) after setting a = pe. The

equations at O(g?) are

2 (2) (2) 2 2p© ?
Ot2 ot ox " Ox? " Ox? z=ng’
N
On® @ _ o 3 {lx(lﬂ’ﬂ”(x —mé) -z (z - m5)} (29)
at T 2" : |
m=1

Following the procedure outlined in §2.1, we solve for 2 by introducing two further auxiliary
variables, Y,, and Z,,, satisfying

Y,

07,
g b2 + v Zy = 2@

1
oot ot n

(30)

chosen to match the coefficients of the wave kernel on the right-hand side of (29). Hence, a

particular solution of (29) is
1 N
W = —hO Y (Y, H' (x — m6) — ZuH'(x — md)} . (31)
Ve
m=1

By substituting the form of mg), given by equation (15), into the first equation of (30), we
find

1 1 A . 1 A? ,
Y, = — {|An\2 + 535} + B, { " 4 c.c} + = [—”em" + c.c.] : (32)
1%

. V. + iw, 2 | v, + 2iw,

Substituting (31)—(32) into (28), and then using (27), yields

N N ,
. 1 . A e—lkcmoc
L,x® = [ B, + {A, e + cc. ] SNTB, K ion N An=m® T g
x + {A,e'*" +c.c.} chgl m e mgl i m T+ c.c
N N
1 1 i Anmenfm i
- — E {—Bﬁ_m + |An_m|2} H"— {e“b" g TR g ikemag C.C.:|
Ve £~ 2 — + 1w,

2

V., + 2iw,

+ c.c.] . (33)

m=1
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Analogous to §2.2, we now use the slowly varying approximation (18) to expand B,,_,, on
the right-hand side of (33), and similarly for all other terms of this form (such as A,_,,
B2 etc.). After some arduous algebra, we reduce (33) to the highly simplified form

N o ikemaq i
oot = o[ S I 4 oo 4,98, ¢ ] 4 20Re 524,94

Ve + 1w,
m=1

+ [é1AieQi¢” +c.c] + a[@ezid’"AnVAn +c.c.] +0(e?), (34)

where the complex coefficients are defined as

efikcma 1 N 1 eikcma
,H/// A Hm
N - — |G mo 72 - - . am m)
1\ Ve + 1w, V. V. V. — W,

N e—ik’cma e—2ikcma N e—?ik‘cma e—ikcma
m ~ m
I [z =3 ( Jantt (59
m—

Ve+iwe  2(Ve + 2iw,.) Vo + 2w, Ve + iw,

WE

=

(o}

To apply the weak-asymmetry approximation developed in §2.3 to the coefficient of | 4,2,

we first note that

N e~ ikemaqyi . N
2R . "'m| —9R RV o
e L;l Ve + iw, ] e [Vc n iwc] mZ:1( )™ sin(max ) H

where Y = N/2 — k.. By a similar argument to which the group velocity was promoted
to O(e?) in §2.3, the coefficient of |A,|? has size O(a) for a < 1 and y = O(1), so the
corresponding term in (34) should likewise appear at O(e®). We thus write

N

—ikemac g
QRe[Z ﬂ} Al = o] Aul,

— + iw,
where the O(1) real coefficient 43 is defined as
N .
2 e—lkcmaH///
S = “R © Tm) 36
e « e{mzzl Ve + iw, 1 (36)

In a similar spirit, we deduce that the coefficient ¢; is size O(a) when y # 0 and zero
otherwise. Therefore the non-secular terms in (34) (those that are proportional to e?¢") are
both of size O(a) and so should actually appear at O(e?). However, as these terms will still
be non-secular at that order, they play no role in the derived amplitude equations for A,

and B,. We conclude that all the inhomogeneities in (34) (which are of size O(«a)) should
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instead appear at O(g%). Hence, at O(g?), we have £,2® = 0, which is identical to the
problem for . Akin to the solution ansatz at O(), we therefore pose

22 = E,(T) + [Co(T)e +cc], Z,= lEn(T) + GT).

Ve Ve + 1w,

1¢"—|—CC

which, when applying the approximation to the convolution (see §2.2), satisfies the inhomo-
geneous problem to leading order. The O(a?) terms that arise out of the approximation to
this convolution appear at O(g?), which is beyond the order presented in this calculation.

At O(e?), we have a system for 7Y and h®) namely

82:&(13) N axS’) . ®) 9210 B 62%(11) . afL’S)
ot? ot 0x? | _ s otoT oT
Oh® Ph® 1 RS o*h) 1 50RO
(1) 0227 (2) (1)
[ or " 92 ot ox? T 922 6" 0af } z=né (37)

and

oh® oh)
3) — _ 1)
gr TVl { or }

+ Z { W@ (¢ —mé) — 2BH (x — md) — (13 P (x mé)}. (38)

Appended to the right-hand side of (37) will be the terms promoted from both O(e) and
O(g?). We follow an identical procedure to our analysis at O(e) and O(g?). First we in-
troduce three auxiliary variables (§2.1), one for each of the three inhomogeneities in (38),
and then solve for h(®. We then substitute this solution into (37), along with the droplet
positions and wave field terms computed from lower orders, and then apply the slowly vary-
ing approximation (§2.2) to reduce discrete convolutions to spatially local expressions. This
procedure rise to a system of the form £,x® = RHS, where the right-hand-side (RHS) is
composed of terms that are constant in ¢, terms with coefficients e¥%»(®) and non-secular
terms (whose form can be ignored at this stage). For a bounded solution, we require that
the constant and e~ secular terms have vanishing coefficients, which yields the following

evolution equations for the complex amplitude, A,,, and the real drift, B,:

dA,
aoﬁ—i—u e,V A, =614, — 63| Au P A, + 1 AV B, + 112D AA,, (39a)
~ dB, A . . .
= = 1’ DoAB, + 2puRe[32 A, VAL | +143] 4,7, (39b)
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where 1 = a/e and we have neglected terms whose coefficients are of size O(a) at O(e?)
(§2.3). We note that we cannot determine the higher-order corrections (C,, and E,,) with-
out proceeding to O(e?) and higher. However, a satisfactory approximation is obtained by
considering A,, and B,, alone, which form a closed system.

Recalling that Dy (\;v) is the dispersion relation (4), the coefficients (other than the 4;

defined in equations (35) and (36)) appearing in (39a) are as follows:

0Dy, 0Dy

0o = O\ (1wc; Vc)a 01 = O (1wc; Vc)v
N N s N _9; N s
. 3 %/m H/I//R e ikema N 1 e 21kcmo¢H;/r;/ H;/rlble ikema
02 = E - g € . - E —_— Y — E EEE—
22U, — m — m v, + 1w, 2 = v+ 21w, = Vet iwe
1 N
ﬁ _ b —ikcmoar}_[//
1 — . me m?
Ve + 1w,
c c
m=1

while those that appear in (39b) are

oD, 1 o 1 &
b= —2(0;v,) =1+ — " Dy=—> b,H".
0 a)\(ay) +V02leHm’ 2 ycmzl Hm
Upon dividing (39a) by ay and (39b) by by we arrive at equations (9) in the main text, where
(Cg7 01,02,71, Dl) = (égv 617 &27 ’Ayla [)1)/6’0 and (D27 V2, 73) = <D27 &27 &3)/80

Appendix B Approximation of convolutions

We introduce an interpolating polynomial of degree 2p passing through the points F,,_, ..., Fj, 4,
where F,, = F(ma), so that
2 2p

m m
Fo o =F,—mhF,+—D%F, —...+ —D,F, 40
m 1 + 2 2 + (2p)' 2p ( )

for |m| < p. The operators Z;/a’ are the symmetric finite difference operators approximating
the j* derivative of F(f) over 2p+ 1 grid points spaced a apart. Hence, as FU)(an) = O(1)

(by assumption) and
Diln _ ﬂ(
o dos

na) + O(af)
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for some integer ¢ > 0, we conclude that Z;F, /a? = O(1). Therefore, for m = —p,...,p, we

may recast (40) in the following form:
m? ,
F,_,,=F,—anVF,+ 0427AF71 +0(a?),

where V and A are the central finite difference operators approximating the first and second
derivatives of F'(#) using 2p + 1 points spaced a apart.
For example, for p = 1, the symmetric finite difference stencils are defined as

1 1
VE, = %<Fn—1 + F,41) and AF, = @(Fn—l —2F, 4 Fopq),

and the O(a?) term in (18) vanishes. For p = 2, we instead define

1/1 2 2 1
F,=——F, ,—-F, _ —-F - —F
VE, &(12 273 n1+3 ntl T Ty n+2)

and

1 1 4 5 4 1
AF,=—( = —=Fy g+ -Fyqy—=Fy4+-Fpy——Fpis |
a? ( PR S ML S “)

Appendix C Numerical implementation

To evolve the amplitude equations (9), we apply a discrete Fourier transform to A,, and B,
and then introduce an integrating factor to integrate the linear components exactly [41].
Specifically, we denote the discrete Fourier transform of A, as Ak = Z[A,], and likewise

for B,. By applying the Fourier transform to the amplitude equations (9), we obtain

dA "
d—T’“ + MyAy = Fi [ AV By — 09| AP A, (41a)
dBk ~ o * 2

where

My = 12cyVi — oy — 1> DiAy  and Ny = —p® Do/

We recall that V;, and A are the Fourier multipliers of the difference operators V and A,

respectively. To account for the stiffness manifest in the operators M), and N}, we introduce
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an integrating factor. When evolving from time 17" = T}, and T' = T},;1, we therefore recast
(41) as
d

d—T(AkeMk(TfT")) = Z [M’YlAnVBn - 02’An|2An} eM’C(T*T"), (42a)
d -
7 (BN = Z [2uRe [12 A, VAL + prys| Ay 2] 610, (42D)

and then evolve the new variables, A,eM+T=T0) and By,eMe(T=Tn) using a fourth-order Runge-
Kutta method. For the numerical results presented in §4, we use a time step of 0.01. MAT-

LAB code implementing this numerical scheme is provided in the supplementary material.
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