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Abstract

Cognitive systems face a constant tension of maintaining existing representations that have been fine-tuned to long-term 

input regularities and adapting representations to meet the needs of short-term input that may deviate from long-term 

norms. Systems must balance the stability of long-term representations with plasticity to accommodate novel contexts. We 

investigated the interaction between perceptual biases or priors acquired across the long-term and sensitivity to statistical 

regularities introduced in the short-term. Participants were first passively exposed to short-term acoustic regularities and 

then learned categories in a supervised training task that either conflicted or aligned with long-term perceptual priors. We 

found that the long-term priors had robust and pervasive impact on categorization behavior. In contrast, behavior was not 

influenced by the nature of the short-term passive exposure. These results demonstrate that perceptual priors place strong 

constraints on the course of learning and that short-term passive exposure to acoustic regularities has limited impact on 

directing subsequent category learning.
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Introduction

The natural world is structured – rain is nearly always 

accompanied by dark clouds; the words a speaker says are 

temporally aligned with their mouth movements. This struc-

ture is useful to learn because it keeps us from getting caught 

outside without an umbrella and helps us understand what 

someone is saying in a noisy restaurant. Perceptual systems 

are sensitive to input regularities at multiple levels, encoding 

both long-term regularities across a lifetime of experience 

and short-term regularities within individual contexts. This 

enables stability across the long term and flexibility in the 

short term when we encounter regularities that may deviate 

from long-term norms, such as when traveling to a location 

with a novel climate or encountering a new speaker who 

has an accent.

Across the long term, sensory systems efficiently encode 

natural signal statistics in vision (Simoncelli, 2003; Simon-

celli & Olshausen, 2001), audition (Kluender et al., 2013; 

Lewicki, 2002; Ming & Holt, 2009; Smith & Lewicki, 2006; 

Stilp & Lewicki, 2014; Wang, 2007), and across multiple 

modalities (Ernst & Banks, 2002). For example, auditory 

cochlear filters resemble filters optimized to code for the 

regularities of natural sounds (Smith & Lewicki, 2006) and 

human speech recognition is “efficient” in the sense that it 

is supported when signal regularities align with these filters 

(Ming & Holt, 2009).

The sensitivity to long-term sensory statistics, which 

might be understood as priors, introduces observable biases 

in perception. For example, the McGurk effect (McGurk & 

Macdonald, 1976) is observed when spoken instances of syl-

lables (e.g., /ba/ or /ga/) are paired with mouth movements 

that conflict with expectations developed across long-term 

alignment of speech sounds and mouth position. The result-

ing effect is that the visual input biases speech perception 

toward the percept that better matches the prior (e.g., hearing 

/ba/ and seeing /ga/ leads to an intermediate percept of /da/). 

Thus, long-term statistics like the congruency of auditory 
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and visual speech come to be reflected in cognitive and neu-

ral representations of the sensory world.

People are also sensitive to short-term regularities in 

sensory environments. Many studies demonstrate sensitiv-

ity to evolving statistical regularities in the input across 

infants (Adriaans & Swingley, 2017; Aslin et al., 1998; 

Maye et  al., 2002; McMurray et  al., 2009; Toscano & 

McMurray, 2010), adults (Escudero & Williams, 2014; 

Wanrooij & Boersma, 2013), and non-human animals 

(Pons, 2006). Learning of short-term regularities in the 

sensory world involves the rapid learning of novel input 

regularities, which can occur even in a passive manner 

(Barlow & Földiák, 1989; Coen-Cagli et al., 2015; Lu 

et al., 2019; Stilp et al., 2010). Rapid, and putatively effi-

cient, adaptation to short-term statistical regularities has 

been examined in the auditory modality where perception 

appears to be able to rapidly adapt to short-term statistical 

structure over as few as 2 min of passive exposure (Stilp 

et al., 2010; Stilp & Kluender, 2012, 2016).

However, it would not be adaptive for short-term expe-

rience to overwrite long-term representations: perception 

requires maintenance of long-term regularities to support 

stable representations, while also remaining flexible to short-

term regularities that may deviate from the priors developed 

across the long term. Efficient and rapid processing of a 

complex sensory world thus requires balance across long-

term and short-term regularities. However, how short-term 

exposure to novel statistical regularities interacts with long-

term priors is not well understood.

Perceptual category learning provides an excellent test-

bed of the interaction of long-term priors and short-term 

statistical learning, as category learning is influenced by 

prior experience. For example, learning second language 

speech categories is more difficult when categories directly 

conflict with one’s native language (Best et al., 2001; Kuhl 

et al., 2007). Outside of language contexts, existing repre-

sentations of sensory dimensions affect how people learn 

categories based on those dimensions (Ell et al., 2012; Holt 

et al., 2004; Roark et al., 2022; Roark & Holt, 2019b; Schar-

inger et al., 2013). For example, over a lifetime of experi-

ence, we develop perceptual biases and priors in the rep-

resentation of pairs of dimensions as integral or separable 

(Garner, 1974, 1976). Consequently, integral dimensions 

(e.g., saturation and brightness) are difficult to separate into 

their component dimensions, whereas separable dimensions 

(e.g., length and orientation of a line) are difficult to com-

bine and may be separated automatically (Lockhead, 1972; 

Nelson, 1993). These priors influence behavior in short-term 

category-learning contexts – categories that require selec-

tive attention to dimensions are more difficult to learn when 

the dimensions are integral than separable, and categories 

that require integration across dimensions are more difficult 

to learn when the dimensions are separable than integral 

(Ashby & Maddox, 1990; Ell et al., 2012).

In the current study, we investigate the influence of long-

term priors and short-term statistical learning on perceptual 

category learning. Specifically, we use perceptual category 

learning to examine whether representations efficiently adapt 

to short-term regularities or whether long-term priors are 

stably maintained in the face of novel short-term input regu-

larities. We do so by aligning (and misaligning) long-term 

priors with category exemplar distributions in a category-

learning task.

With regard to long-term perceptual priors, we capitalize 

on the observation that spectral and temporal modulation are 

interdependent in auditory representations. Each thought to 

be a fundamental component of sound, spectral modulation 

reflects oscillations in power across the frequency spectrum 

at particular times and temporal modulation reflects oscil-

lations in amplitude across time (Woolley et al., 2005). At 

some level, the neural populations encoding these dimen-

sions are relatively separable (Depireux et al., 2001; Elliott 

& Theunissen, 2009; Langers et al., 2003; Schönwiesner & 

Zatorre, 2009; Visscher et al., 2007; Woolley et al., 2005), 

but their representations may be interdependent. Specifi-

cally, neurons that code high temporal modulation also 

code low spectral modulation (and vice versa; Allen et al., 

2018; Hullett et al., 2016). As a result, the long-term rep-

resentation of these dimensions comprises a prior wherein 

representations are stretched along the negative axis (e.g., 

high temporal modulation is associated with low spectral 

modulation) and shrunk along the positive axis relative to a 

naïve, untrained space (Fig. 1A). A perceptual prior like this 

may influence category learning such that categories aligned 

with the prior (i.e., the distinction between the categories is 

along the negative axis in Fig. 1A) may be easier to learn 

than categories that are misaligned with the prior (i.e., the 

distinction between the categories is along the positive axis, 

Fig. 1A). Another related possibility is that learners may 

demonstrate biases in how much they rely upon each dimen-

sion in making category decisions (Roark & Holt, 2019b). 

We assess this latter possibility using decision-bound mod-

els (Ashby, 1992).

There is limited research on the impact of perceptual 

priors on short-term statistical learning. It is also not well 

understood how short-term statistical learning may influence 

more overt behavior such as category learning. Here, we 

expose listeners to brief (~8 min) exposure to a statistical 

regularity prior to an overt category-learning task involving 

stimuli sampled from the same acoustic space as exposure 

stimuli, with category distributions aligned or misaligned 

with the long-term prior. This allows us to examine three 

hypotheses regarding the intersection of long-term priors, 

statistical learning, and category learning (Fig. 1B).
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The first hypothesis is associated with an efficient cod-

ing perspective. Specifically, there are reasons to expect that 

short-term passive exposure will influence representations 

in a way that will influence behavior. Prior studies have 

shown that even as little as 2 min of passive exposure to a 

correlation between two acoustic dimensions can increase 

discriminability along that correlation (e.g., stretch axis in 

representations) and decrease discriminability orthogonal to 

that correlation (e.g., shrink axis in representations) (Stilp 

et al., 2010; Stilp & Kluender, 2012, 2016) and has been 

linked to efficient coding in single neurons in auditory cortex 

in animal studies (Lu et al., 2019). This is also consistent 

with studies that demonstrate that experience with variabil-

ity along a relevant feature prior to category learning can 

improve learning (Antoniou & Wong, 2016; Holt & Lotto, 

2006). In line with this prediction, we would expect that 

statistical learning experience will stretch whichever axis 

is being experienced and shrink the orthogonal axis. As 

a result of this, category learning will be better when the 

statistical learning distribution is parallel to the category 

distinction that needs to be learned.

In contrast, a second hypothesis predicts the opposite pat-

tern – that statistical learning experience will shrink the axis 

of experience and stretch the orthogonal axis. This hypoth-

esis stems from research that has shown that experience 

with variability along a dimension makes this dimension 

less reliable in subsequent category-learning contexts (Rost 

& McMurray, 2010). That is, the more variability one expe-

riences along a specific dimension, the less informative the 

dimension for behavior. As a result, we would expect that 

Fig. 1  Framework and predictions. Note. (A) Illustration of the inter-
action between long-term prior (relative to naïve physical space) and 
category learning with distributions that are aligned or misaligned 
with the prior. Categories that are Aligned with the prior are more 
distinguishable and should be easier to learn. Categories that are Mis-

aligned with the prior are less distinguishable and should be more 
difficult to learn. (B) Illustration of the different predictions for the 
influence of statistical learning on category learning. Example shows 
statistical learning distribution with positive correlation in gray
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a statistical learning distribution that is orthogonal to the 

category distinction will support category learning.

Our final hypothesis is that long-term priors will override 

any influence of short-term statistical learning. This would 

support an interaction between long-term priors and short-

term statistical learning. In Stilp and Kluender (2016), the 

effects of passive experience on discrimination diminished 

within 128 trials of discrimination testing, suggesting that 

even if statistical learning influences the representational 

space, the impact is quick to revert to alignment with exist-

ing long-term representations. This would predict that short-

term statistical learning will not influence category learning.

In summary, long-term experience (such as native lan-

guage experience) and short-term statistical learning have 

each been linked to perceptual warping of physical input 

space (Feldman et al., 2021; Kuhl, 2000; Kuhl et al., 2007; 

Maye et al., 2008). Yet, it is not yet clear how long-term pri-

ors and short-term statistical learning may independently or 

interactively influence novel category learning. Here, we test 

three competing hypotheses to understand how short-term 

statistical learning interacts with long-term priors and the 

behavioral demands of overt category learning.

Methods

This experiment examines differences in category learning 

in the same two-dimensional acoustic space as a function of 

(1) short-term statistical learning of a regularity between the 

two dimensions and (2) category distribution type is aligned 

or misaligned with long-term priors. We trained participants 

on one of two pairs of category distributions, which were 

identical in their statistical regularities and differed only in 

their orientation in the input space. These categories are 

multidimensional, in that the category identity cannot be 

determined by a single dimension. We refer to the categories 

based on whether the category distinction is Aligned or Mis-

aligned with long-term priors. Stimuli and data are available 

at osf.io/qyg7z/ (Roark & Holt, 2022).

Participants

Participants were 305 (102 male, 201 female, two prefer 

not to answer) Carnegie Mellon University undergraduates 

ages 18–29 years and were given $10 or course credit for 

participating. All participants gave informed consent and 

the experimental protocols were approved by the Institu-

tional Review Board at Carnegie Mellon University. Par-

ticipants were randomly assigned to one of five statistical 

learning conditions (Naïve, Positive, Negative, Spectral, or 

Temporal) and one of two category types (Aligned, Mis-

aligned). In the statistical learning phase, with the exception 

of the Naïve condition, participants passively experienced 

specific statistical regularities in the acoustic space – vari-

ability along either one dimension (Temporal or Spectral 

modulation) or along both dimensions (Positive or Nega-

tive correlation). A power analysis was conducted with the 

WebPower package in R (Zhang & Mai, 2018) and indicated 

that to detect an interaction between statistical regularity 

type and category type with a medium effect size (f = .25), 

a sample of at least 26 participants would be needed in each 

group to obtain statistical power at a .90 level with an alpha 

of .05. We exceeded this target recruitment for each group 

(Table 1), with approximately 30 participants in each of ten 

conditions. Nine additional participants were run, but not 

included due to experimenter or software error.

Stimuli

The stimuli were complex static acoustic ripples varying on 

spectral modulation and temporal modulation. The stimuli 

were generated using a custom MATLAB script. Stimuli 

were defined with the following parameters based on prior 

work (Yi & Chandrasekaran, 2016): duration = 1 s; phase 

= 0°;  F0 = 200 Hz; spectral bandwidth = -3.18; amplitude 

modulation depth = 0 dB; sampling rate = 44.1 kHz.1 Stim-

uli were then root mean square (RMS) amplitude matched at 

70 Hz in Praat (Boersma & Weenink, 2021). Stimuli could 

take on temporal modulation values from 4–12 Hz and spec-

tral modulation values from 0.1 oct/cyc to 2 oct/cyc. Stimuli 

and scripts are available via the Open Science Framework. 

Spectrograms are shown in Fig. 2 and were created using the 

phonTools in R (Barreda, 2015).

Results of a pilot experiment indicated that discriminabil-

ity was equivalent in these ranges across the two dimensions 

and along a perfect positive and negative correlation between 

Table 1  Number of participants in each condition

Exposure condition Category type N

Spectral
Temporal
Positive
Negative
Naïve
Spectral
Temporal
Positive
Negative
Naïve

Aligned
Aligned
Aligned
Aligned
Aligned
Misaligned
Misaligned
Misaligned
Misaligned
Misaligned

29
32
29
29
30
32
31
31
32
30

1 Phase of 0 degrees assures that all elements are positionally aligned 
with one another. Spectral bandwidth is the range of spectral informa-
tion around the median and is related to perception of timbre. Ampli-
tude modulation depth reflects the variability in amplitude modula-
tion, reflecting that amplitude modulation does not change within a 
stimulus.
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the dimensions. In the pilot, participants were 80 (25 male, 

53 female, two prefer not to answer) Carnegie Mellon Uni-

versity undergraduates ages 18–25 years and were given $10 

or course credit for participating. Participants were randomly 

assigned to one of the four distributions (Spectral, Tempo-

ral, Positive, Negative; 20 participants per condition) and 

made same-different discrimination judgments of pairs of 

stimuli along an 18-step continuum (Fig. 3A). Participants 

made judgments across 496 trials (248 same, 248 different), 

with each “different” pair repeated twice. We calculated d’ 

values across all stimuli for each participant using hit and 

false alarm rates using the dprime function in the Psycho R 

package (Makowski, 2018). Discriminability was equivalent 

across the four dimensions, indicated by the fact that d’ val-

ues for the four dimensions were not statistically different, 

according to a one-way ANOVA (F(3, 76) = 1.08, p = 0.36, 

η2 = 0.041; Fig. S2, Online Supplementary Material, OSM).

Stimulus distributions

Statistical learning distributions During the statistical learn-

ing phase participants passively listened to one of four distri-

butions of sounds, according to condition (Positive, Negative, 

Temporal, Spectral). As shown in Fig. 3A, two conditions 

involved variation across both dimensions, with either a posi-

tive or a negative distribution reflecting a perfect (r = 1.0, r = 

-1.0) correlation between the two dimensions. The other two 

conditions involved variance across only one of the acoustic 

dimensions. Eighteen equidistant stimuli defined each distri-

bution. For the positive and negative distributions, one step 

between each of the stimuli varied 0.47 Hz along the tempo-

ral modulation dimension and 0.11 cyc/oct along the spectral 

modulation dimension. Temporal stimuli had a constant mean 

spectral modulation value of 1.05 cyc/oct, with 0.47 Hz per 

step. Spectral stimuli had a constant mean temporal modula-

tion value of 8 Hz, with 0.11 cyc/oct per step.

Category learning distributions Participants learned one 

of two category pairs: Aligned or Misaligned (Fig. 2B). 

Two category pairs were created by sampling a bivariate 

Gaussian distribution using the mvnorm function in the 

MASS R package (Venables & Ripley, 2002). We sampled 

for a single category (100 exemplars) using normalized 

coordinates and then rotated and mirrored that distribu-

tion to create all other categories. Thus, both category 

types possess identical variance and covariance of exem-

plars, and the relationship between the categories is 

equal in terms of overlap (Table 2; Fig. S1, OSM). The 

categories differ in how they are aligned or misaligned 

with the long-term representational prior. Separate test 

distributions (50 exemplars/category) were sampled using 

the same parameters and due to random sampling have 

slightly different means, variance, and covariance than 

the training distributions (Table 2).

Fig. 2  Stimuli spectrograms. Note. Spectrograms for stimuli across grid of temporal and spectral modulation space
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Procedure

During the statistical learning phase, all participants except 

those in the Naïve conditions passively listened to a stream 

of sounds with a particular statistical regularity (Positive, 

Negative, Temporal, Spectral) for approximately 8 min. They 

heard 450 presentations of sounds (25 repetitions each of 18 

sounds), a repetition number that has been shown in another 

stimulus space to affect perceptual discriminability (Stilp 

et al., 2010). Each sound (1 s) was followed by a 50-ms silent 

intertrial interval (ITI). Participants were given markers and 

blank pieces of paper and told to draw whatever they wanted.

Participants next learned the categories in a supervised 

categorization task across eight blocks of training with 48 

trials per block for a total of 384 training trials. On each trial, 

participants heard a single exemplar selected randomly with-

out replacement followed by a screen on which they were 

prompted about whether they believed the sound belonged to 

Category A or Category B. Participants indicated their cat-

egory response with a key-press (u or i), with response keys 

for each category counterbalanced across participants. After 

a response was made there was a 500-ms pause after which 

participants were given feedback about the correctness of 

their response (“Correct!” or “Incorrect!”). Participants also 

saw boxes on the screen that were associated with the indi-

vidual categories. In addition to the written feedback, a red 

X appeared in the box associated with the correct category. 

This red X was presented regardless of the correctness of 

the response. Feedback was displayed for 500 ms before a 

1-s ITI preceding the next category exemplar. Participants 

Fig. 3  Statistical learning and category learning distributions. Note: Stimulus distributions for the (A) statistical learning and (B) supervised cat-
egory learning phases (separately for training and generalization test)

Table 2  Category distribution information

Category M (temporal, spectral) Variance (temporal, spectral) Covariance

Training distributions

Aligned: Category A
Aligned: Category B
Misaligned: Category A
Misaligned: Category B

9.35, 0.83
7.08, 1.37
8.92, 1.37
6.65, 0.83

2.01, 0.10
1.80, 0.11
1.80, 0.11
2.01, 0.10

0.190
0.190
-0.190
-0.190

Test distributions

Aligned: Category A
Aligned: Category B
Misaligned: Category A
Misaligned: Category B

9.23, 0.75
6.73, 1.34
9.27, 1.34
6.77, 0.75

1.34, 0.077
1.37, 0.076
1.37, 0.076
1.34, 0.077

0.15
0.15
-0.15
-0.15
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were told to use feedback to inform future category deci-

sions. Finally, participants completed a test without feed-

back to assess generalization of learning to novel category 

exemplars.

Decision strategies

To understand how participants used the underlying dimen-

sions in category decisions, we used decision bound com-

putation models to assess their decision strategies (Ashby, 

1992; Maddox & Ashby, 1993). These models are derived 

from General Recognition Theory (Ashby & Townsend, 

1986) and applied widely to understand decision strate-

gies during category learning (Ashby & Maddox, 1992; 

Reetzke et al., 2016; Roark & Holt, 2019a, 2019b; Yi & 

Chandrasekaran, 2016).

We fit several classes of decision bound models. Each 

model assumes participants create decision boundaries to 

separate the stimuli into two categories. The four classes 

of models that we fit were: two unidimensional rule-based 

models (one along the temporal modulation dimension and 

another along the spectral modulation dimension), an infor-

mation-integration model in which both dimensions contrib-

ute to decisions, and a random responder model.

The two unidimensional models instantiate a linear deci-

sional bound along one of the two dimensions – temporal 

modulation or spectral modulation. Unidimensional models 

have two free parameters – the decision boundary and the 

variance of noise (both perceptual and criterial).

The information-integration model employs a general 

linear classifier that assumes a linear decision boundary 

but, in contrast to the unidimensional models, uses both 

dimensions. This model is optimal for both kinds of cat-

egories in the current study. For the Positive condition, the 

optimal decision boundary has a positive slope whereas for 

the Negative condition, the optimal decision boundary has 

a negative slope. Both training and test distributions were 

subjected to decision bound modeling to ensure that the true 

optimal model was the one idealized by the experimenter. 

The integration model has three free parameters: the slope 

and intercept of the decision boundary and the variance of 

noise (perceptual and criterial).

To understand if participants were just randomly guess-

ing, we fit a random responder model that assumes equal 

response probability across categories on each trial.

We fit the models separately to each participant’s data 

for each of the training blocks and the generalization test. 

Model parameters were estimated using a maximum likeli-

hood procedure (Wickens, 1982) and model selection used 

the Bayesian Information Criterion (BIC) = r*lnN – 2lnL, 

where r is the number of free parameters, N is the number of 

trials in a given block, and L is the likelihood of the model 

given the data (Schwarz, 1978). BIC applies penalties for 

extra free parameters and the best-fit model was defined as 

the model with the lowest BIC value.

Results

To understand the interaction between priors and statistical 

learning, we examined how statistical learning of different 

acoustic regularities influenced category learning perfor-

mance and decision strategies while learning categories that 

align or misalign with long-term perceptual priors. We tested 

three competing hypotheses: an efficient coding hypothesis 

that suggests that statistical learning experience stretches the 

axis of experience and stretches the orthogonal axis, improv-

ing category learning for categories that make distinctions 

along the axis of experience; a variability hypothesis that 

suggests that experience shrinks the axis of experience and 

stretches the orthogonal axis, improving category learning 

for categories that make distinctions along the orthogonal 

axis; and a long-term prior bias hypothesis that suggests that 

short-term statistical learning experience has limited impact 

on representations and will not impact category learning. 

Instead, according to the long-term prior bias hypothesis, 

the long-term prior may have a substantial and stable impact 

on learning that does not interact with statistical learning 

experience.

Behavioral results

To confirm that the expected long-term bias was present 

for these categories, we examined how participants with no 

exposure prior to categorization (Naïve) learned the catego-

ries (Fig. 4). Naïve participants who learned the Aligned 

categories had significantly better Block 1 accuracy than 

participants who learned the Misaligned categories (Naïve-

Aligned: M = 65%; Naïve-Misaligned: M = 55%; t(49.1) = 

3.23, p = .0022, d = 0.83, 95% CI [3.97, 17.0]). This finding 

supports the assumption that there is a long-term bias across 

learners for better learning of Aligned relative to Misaligned 

categories.

We next examined the influence of short-term statistical 

learning on category learning performance. To minimize 

potential washout effects due to experience in the categori-

zation task (e.g., Stilp & Kluender, 2016), we examined the 

group differences within the first block (Fig. 4B). Using a 

two-way ANOVA, we examined effects of the statistical reg-

ularity (Naïve, Positive, Negative, Spectral, Temporal) and 

category type (Aligned, Misaligned). In line with the per-

ceptual prior, we found an overall advantage for the Aligned 

categories over Misaligned categories (F(1, 295) = 47.3, p < 

0.0005, ηp
2 = 0.14), such that accuracy for Aligned catego-

ries was 9.1% (95% CI: [6.5, 11.7]) higher than Misaligned 

categories in Block 1.
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Short-term statistical learning did not influence category 

learning performance. There was neither an effect of the 

type of statistical regularity (F(4, 295) = 1.38, p = 0.24, ηp
2 

= 0.018) nor an interaction between regularity and category 

type (F(4, 295) = 1.45, p = 0.22, ηp
2 = 0.019).

We also compared learning across all training blocks 

(Fig. 4A), using a mixed-model ANOVA to examine the 

effects of statistical regularity (Naïve, Positive, Negative, 

Spectral, Temporal), training block (1–8), and category type 

(Aligned, Misaligned).2 The effects observed in the first 

block were persistent across all blocks – there was an overall 

advantage for Aligned over Misaligned categories across all 

blocks (F(1, 295) = 126.9, p < 0.0005, ηp
2 = 0.30), exposure 

to different regularities in the statistical learning phase did 

not affect learning across blocks (F(4, 295) = 0.22, p = 0.93, 

ηp
2 = 0.003), and there was no interaction between statistical 

regularity and category type across blocks (F(4, 295) = 1.07, 

p = 0.37, ηp
2 = 0.014).

Participants’ accuracy improved across blocks, indicated 

by a main effect of block (F(5.7, 1666.9) = 25.6, p < 0.0005, 

ηp
2 = 0.080), which was driven by a significant improvement 

from the first to the second block (Bonferroni-corrected p < 

0.0005), with no other subsequent differences among adja-

cent blocks (ps > 0.26). The improvement across blocks 

also had a distinct pattern for those learning Aligned and 

Misaligned categories (F(5.7, 1666.9) = 2.91, p = 0.009, ηp
2 

= 0.10). Aligned categories had more drastic improvement 

from the first to second block, whereas Misaligned catego-

ries had more gradual improvement across blocks. Critically, 

the type of statistical regularity did not impact the pattern 

of learning across blocks (F(22.6, 1666.9) = 0.93, p = 0.55, 

ηp
2 = 0.12), and there was no interaction between block, 

regularity, and category type (F(22.6, 1666.9) = 1.045, p = 

0.40, ηp
2 = 0.014).

Finally, the pattern of results in the generalization test 

was identical to training – generalization of learning was 

better for Aligned than Misaligned categories (F(1, 295) = 

60.0, p < .001, ηp
2 = 0.17), there was no effect of statistical 

regularity type (F(4, 295) = 0.44, p = .78, ηp
2 = 0.0045), 

or an interaction between regularity and category type (F(4, 

295) = 0.49, p = .74, ηp
2 = 0.066).

To summarize, performance during the category-learning 

task was not impacted at any stage (even the earliest stages 

of learning) by short-term statistical learning of acoustic 

regularities via passive exposure. However, there was a 

persistent effect of long-term perceptual priors such that 

Aligned categories requiring distinctions between catego-

ries across the negative axis in spectral-temporal modula-

tion space exhibited a learning advantage over Misaligned 

categories defined by the inverse relationship, even among 

Naïve participants.

Decision strategy results

We restrict our discussion of strategy use to Block 1, as 

we were primarily interested in behavior before participants 

received extensive feedback. Results for the other blocks 

can be found in the OSM. Participants used similar decision 

Fig. 4  Category learning performance. Note. (A) Mean accuracy 
across the eight training blocks and generalization test with chance 
performance (50%) denoted by a dashed line. Error bars reflect SEM. 

(B) Accuracy in the first block with mean and SEM shown in black 
and individual subject variability shown in color for each condition

2 Mauchly’s test of sphericity was significant (p < 0.0005), so we 
report the Huynh-Feldt corrected values.
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strategies, regardless of the type of statistical regularities 

they experienced (Fig. 5). According to Fisher’s exact tests, 

in the first block, there were no significant differences in the 

strategies participants used across the five regularity condi-

tions for the Aligned categories (p = 0.70) or the Misaligned 

categories (p = 0.61). Participants who learned the Aligned 

categories had a roughly even mix between optimal integra-

tion (30%), unidimensional-temporal (42%), and unidimen-

sional-spectral (28%) strategies. Participants who learned 

the Misaligned categories primarily used unidimensional-

temporal (54%) and unidimensional-spectral (39%) strate-

gies. Only 6% of Misaligned category participants used the 

optimal integration strategy.3 No participants were best fit 

by a random responder model.

While short-term statistical learning did not influence 

participants’ strategies, long-term priors did. According 

to Fisher’s exact tests, strategies were significantly differ-

ent for the Aligned and Misaligned categories (p < .001). 

More participants learning the Aligned categories used 

the optimal integration strategy than participants learning 

the Misaligned categories. These differences in strategies 

across categories persisted throughout the rest of the task 

(see Fig. S3, OSM). These results complement the behavio-

ral accuracy data: accuracy was higher for the Aligned than 

the Misaligned categories because individuals learning the 

Aligned categories used optimal integration strategies while 

individuals learning the Misaligned categories used subop-

timal unidimensional strategies.

Discussion

We investigated the interaction of long-term perceptual pri-

ors and short-term statistical learning in a category-learning 

task. Passive statistical learning had no impact on decision 

strategies or overall performance. However, there were large 

and persistent differences between the two statistically iden-

tical category types (Aligned, Misaligned), indicating that 

perceptual priors can place strong constraints on learning. 

Our study extends prior work on the influence of short-term 

statistical learning by examining the influence of this experi-

ence on relevant overt learning behavior. This study is also 

the first to examine the interaction of perceptual priors, sta-

tistical learning, and category learning.

Interaction between short‑term and long‑term 
regularities

Perceptual systems are sensitive to long-term (Ernst & 

Banks, 2002; Lewicki, 2002; Simoncelli & Olshausen, 2001; 

Wang, 2007) and short-term regularities (Aslin et al., 1998; 

Barlow & Földiák, 1989; Pons, 2006; Wanrooij & Boersma, 

2013), which enables stable yet flexible perception in a com-

plex sensory world. The current results suggest that long-

term representations may be robust in the face of short-term 

regularities. These results are consistent with findings from 

the speech category learning literature that suggest that non-

native speech categories that conflict with long-term native 

language representations are much more difficult to learn 

than categories that do not conflict with the native language 

(Best et al., 2001; Kuhl et al., 2007).

Fig. 5  Proportion of participants best-fit by each strategy in Block 1. None of the participants were best fit by a random responder model, so it is 
not shown

3 The values do not sum to 100% due to rounding of percentages.
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Regardless of the nature of the short-term statistical 

learning experience, we observed large and persistent dif-

ferences in the ability to learn statistically identical catego-

ries that differed only in the arbitrary assignment of stimuli 

to categories based on the rotation of the categories in the 

acoustic space. Participants learning Misaligned categories 

performed worse throughout training and used more subop-

timal decision strategies than participants learning Aligned 

categories. These persistent differences indicate that priors 

reflected in the representations of these dimensions may not 

be shifted, moved, or otherwise substantially influenced by 

short-term passive experience. The bias observed in this 

spectral-temporal modulation space may directly relate to 

the long-term representations of these dimensions in audi-

tory cortex (Allen et al., 2018; Hullett et al., 2016). Neu-

rons in these regions may encode a joint representation of 

spectral-temporal modulation that may relate to enhanced 

efficient processing of natural sounds, such as speech.

It is informative to compare the findings of our pilot 

study – which examined discrimination behavior across the 

positive and negative axes – and the main category learn-

ing study. We found no differences in the discriminability 

of sounds varying across the negative and positive axes in 

the pilot study but found that the Aligned categories were 

persistently learned better than the Misaligned categories. 

We believe this difference stems from the nature of these two 

tasks. Specifically, in the pilot study, participants reported 

only whether the sounds were the same or different from 

one another. The positive and negative stimuli differed on 

both the temporal and spectral modulation dimensions. As a 

result, participants could detect differences across either of 

the dimensions. We can contrast this with the requirements 

in the category learning study in which participants learned 

arbitrary labels for categories through feedback. While par-

ticipants were able to detect differences based on temporal 

and spectral modulation along the positive and negative 

axes, as evidenced by the pilot study, they were impaired in 

their ability to assign the stimuli to arbitrary categories when 

the category differences were misaligned with a long-term 

prior. It is possible that more graded measures of behavior, 

such as similarity judgments, may reveal differences across 

the positive and negative axes. Future work should address 

this directly.

The bias in learning category learning distributions 

rotated differently in space was also present in other stud-

ies with different dimensions in both auditory (Roark & 

Holt, 2019b) and visual modalities (Markant, 2018). Spe-

cifically, across our study and this prior work, categories 

that can be distinguished across the negative axis (Aligned) 

were learned better than categories distinguished across the 

positive axis (Misaligned). While these prior studies did 

not address this possibility, these directional biases may 

reflect constraints of existing representations, such that if 

categories do not align with existing representations, learn-

ers will encounter more difficulty than if they align (Holt 

et al., 2004; Roark et al., 2022). Our results suggest that 

other long-term priors should also influence category learn-

ing in predictable ways. For instance, there is an associa-

tion between amplitude modulation (i.e., change in rate of 

modulation over time) and changes in carrier frequency (i.e., 

changes in pitch over time), such that sounds that increase in 

frequency are more likely to be perceived as getting faster 

over time and sounds that decrease in frequency are more 

likely to be perceived as getting slower (Bond & Feldstein, 

1982; Feldstein & Bond, 1981; Henry & McAuley, 2009; 

Herrmann & Johnsrude, 2018). Our results suggest that any 

long-term prior or bias may influence category learning with 

categories that are aligned with the bias being easier to learn 

than categories that are misaligned with the bias.

Regardless of direction, it is possible that the source of 

these biases could be based in hardwired functionality of the 

neural systems or based on the physics of the dimensions 

themselves (e.g., faster temporal modulations can naturally 

accommodate more spectral modulations). The effect could 

also be learned – it is possible that long-term experience 

with distributions in the sensory world that accentuate cer-

tain distinctions contributes to these long-term priors (Roark 

et al., 2022). To understand the source of these biases, more 

will need to be understood about the distributions along 

these dimensions in the natural sensory world and the nature 

of the neural representations.

Cognitive systems face the tension of maintaining exist-

ing representations that have been fine-tuned to the long-

term input regularities and adapting representations to meet 

the unique needs of short-term input that may deviate from 

long-term norms. It would be extremely costly for a system 

to fundamentally change representations that do a good job of 

reflecting stable aspects of the environment when presented 

with novel information. To facilitate speech perception, lis-

teners can rapidly adapt to the novel regularities in foreign or 

artificially accented speech, without overwriting their long-

term representations (Clarke & Garrett, 2004; Idemaru & 

Holt, 2014; Liu & Holt, 2015; Norris et al., 2003; Skoruppa 

& Peperkamp, 2011). Even years of experience with a second 

language may not substantially change stable representations 

developed across the long-term (Idemaru et al., 2012). It is 

sometimes adaptive for the system not to adapt. This experi-

ment demonstrates the robustness of some representations in 

response to short-term structured experience.

Nature of the short‑term experience

There are several components regarding the nature of the 

statistical learning phase that impact the interpretation of 

the findings.
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The experience was passive

The statistical learning phase was completely passive. It is pos-

sible that perceptual systems are sensitive to these regularities 

but that changes to representations or generalizability to broader 

cognitive behavior, such as during category learning, is not pos-

sible with passive exposure alone. Prior research on rapid effi-

cient coding of regularities in sensory systems suggests some 

representational change can occur through passive exposure (Lu 

et al., 2019; Stilp et al., 2010, 2018; Stilp & Kluender, 2012, 

2016). It could be that to see impacts in a categorization context 

or changes to representations when there is a strong prior, more 

active engagement or feedback may be needed.

Supporting this view on the limits of passive exposure, both 

computational modeling and behavioral work have demonstrated 

that general sensitivity to passive exposure to statistical regulari-

ties may not be sufficient to drive learning of complex categories 

and, instead, feedback or prediction mechanisms might play a 

more substantial role (Emberson et al., 2013; Feldman et al., 2013; 

McMurray et al., 2009; Nixon, 2020; Roark et al., 2021; Wade 

& Holt, 2005). Using hybrid passive plus supervised paradigms, 

researchers have demonstrated enhanced perceptual learning, 

relative to passive exposure alone (Wright et al., 2010). Future 

research should address the extent to which representation change 

might occur with passive, active, or hybrid short-term experience.

The experience was brief

Relative to the lifetime of acoustic experience that partici-

pants had before the experiment, the 8 min of exposure to 450 

stimuli is extremely brief. This length of exposure was cho-

sen based on prior work that suggested that even short-lived 

representational change may occur with as little as 2 min of 

exposure (Stilp et al., 2010). It is possible that this amount of 

exposure is not enough to substantially change representations 

or impact behavior, but longer exposure times might. When 

representational changes occur (if they do) with further expe-

rience is an open question for future research.

Statistical learning conflicted with category learning

Finally, it is possible that we were simply unable to see any 

impact of the statistical learning phase because of the way 

that we measured the impact. After the statistical learning 

phase, participants immediately entered a testing environ-

ment with no relationship between the dimensions. During 

passive exposure, participants experienced a regularity, and 

during categorization, they experienced a different regular-

ity – a lack of a correlation between the dimensions. When 

measuring the effect of passive exposure, researchers have 

found that effects rapidly disappear in a transfer task (Stilp 

& Kluender, 2016; after 128 trials). Even across the first 48 

trials, we did not see any effects of short-term passive expe-

rience on categorization. We are unable to conclude whether 

statistical learning failed to occur at all or, alternatively, 

statistical learning occurred but effects disappeared rapidly 

during the categorization task. To disentangle these possi-

bilities, future studies could examine trial-wise behavioral 

or neural representations to examine change at a finer level.

Conclusion

Although organisms are sensitive to the statistical structure in the 

world, the interaction between short-term statistical learning and 

long-term perceptual biases, or priors, is not yet well understood. 

We found that passive statistical learning had limited effects on 

subsequent category learning in an acoustic environment with 

strong perceptual priors. These findings highlight the limits of 

short-term passive exposure on restructuring of perceptual repre-

sentations that influence learning and decision-making processes, 

such as those involved in category learning. The mind does not 

rapidly adapt to all regularities in an environment and the gener-

alizable effects of passive exposure to regularities on subsequent 

behavior are limited. Long-term priors can be quite rigid in the 

face of short-term experience and statistically identical categories 

can be learned very differently based on existing representations.

Supplementary Information The online version contains supplemen-
tary material available at https:// doi. org/ 10. 3758/ s13423- 022- 02114-z.
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