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Abstract—In this paper, we introduce an energy efficient edge
computing solution to collaboratively utilize Multi-access Edge
Computing (MEC) and Fully Autonomous Aerial Systems (FAAS)
to support the computing demands of the Internet of Things (IoT)
nodes residing in Areas of Interest (Aols) and executing machine
learning tasks. The Satisfaction Games are adopted to determine
whether the nodes’ optimal partial task should be offloaded to the
MEC server or to a hovering FAAS above the Aol. The decision
is taken by considering IoT nodes’ latency, energy consumption,
and acceptable level of Deep Neural Network (DNN) inference
accuracy drop constraints. We exploit the error resilience of
DNNs and we enhance the FAAS with a heterogeneous approx-
imate DNN accelerator that supports different computational
precision and throughput, thus allowing to intelligently adapt to
different computing demands. A reinforcement learning-based
technique is introduced to enable the FAAS to autonomously
optimize its trajectory, aiming at increasing the IoT nodes’ sat-
isfaction of their computing demands, while accounting for its
flying and data processing energy cost. Our experimental results
show the benefits of FAAS, MEC, and approximate computing in
terms of increasing the number of satisfied users by 40% under
a maximum accuracy drop of only 1%.

Index Terms—Edge computing, energy efficiency, satisfaction
games, reinforcement learning, deep neural networks accelera-
tors, approximate computing.

I. INTRODUCTION

ITH the emergence of diverse mobile services, such
Was safety protection and health monitoring, intelli-
gent transportation, environmental monitoring, and the advent
of Internet of Things (IoT), a variety of network services
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and applications has been introduced to support smart appli-
cations. Such modern applications are becoming more and
more computationally demanding, requiring also low latency.
However, [IoT nodes are characterized by limited battery
capacity and low computation capability. Thus, Multi-access
Edge Computing (MEC) has been established as a promising
solution to address these issues by bringing the computing
functionalities closer to the IoT nodes [1]. Complimentary
to the MEC technology, Unmanned Aerial Vehicles (UAVs)
have been used to support both the increased communica-
tions and computing needs of IoT environments by acting as
aerial mobile base stations and edge servers, respectively [2].
Also, the IoT nodes have different application-driven Quality
of Service (QoS) requirements. Thus, satisfying the IoT nodes’
minimum QoS requirements to efficiently support the corre-
sponding IoT applications, without blindly maximizing their
payoff, can conclude to major resources saving, both for the
IoT system and the nodes.

Additionally, Deep Neural Networks (DNNs) have become
the driving force for IoT nodes and particularly mobile devices.
Many MEC services heavily rely on the utilization of DNNSs,
such as object detection, natural language processing, and
virtual/augmented reality applications. Interestingly, previous
research works [3]-[6] showed that DNNs feature increased
error resilience making them an excellent candidate for approx-
imation via computational precision reduction. Under the
principle of approximate computing, DNNs can trade-off com-
putation accuracy to further reduce IoT nodes’ execution time
and/or power consumption. To support such operations, het-
erogeneous DNN accelerators arise as the dominant computing
architecture to balance the accuracy, throughput, and energy
consumption. Such accelerators integrate different computing
components tailored to the needs of the DNNs. We bridge these
two concepts and we employ a heterogeneous approximate DNN
accelerator to further boost the gains.

In this paper, we introduce an energy efficient edge
computing solution enabled by the Satisfaction Games
and Approximate Computing. Specifically, we utilize a
Heterogeneous Approximate DNN accelerator (HADA), in order
to support an IoT smart environment by exploiting the MEC
technology and the Fully Autonomous Aerial Systems (FAAS).

A. Related Work & Background

Several recent research works exploit the joint combina-
tion of UAV and MEC technology to address the ground
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users’/devices’ computing demands. In [7], a third party agent
is deployed, which learns the optimal task offloading decision
of a user to a UAV and/or a ground MEC server to minimize
the task execution delay and the users’ energy consumption,
based on a combination of machine learning and deep learning
algorithms. The agent exchanges information with the users,
the UAV, and the MEC server to learn the optimal strategy,
which is finally communicated to the user. A multi-agent rein-
forcement learning approach is introduced in [8] to determine
the users’ optimal task offloading to a UAV cloudlet, while
jointly considering the computing tasks’ inter-dependencies,
the communication conditions with the UAV cloudlet, and
energy constraints of the latter one. The authors design an on-
policy algorithm to perform the decision-making of the task
offloading and an off-policy algorithm to reduce the cost.
The problem of optimal UAV’s trajectory planning to serve
the ground users, while considering several physical con-
straints, such as UAVs’ energy consumption, users’ mobility,
and computing priority, has attracted significant interest by
the recent literature. In [9], the trajectory learning and the
users’ association to UAVs is performed via maximizing the
users’ sum log-rate by mainly focusing on the communications
performance improvement and considering static users. This
framework has been extended for mobile users by adopting a
stochastic gradient ascent algorithm to determine the UAV’s
trajectory. A novel approach of determining the UAV’s optimal
trajectory is proposed in [10] by minimizing the average age
of information of the data collected by the users. The authors
consider as constraint the time that is needed for the users’
devices to harvest energy from the UAV. Also, the authors
in [11] introduce a reinforcement leaning-based coalition for-
mation mechanism, among the ground users, to determine the
UAV’s optimal trajectory by solving the optimization problem
of maximizing the coalition heads’ total energy availability.
The problem of energy efficient edge computing becomes
even more challenging, while jointly considering the UAV
and MEC technologies, and the UAV’s trajectory planning.
In [12], the authors consider mobile users and UAV-mounted
MEC servers, where the latter ones execute a double deep
Q-network algorithm to determine the UAV trajectory accord-
ing to the users’ location and QoS constraints. The optimal
partial computing task offloading is studied in [13], where the
users offload part of their computing tasks to the UAV and
process the rest locally. To determine the users’ optimal task
offloading strategies, the authors solve a minimization problem
of the users’ total energy consumption, while jointly optimiz-
ing the data allocation, the resource partitioning, and the UAV
trajectory. In [14], the authors determine the optimal offloading
of computing tasks and the UAV’s trajectory by minimizing
the users’ and UAV’s average weighted energy consump-
tion, while considering the system’s physical constraints. The
authors decompose the joint optimization problem into three
subproblems (tasks offloading, resource allocation, and fly-
ing trajectory) and they adopt a Lyapunov-based approach
to solve them. In [15], the authors formulate a minimization
problem of the total users’ energy consumption, under the con-
straints of users’ QoS, latency, and UAV’s energy availability.
The successive convex approximation technique is adopted to

solve the constrained optimization problem and determine the
task offloading and the UAV’s trajectory. In [16], reinforce-
ment learning is used to optimize the users’ achieved QoS, by
offloading the tasks to the UAV, and the UAV’s path planning.
The main novelty of [16] is the adoption of a sigmoidal func-
tion to depict users’ QoS demands and drive the reinforcement
learning algorithm to maximize users’ QoS.

Hardware accelerators, and particularly Neural Processing
Units (NPUs), have been incorporated to support the execution
of compute-intensive Deep Neural Networks (DNNs) at the
edge. The heart of an edge-based NPU is an array of 8-bit of
multiply-accumulate (MAC) units that profoundly accelerates
the computations required by various phases throughout the
execution of DNN inference (e.g., Google Edge TPU [17] and
Samsung embedded-oriented NPU [18]). In [19], the authors
use approximate computing and they propose an accuracy
configurable approximate DNN accelerator that employs run-
time reconfigurable MAC units. Based on the weights, they
decide the approximation level that should be introduced in
the performed multiplications to satisfy an accuracy thresh-
old, while maximizing the energy gains. This time-consuming
method does not scale and requires additional circuitry, induc-
ing an area overhead. Similarly, the authors in [20] replace the
accurate MAC units with more power-efficient approximate
ones and control the introduced error with layer-based pat-
tern matching. In [21], the authors also employ approximate
multipliers, however the design is not reconfigurable, thus
accurate operations are not supported and accuracy constraints
might not always be satisfied. Another approach for HADAs
and approximate computing, is to reduce the number of bits
that NPUs operate on. In [22], [23], low precision for approx-
imate DNNs are used, but such reconfigurable approaches do
not scale with the number of MAC units.

Limited research work has been performed so far in the
joint exploitation of UAVs, MEC and Approximate Computing
technologies to provide energy efficient edge computing solu-
tions, while accounting for the QoS requirements of the
IoT nodes. Recently, the Fully Autonomous Aerial Systems
(FAAS) have been introduced in the literature. The FAAS
executes intelligent trajectory planning algorithms without
exchanging any control information with ground controllers,
as in the case of UAVs [24]. Additionally, it determines its
optimal trajectory by usually running computationally-light
reinforcement learning algorithms to support the data collec-
tion from the IoT nodes, their computing demand, charge
them, and act as a relay [25]. Furthermore, the majority of
the existing literature targets at the maximization of the IoT
nodes’ achieved QoS. However, several applications, e.g., aug-
mented reality, autonomous driving, smart agriculture, have
specific minimum QoS requirements, and the “blind” QoS
maximization leads to energy inefficiencies, increased cost,
and resource starvation of the system. Thus, the novel con-
cept of Satisfaction Games has been introduced, where an
equilibrium solution, i.e., Satisfaction Equilibrium (SE), is
determined in an autonomous manner among the IoT nodes.
At the SE, all the IoT nodes satisfy their minimum QoS con-
straints, and the system benefits in terms of saving resources
to serve additional IoT nodes. Therefore, ultimately, the

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on July 02,2022 at 17:54:53 UTC from IEEE Xplore. Restrictions apply.



IRTIJA et al.: ENERGY EFFICIENT EDGE COMPUTING ENABLED BY SATISFACTION GAMES AND APPROXIMATE COMPUTING 283

system increases its scalability and robustness [26]. Limited
research effort has been devoted so far in exploiting the
benefits of Satisfaction Games in communications and com-
puting environments, while emphasis has been placed on
examining traditional power control problems at the access
layer [27], [28].

B. Contributions and Outline

Despite the efforts made in the previous works to provide
edge computing solutions to IoT nodes, the issue of jointly
exploiting the benefits of FAAS, MEC, and Approximate
Computing in a unified holistic framework still remains open.
An even more challenging problem is to provide an energy
efficient edge computing solution and intelligently use the
system’s resources, by incorporating the IoT nodes’ specific
minimum QoS requirements and satisfy them via an intelligent
resource orchestration framework.

In this paper, we consider a smart IoT environment con-
sisting of Areas of Interest (Aols), where IoT devices reside,
executing DNN-based applications. A macro base station
(MBS) equipped with a MEC server resides in the smart
IoT environment, and a FAAS hovers autonomously over the
area to additionally serve the IoT nodes’ computing demand.
The FAAS is equipped with an HADA, providing different
levels of DNN latency and approximation (in terms of com-
putational precision), while the MEC server performs exact
computing functionalities. The IoT nodes have personalized
minimum QoS prerequisites, i.e., latency, energy consump-
tion, and acceptable level of DNN inference accuracy drop. A
Satisfaction Game is formulated to determine the IoT nodes’
optimal partial task offloading to the MEC server or the
FAAS, if the latter one hovers above the IoT nodes’ Aol.
The Satisfaction Equilibrium is determined to ensure the IoT
nodes’ satisfaction of their minimum QoS requirements, if this
is feasible based on the overall system’s available computing
resources and nodes’ error tolerance. Alternatively, the concept
of Generalized Satisfaction Equilibrium is introduced, where
some [oT nodes satisfy their minimum QoS prerequisites,
while some other nodes fail to achieve their satisfaction, due
to the limited computing resources. The latter outcome feeds
a set of gradient ascent reinforcement learning algorithms
that follow the theory of Learning Automata, to determine
the optimal trajectory of the FAAs aiming at increasing the
IoT nodes’ satisfaction by providing supplementary computing
functionalities and capacity.

The main contributions of our work are summarized below:

1) A smart IoT environment is introduced consisting of

multiple Areas of Interest (Aols), a MEC server resid-
ing at the MBS, and a FAAS, equipped with a HADA
that flies among the Aols to complement the system’s
computing capabilities. The HADA employs varying
NPUs that feature different computational precision
and throughput, allowing intelligent adaptation to the
IoT nodes computing demands, under specific accuracy
requirements.

2) An energy efficient edge computing solution is intro-

duced by jointly examining (i) the MEC server’s and

the FAAS computing capabilities, (ii) the HADA’s
accuracy-throughput trade-off, and (iii) the nodes’ min-
imum QoS prerequisites. Specifically, a Satisfaction
Game is formulated among the nodes to determine their
optimal partial computing task offloading decisions to
the MEC server or to the FAAS, if the latter one hov-
ers above their Aol. A distributed learning algorithm
determines whether the Satisfaction Equilibrium and the
Generalized Satisfaction Equilibrium of the nodes sat-
isfy, partially or fully, their minimum latency and energy
consumption constraints.

3) The FAAS’s optimal trajectory is determined by a set of
gradient ascent reinforcement learning algorithms. The
proposed algorithms consider its energy consumption
(both for navigating and processing the IoT nodes’ com-
puting tasks), as well as the satisfaction of the IoT nodes’
computing demands.

4) A detailed set of numerical and comparative results is
presented, highlighting the benefits of jointly exploit-
ing the FAAS, the MEC and Approximate Computing
technologies, along with considering the IoT nodes’
minimum QoS prerequisites and error tolerance. The
results reveal that an increase of 35% satisfied IoT nodes
can be achieved by the FAAS computing contribution,
with a negligible accuracy drop of only 0.5% at the IoT
nodes. When the accepted accuracy drop increases to
1%, the number of satisfied IoT nodes also increases
approximately to 40%.

The remainder of this research paper is organized as fol-
lows. In Section II, the overall system model and the concept
of approximate computing via bit precision are introduced. In
Section III-A, the IoT nodes’ utility functions are defined cap-
turing their minimum QoS requirements, and the problem of
determining the IoT nodes’ optimal partial computing tasks
offloading is formulated in Section III-B. In Section III-C,
the Satisfaction Equilibrium is determined via introducing a
distributed learning Satisfaction Equilibrium algorithm. The
FAAS optimal trajectory is determined in Section IV. Finally,
a detailed experimental evaluation and comparative results are
presented in Section V, while Section VI concludes the paper.

II. SYSTEM MODEL & APPROXIMATE COMPUTING

In this section, the system model adopted in this research
work is presented by jointly exploiting the benefits of the
FAAS, MEC, and Approximate Computing technologies.
Particularly, Approximate Computing is supported by the uti-
lization of an HADA that employs varying NPUs with different
computational precision (e.g., 8-, 7-, and 6-bit), thus resulting
in small accuracy drop, but with significant gains in latency
and energy as trade-offs.

A. System Model

A smart IoT environment is considered consisting of |A]
Areas of Interest (Aols), as shown in Fig. 1, and their set
is denoted as A = {1,...,qa,...,|A|}. At each Aol a, a
number of IoT nodes |U,| resides and their set is denoted
as Uy, = {1,...,u,...,|Ug|}. The overall set of IoT nodes
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Aol 4

Smart loT environment

Fig. 1. Network Topology.

in the examined smart IoT environment is U = (Jy,c 4 Ua =
{1,...,u,...,|U|}. A MEC server resides at the center of the
overall topology serving the IoT nodes’ computing demands,
and a FAAS hovers above the Aols to provide complementary
computing capacity, acting as a FAAS-mounted computing
server. The overall system is studied for a number of time
slots | T'|, where T = {1,...,¢,...,|T|} denotes their set.

Each IoT node has a DNN-based computing task 7 =
{BQ(LZ)7 qufa)} per time slot ¢ that needs to process. The com-
puting task is defined by the amount of data qufl) [frames]
that should be processed, and its computing intensity quf,}
[Computing Cycles] depending on the DNN-based applica-
tion that the IoT node serves. Further, each IoT node has a
minimum latency requirement lq%) [sec] and energy consump-
tion constraint e&) [J] depending on the IoT application that
the node supports. Thus, if the IoT node experiences a latency
and energy consumption greater than its minimum constraints,
it is characterized as dissatisfied, because it cannot success-
fully support the IoT application. Every IoT node can offload
part of its computing task’s data to the MEC server or to the
FAAS, if the latter one hovers above the node’s Aol. The per-
centage of offloaded data is denoted as .ﬂgfa) € [0,1], and the
choices are discretized, e.g., [0%, 10%, 20%, . . 100%] Each
TIoT node makes a data offloading decision d a) = {5ua , Efg ‘g
at each time slot 7 regarding the amount of data ﬂSMZ B(
that it W111 offload to the MEC server (5ua) = 0) or to the
FAAS (5ua = 1), if the latter one is at the Aol that the IoT
node resides. The IoT node processes &7(5;2 B&Z) data at the
edge (i.e., MEC or FAAS), while the rest amount of data, i.e.,
(1- ﬂgfg)BéQ is processed locally at the IoT node. In the
following, we present the IoT nodes’ experienced latency and
energy consumption, as an outcome of their data offloading
decisions considering a FAAS with our HADA. The impact of
our employed HADA on the accuracy, latency, and energy con-
sumption of NN-based workloads is analyzed in the following
subsection.

Initially, focusing on the communications characteristics of
the considered smart IoT environment, the non-orthogonal
multiple access (NOMA) technique is adopted by the IoT
nodes to offload their data to the MEC server or the FAAS.
Each IoT node transmits with power Put [W] its data dur-
ing the data offloading to its receiver (i.e., MEC server or

FAAS) and its corresponding channel gain is denoted as
gq(f). Given that the power control problem is not the main
focus of our paper, we have considered that each IoT node
u transmits with a power qut) € [0,1] [W]. Specifically,
the users that are characterized with good and bad channel
gains transmit with relatively lower power, compared to the
users that are characterized with an intermediate value of their
channel gain. The latter formulation follows the principles
of the power-domain NOMA in the uplink communication.
Without loss of generality and for presentation purposes, we
assume that the channel gains are sorted by the receiver, i.e.,

(t) - > g%)‘ hence the sensed interference by each IoT
U p) (1)
Z ’>u+1

u, 9y when offloading its data
to the MEC server, i.e., u = {u € U|(5(t) = 0}, and I(t) =
Z‘u(,];'u 11 P(t) g( /), when the IoT node offloads its data to the
FAAS, ie., u={u € Ua|51(;; = 1}. The above analysis holds
true given that the Successive Interference Cancellation (SIC)
technique is implemented at the receiver [29]. The IoT node’s
achievable data rate to offload its data to the receiver (MEC
server or FAAS) is:

(t) (1)
R = W - log, <1+Jj Gu ) (1)

node is I

I, )—i—a

where W [Hz] denotes the IoT system’s bandwidth, and o2
is the power of zero-mean Additive White Gaussian Noise
(AWGN). Thus, the IoT node’s experienced latency due to
AL B
[ 0)

data offloading is [sec], and the corresponding energy

“am p®
consumption is P( ) % [J1.

Furthermore, focusing on the computing characteristics of
the examined smart IoT environment, the data processing
frequencies of the IoT node, the MEC server, and the FAAS
are denoted as fy,fis,fr [Computing Cycles/sec], respec-
tively. The IoT nodes employ small embedded NPUs, while the
MEC server utilizes a strong and power-hungry DNN accelera-
tor with computing capacities ¢,, and ¢ s [Computing Cycles]
accordingly. Both the IoT nodes and the MEC sever execute
the DNN at full precision (exact computing). On the con-
trary, the FAAS is equipped with an HADA which comprises
varying NPUs that process the DNNs with different computa-
tional precision, i.e., 8-, 7-, or 6-bit. More details are provided
in Section II-B. Thus, based on computational precision uti-
lized on the FAAS, its corresponding computing capacity is
¢ = {Ps—bit, P7—bit: P6—bit} [Computing Cycles], where
DS_bit > P7—pit > Pe—pit- Moreover, each node has the
option to declare the acceptable level of computing from the
FAAS (maximum accuracy drop), while offloading its data.
Each node can declare its preference for no approximation
(exact computing), 0.5%, or 1% maximum accuracy drop. For
example, an [oT node that supports an IoT application that
can tolerate an error in its computations, but has stringent
latency constraints, it can select higher approximation (i.e.,
execution with lower precision) in order to process its data
faster. Therefore, the computing capacity that is allocated to
each IoT node in order to process its offloaded data at the
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edge, is given as follows:

AL o 50
e = Py ;lat?la VA [(1 (t))¢M +5(t)¢ﬂ]

ua“u'a
u'eU,
j={8—bit, 7—bit,6—bit}

5 =)

u'a

2

The physical meaning of Eq. 2 follows the concept of pro-
portional fairness, i.e., the IoT nodes share the edge computing
capacity in a fair manner among them, without discriminating
or prioritizing the computing tasks of the nodes. Specifically,
the IoT nodes that offload part of their data to the MEC server,
ie., (51(3 = 0, they proportionally share the MEC server’s com-
puting capa01ty ¢ based on the amount of their ofﬂoaded
data, i.e., ﬂua Bq(j; , and their computing intensity d)ua Also,
in the case that the IoT nodes offload their data to the FAAS,
ie., 5192 = 1, the nodes that request the same level of com-
puting (i.e., j = {8 — bit, 7— bit,6 — bit}), they proportionally
share the FAAS corresponding computing capacity ¢;.

Also, the dev1ce of each IoT node has a local comput-

ing capacity qﬁua [Com utm% Cycles] to process locally the

remaining data (1— ﬂua . The local processing delay for
(t> (t)
each IoT node is %M [sec], while the corresponding
energy consumption to process the remaining data locally is
(1 —?{gfa))Béfl)eua [J1, where €, [J/Computing Cycles] is the
IoT node’s local energy consumption per Computing Cycle.

The data processing delay that each IoT node experiences is
PIOMOMNG A0 g HD
W at the FAAS, and W at the MEC server.
Thus, considering that the IoT node’s data are processed in
parallel locally and at the edge, the overall experienced latency
is given as follows.

(t) p(t) (t) (t)
(t) Auva Bud () gD g () Oug | 1 — ua
Lua = I ﬂ B — 7 |
max{ R(uz) lfF + ur
(1- A0 Bl ok
7 [sec] 3)

Also, the overall energy consumption of each IoT node is
given as follows:

(t) (1)
Aua Bua ) (1)
e (1 -7t Bl

Each IoT node will be satisfied and successfully serve its

(t)

IoT application, if its latency, i.e., Lgfa) < lyd»

(t)

. . ¢ . .
constraints, i.e., Eua) < eqyq , are satisfied per time slot 7.

B = ). ol cuall] (@)

and energy

B. Computing Architecture for Using Approximate
Computing

In this section, we present the Heterogeneous Approximate
DNN Accelerator (HADA) architecture utilized on the FAAS
in order to support approximate computing of the offloaded
DNNs. As aforementioned, NPUs are ubiquitous in modern
edge systems to accelerate the increased DNN-based work-
loads. In our work, we consider a microarchitecture similar

to Google Edge TPU [30] that comprises a 64 x 64 systolic
multiply-accumulate (MAC) array, able to perform millions of
operations per inference. In this paper, we propose an HADA
based on the numerical precision of the NPUs (e.g., 7-, 6-bit).

The strong advantage of reducing the bit-width is the fact
that the area and the power consumption of the NPU are sig-
nificantly reduced. Contrary to previous methods that utilize
bit-precision [22], we do not deactivate bits, but we design
the whole MAC array with lower precision. Consequently, we
leverage more the obtained power and area gain from approxi-
mation (w.r.t. the 8-bit baseline) to incorporate a larger number
of MAC units. This, in turn, provides more acceleration to the
deployed DNNSs. To that end, we design and synthesize NPUs
operating at 7- and 6-bit. In order to conduct a fair evaluation,
our developed NPUs have almost the same area (negligible size
overhead of only 5%) compared to the baseline 8-bit 64 x 64
systolic MAC array. However, reducing the number of bits
can result in significant accuracy loss. Thus, in order to uti-
lize the NPUs on the FAAS and still keep DNN accuracy high,
we employed run-time low bit-width post-training quantization
based on the method presented in [31]. Originally, this method
does not quantize the first, the last, and the pooling layers. To
that end, we significantly modified it in order to still employ
the concept of analytical clipping method, introduced in [31],
but for all layers. For our IoT deployment, this is important as
all layers of a DNN will be executed on the same NPU on the
FAAS to avoid resource congestion and run-time overheads.

To demonstrate the benefits of the low-precision NPUs
mounted on the FAAS and their importance on our IoT deploy-
ment, Table I shows the average power gain, the size overhead,
the raw throughput gains, and the corresponding accuracy
drop (error due to approximation) for multiple different state-
of-the-art DNNs. The baseline NPU for our comparison is
the 8-bit 64 x 64 systolic MAC array presented in [30]. As
raw throughput we define the maximum number of computa-
tional instructions that can be executed per cycle. Synopsys
EDA tools and the 14nm technology node [6] are used to
obtain the area and power of the NPUs, while SCALE-Sim,
cycle-accurate CNN simulator from ARM [32], was used to
capture the Computing Cycles. The reported accuracy is for
the state-of-art ImageNet dataset [33]. As Table I presents,
for 7- and 6-bit NPUs, the number of integrated MAC units
has increased, while at the same time the power gains are
significant. The increased number of MAC units in the approx-
imate NPUs, increases the attained throughput and decreases
the computing cycles. The average gain due to reduced bit
precision is on average 7.5% and 17.2% for 7- and 6-bit
respectively. Overall, Table I shows our strong motivation for
utilizing approximate computing on the FAAS.

III. ENERGY EFFICIENT DATA OFFLOADING &
PROCESSING

In this section, we initially define the IoT nodes’ utility
function to capture their minimum QoS requirements, i.e.,
latency and energy consumption constraints, following the
paradigm of Satisfaction Games. Then, the IoT nodes’ optimal
data offloading problem to the MEC server or the FAAS is
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TABLE I
POWER, S1ZE, THROUGHPUT, AND ACCURACY ANALYSIS OF LOow BIT-WIDTH NPUs COMPARED TO THE BASELINE NPU (8-BIT 64 x 64)

| NPU Design Characteristics

Accuracy drop of multiple DNNs under low precision

bit-width | * MAC ~ Power  NPUsize  Throughput | p N34 ResNet50 VGGI6  WideresNet50
units gain overhead gain
7-bit 2xT2 28% 5% 27% 0.04% 0.20% 0.04% 0.12%
6-bit 80x 80  24% 5% 56% 0.70% 0.90% 0.53% 0.90%

captured as a Satisfaction Game among the IoT nodes and the
Satisfaction Equilibrium (SE) and Generalized SE (GSE) are
determined via a distributed learning algorithm.

A. IoT Node’s Utility Function

Each IoT node has some personalized latency 11(;;) and
energy consumption el(f;) requirements, which jointly define
its minimum QoS prerequisites. Both QoS requirements must
be simultaneously satisfied in order for the IoT node to enjoy
a non-negative utility (Eq. 5c) and support its IoT applica-
tion. In the opposite case, the IoT node remains dissatisfied
if both (Eq. 5b) or even one of its QoS requirements is not
fulfilled, and it experiences a negative utility (Eq. 5c). Based
on the above analysis, the nodes utility function is defined as

follows.
(t) (t) (t)
ua Lua E'I_L(l
< 0] > ( K] ) (52)
Ui (@, ) =3 i) < 1) and elt) < E&f) (5b)
( ) L(t) (1) _ p(t)
< ua (t) > <€ua (t) ua >7else (SC)
lua €ua

It is noted that d&fl {5ua, uta} denotes the IoT
node’s u decision to offload its data, and d( e denotes
the decision vector of all the other IoT nodes except for
node u. The decision set of each IoT node is denoted
as Dqsfl), where déz € ija). If the FAAS is in another
Aol other than the Aol a, then the strategy set is defined
as D) = {07, .., (0,ALn), ., (0,7 )},
where N denotes the levels of discretization of the data
offloading percentages. In the opposite case, the IoT nodes
can either offload part of their data to the MEC server or
the FAAS, thus, their strategy set is defined as Dq(j;)

{0,401, 0,78 3), (1, AL ), ..., (1, AL )1

B. Problem Formulation
Given the [oT nodes’ utility function, our goal is to deter-
mine each [oT node’s optimal partial data offloading strategy

dq%) * to the edge computing available options to satisfy its
minimum QoS prerequisites. Also, given that the edge comput-
ing options are shared among the IoT nodes, we capture their
interactions via a non-cooperative satisfaction game, defined

as @ = [U,{D{ vue v AU Wue v 180 @7) ) Wuc v,
VYacA VYacA VacA

where U is the set of all the IoT nodes, ij)
node’s strategy set, Uéz) is its utility, as defined in Eq. 5,

denotes each

and Syq(d _ua) = {d DI(LZ)|U7$Z) > 0} expresses the
satisfaction correspondence.

The IoT nodes’ goal is to determine a strategy that will
satisfy their minimum QoS prerequisites. This strategy is the
Satisfaction Equilibrium, as defined below.

Definition 1 [Satisfaction Equilibrium (SE)]: The strat-
egy vector d* [dfy - dig, -, d‘*U|a]7Va € Ais a
Satisfaction Equilibrium of the non-cooperative game G, if
Vu € U,d* € Syg(d—ya),Va € A.

It is noted that the game G may have multiple SEs or an SE
may not exist due to the limited available computing resources.
In the latter case, some of the IoT nodes may satisfy their min-
imum QoS prerequisites and some of them may not. In this
case, a Generalized Satisfaction Equilibrium (GSE) should be
determined. It is noted that in our analysis, we refer to the SE
and the GSE as the optimal strategy that the IoT nodes can
perform in order for all the nodes or part of them, respectively,
to satisfy their minimum QoS prerequisites. It is highlighted
that the paradigm of Satisfaction Games aims to satisfy a min-
imum QoS constraint, and not to maximize the user’s utility
or the system’s welfare, as compared to the Network Utility
Maximization (NUM) theory [26].

C. Problem Solution

In this section, we present the detailed theoretical steps in
the format of a distributed learning algorithm to determine an
SE for all the IoT nodes, if it exists, or a Generalized SE, if the
computing resources are not sufficient to satisfy the minimum
QoS requirements of all the nodes. The distributed learning
algorithm is executed at each time slot ¢ to determine the SE
or the GSE.

Distributed Learning Algorithm (DLA):

1) At the first iteration i = 0, each IoT node selects a strategy

W if the

FAAS flies above its Aol, or Pua li—o = N’ if not. Then,

it determines its achieved utility Ué?, based on Eq. 5,
by receivmg the information of the allocated computln%

ua |Z o with equal probablhty Pua li— 0 =

capacity ®,,; (Eq. 2) and the sensed interference I (t
from the FAAS or the MEC server, depending on where
it offloads its data. It ULY) > 0, then d'Y) € Sua(d_ua),
thus, déz) = 1([;) Tisa satisfactory strategy, and the IoT
node keeps it for the rest of the iterations of the algorithm.
If UQSZ) < 0, continue to the next step.

The IoT nodes that have not already selected a strategy
which satisfies their minimum QoS requirements, update
their probabilities of selecting an alternative strategy as

2)
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follows.

P (afD)) =

I p——

b PO (al i), if 21 = a2y (62)
Wof 4O 1) = p) (4O 1 1 4t
P’u,u, du I'L)*Pa( ‘7, 1)+i+1 b<N—1 ‘1, 1>
it a0, # d{D1,_1, 1D = N (6b)
() (4B () ( (1) 1. _ 40
Pua (dualz) P (d ‘7, 1)+ i+ 1 b(QN—l dualzfl)a
if dz&?h # d&?b—l’ |D1(Lf1)\ =2N (6¢)

and perform a new strategy selection.
The physical meaning of the above probabilities’ update
rule is that the learning rate 1%—1 will enable the IoT
nodes to update their probabilities over the iterations
of the distributed learning algorithm, towards obtain-
ing higher probability to select a strategy that has the
potential to provide a higher utility.
3) If convergence is not achieved, then return to step 2.
Based on the above description, it is obvious that if there

exists at least one satisfactory strategy dq%)* for each IoT
node v € U, the proposed distributed learning algorithm will
eventually determine it after performing exploration. However,
there can be the case that the proposed algorithm cannot con-
verge to an SE either due to the limited computing resources
of the overall system or due to the selected strategies of the
IoT nodes. In order to explore this case, let us provide the
definition of the clipping action.

Definition 2 (Clipping Action): At the non-cooperative (game
G, an IoT node has a clipping action dz%)c c Duz if
. 4 € Sua.

Based on the above definition, if the distributed learning
algorithm described above, concludes at a state (step 2) that
at least one IoT node has a clipping action and one IoT node
has satisfaction correspondence Sy (d—yq) = &, Vd_y4, then
the nodes with a clipping action will select it, as the selection
probability of this action is strictly increasing. Thus, the IoT
node with satisfaction correspondence Syq(d—yq) = & will
never be satisfied. Thus, the distributed learning algorithm will
converge to a Generalized Satisfaction Equilibrium (GSE) and
its definition is provided below.

Definition 3 (Generalized Satisfaction Equilibrium): A strat-
egy vector d_yq,Vu € U,Va € A is a GSE for the
non-cooperative gave G, if two sets U and U%% exist,
such that dY) € Sua(d_ua),Yu € U and Syro(d_pry) =
®7Vu' c Uunsat'

Concluding the above analysis, it is observed that if there
is no clipping action, the distributed learning algorithm will
converge to an SE. On the other hand, if at least one [oT node
has a clipping action, the algorithm will converge to a GSE.
The complexity of the Distributed Learning Algorithm (DLA)
is O(|U]| - Ite), where Ite is the total number of iterations in
order the algorithm to converge to the SE or to the GSE.

IV. FULLY AUTONOMOUS AERIAL SYSTEM’S MOVEMENT
BASED ON REINFORCEMENT LEARNING

In this section, we exploit the set of gradient ascent rein-
forcement learning algorithms in order to introduce a fully

autonomous trajectory planning to serve the IoT nodes’ com-
puting needs and sparingly use its limited available energy.
Based on the introduced gradient ascent reinforcement learn-
ing, the FAAS interacts with the environment and learns which
Aol to visit per time slot. Following the principles of reinforce-
ment learning, the FAAS acts as an agent, it takes an action
regarding the Aol that should visit, it performs the action, and
receives a corresponding reward from the environment that
interacts with as IoT nodes process their computing tasks. The
FAAS learns its most beneficial actions in order to optimize
its long-term reward by interacting with the IoT environment
and supporting the IoT nodes computing demand. For practical
purposes, we consider that the time slot duration 7 is sufficient
to allow the FAAS to move from one Aol to another based
on its velocity v [m/sec]. Following the theory of the gradient
ascent reinforcement learning, the FAAS acts as a Learning
Automaton, and at each time slot updates its probability to
visit an Aol based on the reward received by the environment.
The reward of the FAAS by visiting an Aol a is defined as
follows,

(ite)

sat | (ite)
O | S A ey S AL B
Vue U, VueUq
8§ =1
(ite) Vye{ezo5 1}
Ta = ite) (ite)
’le7(n + w Eprm‘

)

where ite denotes the iteration of the gradient ascent algorithm,
E(lte) = Ejy—2 [J] is the FAAS consumed energy to fly
from Aol a to a EM [J/s] is the FAAS energy consumption
when it flies with constant velocity v [m/s] and d,, is the
distance among the Aol a and a’. Also, EIE%’Q [J] denotes the
FAAS energy consumption to process the IoT nodes’ offloaded
data, as defined by its approximate computing characteristics,
and wy, wy € [0, 1] denotes the weighting factors of the FAAS
energy consumption to fly among the Aols and process the IoT
nodes’ offloaded data, respectively.

The physical meaning of Eq. 7 is that the FAAS experi-
ences greater reward réne) € [0,1], when it visits an area and

achieves to contribute to the satisfaction of a large portion of

. ‘ Usat ‘(fo’)

IoT nodes, i.e., —2¢—~—
|Ual

their data, i.e.,

, via processing a large portion of

(ite)

S ANBWe;) S A BL

Vue U, Vue U,
s =1
Vj€{ez,0.5,1}

On the other hand, the FAAS experiences low reward if it

travels a large distance to visit an Aol i.e., wy E},ﬁte), and if
it spends a large amount of energy to process the 10T nodes’

offloaded data, i.e., ng;,(,%ec) Furthermore, we normalize the

(%te) (ite)
reward from each Aol a, as 7 ' = “7m) to express

ZV(JEA
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Fig. 2. Overview: Energy Efficient Edge Computing Enabled by Satisfaction Games and Approximate Computing.

the relative reward of the FAAS by visiting an Aol as com-
pared to all the available Aols that it can potentially visit. The
FAAS updates its probability to visit the same (Eq. 8a) or a
different Aol (Eq. 8b) at each iteration of the gradient ascent
reinforcement learning algorithm based on the following action
probability rules.

Péite-&-l) _ Péite) Jr)\1?,((11'156) (1 _ P((Lite))
—A2(1 - %}ﬁe))Pfl“e), if qliterD) — glite) (gq)
Pc(bite+1) _ PC(Lite) _ Alf’t(zitE)P((Lite) + A (1 _ %C(lite))

1
Al -1

The action probabilities updating rule presented in Eq. 8a
and Eq. 8b allows the FAAS to thoroughly explore all the
available Aols for A\ >> Ag,A1,A2 € [0,1] to select the
most beneficial one in terms of improved received reward.
For A1 >> Mg, the RL algorithm is called Linear Reward-¢
Penalty (LR-€P). In the other special case that Ao = 0, the
FAAS always selects probabilistically the Aol a that provides
the highest reward, while performing very limited exploration
of other alternative Aols. The RL algorithm is called Linear
Reward Inaction (LRI) for Ao = 0. It is noted that both the
LRI and LR-€P run iteratively per time slot at the FAAS to
determine the optimal Aol to be visited at the next time slot.
The number of satisfied IoT nodes |US%|(%€) is the only
information that needs to be collected from the field and can be
retrieved with a single bit information message from the IoT
nodes. The complexity of the gradient ascent reinforcement
learning algorithms is O(ITE), where ITE is the total num-
ber of iterations for the algorithm to converge to the a stable
Aol selection. Detailed numerical results showing the FAAS
trajectory planning and a detailed comparison among the LRI
and LR-€P reinforcement learning algorithms are presented
in Section V. The overview of the overall proposed frame-
work, and the relationship and interaction among the different
modules, are presented in Fig. 2.

PL(Lite)>a lf a(ite“rl) ?é a(ite) (8b)

V. EXPERIMENTAL EVALUATION

In this section, a detailed numerical evaluation is presented
to study the performance and the inherent characteristics of the
proposed energy efficient edge computing framework enabled
by the satisfaction games and the approximate computing.

Initially, in Section V-A, we present the benefits of approxima-
tion and the utilization of the proposed HADA on the FAAS.
Then, the pure operation performance of the proposed frame-
work is demonstrated in an IoT deployment, in Section V-B,
both from the IoT nodes’ and the FAAS perspective. Also, the
benefits of the reinforcement learning-based trajectory plan-
ning are demonstrated in Section V-C. Finally, a scalability
analysis is provided to show the efficiency and robustness of
the proposed framework in Section V-D, as well as a detailed
comparative analysis among multiple different DNNs, showing
the benefits of our approach in a variety of different workloads.

A. Benefits of Approximation

In this section, we present the benefits of the proposed
HADA for DNN execution on the FAAS and the added value
that approximate computing brings. To that end, we consider
multiple state-of-art DNNs and a single IoT node in four cases:
(1) the DNN is executed on the IoT node’s device; (2) the
DNN is executed on the FAAS, requiring no approximation;
(3) the DNN is executed on the FAAS, having 0.5% maximum
accuracy drop tolerance; and (4) the DNN is executed on the
FAAS, having 1% maximum accuracy drop tolerance. All the
selected DNNs follow different algorithmic approaches. In that
way, we managed to evaluate our approach on different sce-
narios. Additionally, we considered that the edge IoT node is
equipped with a 32x32 NPU (i.e., similar computing power
to the Samsung mobile NPUs [18]). Moreover, the FAAS is
equipped with an accelerator that integrates three NPUs: (1) an
8-bit NPU, with 64 x 64 MAC units, utilized for exact com-
putations; (2) a 7-bit NPU, with 72 x 72 MAC units, utilized
when the IoT node can tolerate 0.5% accuracy drop; and (3) a
6-bit NPU, with 80 x 80 MAC units, utilized when the IoT
node can tolerate 1.0% accuracy drop.

Figs. 3a-3b show the normalized execution time and pro-
cessing energy consumption respectively during inference, of
five different DNNSs, under the four aforementioned cases. The
inference execution time was extracted from the SCALE-Sim
cycle-accurate CNN simulator [32], while the energy con-
sumption was calculated after a chip design using Synopsys
EDA tools at 14nm technology. Clearly, the accelerator
mounted on the FAAS significantly improves the execution
time of all DNNs by an average of 50%. However, the com-
putation energy consumption overhead for DNN processing
on the FAAS is greater by approximately 43%, if no accuracy
drop can be tolerated (exact computation). If the IoT node can
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Fig. 3. (a) Normalized computing cycles of different DNNs for the IoT node’s
device and the NPUs employed on the FAAS. (b) Corresponding normalized
energy consumption. The values in both figures are normalized over the IoT
node’s device.

tolerate a negligible accuracy drop of 0.5%, then the execu-
tion of the DNN on the FAAS is completed 77% faster, while
the processing energy consumption on the FAAS is 5% lower
than the IoT node’s device. Furthermore, if the IoT node can
tolerate 1% accuracy drop, then the gains in execution time
increases to 79%, while the energy consumption is almost sim-
ilar with the IoT node’s device. Overall, in this section we
presented the benefits of utilizing approximation and how we
can achieve significant gains if we introduce negligible error
in the calculation.

B. Pure Operation Performance: loT Nodes and FAAS
Perspective

In this section, we aim to elucidate the operational char-
acteristics of the proposed energy efficient edge computing
framework based on satisfaction games and approximate com-
puting. Our use case evaluation is based on the ResNet50
DNN. We selected it as it constitutes the core DNN for many
applications [34].

Particularly, we consider an IoT environment with |A| = 8
Aols, and |U,| = 15 IoT nodes in each Aol. Also, we
have B} = [25,30] [frames], ¢} = 6007234 [Computing
Cycles], the distance among the IoT nodes and the MEC
server dpg, € [1900,3000] [m], the distance among the IoT

nodes and the FAAS dp, € [120,180] [m], g, = d?#’
F/Mu

02 =10-13, P{Y € [0,1] [W], f, = 500 x 10° [Computing
Cycles/sec], fyy = 1000 x 10% [Computing Cycles/sec],
fr = 700 x 10% [Computing Cycles/sec], ¢5; = 897881
[Computing Cycles], BN = 1.55 x 1078, wy = 1, wp = 1,
A1 = 0.7, A2 = 0.005 for LR-€P algorithm and A\; = 0.7 for
LRI algorithm, unless otherwise explicitly stated. For nodes
with strict QoS constraints, we have lq(j;) =8x1072 [sec] and
e!) — 251072 [J], for mild QoS constraints, I\ = 12x10~2
[sec] and eq(;;) = 2.1 x 1072 [J], and for weak QoS con-

straints, 1Y) = 16 x 102 [sec] and ) = 2.2 x 102 [J].

Finally, the 15 IoT nodes reside at each Aol are organized
in groups of 5 nodes in terms of requesting exact comput-
ing, 0.5%, and 1% maximum accuracy drop, respectively. The
proposed framework’s evaluation was conducted in an Asus
Laptop with 2.10GHz AMD Ryzen 5 3550H processor and
8GB available RAM.

Figs. 4(a)—4(c) present the IoT nodes’ percentage of offloaded
data to the edge computing options (MEC server or FAAS), the
normalized experienced latency, and the normalized energy con-
sumption, respectively, as a function of the distributed Learning
algorithm’s (DLA) iterations. It is noted that the normalization
of the latency and the energy consumption has been performed
with respect to the corresponding value derived if the whole
amount of the IoT nodes’ data is processed locally on their
devices. Additionally, the size of transmitted data is the same
w.r.t. to the computing precision. The quantization is performed
on the FAAS, thus the size of transmitted data is not affected.
Each curve in Fig. 4(a)-4(c) presents the average values of each
group of IoT nodes with homogeneous computing requests,
i.e., exact computing, 0.5%, and 1% maximum accuracy drop
(i.e., approximate computing).

Focusing on the IoT nodes’ perspective, the results reveal
that the more flexible the IoT nodes are in terms of dropping
the computing accuracy, the more data they offload to the edge
computing options (Fig. 4(a)), which support the fast (Fig. 4(b))
and energy efficient (Fig. 4(c)) data processing. In contrast,
the IoT nodes that accept only exact computing of their data,
they tend to keep approximately 40% of their data locally, to
process them on their devices (Fig. 4(a)), as the trade-off of the
data transmission time and processing time at the edge options
is not favorable given the strict and time-consuming computing
requirements. Thus, the IoT nodes, requesting exact computing
for their computing tasks, experience a higher latency (Fig. 4(b))
and consume a larger amount of energy (Fig. 4(c)) to process
their data. Furthermore, Fig. 4(d) presents the percentage of
satisfied IoT nodes under the different computing requirements
in terms of exact and approximate computing. Towards deriving
those results, a Monte Carlo analysis has been executed for
1.000 executions of the overall framework. The results show
that the stricter the IoT nodes’ computing requirements are
in terms of computing approximation, the less percentage of
satisfied IoT nodes is achieved, given that it becomes more
difficult for the smart IoT environment to satisfy their latency
and energy constraints.

Continuing our analysis and focusing on the FAAS per-
spective, we consider four comparative scenarios for the same
smart IoT environment, where all the IoT nodes request:
1) exact computing; 2) 0.5%; and 3) 1% maximum accu-
racy drop, or (iv) process their data locally to their devices.
The results are derived by performing a Monte Carlo anal-
ysis with 1.000 executions of the overall framework, where
at each execution the FAAS may hover above a different
Aol. Figs. 5(a)-5(b) present the average normalized experi-
enced latency and normalized energy consumption of the IoT
nodes, respectively, for all the comparative scenarios. Also,
Fig. 5(c) illustrates the percentage of satisfied IoT nodes for
all the comparative scenarios. It is observed that the IoT nodes’
worst latency (Fig. 5) and energy consumption (Fig. 5(b)) is
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of computing approximation for the ResNet50 DNN.

experienced, when the nodes process all of their data locally,
thus, they remain dissatisfied in terms of their latency and
energy consumption requirements (Fig. 5(c)). Also, the results
show that the more relaxed are the IoT nodes’ computing
approximation requirements, the less latency (Fig. 5(a)) and
energy consumption (Fig. 5(b)) they experience, and the smart
IoT environment achieves to satisfy a higher percentage of
them (Fig. 5(c)). Also, focusing on the real time execution
of the Distributed Learning Algorithm (DLA) that enables
the IoT nodes’ autonomous decision making in terms of
data offloading and processing, we observe that few millisec-
onds are required to converge (Figs. 4(a)-4(c)). Thus, the
proposed energy efficient edge computing framework can be
implemented in a real time manner in a smart IoT environment.

C. Reinforcement Learning-Based FAAS Trajectory Planning

In this section, the benefits of adopting a reinforcement
learning mechanism to enable the FAAS to fully autonomously
determine its optimal trajectory, are presented. The two intro-
duced reinforcement learning algorithms introduced in this
paper, i.e., Linear Reward-e¢ Penalty (LR-¢P) and Linear
Reward Inaction (LRI), are also compared in terms of their
time execution efficiency. The same topology of the smart IoT
environment is adopted as described above, and we consider

fixed computing requirements for the IoT nodes and no mobil-
ity in order to evaluate the pure benefits of the reinforcement
learning mechanism.

Figs. 6(a)-6(b) present the convergence of the LRI and
LR-€P algorithms to a stable selection of an Aol and the cor-
responding elapsed time, respectively. It is noted that at each
iteration of the reinforcement learning mechanism, the FAAS
makes an optimal Aol selection to visit and offer its computing
services, it receives a reward (Eq. 7) and updates its probabil-
ity to visit another Aol in the next iteration based on Eq. 8a
and Eq. 8a. It is observed that if the smart IoT environment
remains static, the FAAS ultimately will learn the optimal Aol
selection after performing a thorough exploration and exploita-
tion of its available choices. Additionally, it is highlighted that
at each iteration, the FAAS makes an optimal choice of an Aol
to visit based on the knowledge that it has gained so far by
interacting with the smart IoT environment.

The results reveal that the LR-¢P algorithm needs more time
to converge to a stable Aol selection compared to the LRI
one. This outcome is derived from the fact that the LR-eP
performs a more thorough exploration of the available Aol
choices, while the LRI enables the FAAS to probabilistically
select the Aol that provides the highest reward. Thus, the LRI
algorithm performs very limited exploration of the alternative
Aols and converges faster to a stable selection.
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IoT nodes by processing more of their data, while satisfying
their latency and energy consumption requirements. Also, the
reinforcement learning-based trajectory planning enables the
FAAS energy saving in terms of moving among the Aols to
serve the IoT nodes’ computing demands. In contrast, when
the FAAS chooses to always visit the Aol with the maximum
number of IoT nodes, the FAAS achieves the lowest reward,
as a large number of IoT nodes remains dissatisfied in the rest
of the Aols.

D. Scalability Analysis and Comparative Evaluation

In this section, a scalability analysis of the proposed energy
efficient edge computing framework is provided to show its
efficiency and robustness in large-scale IoT environments.
A smart IoT environment is simulated with 8 Aols, where
12,24,...,84 10T nodes reside in each Aol at each simula-
tion, i.e., the total number of IoT nodes are 96,192, ...,672 at
each simulation. Fig. 7 presents the total percentage of satisfied
IoT nodes in the examined smart IoT environment. The IoT
nodes’ computing tasks requests are considered homogeneous
for fairness purposes in the scalability analysis. The results
reveal that the total percentage of satisfied IoT nodes drops by
approximately 2% when an eight-fold increase of the number
of IoT nodes occurs. This outcome confirms the robustness of
the proposed framework in large-scale IoT environments.

Additionally, we present comparative results for other state-
of-art DNNs with varying computational complexity and

TABLE 11
DIFFERENCE IN NUMBER OF PERFORMED COMPUTATIONS AND NUMBER
OF SATISFIED USERS FOR OTHER DNNSs. THE RESNET50 Is USED AS
THE BASELINE

DNNs
ResNet34  WideresNet50 VGG16
% difference in MAC operations -10% +179% +278%
% difference in satisfied users -2.3% +2.0% +3.6%

algorithmic design, in order to demonstrate the benefits of
our approach under different workloads. Table II depicts the
differences in the numbers of satisfied users if we replace
the ResNet50 with other DNNs. The table also depicts the
differences in the number of actual computations (MAC oper-
ations) for each DNN as a metric of computational complexity.
WideresNet50 and VGG16 are more computational intensive
than ResNet50 and the number of satisfied users at a large
scale is increased by 2% and 3.6% respectively. This verifies
our approach that by utilizing approximation, we can meet the
requirements of more users having a robust IoT deployment.
On the other end, ResNet34 is less computational intensive
than ResNet50, thus users can meet their requirements locally
easier and they offload less data. For that reason the numbers
of satisfied users by the FAAS drops by 2.3%.
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Fig. 8. Satisfaction Games versus Network Utility Maximization.

Towards showing the superiority of the theory of
Satisfaction Games in terms of dealing with resource man-
agement problems, we compare our proposed computing task
offloading framework to the state of the art. Specifically,
the most common theory that is used nowadays to perform
the resource management in communications and comput-
ing systems is the Network Utility Maximization (NUM)
theory [35]. The main principle under the NUM theory
is that every user in a complex system aims at maximiz-
ing its utility or equivalently, minimizing its experienced
cost. We consider three comparative scenarios: 1) SG: our
proposed satisfaction games-based computing task offloading
model; 2) NUM - L, E: the IoT nodes decide their optimal
amount of offloaded data by solving the optimization problem
min{w LY + w BV, w + ws = 1; and 3) NUM — L:
the optimal amount of offloaded data is determined by solv-
ing the optimization problem min{Lf,(fg}. Fig. 8 presents the
percentage of satisfied IoT nodes under the three comparative
scenarios and considering the three different computing levels
requested by the nodes. Specifically, for the purposes of the
comparison, we have focused on one Aol with 45 IoT nodes,
and the FAAS hovering above this area. The results reveal
that the theory of satisfaction games enables the superior sat-
isfaction of the IoT nodes’ latency and energy consumption
constraints by sparingly using the overall system’s available
resources. Also, the NUM — L scenario presents the worst
results, as it simply tries to minimize the nodes’ experienced
latency without considering their energy constraints, and the
shared nature of the computing resources with the other nodes.
The NUM - L, E scenario presents an intermediate behavior in
terms of the percentage of satisfied nodes, as even if it jointly
tries to minimize the nodes’ experienced latency and energy
consumption, it still allows the nodes to act in a selfish manner
in terms of the usage of the shared computing resources.

VI. CONCLUSION AND FUTURE WORK

In this paper, an energy efficient edge computing framework
is introduced enabled by the theory of satisfaction games and
approximate computing. A smart Internet of Things (IoT) envi-
ronment is considered consisting of multiple areas of interest

(Aols), where several IoT nodes reside per Aol, a multi-
access edge computing server is attached to the macro-cell
base station serving the examined IoT environment and a fully
autonomous aerial system (FAAS) providing computing sup-
port on-demand hovers above the Aols to accommodate the
IoT nodes’ computing demand. Based on the IoT service that
the nodes serve, they are characterized by specific latency and
energy consumption constraints, as well as acceptable flexi-
bility level of maximum accuracy drop during the processing
of their computing tasks. A data offloading problem is formu-
lated to guarantee the [oT nodes’ minimum latency and energy
consumption requirements and it is formulated as a satisfac-
tion game. A distributed learning approach is introduced to
determine the Satisfaction Equilibrium of the system, where
all the IoT nodes satisfy their latency and energy consumption
constraints. The proposed distributed learning algorithm also
determines the Generalized Satisfaction Equilibrium, where
part of the nodes satisfy their constraints, while the rest
of them are unable to do so due to the limited comput-
ing resources. A reinforcement learning-based algorithm is
proposed to enable the FAAS to autonomously determine
its optimal trajectory within the smart IoT environment to
serve the computing demand of the IoT nodes. A detailed
set of numerical and comparative results show the pure oper-
ation performance of the proposed framework, the benefits of
adopting the reinforcement learning approach to autonomously
perform the FAAS optimal path planning, and a scalability
analysis demonstrates the robustness of the proposed frame-
work across multiple nodes as well as different DNN-based
applications. Part of our current and future work is to exam-
ine the proposed model in an integrated access and backhaul
(IAB) framework, where the IoT nodes’ data follow a multi-
hop transmission, and computing capabilities can be offered
in different levels, such as multi-access edge computing, fog
computing, and cloud computing via exploiting the benefits of
approximate computing. Also, part of our future work includes
the study of the edge-based federated learning problem, where
the edge server (or the FAAS) “recruits” the IoT nodes to per-
form the edge-based federated learning towards enabling it to
learn a global optimal strategy, e.g., service recommendations.
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