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The Prospect of Reconfigurable Intelligent Surfaces
in Integrated Access and Backhaul Networks

Maria Diamanti
Eirini Eleni Tsiropoulou

Abstract—The Integrated Access and Backhaul (IAB) tech-
nology provides a new view of the backhauling problem, espe-
cially when targeting end-to-end service provisioning. The IAB
paradigm - being well aligned with the vision of Unmanned
Aerial Vehicles (UAVs) - when combined with the benefits of
the Reconfigurable Intelligent Surface (RIS) technology, offers
to the future wireless networks the attributes of reconfigura-
bility and energy efficiency. In this paper, we demonstrate the
prospect of RIS in an UAV-assisted IAB network targeting
energy-efficient operation, while accounting for the transmissions
established at both the wireless access and backhaul network
parts. We introduce a dynamic resource management frame-
work that targets end-to-end energy efficiency optimization, while
considering as controllable parameters the RIS elements’ phase
shifts, the system bandwidth split between access and backhaul,
and the transmission powers of both the UAV and the users.
The corresponding joint optimization problem is formulated and
treated via a distributed single-leader multiple-followers Stackel-
berg game-theoretic approach. The adaptation of the proposed
framework is, also, demonstrated for the treatment of the IAB
network’s end-to-end data rate optimization. The framework’s
performance evaluation highlights the benefits achieved at both
the users’ and UAV’s energy efficiency, by the joint exploitation
of UAVs, IAB, and RIS technologies.

Index Terms—Reconfigurable intelligent surfaces, integrated
access and backhaul networks, game theory, energy efficiency.

I. INTRODUCTION

HE NETWORK reconfiguration and adaptability is
Tconsidered as a prominent network paradigm and is
expected to play a significant role in elevating future network
performance and increasing efficiency. The integration of
advanced hardware and software technologies and compo-
nents into wireless systems, has opened a new horizon to
meet the capacity and coverage requirements of future wireless
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networks, along with the satisfaction of the users’ elevated
needs. For instance, Unmanned Aerial Vehicles (UAVs) are
anticipated to revolutionize the way that wireless communi-
cations are performed. By providing communication services
on-demand, the UAVs contribute to the maintenance of the
network’s sustainability in cases that the underlying network
infrastructure is proven to be limited. Recently, the efforts
of the research community and the standardization bodies
have unveiled several opportunities, enabled by emerging tech-
nologies, which will gradually result to the maturity of the
UAV-assisted communications. Characteristic example of such
a technology is the Integrated Access and Backhaul (IAB)
network deployment [1].

In particular, this paradigm proposes that the Next Generation
Node Bases (gNBs), referred to as IAB nodes, wirelessly
relay the mobile traffic in a multi-hop manner to finally reach
the TAB donor, which is connected to the core Internet with
fiber infrastructure [2]. Within the aforementioned context,
by increasing the UAV’s (acting as an IAB node) degrees
of freedom in terms of wireless service provisioning and its
connectivity to the core network, the IAB network architecture
is seen as one of the primary enablers of the vision of fully
reconfigurable and energy-efficient wireless networks.

Building on the concept and potentials of the IAB networks,
another interesting technology that has lately received notable
attention and is deeply related to the future wireless networks’
attributes of reconfigurability and energy efficiency, is the so-
called Reconfigurable Intelligent Surface (RIS). Constructed
by engineered meta-materials, which usually serve as reflec-
tors, RIS allows for the software-based control of the reflected
signals’ electromagnetic properties [3]. Hence, by appropri-
ately manipulating the reflected signals, RIS is expected to
improve the overall received signal strength and ameliorate the
communications’ energy efficiency. Some initial real experi-
ments in indoor and outdoor environments have already shown
the great energy saving and data rate improvement enabled by
the RIS technology [4].

In this paper, we capitalize on the joint benefits of IAB and
RIS, and we design and propose an end-to-end resource man-
agement framework, tailored to the converged RIS-aided and
UAV-assisted network deployments. Such a converged network
deployment is adapted to the future urban UAV-assisted com-
munications, in which the wireless propagation environment
can be appropriately controlled to account for different objec-
tives, while the UAVs serve as integral part of the network’s
infrastructure to provide end-to-end connectivity under adverse
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situations. In this context, we consider the uplink com-
munications and treat the distinct objective of end-to-end
energy efficiency maximization, via our proposed dynamic
and fully reconfigurable resource management framework.
Complementary to this, and for better revealing the benefits
and tradeoffs of the obtained solution when aiming at energy
efficiency, we also analyze and evaluate the application of the
proposed framework, under a different optimization objective,
namely the end-to-end data rate optimization. Towards the
realization of each one of the aforementioned objectives, we
jointly treat and dynamically optimize the RIS elements’ phase
shifts, the bandwidth splitting between the wireless access and
backhaul parts of the network, as well as the users’ and the
serving UAV’s transmission powers.

The proposed framework promotes the reconfigurability,
programmability and adaptability of the wireless network,
not only by partially controlling the radio propagation con-
ditions, but also from the dynamic resource management
perspective. With respect to the former, a smart radio envi-
ronment is created, where the wireless propagation conditions
are co-engineered with the physical-layer signaling, while we
investigate how to utilize this new capability for improved
energy-efficient network design. With respect to the latter, the
system bandwidth and transmission powers are becoming con-
trollable parameters, which are intelligently and dynamically
adjusted, towards meeting specific user and system objectives.

A. Related Work

Although the paradigm of IAB deployment is still at its
initial stages, there exist research works in the literature
that deal with timely resource allocation problems under the
umbrella of IAB. In [5], a multi-hop IAB network that oper-
ates under the combination of Time (TDMA) and Frequency
Division Multiple Access (FDMA) is considered, to coordi-
nate the transmissions along the different wireless links. The
problem of subchannel and power allocation is formulated to
maximize the sum system throughput, while insights regard-
ing the optimal IAB node placement and user association are
presented. Under a similar multi-IAB-node, though single-
hop, network topology, the authors in [6] treat the problem
of spectrum assignment to the different IAB nodes via a deep
reinforcement learning approach, while trying to maximize the
sum users’ throughput. Also, a joint traffic load balancing and
interference mitigation optimization model is introduced in [7],
targeting at the maximization of the overall network’s capacity.
The joint optimization problem is organized in two sub-
problems, which are solved iteratively following the successive
convex approximation method.

Moving from the terrestrial network deployments to the
promising inclusion of the UAVs within the concept of TAB,
different challenges and considerations behind the idea of
UAV-based communications in Millimeter Wave (mmWave)
frequencies are discussed in [8], while investigating the effect
of UAVs’ and users’ mobility to the network’s performance.
Other works that deal with backhaul-aware UAV-assisted
networks can be found in [9], [10]. In the former, the joint
problem of 3D UAV positioning, wireless backhaul sub-band

assignment and downlink transmission power allocation is
formulated, such that the UAV’s transmission power is min-
imized, while accounting for the users’ Quality of Service
(QoS) prerequisites. On the other hand, the uplink communi-
cation is assumed in [10] and the joint user association, power
and bandwidth assignment is determined to maximize the sum
system throughput. Targeting at the interference mitigation at
the access and backhaul links, the authors in [11] introduce a
joint optimization problem of the users’ association to the base
stations, the downlink power allocation regarding the access
and backhaul transmissions, and the UAV’s deployment within
the examined communications environment.

To further enhance the energy and spectral efficiency of
5G and beyond networks, significant attention has been paid
to the incorporation of the RIS under a plethora of different
communication scenarios. Initial works, such as [12], [13],
focused on simple use cases and scrutinized the joint problems
of power control and RIS elements’ phase shifts optimization.
Both aforementioned works compared the performance gain
incurred by the RIS considering different multiple access tech-
niques, such as orthogonal and non-orthogonal, while targeting
at the users’ power minimization and data rate maximization,
respectively. Similar problems have been formulated for more
complex setups, such as the Multiple-Input Single-Output
(MISO) Non-Orthogonal Multiple Access (NOMA) network
considered in [14]. In this work, the authors addressed the sum
users’ data rate maximization problem under a combination
of machine learning algorithms, based on K-means Gaussian
Mixture Model (K-GMM) and deep Q-network (DQN), while
optimizing the RIS’s passive beamforming vector, and the
users’ decoding order and power allocation, subject to their
data rate prerequisites.

Most of the relevant existing research works, exclusively
consider the downlink direction of the RIS-enabled commu-
nications, while only a few attempts have been made towards
modeling and optimizing the wireless network’s resources
treating the uplink direction. Focusing on the uplink communi-
cation of a RIS-enabled wireless cellular network, the authors
in [15] deal with the maximization problem of the sum rate of
all users subject to their individual power constraints. In [16],
a comparative study between the non-orthogonal multiple
access (NOMA) and orthogonal multiple access (OMA) RIS-
enabled networks is presented, examining both the uplink and
downlink communication for several fading characteristics of
the communications environment. The authors conclude that
the RIS-enabled network consistently achieves high signal-to-
noise ratio, while its increasing trend is not affected by the
number of RIS elements and/or the fading parameters. Also,
in [17], the tradeoff between the energy and spectral efficiency
in the uplink communication is studied by jointly optimiz-
ing the users’ transmit precoding and the RIS’s reflective
beamforming to maximize the resource efficiency.

Finally, the joint power of RIS and UAV-assisted commu-
nications has been also examined. In [18], the deployment
of a RIS on the boundary of a UAV’s serving area is con-
sidered and the joint users’ resource allocation and UAV’s
trajectory optimization is designed to take advantage by the
existence of the RIS. The authors in [19] introduce a machine
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learning approach to jointly determine the UAV’s trajectory,
the phase shifts of the RIS elements, the power allocation
policy from the UAV to the users, and the dynamic decoding
order, towards minimizing the overall system’s energy con-
sumption. The scenario of a RIS mounted on an UAV to
maintain the Line-of-Sight (LoS) communication is studied
in [20], and similarly a joint resource allocation and UAV
mobility problem is devised.

B. Contributions & Outline

Undoubtedly, the existing research has focused on differ-
ent network optimization problems pertaining to the emerging
technologies of UAVs, IAB and RIS, and has identified their
challenges and performance gains in a rather fragmented man-
ner. To the best of our knowledge, there exists no work in the
current literature that identifies the prospect of RIS and its
added value in a backhaul-aware network optimization pro-
cess, as the one revealed by the IAB paradigm. Considering
at the same time both the access and backhauling requirements
and resource allocation, is of paramount practical importance,
to exploit the benefits of the aforementioned technological
advances at their full capacity.

In this paper, our objective is to exactly address this issue
and demonstrate the prospect of RIS in an UAV-assisted
IAB network targeting its energy efficiency. In this way, we
aim at introducing a dynamic, intelligent, and reconfigurable
resource optimization framework, which jointly accounts for
the access and backhaul resource optimization and operation,
towards ensuring the end-to-end service provisioning for the
users. Respecting the need for the design and deployment
of decentralized resource management processes, we capital-
ize on the distributed nature of game theory and Stackelberg
games, and accordingly we jointly treat the wireless propa-
gation environment’s adaptation and the network’s resources’
optimization under a low-complexity end-to-end framework. It
is shown that the use of RIS can provide significant improve-
ments in terms of higher sum users’ energy efficiency, driving
the overall equilibrium and the UAV’s performance at more
energy-efficient points. The specific key contributions of this
paper are summarized as follows:

1) A system model capturing a RIS-aided and UAV-assisted
IAB network is introduced, accounting for the commu-
nications established at the uplink of both the wireless
access and wireless backhaul network parts (Section II).

2) The problem of the IAB network’s end-to-end resource
management towards its energy efficiency optimization,
is formulated and treated via a distributed Stackelberg
game-theoretic approach. The proposed approach com-
prises of three stages, across which the following param-
eters are controlled and dynamically optimized: a) the
RIS elements’ phase shifts, b) the bandwidth splitting
among the wireless access and backhaul network parts,
and c) the users’ and d) the UAV’s uplink transmission
powers (Section III).

3) The UAYV, acting as leader, determines in the first
stage the RIS elements’ phase shifts that maximize
the sum users’ signal strength in the uplink, following
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Fig. 1. Overview of the RIS-aided and UAV-assisted Integrated Access and
Backhaul (IAB) network.

a low-complexity heuristic approach (Section III-B).
Then, the UAV calculates the bandwidth splitting
and its uplink transmission power to the IAB donor
(Section III-C). In the third stage, the users, i.e., the
followers, optimize their uplink transmission powers to
the UAV in a distributed manner (Section III-D). The
overall Stackelberg game-based algorithm is presented
in Section III-E.

4) The applicability and adaptation of the proposed
resource management framework is, also, demonstrated
for the treatment of the IAB network’s end-to-end data
rate optimization problem. The solution is obtained fol-
lowing a similar distributed Stackelberg game-theoretic
approach with its energy efficiency-related counterpart
(Section IV). This alternative optimization objective
serves, also, as the basis for highlighting the benefits
and tradeoffs of the obtained solution when aiming at
energy efficiency.

5) The overall network’s performance is evaluated and
indicative numerical results are presented that demon-
strate the benefits introduced at both the users’ and
UAV’s energy efficiency, by the joint exploitation of
UAV, IAB and RIS technologies (Section V).

Notation Conventions: The notations used in the remainder
of the paper are listed as follows. The vectors and matri-
ces are denoted by bold-face letters and are accompanied by
their size. CX* Y represents the X x Y space of a complex-
valued matrix. Given any matrix G, GT and G¥ indicate the
transpose and conjugate transpose of the general matrix G,
accordingly, while Gj ; is the (i, j)-th element of the matrix.
Given any vector g, diag(g) refers to the diagonal matrix,
whose elements on the main diagonal are the elements of
the vector g. CA(u,0?) denotes the Circularly Symmetric
Complex Gaussian (CSCG) distribution with mean g and vari-
ance o2, and « stands for “distributed as”. Considering a
complex number g, |g| denotes its absolute value and Zg its
phase. Considering any function f, dom denotes the domain of
the function f.

II. SYSTEM MODEL

We consider the uplink communication of a RIS-aided and
UAV-assisted two-tier IAB network, as illustrated in Fig. 1,
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consisting of |N| users, with N = {1,...,n,...,|N|} denot-
ing their set, a UAV and a micro Base Station (mBS). The
UAYV, serving as an IAB node, collects the users’ data in
the first tier and in the second tier, forwards this data to the
mBS (i.e., the IAB donor) through the wireless backhaul. In
this paper, the position of the UAV is considered to be fixed
throughout the operation of the resource management proce-
dure. It should be noted that the problem of the UAV’s trajec-
tory optimization and its impact on the resource management
under different operation scenarios and requirements, though
interesting and challenging by itself, is considered beyond the
scope of this paper and is part of our current and future work.
All the involved transmitting/receiving entities, i.e., the users,
the UAV, and the mBS, bear single-antenna transmitters and
receivers. The TAB network operates in out-of-band mode,
meaning that the wireless access and backhaul links use dif-
ferent frequency bands. Hence, the total system bandwidth
W [Hz] is split into two parts uW and (1 — pu) W [Hz] to
facilitate the wireless access and backhaul communications,
respectively, where u € [0, 1] is the corresponding bandwidth
splitting ratio. The users’ transmissions in the first tier are
multiplexed using the combination of power-domain NOMA
and Successive Interference Cancellation (SIC) techniques.

A. Path Loss Model

In the considered IAB network, the path loss between any
network entity and the UAV is stochastically determined to
account for both the Line-of-Sight (LoS) and non LoS (NLoS)
cases [10]. The probability that the wireless link between a
network entity and the UAV is LoS derives from the function:

1
1+ e B(O—)’
0

where 6§ = %smfl(%) [rad] is the elevation angle between
the network entity and the UAV, with d [m] denoting their
in-between Euclidean distance and z;; [m] representing the
UAV’s altitude. Also, v, 3 € R are constants depending on
the carrier frequency and the type of the communications envi-
ronment, e.g., rural, urban, suburban. The path loss for the LoS
case between a network entity and the UAV is defined as a
function of their in-between Euclidean distance d as:

drfed\ 2V
nos( ”f) , @)

while the respective path loss model for the NLoS case is:
A AN
e > : 3)

where f, [Hz] is the carrier frequency, ¢ [m/s] is the speed
of light, ay is the path loss exponent and 77,5, MNLos [dB]
are the excessive path loss coefficients, such that nyr,s >
Nros > 1. The overall expected path loss is probabilistically
given by:

PrioS(zy, d) = (1)

PLLOS(d)

PLNOS (d) = nnpos <

PL(zy,d) = PrioSpLies 4 (1 - prles)privies. )

Focusing on the first network tier, the prospect of RIS is
scrutinized and a Uniform Linear Array (ULA) consisting of a

setof M = {1,...,m,...,|M|} reflecting elements is consid-
ered, placed at a height of zg [m] above the ground. For each
reflecting element m of the RIS, we denote as wy, € [0, 27)
the phase shift of the reflection and we assume that no change
in the amplitude of the incident signal is incurred, i.e., the
amplitude of the reflection coefficient is equal to 1. The
diagonal reflection matrix of the RIS elements is noted as
Q = diag(e?vL, ... @) e CIMIXIMI while the first RIS
element is used as a reference point for the performance of
the subsequent calculations. The direct communication link
between a user n and the UAV follows the probabilistic path
loss modeling, such that PL, y = ﬁ(zU,dn’U), where
dp,y [m] is the Euclidean distance between user n and
the UAV. Thus, the corresponding channel gain coefficient
hy, v € C is given as follows:

1 ~
h 5
g 5)

hn,U =

with b« CN (0,1) denoting the random scattering component
captured by a zero-mean and unit-variance complex Gaussian
random variable. The path loss between a user n and the RIS
is PL, g = p(dy g)**, where p [dB] is the path loss at the
reference distance 1m, d,, p [m] is the Euclidean distance
between user n and the reference point of RIS and ap is
the path loss exponent [21]. Assuming that the RIS is in the
users’ proximity, the channel gain coefficient h,, p € clMIx1
between a user n and the RIS is:

1 _j2x
hﬂR |:176 Jkds(ﬁn,R’...’e

) _J2{(|M\—1)ds¢n,3r
) PLy, R

(6)
where A [m] is the carrier wavelength, ds; [m] is the antenna
separation and ¢, g is the cosine of the angle of arrival of the
user’s signal to the RIS. The channel gain hg ¢y € CIMIX1 of
the RIS-to-UAV wireless link is modeled as:

NLoS
bhru = \/PLRU<\/1+/<a V1+ bz ) ™

where PLp 7 = PL(zy — zg, dg,y) is the link’s path loss
determined probablhstlcally and K 1s the Rician factor. Also,
h}L%"S = [1,e 7N X dsor, U, e N S (IM|=1)ds¢r, UIT is the
LoS component, with ¢ ; denoting the cosine of the angle of
departure of the signal from the RIS to the UAV, and hN LOS
CN(0,1) is the NLoS component, which follows the complex
Gaussian distribution. Subsequently, the total channel power
gain between a user n and the UAV is given by:

H 2
Gy = hn,U +hR,UQhTL,R . (8)

With reference to the second IAB network tier, the path loss
of the wireless backhaul link between the UAV and the mBS
follows the probabilistic model and is defined as PLy ., =
PL(zy, dy ), where dpy ,, [m] is the Euclidean distance
between the UAV and the mBS. The channel gain coefficient
hy m € C between the UAV and the mBS is:

1 -

h/
T ©)

hU,m =
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with A/ « CA(0,1) accounting for the random scattering,
while the respective channel power gain is noted as:

Gy = ‘hU,mF- (10)

B. Communications Model

Focusing on the communication between the users and the
UAV, the SIC technique is implemented at the UAV’s receiver
to decode the received signals. Without loss of generality, we
assume that the users’ total channel gains G, are sorted as
G<-- <G, <--- < G‘N‘ and decoding starts from the
highest channel gain user. Thus, a user’s n achieved data rate
through the wireless access (Rf}c) is as follows:

Gn Py,

RAC = i W log, (1 +
no TR0 Gy P + Wy

[bps], (11)

D]
where P, [W] denotes the uplink transmission power of user
nand Ny [dBm/Hz] is the power spectral density of the zero-
mean Additive White Gaussian Noise (AWGN).

Let Py [W] indicate the UAV’s transmission power for for-
warding the users’ data to the mBS, then the UAV’s achieved
data rate through the wireless backhaul (RgH ) is:

Gy Py

RYM =(1 R
o= (1= p) Wy

— ) Wlogsy (1 + ) [bps]. (12)

From the cumulative UAV’s achieved data rate RgH , We
adopt a proportionally fair approach and derive each user’s n
achieved data rate at the wireless backhaul (REH ) as follows:

RAC
Z'N‘

Accordingly, the user’s n end-to-end achieved data rate
(RE2E) is obtained by:

RE2E — min(Rf}C, REH) [bps].

RBH — RBH [bps]. (13)

(14)

III. END-TO-END ENERGY EFFICIENCY OPTIMIZATION
A. Design for Reconfigurability and Efficiency

In the following, we elaborate on our proposed dynamic and
reconfigurable resource management framework that targets
the end-to-end energy efficiency optimization of the network
topology under consideration. In particular, we seek to dynam-
ically allocate the available spectrum and power resources
in both the wireless access and wireless backhaul parts of
the considered RIS-aided and UAV-assisted IAB network,
while maximizing the overall IAB network’s energy effi-
ciency. Under this scope, the corresponding joint optimization
problem is formulated, simultaneously accounting for and con-
trolling: a) the RIS elements’ phase shifts @, b) the bandwidth
splitting ratio parameter pu, c) the users’ transmission power
vector P to the UAV, and d) the UAV’s transmission power
Py to the mBS. This joint optimization problem is formu-
lated as a single-leader multiple-followers Stackelberg game
and treated in three sequential stages. The UAV, acting as the
leader, determines in the first stage the optimal RIS elements’
phase shifts that enhance its overall received signal strength
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Fig. 2. End-to-end resource management framework overview.

and broadcasts the appropriate control signals to the controller
of the RIS. Then, in the second stage, the UAV calculates
the bandwidth splitting ratio and its transmission power to
the mBS that maximize its energy efficiency. The results of
the second stage are fed back to the users, who are acting as
the followers, and determine in a distributed and autonomous
manner their uplink transmission powers towards maximiz-
ing their energy efficiency. The second and third stage of the
devised Stackelberg game are played iteratively to converge
to the Stackelberg equilibrium. An overview of the proposed
end-to-end resource management framework is illustrated in
Fig. 2, in the form of a block diagram.

It is noted that in our introduced paradigm and resource
management framework, the radio propagation environment,
from simply being a passive exogenous entity, it becomes a
controllable and reconfigurable element with programmable
properties, through the intelligent RIS’s phase shifts’ adapta-
tion. In this way, the quality of the received signal strength is
improved, combating the unfavorable propagation conditions
due to the wireless channels’ fading, while resulting in reduced
transmission powers and interference. As a result, the inclu-
sion of the RIS in the wireless environment provides an extra
degree of freedom apart from the typical power and bandwidth
control, when seeking to maximize the end-to-end energy effi-
ciency or data rate. Moreover, owing to the emergence of
RISs and the advanced intelligent decision-making methods
adopted, we treat the wireless environment and resources as
part of the overall network design that can be adapted to satisfy
specific system and user requirements in a dynamic manner
(i.e., dynamic access and backhaul bandwidth splitting).

B. RIS Elements’ Phase Shifts’ Adaptation

As discussed earlier, the optimization of the wireless prop-
agation environment, via the constructive beams created by
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reflection from the RIS, is used to assist and boost the
network’s resources’ optimization procedure. To achieve this,
the UAV determines the effective RIS elements’ phase shifts
®"F = wi,...,Wm,- .. W) M|] that enhance its overall received
signal strength, towards further supporting the system’s energy
efficiency optimization via the optimal bandwidth splitting
ratio ;1* and its optimal transmission power P7; to the mBS.
In order for the UAV to maximize the overall received signal
strength, it suffices to find the effective RIS elements’ phase
shifts @* that maximize the overall channel power gain of
the users. Hence, the UAV treats the following optimization
problem:

IN|
2
max > |hn,u + i yQhy, g (15a)
n=1
st. 0 <wy, <2m, Vm e M. (15b)

To easier handle the problem in Eq. (15a)-(15b), we denote
as vy = €Y ¥Ym € M and define the corresponding
reflection-coefficient vector v. = [v,...,0m,..., v|M|] €
CIMI*1 Then, by substituting flﬁR = hngdmg(hn’R) €
CY*IM the problem in Eq. (15a)-(15b) is equivalently rewrit-
ten as:

|V 9
max Z hy U + hi{Rv (16a)
n=1
st. |um| =1, Vm € M, (16b)

where Eq. (16b) is the unit-modulus equivalent constraint to
the one expressed in Eq. (15b). Eq. (16a) is a non-concave
function with respect to the vector v and the unit-modulus
constraint in Eq. (16b) defines, also, a non-convex set. Thus,
the optimization problem in Eq. (16a)-(16b) is generally non-
concave and there exists no standard method to derive a
globally optimal solution [21], [22]. For this reason, we adopt
an effective and of low-complexity heuristic approach [12], as
presented in the sequel.

Consider the case when a single user, denoted by n = 1,
exists in the system. Then, it generally holds true that this
user’s channel power gain is maximized when its signals arriv-
ing from different paths at the receiver of the UAV, i.e., the
direct signal and the signal created by reflection from the RIS,
are perfectly aligned and coherently combined [12], [23]. This
happens when the phase shifts of the direct and the reflected
signals are equal, such as:

Ly =—Lhy g+ 2ve Lv=Lhy y+ Zhy g, (17)

concluding to the optimal 1 x | M| phase-shift vector @* = £v
for the single-user system.

As a logical consequence of Eq. (17), in the multiple-user
case, there exists a different reflection-coefficient vector v,, =
[Un,15- s Vnyms s Vp || € CIMIX1 for each user n that
maximizes each individual user’s n channel power gain, which
is given by:

vy = el4hn Uik gy e N (18)

Apparently, the reflection-coefficient vectors v, of different
users differ between each other, which suggests that there does

not exist a single reflection-coefficient vector v maximizing all
users’ |N| channel power gains concurrently.

Towards striking a balance between the different users’
reflection-coefficient vectors v, and obtaining a global solu-
tion for the RIS elements’ phase shifts’ adaptation problem,
we introduce for each user n an appropriate weight factor
wy, € [0,1] and derive the linear combination of the overall
users’ reflection-coefficients v,, as follows:

|N]

V= E WnVn,
n=1

such that it holds true that Z'fgl wy, = 1.

Our ultimate objective is to determine the optimal value of
the weight factor wy, of each term of the reflection-coefficient
vector v in Eq. (19) that concludes to an increased sum of the
users’ channel power gains, as imposed by Eq. (16a). Thus,
the corresponding optimization problem to be addressed to
derive an efficient and effective RIS elements’ phase shifts’
adaptation is formulated as:

19)

IN|
2

max > |hn,u + i yQhy g (20a)
n=1

st. 0<w, <1, VneN (20b)
[N

Z wy, =1 (20¢)
n=1

where the reflection matrix Q 1is calculated with back-

ward induction as Q@ = diag(e/<Y). Also, w =
[wl,...,wm...,ww‘] is the vector of the users’ assigned
weight factors. The optimization problem defined in

Eq. (20a)-(20c) comprises from a non-negative linear objec-
tive function and constraints, which can be optimized in a
straightforward manner to conclude to the optimal weights w*.

The optimal weights’ w* derivation leads to a single and
effective RIS elements’ reflection-coefficient vector v* =
(U1, vy Umyee ey v) M\]’ and eventually determines the effective
RIS elements’ phase shifts @* = [w1,...,wmn,... ,w‘M‘].

C. Leader’s Energy Efficiency Optimization

Following the RIS elements’ phase-shift adaptation, the
UAV playing the role of the leader, derives the optimal band-
width splitting ratio y* and its optimal transmission power P7;
to the mBS, given the users’ uplink transmission power vector
P=[P,...,Pn,..., P|N‘], towards maximizing its energy
efficiency FEy. The corresponding optimization problem,
solved by the leader, is formulated as follows:

IN| paC BH
\ RAC + RE

max EFE ,Pp) = == (21a)
max up, Py) Py
st. 0<pu<l1 (21b)
Py < ppos 21c)
RE2E > R . NneN. 21d)

Having the ability to control the network parameters that
pertain to both the access and the backhaul network parts, the
UAV pursues the maximization of the total achieved data rates
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at the access and the backhaul network (Eq. (21a)), while try-
ing to minimize its transmission power to the mBS. Eq. (21b)
refers to the feasible range of values of the bandwidth splitting
ratio parameter p. Also, Eq. (21c) guarantees that the UAV’s
optimal transmission power to the mBS does not exceed the
UAV’s maximum power budget P77**, while Eq. (21d) reas-
sures that the optimal bandwidth splitting ratio satisfies the
users’ end-to-end achieved data rate QoS requirement R,y .

The outcome of the optimization problem described in
Eq. (21a)-(21d) is the optimal bandwidth splitting ratio p*
and the UAV’s optimal transmission power Pj; to the mBS.
To establish the existence of an optimal solution (u*, Py;)
for the specific problem, we observe that the numerator of
EEy (u, Py) consists of two terms, i.e., Zlé\gl RAC and
RgH . However, based on Eq. 11 and Eq. 12 and by calculat-
ing their derivatives with respect to the bandwidth splitting
ratio parameter pu, it is concluded that the numerator of
EEy(u, Py) in Eq. (21a) is not always a concave function
on p, complicating twice the derivation of an optimal solu-
tion for the two-variable optimization problem in Eq. (21a)-
(21d) [24]. To address this problem and provide a tractable
solution, we decompose the optimization problem presented in
Eq. (21a)-(21d) into an exhaustive search of the optimal value
of p over its strategy space, and an optimization problem with
respect to the optimal value of Pp;. The optimization problem
in Eq. (21a)-(21d) is solved with respect to Py over differ-
ent values of the parameter p and ultimately, the values of
p and Py that yield the maximum energy efficiency, based
on Eq. (21a), are selected to serve as the optimal solution
(u*, PY;). For all practical purposes, the partitioning of the
bandwidth is typically performed into a finite discrete region
(i.e., resource blocks or slices of predefined sizes), and there-
fore the p takes discrete values in a finite strategy space. Thus,
for demonstration purposes, we can consider some indicative
discrete values of i, e.g., p = 0.05,0.1,0.15,...,0.95, and we
determine the corresponding optimal values of P7;, as follows.

Lemma 1: The energy efficiency function EE7; in Eq. (21a)
is strictly quasi-concave with respect to Pp;.

Proof: As defined in [25], a function f : R™ — R is strictly
quasi-concave if its sublevel set S, = {x|x € domf, f(x) > a}
is strictly convex for every a, where x is the corresponding
vector of variables. Accordingly, the sublevel set S, defined
for the EE; function in Eq. (21a) is:

9(Py)
Py

5, = {PU|PU € domEEy, > a}7 22)

where g(Py) = Zln]\gl RAC 4 R[P}H is the sum data rate
function, for which it holds true that it is strictly concave on
Py, since the term Z‘nNzll R;f}c is independent of Py, and
the term RgH is a concave function with respect to Pyr. As
a result, when a < 0, then S, is obviously convex on Py;.
In the case when a > 0, then the sublevel set in Eq. (22) is

rewritten as:
Se = {Py|Py € domEEy,aPy — g(Py) <0}. (23)

Given that the sum rate function ¢g(Pyy) is strictly concave
with respect to Py, it follows that —g(Py;) is strictly convex
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on Pp;, while the term aPy; increases linearly with Py;. As a
result, the sublevel set S, in Eq. (22) constitutes a strictly con-
vex set. This completes the proof that the FE (P ) function
is quasi-concave. |

Lemma 2: The constraints in Eq. (21b)-(21d) form a com-
pact, i.e., closed and bounded, and convex set.

Proof: The constraint in Eq. (21b) generally forms a com-
pact set, while for the rest of the constraints in Eq. (21¢)-(21d)
we consider the following functions:

s = py — ppae

s = Ryin — RE2E in e N. (24)

It can be easily proved that the functions s(1) and ST(LQ),
Vn € N are convex on Py;. Hence, their level sets, defined
generally as follows:

So = {x[x € domf, f(x) = 0}, (25)
considering any function f and any vector of variables x, are
convex sets. This completes the proof. |

Based on Lemmas 1-2 and the preceding analysis, the
optimization problem defined in Eq. (21a)-(21d) forms a quasi-
concave program that belongs in the broader area of concave
fractional programming and thus, admits an optimal solution
P7; [26]. The solution can be obtained by appropriately trans-
forming the quasi-concave problem into a series of concave
problems via existing methods [25], and subsequently, by uti-
lizing existing concave/convex optimization tools [27]. Overall,
an effective, efficient, and well-established methodology is to
employ the Dinkelback’s algorithm [28], [29].

D. Followers’ Energy Efficiency Optimization

After the UAV reports back to the users the optimal band-
width splitting ratio, the users’ decision-making process takes
place. Specifically, each user aims to distributively maximize
its personal energy efficiency achieved at the access network
part, by optimizing its uplink transmission power to the UAV.
Hence, each user’s n personal utility function is expressed as:

RAC
EEn(PmP—n): ; )
n

(26)

where P_,, = [P1,..., Pp—1, Pnt1,-- .,P|N‘] is the vector
of uplink transmission powers of all users except for user
n. The interactions among the users are captured via a non-
cooperative game G = [N, {Ayn bvnen, {EEn ynen], Where
N is the set of players, i.e., the users, A, = [0, P/***] is each
user’s strategy set, i.e., the set of feasible uplink transmission
power levels, as indicated by the user’s maximum power bud-
get PJ"™ and EE, is each user’s payoff function, i.e., its
energy efficiency. The non-cooperative game G is treated as a
distributed utility maximization problem, in which each user
n updates its uplink transmission power P, selfishly, by hav-
ing prior information about the rest of the users’ transmission
powers P_,, as broadcasted by the UAV, seeking to maximize
its perceived satisfaction, i.e., its energy efficiency. The corre-
sponding optimization problem that is solved by each user is
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formulated as:

RAC
max EE,(Pp,P_p)=-"2— VYneN (27a)
Pn P’VL
st. Py < P ¥YneN (27b)
n—1
GnPp— Y GuPp > Piyn=2,...,IN| (27c)
n/=1
RAC > Rypin, Vn € N. (27d)

Apart from the maximum power budget constraint that the
user’s uplink transmission power to the UAV should meet, as
imposed by Eq. (27b), Eq. (27¢)-(27d) denote the extra group
of constraints that the users’ n strategy P, should satisfy.
Eq. (27¢) guarantees that the SIC technique is successfully
performed at the UAV’s receiver, according to the receiver’s
sensitivity/tolerance Py,;, while Eq. (27d) ensures the user’s
minimum acceptable data rate QoS requirement R,;,.

Let us denote as I',, the strategy space of each user,
formed by the inclusion of the extra set of constraints in
Eq. (27¢)-(27d), i.e., I'y, = {(Pr) satisfies Eq. (27¢)-(27d)}.
Then, each user’s n overall feasible strategy space is reformu-
lated as A, = A, NT',,Vn € N and the non-cooperative
game is restructured as G = [N, {A, bvnenN, {EEn vnen]-

Towards solving the updated non-cooperative game G, the
widely used concept of Nash equilibrium is adopted. The
Nash equilibrium point is the users’ strategy vector P* =
[P17...,Pn,...,P|N|], from which no user has the incen-
tive to deviate, given the strategies of the rest of the users.
The interested readers can refer to [30] for a more detailed
definition and description of the Nash equilibrium concept.

To further accommodate our discussion regarding the exis-
tence of at least one Nash equilibrium point for the non-
cooperative game G and thus, the convergence of the users’
strategies to the Nash equilibrium, we adopt the theory of the
n-person generalized concave games [31].

Theorem 1 (Existence of Nash Equilibrium): The non-
cooperative game G is a n-person generalized concave game
and admits at least one Nash equilibrium point, if the following
conditions hold true [31]:

1) the strategy sets Aq,..., A N| are non-empty, compact,

convex subsets of finite dimensional Euclidean spaces,

2) all payoff functions FEq, ..., EE‘ N| are continuous on

A:Al Xoeee XA‘N|,

3) every payoff FE, is a quasi-concave function of P

over Ay, if all the other strategies are held fixed.

Proof: The Theorem 1 is proved by exploiting the content
of Lemmas 1-2 introduced in III-C, properly adapted to suit to
the energy efficiency function in Eq. (27a) and the constraints
defined in Eq. (27b)-(27d). Condition 1 of Theorem 1 holds
true following a similar procedure to Lemma 2. Condition 2
holds true given that the energy efficiency function is continu-
ous on the users’ strategy space A. Last, condition 3 holds true
following the analysis presented in Lemma 1, verifying that
the energy efficiency function in Eq. (27a) is strictly quasi-
concave. Therefore, the non-cooperative game G is a n-person
generalized concave game and at least one Nash equilibrium
point exists. |

The convergence of the users’ strategies to the Nash equi-
librium point is achieved by implementing a Best Response
Dynamics algorithm [32], as shown in Algorithm 1. At each
iteration of the Best Response Dynamics algorithm, the quasi-
concave optimization problem defined in Eq. (27a)-(27d) for
each user is equivalently transformed and treated as a series of
convex optimization problems via the Dinkelbach’s algorithm,
following the procedure described earlier in Section III-C.

E. Stackelberg Game-Based Optimization Process

After the convergence of the users’ strategies, their optimal
uplink transmission powers P*, are fed back to the UAV to
establish the next iteration of the Stackelberg game. In other
words, the optimization problem in Eq. (21a)-(21d) and the
non-cooperative game among the users are iteratively solved
and the output of the one acts as input to the other, comply-
ing to the relationship between the leader and the followers.
This iterative procedure results to the Stackelberg equilib-
rium (u*, P}, P*) that concludes the preceding mathematical
analysis in Sections III-C and III-D.

The complete Stackelberg game-based optimization process
and operation of the proposed dynamic resource management
framework is summarized in Algorithm 1. Note that the super-
script (i) is used to dictate the value of each variable after the
i-th iteration of the leader’s and followers’ optimization stages,
which are iteratively updated until convergence is reached,
whereas the superscript (j) is used to indicate the iterations
required for the nested non-cooperative game that is played
among the users.

To calculate the computational complexity of the
Stackelberg game-based optimization process presented
in Algorithm 1, the following algorithmic complexities should
be first considered alone. The complexity of the optimization
problem in Eq. (20a)-(20c) can be regarded as O(M?%),
where 1 < z < 4, by employing an interior-point algorithm
intended for linear programming [33]. The sorting of the
users according to their channel power gain can be performed
with complexity O(N 2) via the well-known Quicksort algo-
rithm [34], while the search within the set S is of O(log(K))
complexity when using the Binary Search algorithm [34],
where K denotes the number of bandwidth splitting ratio
values tested (i.e., K = 19). Concerning the Dinkelbach’s
algorithm, it is known to have a super-linear convergence
rate [28], [29], while the asymptotic complexity of each
convex optimization problem addressed at each iteration of
the Dinkelbach’s algorithm is polynomial in the number
of optimization variables [17], [35]. Hence, our resulting
single-variable problems have computational complexity
equal to O(1). The remainder of the typical mathematical
manipulations are of O(1) complexity and are omitted, while
we also assume that the distributed non-cooperative game
among the users is performed in parallel.

For representation purposes and following commonly
used methodologies, let [ g and [ B denote the number
of Dinkelbach’s algorithm’s iterations required to solve
the UAV’s and each user’s n optimization problems in
Eq. (21a)-(21d) and Eq. (27a)-(27d), respectively. Also, we
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Algorithm 1 Stackelberg Game-Based Optimization Process

1: Initialize network simulation topology, including users’,
RIS’s, UAV’s and mBS’s locations.

2: Initialize 1/}’ /89 NLoS> INLoS > fC? ¢ ay, p, AR, dS’ Wa N(],
PEWI’PTT(M’ Pio1, Rinin.-

3: Determine RIS elements’ phase-shift adaptation by solv-
ing Eq. (20a)-(20c) and calculate Gj,,Vn € N.

4: Sort users in ascending order according to G,.

5: Initialize randomly Py € [0, P{7**].

6: Seti = 0.

7: repeat

8 Seti=i+ 1.

9:  for p=0.05:0.05:0.95 do

10 Determine optimal uplink transmission power Py, by

solving Eq. (21a)-(21d) with respect to Py;.

11: Add solution {(u, P{;), EE};} to S.

12 end for

13:  Select {(u*, Py;), EE}; } from S, for which EET; is the

maximum in S. )
4. Set p*() = y* and Pz(l) = Py
15 Initialize randomly P, € A, Vn € N.

16:  Setj=0.

17:  repeat

18: Setj=j+ 1.

19: for n € N do

20: Determine optimal uplink transmission power
P9 by solving Eq. (27a)-(27d).

21: end for

2 until [P — PiUY| < ¢, ¥n € N, where e ~ 1075,
23: until |P*U(Z) - PZ(Z_I)| < ¢, where € ~ 1075,

indicate as [ and J the total number of iterations required for
the Stackelberg and the nested non-cooperative game to con-
verge, accordingly. Consequently, the overall computational
complexity of Algorithm 1 is equal to O(M* + N2 41 - (K -
1 g 1+log(K)+J-I7;-1)). Indicative numerical results regard-
ing the actual number of required Stackelberg game iterations,
as well as the real execution time needed to converge to the
Stackelberg equilibrium, are presented in Section V below.

IV. END-TO-END DATA RATE OPTIMIZATION

In this section, we extend our proposed dynamic spec-
trum and power management framework, analyzed in detail
in Section III, to account for an alternative objective, namely
the end-to-end data rate optimization. On the one hand, we
aim to corroborate on the reconfigurability and adaptability
of the devised resource optimization framework, under dif-
ferent optimization objectives, while revealing the benefits
introduced by the proper manipulation of the wireless prop-
agation environment alongside. On the other hand, we seek
to macroscopically identify and promote the significance of
energy efficiency optimization.

Specifically, with reference to the resource optimization
framework design presented in Section III, we subse-
quently introduce its counterpart towards maximizing the IAB
network’s end-to-end data rate. The joint optimization problem
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is formulated and solved in a distributed manner, following
once again the principles of the Stackelberg games. Next, the
three-stage optimization procedure adopted and explained in
Fig. 2 is presented in a concise, though comprehensive manner,
emphasizing on the main differences arising from the different
optimization objective.

In accordance to the methodology followed in Section III,
the first stage of the dynamic resource management frame-
work towards the end-to-end data rate optimization, refers to
the appropriate RIS elements’ phase-shift adaptation by the
UAY, which concludes to its increased received signal strength.
The RIS elements’ adaptation is performed following the
proposed intelligent and of low-complexity approach described
in Section III-B. Then, the second stage takes place and the
UAV proceeds to the derivation of the optimal bandwidth split-
ting ratio and its personal transmission power to the mBS,
which maximize the sum users’ end-to-end data rate, given
the users’ uplink transmission powers. The corresponding
optimization problem solved by the UAV is written as:

[N
max RE2E (28a)
wFu n=1
st. 0< <1 (28b)
Py < P (28¢)
RE2E > R .. VneN, (28d)

where the constraints in Eq. (28b)-(28d) are in accordance
with the ones introduced in the energy efficiency optimization
problem counterpart. The problem defined in Eq. (28a)-(28d)
is, once again, solved with respect to Py under a range of
values of the parameter p, as discussed in Section III-C. Thus,
we derive the optimal solution (1*, P7;).

In the third stage, the users optimize in an autonomous
and distributed manner their uplink transmission powers to the
UAY, such that their personal data rate in the access network
part is maximized. The optimization problem to be solved by
each user is given by:

max RAC(P,,P_,), Yne N (292)
st. P, <P VYneN (29b)
n—1
GnPn— Y GuPy > Py, n=2,...,|N| (29¢)
n/=1
RAC > Rypin, ¥n € N. (29d)

Once again, their in-between interactions are coordinated
through a non-cooperative game, according to which each
user n updates its uplink transmission power (i.e., its strat-
egy) in a selfish way, given the other users’ strategies P_,,.
The outcome of the non-cooperative game is the Nash equi-
librium point of the users’ strategies, i.e., the vector P* =
[P1,..., Pn,y..., P|N|]. The analysis, based on which the exis-
tence of at least one Nash equilibrium and the convergence at
this point is ensured, follows the n-person concave games due
to the objective function’s strict concavity on P,, Vn € N
and is analogous to the one incorporated in Section III-D. The
second and third optimization stages are iteratively performed
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Fig. 3.
optimization, under different number of RIS elements.

and updated between the UAV and the users to ultimately
conclude to the overall system’s Stackelberg equilibrium point
(u*, P3;,P*), as illustrated in Fig. 2.

V. EVALUATION & RESULTS

In this section, we evaluate the performance and effec-
tiveness of the proposed end-to-end resource management
framework, via modeling and simulation. First, the pure
performance of the distributed Stackelberg game, as well as
its convergence behavior to the Stackelberg equilibrium is
demonstrated, targeting the energy efficiency of the considered
IAB network. Then, a comparative analysis between the two
distinct optimization objectives tackled in this paper, namely
the end-to-end energy efficiency optimization analyzed in
Section III and the end-to-end data rate optimization approach
summarized in Section IV, is enclosed. Finally, our proposed
resource management framework is compared against differ-
ent baseline resource management approaches in terms of both
the RIS elements’ phase shifts adaptation and the dynamic
spectrum management solutions devised in this paper.

The simulation setting used to generate the numerical results
presented in the remainder of this section is initialized as
follows. Considering a three-dimensional coordinates system,
the three main network entities of the RIS-aided and UAV-
assisted IAB network, i.e., the RIS, the UAV and the mBS,
are located along the y = x line and their distances from
the coordinates system’s origin are set to 100 m, 200 m,
and 400 m, respectively. The UAV hovers at 150 m above
the ground, whereas the RIS, composed by |M| = 100 ele-
ments (unless mentioned otherwise), is placed at a height of
1.5 m and in close proximity to the users. We consider a
NOMA cluster of |N| = 4 users in total, placed with increas-
ing distances from the RIS, denoted as d; [m], d; + 10 [m],
d1 420 [m], di +30 [m], respectively, where d; indicates the
distance of the first user from the RIS and is generally set as
d;p =5 m unless otherwise stated. The parameters that char-
acterize the wireless propagation environment are configured
as: w = 11.95, B = 0.14, NLoS = 3 dB, NMNLoS — 23 dB,
fe=2 GHz, ¢ =3-10% m/s, ay = 2, p = 100, ap = 2.8,
ds = % The remaining communications-related simulation
parameters are set as: W = 5 MHz, Ny = —174 dBm/Hz,
P = 24 dBm, P = 46 dBm, Py, = —114 dBm,

Evaluation of the performance and the convergence behavior of the Stackelberg game-based process towards the end-to-end energy efficiency

R,in = 1 Mbps, unless otherwise explicitly stated. Finally,
for statistical purposes, the results have been averaged over
100 different channel model realizations.

1) Pure Evaluation of the Stackelberg Game-Based
Optimization Process: In Fig. 3, we study the performance of
the overall Stackelberg game-based process towards the IAB
network’s energy efficiency optimization, while at the same
time assessing its convergence behavior with respect to the
number of iterations / and the real execution time required
to converge to the Stackelberg equilibrium point. Specifically,
Fig. 3(a) depicts the sum users’ uplink transmission powers
as a function of the required iterations and the real execution
time in seconds. The different curves present an analysis over
a different number of RIS elements |M| = [100, 200, 300],
while the term “no RIS” refers to the case where no RIS
exists within the simulated network topology. The real exe-
cution time has been calculated as the mean execution time
of the four different RIS elements’ scenarios, as presented
above. On the one hand, the results reveal that after a small
number of iterations (e.g., I = 5 iterations or approximately
0.085 seconds in the case under consideration) the proposed
approach converges to the optimal solution. On the other hand,
it is confirmed that the use of RIS concludes to significantly
lower power levels for the users, owing to the increased chan-
nel power gains incurred by the proper adaptation of the
RIS elements’ phase shifts. Given that the optimization objec-
tive targeted is the network’s energy efficiency, the decreased
sum users’ power levels leads apparently to the remarkable
increase of the sum users’ energy efficiency, as illustrated in
Fig. 3(b). The findings of Fig. 3(b) demonstrate that the use of
RIS can provide almost 1.5 orders of magnitude higher sum
users’ energy efficiency, considering a number of |M| = 300
RIS elements, compared to the case where no RIS exists
in the network topology. Although the RIS is deployed in
the access network part, directly affecting the users’ power
and energy efficiency, it results in the end-to-end system’s
optimized performance, as indicated in Fig. 3(c). Fig. 3(c)
shows the pure UAV’s energy efficiency, which is calculated
as the fraction of the UAV’s achieved data rate at the back-
haul to its consumed uplink transmission power. Apparently,
the access network’s optimized performance steers the end-to-
end system’s Stackelberg equilibrium to more energy-efficient
points. Furthermore, the introduction of a RIS deployed at a
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higher point above the ground and in LoS with the UAV, can
further enhance the UAV’s performance and strengthen the
communications established at the backhaul network part.

2) Comparative  Evaluation of Different  Network
Optimization Objectives: To gain more insight regard-
ing the significance of energy efficiency optimization
objective in the wireless network’s performance, we proceed
to a comparative examination between the two distinct
optimization objectives of end-to-end energy efficiency and
end-to-end data rate maximization tackled in the paper. In
particular, in Fig. 4 we scrutinize network’s performance in
terms of the sum users’ transmission power levels and their
achieved sum end-to-end data rates under the two different
optimization objectives/approaches, which are denoted as
“EE-Opt” and “DR-Opt”. Furthermore, a study over different
values Ry, = [0.5,1.5,3] Mbps of the users’ minimum
end-to-end data rate requirement accompanies our analysis,
to further identify and highlight the network’s enhanced
performance under the energy efficiency optimization
approach, considering different user QoS requirements.

Apparently, when the “DR-Opt” optimization approach is
treated, the users are forced to transmit in the uplink using
their maximum power budget regardless of their minimum
data rate QoS requirement R,,;,, as properly presented in
Fig. 4(a). On the contrary, the sum users’ transmission powers
are approximately thirty times lower in the case of “EE-Opt”
compared to “DR-Opt”, while a slight increase is imposed as
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Comparative evaluation of the proposed dynamically allocated spectrum solution between the access and backhaul network parts, against different

the minimum data rate requirement increases. The sum users’
end-to-end data rates achieved by utilizing the sum power
levels of Fig. 4(a), are accordingly shown in Fig. 4(b). It
can be easily observed that the thirty-times increase in the
users’ power levels results in almost only three orders higher
end-to-end data rates, verifying the significant gains provided
by the “EE-Opt”, mainly in terms of the resulting efficiency.
Last, it should be noted that the small decrease in the sum
users’ end-to-end data rates, induced as the R,,;, requirement
increases, is due to need for higher bandwidth portion in the
access network part that is shared among the users which are
interfering with each other, such that the remaining bandwidth
part pertaining to the backhaul network part decreases.

3) Evaluation of the Dynamic Spectrum Management:
Subsequently, we aim to investigate the effectiveness and
efficiency of the proposed end-to-end resource management
framework with regards to the dynamically allocated spectrum
in the access and backhaul network parts, under our primar-
ily targeted energy efficiency optimization objective. Towards
this direction, our dynamic spectrum management solution
is compared against other heuristic mechanisms that assume
a fixed bandwidth partitioning between the two network
parts (i.e., access and backhaul). For demonstration purposes,
three different fixed bandwidth splitting schemes are consid-
ered with bandwidth splitting ratio parameter values equal
to u = [0.25,0.5,0.75]. The outcome of this comparison
is presented in Fig. 5, where the term “Dynamic” refers to
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different number of RIS elements and distances of the users from the RIS.

our proposed dynamically allocated spectrum procedure. The
numerical results in Fig. 5 have been specifically averaged
over 300 different IAB network topologies, considering dif-
ferent locations of the mBS, which range from 400 m to
700 m far form the origin of the three dimensional coor-
dinates system, to account for the potential different needs
in terms of bandwidth splitting among the access and back-
haul network parts. Evidently, the proposed dynamic spectrum
management solution results in remarkably lower sum users’
power levels compared to any of the fixed bandwidth split-
ting schemes, as demonstrated in Fig. 5(a). Moreover, a small
only differentiation occurs in the achieved sum users’ end-
to-end data rates under the different spectrum management
approaches (Fig. 5(b)). Nevertheless, the dominance of the
dynamically allocated spectrum is clearly identified, when
considering the sum users’ energy efficiency achieved, as
presented in Fig. 5(c).

4) Evaluation of the Proposed RIS Elements’ Phase-Shift
Adaptation: Our evaluation analysis is complemented with an
extensive study pertinent to the performance gain provided
by the introduction of the RIS within the network topology,
as well as its proper configuration and phase-shift adapta-
tion via our proposed method, as described in Section III-B.
To this end, we compare our proposed RIS elements’ phase-
shift adaptation method against a baseline approach, in which
a random phase shift configuration is selected for the RIS,
referred to as “Random” in the following. In Fig. 6, appropriate
results corresponding to the two different phase-shift config-
uration schemes, i.e., the “Proposed” one and the “Random”
one, are extracted considering different number of RIS ele-
ments |M| = [100,200,300] and different distances of the
users’ from the RIS. The different users’ distance scenar-
ios from the RIS are indicated via the first user’s distance
dy [m] from the RIS along the x axis. Also, the general case
where no RIS exists within the network simulated topology is
included as a reference scenario. In particular, in Fig. 6(a),
the sum users’ power levels are depicted as a function of
the different phase-shift configuration schemes and the dif-
ferent users’ distances. Apparently, as the number of RIS
elements increases, the sum users’ uplink transmission powers

o RIS
[ 100 RIS €l. - Random
. - Proposed
.- Random
200 RIS el. - Proposed
1300 RIS el. - Random
[ 300 RIS el. - Proposed

Sum users' EE [bits/J]

25 5
User's 1 distance d1 [m]

(b)

Comparative evaluation of the proposed RIS elements’ phase-shift adaptation method against a random phase-shift configuration approach, under

decrease, resulting correspondingly to their increased sum
achieved energy efficiency, as indicated by Fig. 6(b).

VI. CONCLUSION & FUTURE WORK

Several technologies have recently emerged that shape
the frontier of the future wireless networks’ era, prospec-
tive candidates of which constitute the network deployment
paradigm of Integrated Access and Backhaul (IAB) and the
Reconfigurable Intelligent Surafce (RIS). In this paper, we
identify the potentials brought by their joint inclusion in the
future wireless networks’ environment, through the introduc-
tion of a converged RIS-aided and UAV-assisted IAB network,
while targeting to ameliorate the overall network’s energy effi-
ciency along the wireless access and backhaul network parts.
To this end, we devise an end-to-end resource management
framework, primarily founded on the concepts of reconfig-
urability and adaptability, to account for and appropriately
control the RIS elements’ phase shifts, the bandwidth splitting
between the wireless access and backhaul, and the transmis-
sion powers of both the users and the UAV. To efficiently
treat the joint optimization problem, we propose a distributed
optimization process based on the Stackelberg games, accord-
ing to which the network resources are allocated in different
stages. Extensive numerical results highlight the benefits and
performance gains derived from the operation of the dynamic
resource management of the RIS-aided and UAV-assisted IAB
network.

Part of our current and future work refers to the inclusion of
multiple UAVs and RISs within the network topology, imply-
ing the need for intelligent resource management solutions
that consider the increased network’s degrees of freedom and
complexity, while accounting for the UAVs’ and the users’
mobility. Other research extensions include the utilization of
the RIS as a network entity that facilitates the proactive han-
dover management of the users’ data traffic, instead of simply
used to optimize different network-specific metrics. Finally,
the challenge of identifying the lower and upper bounds for
the optimal RIS elements’ phase shifts adaptation, consti-
tutes another major, though unsolved, problem in the current

Authorized licensed use limited to: UNIVERSITY OF NEW MEXICO. Downloaded on July 02,2022 at 17:54:42 UTC from IEEE Xplore. Restrictions apply.



DIAMANTI et al.: PROSPECT OF RECONFIGURABLE INTELLIGENT SURFACES

literature that needs to be addressed in order to reap the
benefits of the RIS, and exploit it at its full potential.
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