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Abstract—WebAssembly, an emerging bytecode format, which
is initially developed for partially replacing JavaScript and speed-
ing up browser applications, has been extended to the server-side
due to its speed and security promise. It has been considered as a
promising alternative to the widely deployed container technique
for isolating lightweight applications. To run WebAssmebly from
the server-side, aside from the NodeJS runtime, several We-
bAssembly native runtimes have been proposed. We characterize
major WebAssembly runtimes through extensive applications and
metrics. Our results show that different runtimes fit different
application scenarios. Based on that, a framework for reducing
the startup latency of WebAssembly service while keeping maxi-
mum performance is provided. To identify the root causes of the
performance gap, the analysis of emerging Cranelift compiler
against LLVM in detail is reported. In addition, this paper gives
revealing suggestions and architectural proposals for designing
an efficient WebAssembly runtime. Our work provides insights
on both WebAssembly runtime enhancement and WebAssembly-
based cloud service exploitation.

Index Terms—WebAssembly, cloud VM, FaaS, performance
evaluation

1. INTRODUCTION

Cloud services are becoming ubiquitous, but they normally
fail to provide a real-time response due to inherent service
latency and network delay caused by congestion or distance.
In hopes of meeting the quality and time pressures of many
latency- and safety-critical services such as autonomous driv-
ing tasks which involve massive data processing, edge-cloud is
becoming an active research topic where servers closer to the
end-user as known as the edge servers are responsible for the
preprocessing and thus reduces the cloud side pressure [1]—
[4]. However, such a paradigm cannot eliminate the inherent
latency and brings new challenges. On the one hand, either
for the cloud or the edge server, creating an isolated service
consumes non-trivial time, on the other hand, an edge server
tends to have limited hardware resources available. As a result,
co-locating multi-functions in a speedy and resources-friendly
while secure way is crucial.

WebAssembly, also known as Wasm, is a size- and load-
time-efficient bytecode format that is originally designed for
the web. It makes running code written in multiple languages
in browsers at near-native speed possible by compiling the
code into WebAssembly. Meanwhile, there is growing interest
in pushing WebAssembly to the edge side because of the
sandbox execution environment and the portability of We-
bAssembly. With WebAssembly, it is possible to securely run

a untrusted service, regardless of underlying ISA and OS in a
multi-tenant edge node while not overwhelming it.

Before WebAssembly, container, a more lightweight and
scalable isolation solution than the traditional virtual machine
(VM), has changed the face of today’s service computing.
Considerable public and private cloud services such as Ama-
zon ECS and Google Cloud Functions rely on containers
as their underlying execution sandboxes. The success of the
emerging cloud paradigm, Function as a Service (FaaS) or
serverless is largely attributed to the container. Unsurpris-
ingly, there has been effort on pushing containers to the
edge platforms, because a safely-isolated and multi-tenant
execution environment is critical for the edge service provider.
Meanwhile, there is a fast-growing WebAssembly ecosystem
that makes WebAssembly a more competent alternative for the
edge. In summary, WebAssembly has the following benefits
over containers.

@ Fast response is the key that motivates the edge research
community, but a container-based edge serverless platform
fails to provide real-time response. The main reason is the high
cold start latency which remains challenging in the foreseeable
future. Such latency hinders us from exploiting the numerous
benefits brought by the function as a service (FaaS) paradigm.
A WebAssembly-based solution incurs less startup latency
because of its small code size and the streaming compiling
further reduces the latency [5]. ® A container is a process that
utilizes several Linux features to create an isolated function
execution environment. Also, container images are executables
that have OS and library incorporated. A container-based
service thus incurs non-trivial memory and CPU overhead.
This is prohibitive for resource-constrained edge devices. For
example, the state-of-the-art embedded Al computing device,
Jetson TX2 is equipped with only 8 GB of memory [6].
Previous work has validated the feasibility of executing a We-
bAssembly service within a nano-process that consumes fewer
resources without compromising security [7]. ® WebAssembly
possesses “compile once run anywhere” feature that container
does not support, because WebAssembly code is not related
with the computer hardware it runs atop of, and the ongoing
WebAssembly System Interface (WASI) project provides a
portable interface between the WebAssembly program and the
OS kernel. This endows WebAssembly with advantages on a
heterogeneous platform.

Currently, companies such as Cloudflare and Fastly are
building WebAssembly-based cloud service platforms using
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different WebAssembly runtimes [8], [9]. Their cloud services
claim to be able to spin up within milliseconds. Similar work
from academia is reported in [5], [7], [10].
To run WebAssembly in the edge or cloud environment,
many novel WebAssembly execution environments as known
as runtimes have been launched. A WebAssembly runtime,
a.k.a. WebAssembly virtual machine (VM) is responsible for
compiling WebAssembly binary into a WebAssembly module
and then instantiate the module to run the binary. However,
there is no previous work explored the implication of those
WebAssembly runtimes. We take the first step by system-
atically examining the native WebAssembly runtimes and
analyzing the implication from application scenario, compiler
backend and hardware architecture level.
In this paper, we start from explaining the necessity of
developing WebAssembly runtimes other than NodeJS (section
II-B & II-C). Next, as Fig. 1 outlines, we characterize the four
major server-side WebAssembly runtimes a.k.a. WASI-native
runtimes along with NodeJS (section III-A) on a widely-used
compiler benchmark, PolyBench, which is used in numer-
ous WebAssembly works. The WASI-native runtimes include
Wasmtime, Wasmer, Lucet and WAVM. To explain the charac-
terization result, the subsequent code quality analysis on run-
times’ backend compilers is reported in section III-B. Micro-
architecture profiling also shows agreement with the above
compilation analysis. Discussions on the tradeoff between
compilation and startup latency follows in section IV. While
PolyBench provides a way to investigate the WebAssembly
runtime compiler performance, it does not incorporate all
the application cases that a cloud/edge server would host. In
section IV-A, we propose a scheduling framework for handling
execution requests in edge application scenarios based on the
insights obtained from the tradeoff discussion in section IV.
Section V provides architecture extension on enhancing the
runtimes which does not breach the fast startup principle.
To summarize, our contributions are as follows:
¢ We systemically characterize and analyze major edge
WebAssembly runtimes for the first time.

o« We identify the root cause of performance gap be-
tween different WebAssembly runtimes through backend
compiler and hardware implication analysis. The results
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will benefit the emerging WebAssembly-centric compiler
backend, Cranelift.

e« We provide advice and an empirical framework for the
potential WebAssembly cloud provider to decide the best
runtime(s) choice that can keep a balance between the
speed and startup latency by taking application scenario
and computation size into consideration.

« We suggest architecture support in the CPU that can
improve performance while not compromising the startup
latency.

II. BACKGROUND

In this section, we will explain these concerns: (1) What are
the benefits of WebAssembly? (2) How do we run WebAssem-
bly at server side using NodeJS? (3) What is WebAssembly
System Interface (WASI), the interface between WebAssembly
and kernel, and how does WASI propel the development of
new WebAssembly runtimes?

A. WebAssembly and its features

WebAssembly is a bytecode format similar to Java bytecode,
but its polyglot and security features are what Java does
not possess. Apart from C/C++, many other programming
languages such as Rust can be seamlessly converted into We-
bAssembly. It was initially devised to improve web application
performance by reusing C/C++ code while improving the secu-
rity. A number of previous works have shown the performance
advantages of WebAssembly over JavaScript counterpart [11],
[12], while it is still slower than native code. There is a surge
of interest of extending WebAssembly application scenarios
to the server especially the edge server side because it meets
performance, portability, and security at the same time.

o Security: The security of WebAssembly is ensured by
memory safety and control flow integrity. As the Fig.
2 shows, the memory and function call are out of the
control of the WebAssembly instructions. A Memory
access in WebAssembly can only happen in a bound-
checking linear memory using the offset from the base
of the linear memory. While the host can manipulate this
linear memory area at will, WebAssembly module has no
information to the host or other WebAssembly modules.
Meanwhile, a WebAssembly module cannot directly call
a function but call by the index to a function table which
lives outside linear memory. As a result, no matter how
a hijacker change the contents inside the WebAssembly
memory, they cannot execute external malicious code.
Reflected in Fig. 2, the hexadecimal values translated
from the indexes are what the untrusted third-party We-
bAssembly code cannot know and manipulate. Also, a
function call is subject to a type signature check at
runtime to ensure control flow integrity.

« Portability: WebAssembly code is not related with hard-
ware architecture and the same WebAssembly code can
run across heterogeneous OS and hardware. Multiple
programming languages such as C/C++, Rust, and Go
can be converted into WebAssembly. While LLVM IR
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bytecode can represent constructs and semantics of many
languages, it is not portable because the representation is
different under different architecture.

o Speed: WebAssembly is an intermediary representation
(IR) which is compact. As a result, it requires less time
to download, decode. Meanwhile, since WebAssmebly is
closer to machine code, the optimization and compiling
takes less time as well.

B. Emscripten and NodelS

NodeJS is a popular server-side framework built upon
V8 engine. It not only supports running JavaScript but also
WebAssembly. Emscripten is a complete tool chain used to
produce both WebAssembly module and the JavaScript (JS)
glue code to instantiate WebAssembly module so that we
can execute WebAssembly inside NodeJS or browser. The
workflow is depicted in Fig. 3. The JS glue code is also
responsible for invoking JS version libc for system calls. This
is how WebAssembly interface with operating system before
the WebAssembly system interface (WASI) being proposed:
the NodeJS host takes the job.

C. WASI and WebAssembly native runtimes

The emergence of edge WebAssembly runtimes (aka WASI-
native runtimes) cannot leave WASI, the interface between
WebAssembly module and OS kernel.

To a WebAssembly module, WASI, is a set of callable func-
tions that can be imported by an index. While the functions
can be implemented in a variety of ways as long as it wraps
system calls (such as file, console) and provides an interface,
WASI-libc is the common implementation that is supported
by Wasmtime, and Lucet among others. The workflow of
porting code to WebAssembly and running it inside WASI-
native runtimes is shown in Fig. 4: the runtime exposes its
WASI-libc implementation for WebAssembly module to call
instead of relying on Node]S APL

To build a solid foundation for the server-side WebAssem-
bly, an emulation based on the NodeJS cannot serve as the de
facto standard. From the comparison, it is clear that NodeJS-
based WebAssembly application carries baggage associated
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with JavaScript. WASI-native runtimes have at least the fol-
lowing benefits over NodelS: (1) they supports multiple host
languages such as C, Python, or Rust while NodelS only
supports JavaScript. (2) Emulating kernel interface (POSIX)
inside NodeJS can introduce performance cost. For example,
for NodeJS runtime, Emscripten is normally used for creating
WebAssembly, and thus A WebAssembly module runs on
NodeJS has no direct access physical file system: it has to use
either virtual file system of NodeJS (NODEFS) that is mapped
to the physical one or JS glue code as an intermediary passing
data back and forth. This limit not only complicates the file
access but also slows down the file access.

III. WEBASSEMBLY EDGE RUNTIMES CHARACTERIZATION

We start from characterizing the major edge WebAssem-
bly runtimes. Wasmtime and Lucet runtimes are officially
supported by Bytecode Alliance, an open source community
dedicated to forging the ecosystem of WebAssembly. We also
include another two typical runtimes WAVM and Wasmer
because of the extensive attention they have received from the
community. Wasmtime is the most documented and serves as
the foundation. Lucet adopts AOT compilation and claims low-
latency. WAVM uses LLVM and claims near-native perfor-
mance. Wasmer has the the greatest number of Github starts.

The hardware we use includes an Intel machine equipped
with a i7-8700 CPU, 16 GB RAM, 32K LI1d cache, 32K
L1i cache, 256K L2 cache, and 12288K L3 cache; and a
NVIDIA Jetson TX2 runs ARMv8 aarch64 CPU and 8GB
RAM. The OS we use is Ubuntu 18.04. We use vtune and
perf as our performance analyzing tool. While vtune gives us
more intuitive results, perf enables more flexibility. Version of
NodeJS, Wasmtime, Lucet, WAVM and Wasmer are 12.9.1,
0.19.0, 0.7.0-dev, 0.0.0-prerelease, and 1.0.0-alpha5 respec-
tively. It should be noted that in our experiments, we aim at
investigating different WebAssembly runtimes, so we choose
the same optimization level when generate WebAssembly from
C code. We thus ensure the fairness: every WebAssembly
runtime interprets the same WebAssembly.

A. PolyBench testing

To have a general look, we examine the runtimes over Poly-
Bench. PolyBench is a popular compiler benchmark which is
designed to measure the effect of polyhedral loop optimiza-
tions. It involves many computation-intensive scientific kernels
such as image processing and data mining. It is a widely-used
benchmark among multiple WebAssembly papers [10], [11].
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Fig. 5: The normalized overall run time comparison between
Wasmtime, WAVM, Wasmer, Lucet, and NodeJS where time
of Wasmtime is set to 1

The normalized execution time on top of Wasmtime,
WAVM, Wasmer, Lucet and NodelJS is shown in Fig. 5. First
of all, apart from the drawbacks discussed in section II, among
all the applications in the figure, there is no one that NodeJS
shows the best performance, so introducing the novel runtimes
also brings the performance benefits.

Among the four edge WebAssembly runtimes, we can
find the performance of WAVM (the second bar) is on par
with Wasmtime (the first bar), and actually has a marginal
speedup over Wasmtime on most applications. This observa-
tion holds for most of the PolyBench applications that are 2mm,
3mm, adi,cholesky, covariance, doitgen, fdtd-
2d, gemm, seidel, heat-3d, ludcmp, symm, syr2k,
and t rmm. The speedup is especially obvious for applications
such as cholesky and gemm. The speedup comes from
WAVM using LLVM as its machine code generator, which
is a well-developed compiler project. However, among them,
there are three applications that WAVM shows the slowest
performance. This is caused by the high startup latency of
WAVM as we will discuss in IV.

Surprisingly, Lucet has the worst performance across Poly-
Bench though it claims to be extremely fast [9]. Lucet adopts
an ahead-of-time (AOT) compiler, lucetc, built on top of the
Cranelift code generator which translates target-independent
intermediate representation (IR) into executable machine code.
As a result, it should be faster than other JIT style We-
bAssembly runtime. As we will show in IV, Lucet does
has speed benefits in terms of short-lived application. As
for Wasmer, its default compiler backend is also Cranelift,
but it does not perform as well as Wasmtime, so we do
not focus on it in this paper. Although Lucet, Wasmer, and
Wasmtime all adopt Cranelift as their backend, there are
obvious performance gaps between them. This can be caused
by FuncEnvironment that each compiler plugs into the
Cranelift backend [13]. Those FuncEnvironment allows
Cranelift to generate different code sequences and operation
types, but different FuncEnvironment is set according to
the WebAssembly targeting application scenarios.

B. Performance analysis

To investigate the code size and performance gap between
different runtimes, it is necessary to analyze the native code
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generated by them. Due to the space limit, it is impractical
to analyze the machine instructions from each of the four
runtimes. Using the same matrix multiplication WebAssembly
binary which contains tight for loops (Listing (1)), the partial
corresponding machine code generated from WAVM (Listing
(2)) and Wasmtime (Listing (3)) is reported in Fig. 6. The
reason that we choose matrix multiplication is because similar
matrix processing that involves nested loops and arrays are
major operations in PolyBench.

We choose WAVM and Wasmtime because they repre-
sent the major WebAssembly compilers that are LLVM and
Cranelift, respectively. While Lucet and Wasmer also use
Cranelift as the default backend WebAssembly compiler, it
is shown from the above characterization that they do not
represent the best performance of Cranelift. While Cranelift
is a promising WebAssembly compiler framework written in
Rust, it is new and lacks further optimizations. The increased
code size as our following analysis shows, is caused by register
abuse, indirect memory address, and inappropriate instruction
choice.

1) register Abuse: From Listing (3) we find Cranelift does
not utilize the existing registers which do not need to be
preserved according to Cranelift’s calling convention, instead
it abuses unnecessary registers and cause unnecessary data
movement between registers. Take the first loop part among
multiple cases as an example, at line 16, esi register is used to
fetch the value of c from the stack, and this part will choose to
jump or not according to the cmp result of ¢ and m. However,
instead of directly using esi register, it moves esi’s value
into eax. Lastly, to use eax, it keeps eax’s original value
into esi for future restoring after the comparison. By contrast,
LLVM code (line 15-17, Listing (2)) takes the task in a concise
way: it fetches the value of ¢ from the stack using ebx register
and it directly addresses m from the stack in cmp instruction
rather than wasting another register to fetch m. The value of m
is fetched in every for loop iteration, so keeping m in a register
is a waste.

As explained above, there are useless register swaps in
Cranelift code. The assumption that it must preserve esi’s
value according to the calling convention also does not hold
because shortly esi is used for temporary store. Even though
it may believe esi cannot involve cmp operation for a special
reason, there are plenty non-volatile registers available for
stack fetch.

The inferior machine code of Wasmtime is caused by
Cranelift’s expansion based machine instruction generator.
It expands every Cranelift intermediate representation (IR)
instruction until it finds the sequence of machine instructions
to represent this IR. Such expansion-based legalization fails to
generate efficient code because it lacks a global view.

2) Indirect memory address: Cranelift adopts inefficient
memory address. Example can be found at line 64, instead of
directly addressing the memory for the add instruction, that
is, add <mem>, <reg>, it uses a register to read and write
back, and thus brings unneeded instructions.
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1 int main () {

2 int m = 17, n =17, p =17, g = 17;

3 int first[m] [n], second[p][qg]l, mul[m][q];

4 for(int ¢ = 0 ; ¢ <m ; c++ ){

5 for (int d =0 ; d < g ; d++ ){

6 for ( int k = 0 ; k < p ; k++t ){

7 mul [c] [d] += first[c] [k]*second[k] [d];
8 }

9 }

Listing (1) matrix multiplication C code

;##allocate 4xmxn bytes on stack for first[m] [n]

1
2

3 mov edi,DWORD PTR [rsi+rcx*1+0x38] ;edi = m
4 mov r8d,DWORD PTR [rsi+rcx*1+0x34] ;r8d = n
5 mov DWORD PTR [rsi+rcx*1+0x28],esi

6 mov DWORD PTR [rsi+rcx*x1+0x24],edi

7 imul edi, r8d

8 lea edi, [rdi*4+0xf]

9 and edi,Oxfffffff0

10 neg edi ; edi = —4xm*n
n lea r9d, [rdx+rdixl]

12 add r9d,0xffffffcO;first[m] [n]’s stack end addr
13 ...

14 ;##1lst loop for(int ¢ = 0 ; ¢ < m ; c++ )

15 mov ebx,DWORD PTR [rdi+rcx*1+0xc] ;ebx = ¢
16 cmp ebx,DWORD PTR [rdi+rcxx1+0x38]

17 jge 253 <functionDef2+0x183> ; jump if c >=m
18 ...

19 ;##mulc] [d] += first[c] [k]*second[k] [d];

20 mov ebx,DWORD PTR [rdi+rcx*1+0xc]

21 imul ebx, r8d ;ebx = cx*n
2 lea ebx, [r9+rbxx4]

23 mov edx,DWORD PTR [rdi+rcxx1+0x4]

24 ;edx = offset, 4(cn+k), in first[][]

25 lea edx, [rbx+rdxx4]

26 ;edx = first([c] [k]

27 mov edx,DWORD PTR [rcx+rdxxl]

28 mov ebx,DWORD PTR [rdit+rcx*1+0x4] ;ebx = k
29 imul ebx,rl10d jebx = kxqg
30 lea ebx, [rll+rbx=*4]

31 mov esi,DWORD PTR [rdi+rcx*1+0x8] ;esi = d
2 j;esi = offset, 4(kgt+td), in second[][]

33 lea esi, [rbx+rsix4]

34 ;edx=first[c] [k]*second[k] [d]

35 imul edx,DWORD PTR [rcx+rsixl]

36

37 mov esi,DWORD PTR [rdi+rcx*1+0xc] ;esi = c

33 imul esi,rl4dd ;jesi = cxq
39 lea esi, [rl5+rsix4]

40 mov ebx,DWORD PTR [rdi+rcx*1+0x8] ;ebx = d
41 lea esi, [rsi+rbxx4]

;jesi= offset,4(cg+d), in mul[c] [d]
;mult[c] [d] += first[c] [k]*second[k] [d]
add DWORD PTR [rcx+rsixl],edx

Listing (2) partial X86-64 code from WAVM runtime (LLVM)

B T Y N T S

10

;##allocate 4xm+n bytes on stack for first[m] [n]

rex mov esi,DWORD PTR [rbx+rdxx1+0x38] ; esi = m
rex mov edi,DWORD PTR [rbx+rdx*1+0x34] ; edi = n
rex mov DWORD PTR [rbx+rdx*1+0x28],ecx
mov r8d, esi ; r8d = esi
imul r8d, edi ; r8d = mxn
shl r8d, 0x2 ; r8d = r8d<<2, int 4 bytes
add r8d, O0xf
and r8d, Oxffff£f£ff0
mov r9d, ecx
sub r9d, r8d ; first[m] [n]’s stack end addr
j##lst loop for(int ¢ = 0 ; ¢ < m ; c++ )
rex mov edx,ecx
rex mov esi,DWORD PTR [rbx+rdxxl+0xc] ; esi = c
mov rl2d, DWORD PTR [rbx+rdx*1+0x38] ; rl2d = m
mov rl4d, eax ;keep eax value, O
rex mov eax,esi ; eax = esi = c
mov esi,rldd ; esi = rldd = 0;
cmp eax,rl2d
setl al ; if ¢c <m, al =1
movzx eax,al ; extend higher bits with 0
and eax, 0x1
mov rl2d, eax ; if ¢ < m, rl2d = eax =1
rex mov eax,esi ;restore eax value, 0
mov esi,rl2d ; if ¢ < m, esi = rl2d = eax =1
rex test esi,esi ;Jmp 1f esi == 0
je 2f0 <_wasm_function_3+0x227>
;##mul[c] [d] += first([c][k]=*second[k] [d];
rex mov esi,DWORD PTR [rbx+rdxx1+0xc]
imul esi,edi
shl esi, 0x2 ;esi = c*n
mov rl2d, r9d
add rl2d, esi
rex mov esi,DWORD PTR [rbx+rdxx1+0x4] ; esi =k
shl esi, 0x2
add rl2d,esi ;rl2d = 4 (cn+k)
;esi = rl2d = offset, 4(cn+k), in first[][]
mov esi,rl2d
rex mov esi,DWORD PTR [rbx+rsixl] ;esi = first[c] [k]
mov rl2d, DWORD PTR [rbx+rdx*1+0x4] ; rl2d = k
imul rl2d, r8d ; rl2d = k x g
shl rl2d, 0x2
mov rl4d, rlld
add rl4d, rl2d
;rl2d = rl4d = offset, 4(kg+d), in second[][]
mov rl2d, rl4d
mov rl12d,DWORD PTR [rbx+rl2x*1];rl2d = second[k] [d]
imul esi,rl2d ;esi = first[c][k] *= second[k] [d]
mov rl2d, DWORD PTR [rbx+rdx*1+0xc]
imul rl2d,rl0d ; rl2d = c x g
shl rl2d, 0x2
mov rl4d, r13d
add rl4d, rl2d
mov rl12d,DWORD PTR [rbx+rdx*1+0x8] ;rl2d = d
shl rl2d, 0x2
add rldd,rl2d
;rl2d = rl4d = offset,4(cg+td), in mul[c] [d]
mov rl2d, rl4d
mov rl4dd, DWORD PTR [rbx+rl2x1] ;rldd = mult[c] [d]
add rl4d,esi ;mul [c] [d] +=result
mov DWORD PTR [rbx+rl2x1],rl4d ;write back stack

Listing (3) partial X86-64 code from Wasmtime runtime (Cranelift)

Fig. 6: X86 Machine code generated by WAVM & Wasmtime from the same WebAssembly matrix multiplication bytecode
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3) Inappropriate instruction choice: Cranelift also does
not generate appropriate instructions as can be seen from
multiple places at Listing (3). To take a jump, instructions
start from line 22 to line 29 are involved, while LLVM only
requires a jge, jump-if-greater-or-equal, instruction (line 17,
Listing (2)). Cranelift uses jump-if-equal which is also good
and should also be able to finish the task in one instruction,
but it uses eax for cmp (line 21, Listing (3)), while decides to
jump or not according to another register esi (line 28, Listing
(3)). Moreover, line 24, uses and eax, 0x1 on the result
of set1 which is already O or 1, so this and instruction does
not have any effects at all.

Another type of inappropriate instruction choice is a mean-
ingless REX prefix on many 32-bit instructions that do not use
any of r8-r15 registers. There are already several cases, such
as line 26, rex mov eax, esi in such a short snippet List-
ing (3). This REX prefix makes this mov instruction one byte
larger in size and thus results in higher i-cache footprint. It
will exacerbate the front-end bottleneck and limit performance.
While i-cache footprint cannot be dynamically measured to the
best of our knowledge, the larger every instruction is in size,
the less amount of instructions can be kept in I-cache and the
following instruction fetch and decode phase would be hurt.

From the above analysis, it is clear that Wasmtime

instructions are more redundant and have lower
instruction locality than WAVM. To verify it, Perf
provides  events ICACHE 64B.IFTAG_HIT  and

ICACHE 64B.IFTAG_MISS to count the L1 instruction
cache hit and miss number, respectively. However, It must
be noted that there is also a micro-operation (uOps) cache
(DSB) which acts as a ”L0” I-cache that is not counted in
the above two events. DSB (Decoded Stream Buffer), stores
uOps that have already been decoded, avoiding many of the
penalties of the legacy decode pipeline as known as MITE
(Micro-instruction Translation Engine). To catch DSB data,
we need IDQ.MITE UOPS and IDQ.DSB__UOPS events.

Instruction decoder inside CPU breaks the instructions with
variable length into equal length uOps. We randomly pick
several PolyBench applications and report their DSB miss and
L1 I-cache miss in table I. WAVM has considerably lower
DSB miss rate than Wasmtime throughout the applications.
For applications such as heat-3D, both runtimes shows low
DSB miss rate. We do not consider the L1 I-cache miss rate
because most instructions are from DSB, as the last column of
the table I shows: DSB reference number (miss + hit) is much
higher than L1 I-cache. Normally, for RISC, one instruction
is processed into one micro operation, even with micro/macro
operation fusion, the ratio still remains between 0.9 and 1.1.

To conclude, we first analyze the runtime backend per-
formance from instruction level and then take the micro-
architecture characterization and identify the front-end bot-
tleneck of Wasmtime coming from instruction cache. The
characterization shows agreement with the code analysis.
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C. ARM case

At the time of writing, Lucet and WAVM do not support
ARM aarch64 architecture. We are therefore only allowed to
test Wasmtime and Wamser on a NVIDIA Jetson TX2 which
is regarded as a powerful edge device. For clarity, it is not
reported in the figure. The result still fits the pattern reported
in Fig. 5 that is Wasmtime has marginal advantage over Was-
mer especially for short-lived applications. Because Wasmer
supports LLVM backend as well, we are able to compare the
LLVM and Cranelift on ARM. LLVM still generates machine
code of better quality, but the performance gap between the
two compiler backends is smaller on ARM than on X86. An
obvious difference is LLVM cannot exploit the direct memory
address, because on ARM, memory contents need to be loaded
into registers first before performing any logical or arithmetic
operation. Therefore, ARM is more Cranelift-friendly in this
respect. Also, the main goal of edge WebAssembly runtime
is to provide lightweight service isolation at the edge server
side. IoT or ARM device which has inferior performance than
X86 server is currently not feasible to exploit.

IV. STARTUP LATENCY

The question naturally arises: should Wasmtime optimizes
its backend compiler? While WAVM has the best performance
on most PolyBench WebAssembly applications where tens
or even hundreds of seconds are consumed, there are also
cases such as atax in Fig. 5 where WAVM shows the worst
performance. This is because applications such as atax are
short-lived and thus the startup latency cannot be ignored.
This is especially important to the edge because the major
goal of the edge is to assist the cloud and thus involves
less computation-intensive tasks. Polybench cannot reflect this
application feature.

Also, edge scenario tends to have stringent latency re-
quirement. Without being able to provide fast startup, the
benefits brought by fast edge network transmission will wane.
In the Function-as-a-Service (FaaS) realm, considerable work
has tried to tackle the startup latency issue because it is
currently the most urgent one. [14], [15]. Here we refer
to the WebAssembly application startup latency as the time
spent on process bootstrapping and module compiling. Future
instantiation will not suffer from this cold startup latency
when the process keeps alive and the compiled module is
preserved and shared. It has been shown that WebAssembly
is an effective alternative to reduce the startup latency in a
serverless prototype [5]. It is necessary to investigate how the
emerging WebAssembly runtimes affects startup latency.

To show the effects of cold start on the overall run time,
we break the run time into startup and execution parts in
Fig. 7. The applications we select from PolyBench are atax,
bicg, durbin, and trisolv because WAVM does not
show good performance on these four applications as Fig. 7
shows. Fig. 7 (a) shows when there is only one invocation
which is cold, because for WAVM, its higher startup latency
dominates the overall time, the performance of WAVM is on
average 3x slower than Wasmtime. Keeping the process alive,
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TABLE I: Micro-architecture events on instruction cache

Avplicaion Ramime o0 e PR M e o
pmm WAVM  1.64E+09  4.44E+10 3.56% 3.53E+07  4.92E+09 9.297848921
Wasmtime  3.98E+10  4.18E+10 48.74% 3.19E+06 6.92E+09 11.78195449
3mm WAVM 1.69E+09  7.04E+10 2.35% 3.99E+07 9.14E+09 7.849410328
Wasmtime ~ 9.49E+10  3.51E+10 73.03% 5.55E+06 1.13E+10 11.51041366
symm WAVM  1.59E+09  2.59E+10 5.80% 3.37E+07  3.41E+07 404.7020417
Wasmtime  4.10E+10  2.80E+09 93.60% 1.69E+06 3.76E+09 11.62256781
heat-3D WAVM 3.43E+09  1.83E+11 1.84% 3.90E+07 1.59E+10 11.73076489
Wasmtime ~ 3.02E+09  2.92E+11 1.02% 3.75E+06 2.02E+10 14.58986501
scidel WAVM 1.81E+09  1.55E+11 1.15% 3.95E+07 1.47E+10 10.63568714
Wasmtime ~ 2.47E+11  1.23E+10  95.26% 5.67E+06  2.02E+10 12.82836407
gemm WAVM  1.51E+09  3.71E+10 3.92% 4.33E+07  4.90E+09 7.817842999
Wasmtime  3.03E+08  6.66E+10 0.45% 1.73E+06 5.56E+09 12.03330069
the following invocations will not experience cold start but just -l
instantiate an existing compiled WebAssembly Module. This —— wasmer
pattern is reported in 7 (b) where we sequentially call the 104 :__\L/Y,acsertnﬁme
applications for 50 times. In this scenario, the execution part g o
dominates the whole time and WAVM outperforms Wasmtime. s
Because there is only one cold start and the following 49 0.14
invocations use the WebAssembly Module. -
The above-characterized PolyBench still fails to unbiasedly

reflect the advantages of Lucet and Wasmer because those
applications are all computationally heavy for them, so we
examine four runtime across different sized random matrix
operation, and report the result in Fig. 8. This time Lucet
shows the smallest inherent startup latency and thus the best
performance when the input size is small, e.g., 30 x 30, but as
the matrix grows, the time drastically increases, and this proves
its poor performance on large scale application handling, while
WAVM behaves oppositely. Wasmtime has the most balanced
performance among the runtimes.

[ exec [ startup 257 [ exec [ startup

time (/s)

Wasmtime WAVM __ Wasmtime WAVM 00
durbin trisolv

(a)

[ Wasmiime wavM
atax

Wasmiime WAVH
atax

Wasmtime WAVM
bicg

Wesmime WAVM
bicg

Wasmiime WAVM _ Wasmiime WAVM
durbin trisolv

®
Fig. 7: Startup and execution time breakdown under different

invocation pattern. (a) one clod invocation, (b) fifty sequential
invocations

A. A set of typical edge workload & runtime scheduling

Numerous papers have shown the necessity of offloading
cloud workload to the edge for saving network bandwidth
and reducing latency [16], but for computationally heavy
applications, the communication latency improvement may not
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1 2 3 4 5 6 7 8
matrix size

Fig. 8: Total run time on different-size 2D matrix multipli-
cation over four WASI-native WebAssembly runtimes. From
the left to the right, matrix size increases from 30 x 30 to
2000 x 2000

be as significant as the computation time benefits brought
by the remote but powerful cloud servers. Typically, if the
time required by an application is more than one second,
offloading the application to the cloud instead of the edge
is more reasonable because the internet round trip time is
within this range while we can ignore the 5G network latency
between the user and an edge node.

Instead of replacing containers or virtual machines, We-
bAssembly aims for enabling edge servers to respond to
requests from end users promptly and safely. PolyBench is
more of a cloud-side benchmark which is ideal for compilation
performance comparison. Therefore, we propose a typical edge
benchmark that consists of tasks common in the autonomous
driving scenario. They are (1) edge detection: a Canny edge
detector that uses a multi-stage algorithm to detect a wide
range of edges in an image; (2) vehicle plate detection: isolate
the license plate part using morphological image processing
algorithms; (3) attitude Estimation: fast complementary filter
for car attitude estimation using a set of local data collected
from MARG (Magnetic, Angular Rate, and Gravity) sensors;
(4) Image classification: MNIST digit classification using
LeNet. (5) Decompressing: a IMB zip file decompressing via

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.



Huffman method. As can be found from the Fig. 9, no runtime
can always maintain the best performance across five real-
world applications.

Deciding the best runtime is therefore difficult. However,
according to our targeting scenario, it is reasonable to assume
that we know what applications the WebAssembly runtime
will serve. For example, for an autonomous driving service
provider, it is their responsibility to decide which applica-
tion(s) should be dispatched to a server or a base station.
We, therefore, are allowed to implement inexpensive offline
profiling as Fig. 9 does.

The scheduling diagram is shown in Fig. 10 where we
choose Rust language as the host (embedder) because Rust has
good WebAssembly support. The host parses the request and
uses a pre-loaded profiler to decide the best embedded runtime.
Currently, there are Wasmtime, Wasmer, and Lucet runtimes
that are published as Rust crates available. The embedded
runtimes are exposed to the Rust host and provide API such as
Module: :new for developers to call. We are therefore able
to compile the WebAssembly binary into the module and then
instantiate the module with the imports imported, and finally
run it from the host environment. However, Lucet is special
because it uses the ahead-of-time compilation so it can be
directly instantiated without the compilation step. We monitor
the total run time and use the results to dynamically update the
profiler because of the correlation between physical time and
profiling. This empirical scheduler can effectively reduce the
cold start latency. We leave a more comprehensive scheduler
that combines invocation patterns with run time as our future
work, but the basic idea is the Rust host allows us to store
the read-only compiled artifact that can be safely shared, and
thus the future instantiations will not require bootstrap, so the
prewarming should be as lucrative as possible (choosing the
best machine code generator) but also in a resources-and-time-
allowed fashion.

in Table II, we report the scheduler performance on the five
edge applications we described above. The result is the average
of speedup percentage of hybrid mode per application because
short-lived applications should have the same weight on the
result as the long-lived applications. The speedup ranges from
1.5x to 16.9x which is striking.

TABLE II: The speedup of using hybrid mode compared to
the single runtime mode on the edge workload set

WAVM  Wasmtime  Lucet  Wasmer
only only only only
Hybrid runtimes ~ 16.9x 2.8% 1.5%x 3.8%

V. ARCHITECTURE IMPLICATION

The challenge arisen in III-B is an inefficient runtime
instruction generator, while from IV we find the tradeoff
between the instructions and startup latency brought by the
compiler improvement (e.g., Wasmtime vs WAVM). As a
result, optimizing the runtime backend from a software com-
piler level may breach the fast startup principle of an edge
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TABLE III: Branch misprediction rate (%) under different
branch predictors

Application Runtime 2-bit  Bi-mode  Tournament
WAVM 22.15 6.91 2.73
2mm
Wasmtime ~ 16.47 5.40 1.92
WAVM 24.83 6.23 3.28
symm
Wasmtime  18.31 6.54 4.03

WebAssembly runtime. However, inspired by the front-end
bottleneck identification in III-B, we investigate how does
hardware optimization improve the system while not compris-
ing the startup latency.

To observe the hardware extension effects, we use gemS5
simulator which relies on a pre-built custom disk image with
the applications installed to boot. We characterize the I-cache
and D-cache performance over the cache size change and
report the result in Fig. 11. Both the I-cache and D-cache
miss rates drop when the cache size increases. However, I-
cache size has a more obvious effect on performance than D-
cache. Also, two rumtimes show a similar D-cache miss rate
across the different D-cache sizes. We, therefore, argue that
data cache size is less important for Wasmtime, but instruction
cache can be exploited. The Wasmtime applications show a
much higher I-cache miss rate than WAVM applications as Fig.
11 (a) shows, but it is no longer a major concern when I-cache
size is large. Table III shows branch misprediction rates using
different predictors. The predictors include a simple 2-bit local
predictor, a bi-mode predictor, and a tournament predictor. We
set branch target buffer 2048 entries, size of global and choice
predictor both 2Kb for the bi-mode, and size of local, global
and choice predictor 1Kb, 4Kb, 4Kb respectively for the tour-
nament. We claim that unlike cache, branch predictor leaves
less leeway for optimization because the complicated predictor
such as Tournament has already shown good results. We expect
other architecture implications such as cache associativity and
block size can also be exploited.

To conclude, though optimizing the backend compiler may
harm the performance for short-lived applications, hardware
enhancement provides new opportunities. To exploit the po-
tential of each runtime, specialized hardware configurations
are needed.

VI. RELATED WORK

Previous work on server-side WebAssembly focuses on its
security and feasibility.

Safety. To investigate the safety of using WebAssembly
as the lightweight isolation, Lehmann et al. analyze to what
extent are vulnerabilities exploitable in WebAssembly binaries,
and how does this compare to native code [17]. Extensions
to WebAssembly that enables higher security and subsequent
performance trade-offs are discussed in [18], [19].

Serverless prototype. Hall et al. show the potential of
WebAssembly to the edge by comparing it with containers,
but their design brings security and flexibility concerns [20].
Shillaker and Pietzuch implement a WebAssembly-based new
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Fig. 9: Performance of the WASI-native WebAssembly runtimes on a typical edge workload set
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isolation abstraction for high-performance serverless com-
puting [7]. Their work all show WebAssembly-based cloud
service has advantages on serving latency.

Characterization. Jangda et al. compare the performance
of WebAssembly running on browser over native C code
[12]. Kent et al. investigate the performance of WebAssembly
compilation in V8 [21]. Radhakrishnan et al. characterize and
analyze the JAVA runtimes [22]. However, this paper is the
first work on systematically examining the cloud WebAssem-
bly runtimes and analyzing the implication from application
scenarios, compiler backend, and hardware architecture level.

VII. CONCLUSION AND FUTURE WORK

In this paper, a systemic characterization of major edge
WebAssembly runtimes is presented. We discuss the runtime
performance under different application scenarios. We analyze
the root cause of different runtimes behavior. Based on the
characterization and analysis, practical guidance for selecting
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the runtime as per target applications is given and the hard-
ware implication on balancing the execution and startup is
discussed. We leave a hardware and software co-optimized
framework for efficiently handling edge WebAssembly func-
tion service as our future work. We also plan to further the
study on WebAssembly performance and backend compiler.
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