
Characterization and Implication of Edge
WebAssembly Runtimes

Zhen Wang, Jianda Wang, Zhendong Wang, Yang Hu
ECE Department, The University of Texas at Dallas, Richardson, TX 75080 USA

Email: {zhen.wang2, jxw174930, zhendong.wang, yang.hu4}@utdallas.edu

Abstract—WebAssembly, an emerging bytecode format, which
is initially developed for partially replacing JavaScript and speed-
ing up browser applications, has been extended to the server-side
due to its speed and security promise. It has been considered as a
promising alternative to the widely deployed container technique
for isolating lightweight applications. To run WebAssmebly from
the server-side, aside from the NodeJS runtime, several We-
bAssembly native runtimes have been proposed. We characterize
major WebAssembly runtimes through extensive applications and
metrics. Our results show that different runtimes fit different
application scenarios. Based on that, a framework for reducing
the startup latency of WebAssembly service while keeping maxi-
mum performance is provided. To identify the root causes of the
performance gap, the analysis of emerging Cranelift compiler
against LLVM in detail is reported. In addition, this paper gives
revealing suggestions and architectural proposals for designing
an efficient WebAssembly runtime. Our work provides insights
on both WebAssembly runtime enhancement and WebAssembly-
based cloud service exploitation.

Index Terms—WebAssembly, cloud VM, FaaS, performance
evaluation

I. INTRODUCTION

Cloud services are becoming ubiquitous, but they normally

fail to provide a real-time response due to inherent service

latency and network delay caused by congestion or distance.

In hopes of meeting the quality and time pressures of many

latency- and safety-critical services such as autonomous driv-

ing tasks which involve massive data processing, edge-cloud is

becoming an active research topic where servers closer to the

end-user as known as the edge servers are responsible for the

preprocessing and thus reduces the cloud side pressure [1]–

[4]. However, such a paradigm cannot eliminate the inherent

latency and brings new challenges. On the one hand, either

for the cloud or the edge server, creating an isolated service

consumes non-trivial time, on the other hand, an edge server

tends to have limited hardware resources available. As a result,

co-locating multi-functions in a speedy and resources-friendly

while secure way is crucial.

WebAssembly, also known as Wasm, is a size- and load-

time-efficient bytecode format that is originally designed for

the web. It makes running code written in multiple languages

in browsers at near-native speed possible by compiling the

code into WebAssembly. Meanwhile, there is growing interest

in pushing WebAssembly to the edge side because of the

sandbox execution environment and the portability of We-

bAssembly. With WebAssembly, it is possible to securely run

a untrusted service, regardless of underlying ISA and OS in a

multi-tenant edge node while not overwhelming it.

Before WebAssembly, container, a more lightweight and

scalable isolation solution than the traditional virtual machine

(VM), has changed the face of today’s service computing.

Considerable public and private cloud services such as Ama-

zon ECS and Google Cloud Functions rely on containers

as their underlying execution sandboxes. The success of the

emerging cloud paradigm, Function as a Service (FaaS) or

serverless is largely attributed to the container. Unsurpris-

ingly, there has been effort on pushing containers to the

edge platforms, because a safely-isolated and multi-tenant

execution environment is critical for the edge service provider.

Meanwhile, there is a fast-growing WebAssembly ecosystem

that makes WebAssembly a more competent alternative for the

edge. In summary, WebAssembly has the following benefits

over containers.

� Fast response is the key that motivates the edge research

community, but a container-based edge serverless platform

fails to provide real-time response. The main reason is the high

cold start latency which remains challenging in the foreseeable

future. Such latency hinders us from exploiting the numerous

benefits brought by the function as a service (FaaS) paradigm.

A WebAssembly-based solution incurs less startup latency

because of its small code size and the streaming compiling

further reduces the latency [5]. � A container is a process that

utilizes several Linux features to create an isolated function

execution environment. Also, container images are executables

that have OS and library incorporated. A container-based

service thus incurs non-trivial memory and CPU overhead.

This is prohibitive for resource-constrained edge devices. For

example, the state-of-the-art embedded AI computing device,

Jetson TX2 is equipped with only 8 GB of memory [6].

Previous work has validated the feasibility of executing a We-

bAssembly service within a nano-process that consumes fewer

resources without compromising security [7]. � WebAssembly

possesses ”compile once run anywhere” feature that container

does not support, because WebAssembly code is not related

with the computer hardware it runs atop of, and the ongoing

WebAssembly System Interface (WASI) project provides a

portable interface between the WebAssembly program and the

OS kernel. This endows WebAssembly with advantages on a

heterogeneous platform.

Currently, companies such as Cloudflare and Fastly are

building WebAssembly-based cloud service platforms using

71

2021 IEEE 23rd Int Conf on High Performance Computing & Communications; 7th Int Conf on Data Science & Systems; 19th
Int Conf on Smart City; 7th Int Conf on Dependability in Sensor, Cloud & Big Data Systems & Application

978-1-6654-9457-1/21/$31.00 ©2021 IEEE
DOI 10.1109/HPCC-DSS-SmartCity-DependSys53884.2021.00037

20
21

 IE
EE

 2
3r

d
In

t C
on

f o
n

Hi
gh

 P
er

fo
rm

an
ce

 C
om

pu
tin

g
&

 C
om

m
un

ic
at

io
ns

; 7
th

 In
t C

on
f o

n
Da

ta
 S

ci
en

ce
 &

 S
ys

te
m

s;
 1

9t
h

In
t C

on
f o

n
Sm

ar
t C

ity
; 7

th
 In

t C
on

f o
n

De
pe

nd
ab

ili
ty

 in
 S

en
so

r,
Cl

ou
d

&
 B

ig
 D

at
a

Sy
st

em
s &

 A
pp

lic
at

io
n

(H
PC

C/
DS

S/
Sm

ar
tC

ity
/D

ep
en

dS
ys

) |
 9

78
-1

-6
65

4-
94

57
-1

/2
1/

$3
1.

00
 ©

20
21

 IE
EE

 |
 D

O
I:

10
.1

10
9/

HP
CC

-D
SS

-S
M

AR
TC

IT
Y-

DE
PE

N
DS

YS
53

88
4.

20
21

.0
00

37

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

Performance on a
generic compiler

benchmark
(III-A)

Compiler code
quality analysis

(III-B)

Balance between
compiling and
startup for an

edge case
(IV)

Micro-architecture
profiling

(III-B)

Hardware
enhancement

(V)

Software
scheduling

(IV-A)

Fig. 1: Paper structure

different WebAssembly runtimes [8], [9]. Their cloud services

claim to be able to spin up within milliseconds. Similar work

from academia is reported in [5], [7], [10].

To run WebAssembly in the edge or cloud environment,

many novel WebAssembly execution environments as known

as runtimes have been launched. A WebAssembly runtime,

a.k.a. WebAssembly virtual machine (VM) is responsible for

compiling WebAssembly binary into a WebAssembly module

and then instantiate the module to run the binary. However,

there is no previous work explored the implication of those

WebAssembly runtimes. We take the first step by system-

atically examining the native WebAssembly runtimes and

analyzing the implication from application scenario, compiler

backend and hardware architecture level.

In this paper, we start from explaining the necessity of

developing WebAssembly runtimes other than NodeJS (section

II-B & II-C). Next, as Fig. 1 outlines, we characterize the four

major server-side WebAssembly runtimes a.k.a. WASI-native

runtimes along with NodeJS (section III-A) on a widely-used

compiler benchmark, PolyBench, which is used in numer-

ous WebAssembly works. The WASI-native runtimes include

Wasmtime, Wasmer, Lucet and WAVM. To explain the charac-

terization result, the subsequent code quality analysis on run-

times’ backend compilers is reported in section III-B. Micro-

architecture profiling also shows agreement with the above

compilation analysis. Discussions on the tradeoff between

compilation and startup latency follows in section IV. While

PolyBench provides a way to investigate the WebAssembly

runtime compiler performance, it does not incorporate all

the application cases that a cloud/edge server would host. In

section IV-A, we propose a scheduling framework for handling

execution requests in edge application scenarios based on the

insights obtained from the tradeoff discussion in section IV.

Section V provides architecture extension on enhancing the

runtimes which does not breach the fast startup principle.

To summarize, our contributions are as follows:

• We systemically characterize and analyze major edge

WebAssembly runtimes for the first time.

• We identify the root cause of performance gap be-

tween different WebAssembly runtimes through backend

compiler and hardware implication analysis. The results

will benefit the emerging WebAssembly-centric compiler

backend, Cranelift.

• We provide advice and an empirical framework for the

potential WebAssembly cloud provider to decide the best

runtime(s) choice that can keep a balance between the

speed and startup latency by taking application scenario

and computation size into consideration.

• We suggest architecture support in the CPU that can

improve performance while not compromising the startup

latency.

II. BACKGROUND

In this section, we will explain these concerns: (1) What are

the benefits of WebAssembly? (2) How do we run WebAssem-

bly at server side using NodeJS? (3) What is WebAssembly

System Interface (WASI), the interface between WebAssembly

and kernel, and how does WASI propel the development of

new WebAssembly runtimes?

A. WebAssembly and its features

WebAssembly is a bytecode format similar to Java bytecode,

but its polyglot and security features are what Java does

not possess. Apart from C/C++, many other programming

languages such as Rust can be seamlessly converted into We-

bAssembly. It was initially devised to improve web application

performance by reusing C/C++ code while improving the secu-

rity. A number of previous works have shown the performance

advantages of WebAssembly over JavaScript counterpart [11],

[12], while it is still slower than native code. There is a surge

of interest of extending WebAssembly application scenarios

to the server especially the edge server side because it meets

performance, portability, and security at the same time.

• Security: The security of WebAssembly is ensured by

memory safety and control flow integrity. As the Fig.

2 shows, the memory and function call are out of the

control of the WebAssembly instructions. A Memory

access in WebAssembly can only happen in a bound-

checking linear memory using the offset from the base

of the linear memory. While the host can manipulate this

linear memory area at will, WebAssembly module has no

information to the host or other WebAssembly modules.

Meanwhile, a WebAssembly module cannot directly call

a function but call by the index to a function table which

lives outside linear memory. As a result, no matter how

a hijacker change the contents inside the WebAssembly

memory, they cannot execute external malicious code.

Reflected in Fig. 2, the hexadecimal values translated

from the indexes are what the untrusted third-party We-

bAssembly code cannot know and manipulate. Also, a

function call is subject to a type signature check at

runtime to ensure control flow integrity.

• Portability: WebAssembly code is not related with hard-

ware architecture and the same WebAssembly code can

run across heterogeneous OS and hardware. Multiple

programming languages such as C/C++, Rust, and Go

can be converted into WebAssembly. While LLVM IR

72

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

Function
Table

0x7F011B88

WebAssembly
Instructions

0

Linear
Memory

1
Linear

Memory

Instruction
Address

Object imported from
host

Host memory

0x91AAF172

Fig. 2: Safety mechanism of WebAssembly bytecode

Emscripten
compilation
toolchain

C/C++
code

JS glue
code Source

binding

WASM
bytecode

NodeJS
User

space

OS
kernel

Fig. 3: Workflow of reusing C/C++ code by porting them to

WebAssembly and using WebAssembly inside NodeJS

bytecode can represent constructs and semantics of many

languages, it is not portable because the representation is

different under different architecture.

• Speed: WebAssembly is an intermediary representation

(IR) which is compact. As a result, it requires less time

to download, decode. Meanwhile, since WebAssmebly is

closer to machine code, the optimization and compiling

takes less time as well.

B. Emscripten and NodeJS

NodeJS is a popular server-side framework built upon

V8 engine. It not only supports running JavaScript but also

WebAssembly. Emscripten is a complete tool chain used to

produce both WebAssembly module and the JavaScript (JS)

glue code to instantiate WebAssembly module so that we

can execute WebAssembly inside NodeJS or browser. The

workflow is depicted in Fig. 3. The JS glue code is also

responsible for invoking JS version libc for system calls. This

is how WebAssembly interface with operating system before

the WebAssembly system interface (WASI) being proposed:

the NodeJS host takes the job.

C. WASI and WebAssembly native runtimes

The emergence of edge WebAssembly runtimes (aka WASI-

native runtimes) cannot leave WASI, the interface between

WebAssembly module and OS kernel.

To a WebAssembly module, WASI, is a set of callable func-

tions that can be imported by an index. While the functions

can be implemented in a variety of ways as long as it wraps

system calls (such as file, console) and provides an interface,

WASI-libc is the common implementation that is supported

by Wasmtime, and Lucet among others. The workflow of

porting code to WebAssembly and running it inside WASI-

native runtimes is shown in Fig. 4: the runtime exposes its

WASI-libc implementation for WebAssembly module to call

instead of relying on NodeJS API.

To build a solid foundation for the server-side WebAssem-

bly, an emulation based on the NodeJS cannot serve as the de

facto standard. From the comparison, it is clear that NodeJS-

based WebAssembly application carries baggage associated

Clang
wasm32-
unknown-

wasi

C/C++
code and

more
WASM

Import wasi function
wasi-libc

Wasmtime

checkindex

Fig. 4: Workflow of porting application into WebAssembly

and run it inside a WASI-native runtime such as Wasmtime

with JavaScript. WASI-native runtimes have at least the fol-

lowing benefits over NodeJS: (1) they supports multiple host

languages such as C, Python, or Rust while NodeJS only

supports JavaScript. (2) Emulating kernel interface (POSIX)

inside NodeJS can introduce performance cost. For example,

for NodeJS runtime, Emscripten is normally used for creating

WebAssembly, and thus A WebAssembly module runs on

NodeJS has no direct access physical file system: it has to use

either virtual file system of NodeJS (NODEFS) that is mapped

to the physical one or JS glue code as an intermediary passing

data back and forth. This limit not only complicates the file

access but also slows down the file access.

III. WEBASSEMBLY EDGE RUNTIMES CHARACTERIZATION

We start from characterizing the major edge WebAssem-

bly runtimes. Wasmtime and Lucet runtimes are officially

supported by Bytecode Alliance, an open source community

dedicated to forging the ecosystem of WebAssembly. We also

include another two typical runtimes WAVM and Wasmer

because of the extensive attention they have received from the

community. Wasmtime is the most documented and serves as

the foundation. Lucet adopts AOT compilation and claims low-

latency. WAVM uses LLVM and claims near-native perfor-

mance. Wasmer has the the greatest number of Github starts.

The hardware we use includes an Intel machine equipped

with a i7-8700 CPU, 16 GB RAM, 32K L1d cache, 32K

L1i cache, 256K L2 cache, and 12288K L3 cache; and a

NVIDIA Jetson TX2 runs ARMv8 aarch64 CPU and 8GB

RAM. The OS we use is Ubuntu 18.04. We use vtune and

perf as our performance analyzing tool. While vtune gives us

more intuitive results, perf enables more flexibility. Version of

NodeJS, Wasmtime, Lucet, WAVM and Wasmer are 12.9.1,

0.19.0, 0.7.0-dev, 0.0.0-prerelease, and 1.0.0-alpha5 respec-

tively. It should be noted that in our experiments, we aim at

investigating different WebAssembly runtimes, so we choose

the same optimization level when generate WebAssembly from

C code. We thus ensure the fairness: every WebAssembly

runtime interprets the same WebAssembly.

A. PolyBench testing

To have a general look, we examine the runtimes over Poly-

Bench. PolyBench is a popular compiler benchmark which is

designed to measure the effect of polyhedral loop optimiza-

tions. It involves many computation-intensive scientific kernels

such as image processing and data mining. It is a widely-used

benchmark among multiple WebAssembly papers [10], [11].

73

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 5: The normalized overall run time comparison between

Wasmtime, WAVM, Wasmer, Lucet, and NodeJS where time

of Wasmtime is set to 1

The normalized execution time on top of Wasmtime,

WAVM, Wasmer, Lucet and NodeJS is shown in Fig. 5. First

of all, apart from the drawbacks discussed in section II, among

all the applications in the figure, there is no one that NodeJS

shows the best performance, so introducing the novel runtimes

also brings the performance benefits.

Among the four edge WebAssembly runtimes, we can

find the performance of WAVM (the second bar) is on par

with Wasmtime (the first bar), and actually has a marginal

speedup over Wasmtime on most applications. This observa-

tion holds for most of the PolyBench applications that are 2mm,

3mm, adi,cholesky, covariance, doitgen, fdtd-
2d, gemm, seidel, heat-3d, ludcmp, symm, syr2k,

and trmm. The speedup is especially obvious for applications

such as cholesky and gemm. The speedup comes from

WAVM using LLVM as its machine code generator, which

is a well-developed compiler project. However, among them,

there are three applications that WAVM shows the slowest

performance. This is caused by the high startup latency of

WAVM as we will discuss in IV.

Surprisingly, Lucet has the worst performance across Poly-

Bench though it claims to be extremely fast [9]. Lucet adopts

an ahead-of-time (AOT) compiler, lucetc, built on top of the

Cranelift code generator which translates target-independent

intermediate representation (IR) into executable machine code.

As a result, it should be faster than other JIT style We-

bAssembly runtime. As we will show in IV, Lucet does

has speed benefits in terms of short-lived application. As

for Wasmer, its default compiler backend is also Cranelift,

but it does not perform as well as Wasmtime, so we do

not focus on it in this paper. Although Lucet, Wasmer, and

Wasmtime all adopt Cranelift as their backend, there are

obvious performance gaps between them. This can be caused

by FuncEnvironment that each compiler plugs into the

Cranelift backend [13]. Those FuncEnvironment allows

Cranelift to generate different code sequences and operation

types, but different FuncEnvironment is set according to

the WebAssembly targeting application scenarios.

B. Performance analysis

To investigate the code size and performance gap between

different runtimes, it is necessary to analyze the native code

generated by them. Due to the space limit, it is impractical

to analyze the machine instructions from each of the four

runtimes. Using the same matrix multiplication WebAssembly

binary which contains tight for loops (Listing (1)), the partial

corresponding machine code generated from WAVM (Listing

(2)) and Wasmtime (Listing (3)) is reported in Fig. 6. The

reason that we choose matrix multiplication is because similar

matrix processing that involves nested loops and arrays are

major operations in PolyBench.

We choose WAVM and Wasmtime because they repre-

sent the major WebAssembly compilers that are LLVM and

Cranelift, respectively. While Lucet and Wasmer also use

Cranelift as the default backend WebAssembly compiler, it

is shown from the above characterization that they do not

represent the best performance of Cranelift. While Cranelift

is a promising WebAssembly compiler framework written in

Rust, it is new and lacks further optimizations. The increased

code size as our following analysis shows, is caused by register

abuse, indirect memory address, and inappropriate instruction

choice.

1) register Abuse: From Listing (3) we find Cranelift does

not utilize the existing registers which do not need to be

preserved according to Cranelift’s calling convention, instead

it abuses unnecessary registers and cause unnecessary data

movement between registers. Take the first loop part among

multiple cases as an example, at line 16, esi register is used to

fetch the value of c from the stack, and this part will choose to

jump or not according to the cmp result of c and m. However,

instead of directly using esi register, it moves esi’s value

into eax. Lastly, to use eax, it keeps eax’s original value

into esi for future restoring after the comparison. By contrast,

LLVM code (line 15-17, Listing (2)) takes the task in a concise

way: it fetches the value of c from the stack using ebx register

and it directly addresses m from the stack in cmp instruction

rather than wasting another register to fetch m. The value of m
is fetched in every for loop iteration, so keeping m in a register

is a waste.

As explained above, there are useless register swaps in

Cranelift code. The assumption that it must preserve esi’s

value according to the calling convention also does not hold

because shortly esi is used for temporary store. Even though

it may believe esi cannot involve cmp operation for a special

reason, there are plenty non-volatile registers available for

stack fetch.

The inferior machine code of Wasmtime is caused by

Cranelift’s expansion based machine instruction generator.

It expands every Cranelift intermediate representation (IR)

instruction until it finds the sequence of machine instructions

to represent this IR. Such expansion-based legalization fails to

generate efficient code because it lacks a global view.

2) Indirect memory address: Cranelift adopts inefficient

memory address. Example can be found at line 64, instead of

directly addressing the memory for the add instruction, that

is, add <mem>,<reg>, it uses a register to read and write

back, and thus brings unneeded instructions.

74

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

1 int main(){
2 int m = 17, n = 17, p = 17, q = 17;
3 int first[m][n], second[p][q], mul[m][q];
4 for(int c = 0 ; c < m ; c++){
5 for (int d = 0 ; d < q ; d++){
6 for (int k = 0 ; k < p ; k++){
7 mul[c][d] += first[c][k]*second[k][d];
8 }
9 }

10 }
11 return 0;
12 }

Listing (1) matrix multiplication C code

1 ...
2 ;##allocate 4*m*n bytes on stack for first[m][n]
3 mov edi,DWORD PTR [rsi+rcx*1+0x38] ;edi = m
4 mov r8d,DWORD PTR [rsi+rcx*1+0x34] ;r8d = n
5 mov DWORD PTR [rsi+rcx*1+0x28],esi
6 mov DWORD PTR [rsi+rcx*1+0x24],edi
7 imul edi,r8d
8 lea edi,[rdi*4+0xf]
9 and edi,0xfffffff0

10 neg edi ; edi = -4*m*n
11 lea r9d,[rdx+rdi*1]
12 add r9d,0xffffffc0;first[m][n]’s stack end addr
13 ...
14 ;##1st loop for(int c = 0 ; c < m ; c++)
15 mov ebx,DWORD PTR [rdi+rcx*1+0xc] ;ebx = c
16 cmp ebx,DWORD PTR [rdi+rcx*1+0x38]
17 jge 253 <functionDef2+0x183> ; jump if c >= m
18 ...
19 ;##mul[c][d] += first[c][k]*second[k][d];
20 mov ebx,DWORD PTR [rdi+rcx*1+0xc]
21 imul ebx,r8d ;ebx = c*n
22 lea ebx,[r9+rbx*4]
23 mov edx,DWORD PTR [rdi+rcx*1+0x4]
24 ;edx = offset, 4(cn+k), in first[][]
25 lea edx,[rbx+rdx*4]
26 ;edx = first[c][k]
27 mov edx,DWORD PTR [rcx+rdx*1]
28 mov ebx,DWORD PTR [rdi+rcx*1+0x4] ;ebx = k
29 imul ebx,r10d ;ebx = k*q
30 lea ebx,[r11+rbx*4]
31 mov esi,DWORD PTR [rdi+rcx*1+0x8] ;esi = d
32 ;esi = offset, 4(kq+d), in second[][]
33 lea esi,[rbx+rsi*4]
34 ;edx=first[c][k]*second[k][d]
35 imul edx,DWORD PTR [rcx+rsi*1]
36

37 mov esi,DWORD PTR [rdi+rcx*1+0xc] ;esi = c
38 imul esi,r14d ;esi = c*q
39 lea esi,[r15+rsi*4]
40 mov ebx,DWORD PTR [rdi+rcx*1+0x8] ;ebx = d
41 lea esi,[rsi+rbx*4]
42 ;esi= offset,4(cq+d), in mul[c][d]
43 ;mult[c][d] += first[c][k]*second[k][d]
44 add DWORD PTR [rcx+rsi*1],edx

Listing (2) partial X86-64 code from WAVM runtime (LLVM)

1 ...
2 ;##allocate 4*m*n bytes on stack for first[m][n]
3 rex mov esi,DWORD PTR [rbx+rdx*1+0x38] ; esi = m
4 rex mov edi,DWORD PTR [rbx+rdx*1+0x34] ; edi = n
5 rex mov DWORD PTR [rbx+rdx*1+0x28],ecx
6 mov r8d,esi ; r8d = esi
7 imul r8d,edi ; r8d = m*n
8 shl r8d,0x2 ; r8d = r8d<<2, int 4 bytes
9 add r8d,0xf

10 and r8d,0xfffffff0
11 mov r9d,ecx
12 sub r9d,r8d ; first[m][n]’s stack end addr
13 ...
14 ;##1st loop for(int c = 0 ; c < m ; c++)
15 rex mov edx,ecx
16 rex mov esi,DWORD PTR [rbx+rdx*1+0xc] ; esi = c
17 mov r12d,DWORD PTR [rbx+rdx*1+0x38] ; r12d = m
18 mov r14d,eax ;keep eax value, 0
19 rex mov eax,esi ; eax = esi = c
20 mov esi,r14d ; esi = r14d = 0;
21 cmp eax,r12d
22 setl al ; if c < m, al = 1
23 movzx eax,al ; extend higher bits with 0
24 and eax,0x1
25 mov r12d,eax ; if c < m, r12d = eax = 1
26 rex mov eax,esi ;restore eax value, 0
27 mov esi,r12d ; if c < m, esi = r12d = eax = 1
28 rex test esi,esi ;jmp if esi == 0
29 je 2f0 <_wasm_function_3+0x227>
30 ...
31 ;##mul[c][d] += first[c][k]*second[k][d];
32 rex mov esi,DWORD PTR [rbx+rdx*1+0xc]
33 imul esi,edi
34 shl esi,0x2 ;esi = c*n
35 mov r12d,r9d
36 add r12d,esi
37 rex mov esi,DWORD PTR [rbx+rdx*1+0x4] ; esi = k
38 shl esi,0x2
39 add r12d,esi ;r12d = 4(cn+k)
40 ;esi = r12d = offset, 4(cn+k), in first[][]
41 mov esi,r12d
42 rex mov esi,DWORD PTR [rbx+rsi*1] ;esi = first[c][k]
43

44 mov r12d,DWORD PTR [rbx+rdx*1+0x4] ; r12d = k
45 imul r12d,r8d ; r12d = k * q
46 shl r12d,0x2
47 mov r14d,r11d
48 add r14d,r12d
49 ;r12d = r14d = offset, 4(kq+d), in second[][]
50 mov r12d,r14d
51 mov r12d,DWORD PTR [rbx+r12*1];r12d = second[k][d]
52 imul esi,r12d ;esi = first[c][k] * second[k][d]
53

54 mov r12d,DWORD PTR [rbx+rdx*1+0xc]
55 imul r12d,r10d ; r12d = c * q
56 shl r12d,0x2
57 mov r14d,r13d
58 add r14d,r12d
59 mov r12d,DWORD PTR [rbx+rdx*1+0x8] ;r12d = d
60 shl r12d,0x2
61 add r14d,r12d
62 ;r12d = r14d = offset,4(cq+d), in mul[c][d]
63 mov r12d,r14d
64 mov r14d,DWORD PTR [rbx+r12*1] ;r14d = mult[c][d]
65 add r14d,esi ;mul[c][d]+=result
66 mov DWORD PTR [rbx+r12*1],r14d ;write back stack

Listing (3) partial X86-64 code from Wasmtime runtime (Cranelift)

Fig. 6: X86 Machine code generated by WAVM & Wasmtime from the same WebAssembly matrix multiplication bytecode

75

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

3) Inappropriate instruction choice: Cranelift also does

not generate appropriate instructions as can be seen from

multiple places at Listing (3). To take a jump, instructions

start from line 22 to line 29 are involved, while LLVM only

requires a jge, jump-if-greater-or-equal, instruction (line 17,

Listing (2)). Cranelift uses jump-if-equal which is also good

and should also be able to finish the task in one instruction,

but it uses eax for cmp (line 21, Listing (3)), while decides to

jump or not according to another register esi (line 28, Listing

(3)). Moreover, line 24, uses and eax, 0x1 on the result

of setl which is already 0 or 1, so this and instruction does

not have any effects at all.

Another type of inappropriate instruction choice is a mean-

ingless REX prefix on many 32-bit instructions that do not use

any of r8-r15 registers. There are already several cases, such

as line 26, rex mov eax,esi in such a short snippet List-

ing (3). This REX prefix makes this mov instruction one byte

larger in size and thus results in higher i-cache footprint. It

will exacerbate the front-end bottleneck and limit performance.

While i-cache footprint cannot be dynamically measured to the

best of our knowledge, the larger every instruction is in size,

the less amount of instructions can be kept in I-cache and the

following instruction fetch and decode phase would be hurt.

From the above analysis, it is clear that Wasmtime

instructions are more redundant and have lower

instruction locality than WAVM. To verify it, Perf

provides events ICACHE 64B.IFTAG HIT and

ICACHE 64B.IFTAG MISS to count the L1 instruction

cache hit and miss number, respectively. However, It must

be noted that there is also a micro-operation (uOps) cache

(DSB) which acts as a ”L0” I-cache that is not counted in

the above two events. DSB (Decoded Stream Buffer), stores

uOps that have already been decoded, avoiding many of the

penalties of the legacy decode pipeline as known as MITE

(Micro-instruction Translation Engine). To catch DSB data,

we need IDQ.MITE UOPS and IDQ.DSB UOPS events.

Instruction decoder inside CPU breaks the instructions with

variable length into equal length uOps. We randomly pick

several PolyBench applications and report their DSB miss and

L1 I-cache miss in table I. WAVM has considerably lower

DSB miss rate than Wasmtime throughout the applications.

For applications such as heat-3D, both runtimes shows low

DSB miss rate. We do not consider the L1 I-cache miss rate

because most instructions are from DSB, as the last column of

the table I shows: DSB reference number (miss + hit) is much

higher than L1 I-cache. Normally, for RISC, one instruction

is processed into one micro operation, even with micro/macro

operation fusion, the ratio still remains between 0.9 and 1.1.

To conclude, we first analyze the runtime backend per-

formance from instruction level and then take the micro-

architecture characterization and identify the front-end bot-

tleneck of Wasmtime coming from instruction cache. The

characterization shows agreement with the code analysis.

C. ARM case

At the time of writing, Lucet and WAVM do not support

ARM aarch64 architecture. We are therefore only allowed to

test Wasmtime and Wamser on a NVIDIA Jetson TX2 which

is regarded as a powerful edge device. For clarity, it is not

reported in the figure. The result still fits the pattern reported

in Fig. 5 that is Wasmtime has marginal advantage over Was-

mer especially for short-lived applications. Because Wasmer

supports LLVM backend as well, we are able to compare the

LLVM and Cranelift on ARM. LLVM still generates machine

code of better quality, but the performance gap between the

two compiler backends is smaller on ARM than on X86. An

obvious difference is LLVM cannot exploit the direct memory

address, because on ARM, memory contents need to be loaded

into registers first before performing any logical or arithmetic

operation. Therefore, ARM is more Cranelift-friendly in this

respect. Also, the main goal of edge WebAssembly runtime

is to provide lightweight service isolation at the edge server

side. IoT or ARM device which has inferior performance than

X86 server is currently not feasible to exploit.

IV. STARTUP LATENCY

The question naturally arises: should Wasmtime optimizes

its backend compiler? While WAVM has the best performance

on most PolyBench WebAssembly applications where tens

or even hundreds of seconds are consumed, there are also

cases such as atax in Fig. 5 where WAVM shows the worst

performance. This is because applications such as atax are

short-lived and thus the startup latency cannot be ignored.

This is especially important to the edge because the major

goal of the edge is to assist the cloud and thus involves

less computation-intensive tasks. Polybench cannot reflect this

application feature.

Also, edge scenario tends to have stringent latency re-

quirement. Without being able to provide fast startup, the

benefits brought by fast edge network transmission will wane.

In the Function-as-a-Service (FaaS) realm, considerable work

has tried to tackle the startup latency issue because it is

currently the most urgent one. [14], [15]. Here we refer

to the WebAssembly application startup latency as the time

spent on process bootstrapping and module compiling. Future

instantiation will not suffer from this cold startup latency

when the process keeps alive and the compiled module is

preserved and shared. It has been shown that WebAssembly

is an effective alternative to reduce the startup latency in a

serverless prototype [5]. It is necessary to investigate how the

emerging WebAssembly runtimes affects startup latency.

To show the effects of cold start on the overall run time,

we break the run time into startup and execution parts in

Fig. 7. The applications we select from PolyBench are atax,

bicg, durbin, and trisolv because WAVM does not

show good performance on these four applications as Fig. 7

shows. Fig. 7 (a) shows when there is only one invocation

which is cold, because for WAVM, its higher startup latency

dominates the overall time, the performance of WAVM is on

average 3× slower than Wasmtime. Keeping the process alive,

76

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Micro-architecture events on instruction cache

Application Runtime
DSB

Misses
DSB
Hits

DSB Miss
Rate

L1 I-Cache
Misses

L1 I-Cache
Hits

DSB Ref
L1 I−Cache Ref

2mm
WAVM 1.64E+09 4.44E+10 3.56% 3.53E+07 4.92E+09 9.297848921

Wasmtime 3.98E+10 4.18E+10 48.74% 3.19E+06 6.92E+09 11.78195449

3mm
WAVM 1.69E+09 7.04E+10 2.35% 3.99E+07 9.14E+09 7.849410328

Wasmtime 9.49E+10 3.51E+10 73.03% 5.55E+06 1.13E+10 11.51041366

symm
WAVM 1.59E+09 2.59E+10 5.80% 3.37E+07 3.41E+07 404.7020417

Wasmtime 4.10E+10 2.80E+09 93.60% 1.69E+06 3.76E+09 11.62256781

heat-3D
WAVM 3.43E+09 1.83E+11 1.84% 3.90E+07 1.59E+10 11.73076489

Wasmtime 3.02E+09 2.92E+11 1.02% 3.75E+06 2.02E+10 14.58986501

seidel
WAVM 1.81E+09 1.55E+11 1.15% 3.95E+07 1.47E+10 10.63568714

Wasmtime 2.47E+11 1.23E+10 95.26% 5.67E+06 2.02E+10 12.82836407

gemm
WAVM 1.51E+09 3.71E+10 3.92% 4.33E+07 4.90E+09 7.817842999

Wasmtime 3.03E+08 6.66E+10 0.45% 1.73E+06 5.56E+09 12.03330069

the following invocations will not experience cold start but just

instantiate an existing compiled WebAssembly Module. This

pattern is reported in 7 (b) where we sequentially call the

applications for 50 times. In this scenario, the execution part

dominates the whole time and WAVM outperforms Wasmtime.

Because there is only one cold start and the following 49

invocations use the WebAssembly Module.

The above-characterized PolyBench still fails to unbiasedly

reflect the advantages of Lucet and Wasmer because those

applications are all computationally heavy for them, so we

examine four runtime across different sized random matrix

operation, and report the result in Fig. 8. This time Lucet

shows the smallest inherent startup latency and thus the best

performance when the input size is small, e.g., 30×30, but as

the matrix grows, the time drastically increases, and this proves

its poor performance on large scale application handling, while

WAVM behaves oppositely. Wasmtime has the most balanced

performance among the runtimes.

Fig. 7: Startup and execution time breakdown under different

invocation pattern. (a) one clod invocation, (b) fifty sequential

invocations

A. A set of typical edge workload & runtime scheduling

Numerous papers have shown the necessity of offloading

cloud workload to the edge for saving network bandwidth

and reducing latency [16], but for computationally heavy

applications, the communication latency improvement may not

Fig. 8: Total run time on different-size 2D matrix multipli-

cation over four WASI-native WebAssembly runtimes. From

the left to the right, matrix size increases from 30 × 30 to

2000× 2000

be as significant as the computation time benefits brought

by the remote but powerful cloud servers. Typically, if the

time required by an application is more than one second,

offloading the application to the cloud instead of the edge

is more reasonable because the internet round trip time is

within this range while we can ignore the 5G network latency

between the user and an edge node.

Instead of replacing containers or virtual machines, We-

bAssembly aims for enabling edge servers to respond to

requests from end users promptly and safely. PolyBench is

more of a cloud-side benchmark which is ideal for compilation

performance comparison. Therefore, we propose a typical edge

benchmark that consists of tasks common in the autonomous

driving scenario. They are (1) edge detection: a Canny edge

detector that uses a multi-stage algorithm to detect a wide

range of edges in an image; (2) vehicle plate detection: isolate

the license plate part using morphological image processing

algorithms; (3) attitude Estimation: fast complementary filter

for car attitude estimation using a set of local data collected

from MARG (Magnetic, Angular Rate, and Gravity) sensors;

(4) Image classification: MNIST digit classification using

LeNet. (5) Decompressing: a 1MB zip file decompressing via

77

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

Huffman method. As can be found from the Fig. 9, no runtime

can always maintain the best performance across five real-

world applications.

Deciding the best runtime is therefore difficult. However,

according to our targeting scenario, it is reasonable to assume

that we know what applications the WebAssembly runtime

will serve. For example, for an autonomous driving service

provider, it is their responsibility to decide which applica-

tion(s) should be dispatched to a server or a base station.

We, therefore, are allowed to implement inexpensive offline

profiling as Fig. 9 does.

The scheduling diagram is shown in Fig. 10 where we

choose Rust language as the host (embedder) because Rust has

good WebAssembly support. The host parses the request and

uses a pre-loaded profiler to decide the best embedded runtime.

Currently, there are Wasmtime, Wasmer, and Lucet runtimes

that are published as Rust crates available. The embedded

runtimes are exposed to the Rust host and provide API such as

Module::new for developers to call. We are therefore able

to compile the WebAssembly binary into the module and then

instantiate the module with the imports imported, and finally

run it from the host environment. However, Lucet is special

because it uses the ahead-of-time compilation so it can be

directly instantiated without the compilation step. We monitor

the total run time and use the results to dynamically update the

profiler because of the correlation between physical time and

profiling. This empirical scheduler can effectively reduce the

cold start latency. We leave a more comprehensive scheduler

that combines invocation patterns with run time as our future

work, but the basic idea is the Rust host allows us to store

the read-only compiled artifact that can be safely shared, and

thus the future instantiations will not require bootstrap, so the

prewarming should be as lucrative as possible (choosing the

best machine code generator) but also in a resources-and-time-

allowed fashion.

in Table II, we report the scheduler performance on the five

edge applications we described above. The result is the average

of speedup percentage of hybrid mode per application because

short-lived applications should have the same weight on the

result as the long-lived applications. The speedup ranges from

1.5× to 16.9× which is striking.

TABLE II: The speedup of using hybrid mode compared to

the single runtime mode on the edge workload set

WAVM
only

Wasmtime
only

Lucet
only

Wasmer
only

Hybrid runtimes 16.9× 2.8× 1.5× 3.8×

V. ARCHITECTURE IMPLICATION

The challenge arisen in III-B is an inefficient runtime

instruction generator, while from IV we find the tradeoff

between the instructions and startup latency brought by the

compiler improvement (e.g., Wasmtime vs WAVM). As a

result, optimizing the runtime backend from a software com-

piler level may breach the fast startup principle of an edge

TABLE III: Branch misprediction rate (%) under different

branch predictors

Application Runtime 2-bit Bi-mode Tournament

2mm
WAVM 22.15 6.91 2.73

Wasmtime 16.47 5.40 1.92

symm
WAVM 24.83 6.23 3.28

Wasmtime 18.31 6.54 4.03

WebAssembly runtime. However, inspired by the front-end

bottleneck identification in III-B, we investigate how does

hardware optimization improve the system while not compris-

ing the startup latency.

To observe the hardware extension effects, we use gem5

simulator which relies on a pre-built custom disk image with

the applications installed to boot. We characterize the I-cache

and D-cache performance over the cache size change and

report the result in Fig. 11. Both the I-cache and D-cache

miss rates drop when the cache size increases. However, I-

cache size has a more obvious effect on performance than D-

cache. Also, two rumtimes show a similar D-cache miss rate

across the different D-cache sizes. We, therefore, argue that

data cache size is less important for Wasmtime, but instruction

cache can be exploited. The Wasmtime applications show a

much higher I-cache miss rate than WAVM applications as Fig.

11 (a) shows, but it is no longer a major concern when I-cache

size is large. Table III shows branch misprediction rates using

different predictors. The predictors include a simple 2-bit local

predictor, a bi-mode predictor, and a tournament predictor. We

set branch target buffer 2048 entries, size of global and choice

predictor both 2Kb for the bi-mode, and size of local, global

and choice predictor 1Kb, 4Kb, 4Kb respectively for the tour-

nament. We claim that unlike cache, branch predictor leaves

less leeway for optimization because the complicated predictor

such as Tournament has already shown good results. We expect

other architecture implications such as cache associativity and

block size can also be exploited.

To conclude, though optimizing the backend compiler may

harm the performance for short-lived applications, hardware

enhancement provides new opportunities. To exploit the po-

tential of each runtime, specialized hardware configurations

are needed.

VI. RELATED WORK

Previous work on server-side WebAssembly focuses on its

security and feasibility.

Safety. To investigate the safety of using WebAssembly

as the lightweight isolation, Lehmann et al. analyze to what

extent are vulnerabilities exploitable in WebAssembly binaries,

and how does this compare to native code [17]. Extensions

to WebAssembly that enables higher security and subsequent

performance trade-offs are discussed in [18], [19].

Serverless prototype. Hall et al. show the potential of

WebAssembly to the edge by comparing it with containers,

but their design brings security and flexibility concerns [20].

Shillaker and Pietzuch implement a WebAssembly-based new

78

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

Fig. 9: Performance of the WASI-native WebAssembly runtimes on a typical edge workload set

Rust Host

request
parser profiler

.wasm

Http
request

moduleinstanceexecute

imports

compileinstantiaterun

timing

update

scheduling Wasmtime

Wasmer

Lucet

Fig. 10: A hybrid execution scheduler for tackling the cold

start latency

Fig. 11: I-cache and D-cache miss rate under different cache

sizes

isolation abstraction for high-performance serverless com-

puting [7]. Their work all show WebAssembly-based cloud

service has advantages on serving latency.

Characterization. Jangda et al. compare the performance

of WebAssembly running on browser over native C code

[12]. Kent et al. investigate the performance of WebAssembly

compilation in V8 [21]. Radhakrishnan et al. characterize and

analyze the JAVA runtimes [22]. However, this paper is the

first work on systematically examining the cloud WebAssem-

bly runtimes and analyzing the implication from application

scenarios, compiler backend, and hardware architecture level.

VII. CONCLUSION AND FUTURE WORK

In this paper, a systemic characterization of major edge

WebAssembly runtimes is presented. We discuss the runtime

performance under different application scenarios. We analyze

the root cause of different runtimes behavior. Based on the

characterization and analysis, practical guidance for selecting

the runtime as per target applications is given and the hard-

ware implication on balancing the execution and startup is

discussed. We leave a hardware and software co-optimized

framework for efficiently handling edge WebAssembly func-

tion service as our future work. We also plan to further the

study on WebAssembly performance and backend compiler.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers

for their helpful feedback. This work was supported in part

by NSF grants CCF-1822985 and CCF-1943490 (CAREER).

Yang Hu is the corresponding author.

REFERENCES

[1] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
computing: Vision and challenges. IEEE internet of things journal,
3(5):637–646, 2016.

[2] Kaihua Fu, Wei Zhang, Quan Chen, Deze Zeng, Xin Peng, Wenli
Zheng, and Minyi Guo. Qos-aware and resource efficient microservice
deployment in cloud-edge continuum. In 2021 IEEE International
Parallel and Distributed Processing Symposium (IPDPS), pages 932–
941. IEEE, 2021.

[3] Xiaowen Chu, Hongbo Jiang, Bo Li, Dan Wang, and Wei Wang.
Advances in mobile, edge and cloud computing. Mobile Networks and
Applications, pages 1–3, 2020.

[4] Lu Zhang, Chao Li, Pengyu Wang, Yunxin Liu, Yang Hu, Quan Chen,
and Minyi Guo. Characterizing and orchestrating nfv-ready servers
for efficient edge data processing. In Proceedings of the International
Symposium on Quality of Service, pages 1–10, 2019.

[5] Adam Hall and Umakishore Ramachandran. An execution model for
serverless functions at the edge. In Proceedings of the International
Conference on Internet of Things Design and Implementation, pages
225–236, 2019.

[6] Zhendong Wang, Zhen Wang, Cong Liu, and Yang Hu. Understanding
and tackling the hidden memory latency for edge-based heterogeneous
platform. In 3rd {USENIX} Workshop on Hot Topics in Edge Computing
(HotEdge 20), 2020.

[7] Simon Shillaker and Peter Pietzuch. Faasm: lightweight isolation for
efficient stateful serverless computing. In 2020 {USENIX} Annual
Technical Conference ({USENIX}{ATC} 20), pages 419–433, 2020.

[8] Latent AI. Exploring webassembly ai services
on cloudflare workers. https://blog.cloudflare.com/
exploring-webassembly-ai-services-on-cloudflare-workers/, 2020.

[9] Fastly. Experiment, innovate, and step into future of the edge. https:
//www.fastlylabs.com/, 2020.

[10] Gregor Peach, Runyu Pan, Zhuoyi Wu, Gabriel Parmer, Christopher
Haster, and Ludmila Cherkasova. ewasm: Practical software fault iso-
lation for reliable embedded devices. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 39(11):3492–3505,
2020.

79

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

[11] Andreas Haas, Andreas Rossberg, Derek L Schuff, Ben L Titzer, Michael
Holman, Dan Gohman, Luke Wagner, Alon Zakai, and JF Bastien.
Bringing the web up to speed with webassembly. In Proceedings of
the 38th ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 185–200, 2017.

[12] Abhinav Jangda, Bobby Powers, Emery D Berger, and Arjun Guha. Not
so fast: analyzing the performance of webassembly vs. native code. In
2019 {USENIX} Annual Technical Conference ({USENIX}{ATC} 19),
pages 107–120, 2019.

[13] Rust. Environment affecting on a single webassembly function
translation. https://docs.rs/cranelift-wasm/0.24.0/cranelift wasm/trait.
FuncEnvironment.html, 2020.

[14] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael Kaminsky.
Putting the ”micro” back in microservice. In 2018 USENIX Annual
Technical Conference (USENIX ATC 18), pages 645–650, Boston, MA,
July 2018. USENIX Association.

[15] Tian Zhang, Dong Xie, Feifei Li, and Ryan Stutsman. Narrowing the gap
between serverless and its state with storage functions. In Proceedings
of the ACM Symposium on Cloud Computing, pages 1–12, 2019.

[16] Zheng Dong, Yan Lu, Guangmo Tong, Yuanchao Shu, Shuai Wang, and
Weisong Shi. Watchdog: Real-time vehicle tracking on geo-distributed
edge nodes. arXiv preprint arXiv:2002.04597, 2020.

[17] Daniel Lehmann, Johannes Kinder, and Michael Pradel. Everything
old is new again: Binary security of webassembly. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages 217–234, 2020.

[18] Craig Disselkoen, John Renner, Conrad Watt, Tal Garfinkel, Amit Levy,
and Deian Stefan. Position paper: Progressive memory safety for
webassembly. In Proceedings of the 8th International Workshop on
Hardware and Architectural Support for Security and Privacy, pages
1–8, 2019.

[19] Shravan Narayan, Craig Disselkoen, Daniel Moghimi, Sunjay Cauligi,
Evan Johnson, Zhao Gang, Anjo Vahldiek-Oberwagner, Ravi Sahita,
Hovav Shacham, Dean Tullsen, et al. Swivel: Hardening webassembly
against spectre. In 30th {USENIX} Security Symposium ({USENIX}
Security 21), 2021.

[20] David Schrammel, Samuel Weiser, Stefan Steinegger, Martin Schwarzl,
Michael Schwarz, Stefan Mangard, and Daniel Gruss. Donky: Domain
keys–efficient in-process isolation for risc-v and x86. In 29th {USENIX}
Security Symposium ({USENIX} Security 20), pages 1677–1694, 2020.

[21] Tobias Nießen, Michael Dawson, Panos Patros, and Kenneth B Kent.
Insights into webassembly: compilation performance and shared code
caching in node. js. In Proceedings of the 30th Annual International
Conference on Computer Science and Software Engineering, pages 163–
172, 2020.

[22] Ramesh Radhakrishnan, Narayanan Vijaykrishnan, Lizy Kurian John,
Anand Sivasubramaniam, Juan Rubio, and Jyotsna Sabarinathan. Java
runtime systems: Characterization and architectural implications. IEEE
Transactions on computers, 50(2):131–146, 2001.

80

Authorized licensed use limited to: Univ of Texas at Dallas. Downloaded on June 21,2022 at 16:49:08 UTC from IEEE Xplore. Restrictions apply.

