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Abstract
Nowadays, the Radio Access Network (RAN) is resorting
to Function Virtualization (NFV) paradigm to enhance its
architectural viability. However, our characterization of vir-
tual RAN (vRAN) on modern processors depicts a frustrating
picture of Single-Instruction Multi-Data (SIMD) acceleration.
The data arrangement processes in vRAN software pipeline
do not align data for efficient SIMD processing across the
pipeline. Specifically, existing data arrangement processes
cannot fully utilize the ALU ports in modern processors,
which leads to high backend bound and fails to saturate
the memory bandwidth between registers and L1 cache. To
overcome the overburden, we thoroughly examine the state-
of-the-art CPU architecture and find there are idle ports
which could be utilized by the process. Motivated by this
observation, we propose "Arithmetic Ports Consciousness
Mechanism" (APCM) utilizing these idle ports to eliminate
the backend bound and saturate the memory bandwidth.
The APCM decreases the data arrangement’s backend bound
from 45% to 3% and promotes its memory bandwidth uti-
lization by 4X-16X. The CPU time of the data arrangement
process can be reduced by 67% - 92% and the overall latency
of the vRAN packet transmission is decreased by 12% - 20%.
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1 Introduction
To date, the volume and variety of mobile traffic is explod-
ing, driven primarily by bandwidth intensive applications,
such as 4K and 3D video, augmented reality (AR), and virtual
reality (VR). Communication service providers (CSPs) are
under challenge coping with the unprecedented growth and
diverse traffic patterns, meanwhile they are under the pres-
sure since the average revenue per user continues to decline
in today’s fiercely competitive mobile services market. To
preserve profit margins, CSPs focus on the Radio Access Net-
work (RAN), which is not only the most expensive part of the
mobile network but also the major source of performance
problems that affect the customer experience. To achieve
the full potential of cost savings, dynamic capacity scaling,
better quality of experience (QoE) and rapid instantiation of
new services for the network today while laying the foun-
dation for 5G network in the future, CSPs adopt the RAN
architectural evolution from the traditional RAN model to
the fully virtual RAN (vRAN) implementation.
The introduction of virtualization in RAN transfers the

hardware substrates from specific hardware to general x86
processors. Consequently, the signal processing modules for
current vRAN platform are implemented as software compo-
nents on the state-of-the-art x86 server and the computing
intensive modules are accelerated by the Single Instruction
Multiple Data (SIMD) mechanism supported by the standard
x86 architecture. Hence, the architectural support provided
by general processors plays a vital role in delivering the
smooth vRAN performance. However, to the best of our
knowledge, there is no existing work that provides an exten-
sive and in-depth architectural characterization of emerging
x86 processors running vRAN platform. We fill the blank in
this work and we explore that the current vRAN platform ex-
hibits severe overhead when running on the start-of-the-art
x86 architecture.

Our extensive characterization shows that the data ar-
rangement process utilized to align the data to the SIMD
type for the SIMD accelerated modules is remarkably inef-
ficient. Its under-level SIMD port utilization leads to high
backend bound and meanwhile fails to saturate the memory
bandwidth between registers and L1 cache. Specifically, the
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data arrangement process incurs a high backend bound stall
across a variety of CPU micro-architectures, including high-
end Xeon-class server CPU and Core-class desktop CPU.
Besides, the performance overhead caused by such hardware
resource under-utilization is non-trivial, and is expected to be
significantly deteriorated in next-generation high through-
put architectures. However, the existing platform misses the
opportunity to fully exploit the micro-architecture resource
of the state-of-the-art server infrastructure for the data ar-
rangement process to mitigate the packet’s transmission
latency.
Specifically, the data arrangement process constitutes a

significant portion of SIMD-related tasks, while the data ar-
rangement process in existing vRAN platform only adopts
SIMD data movement instructions. As a result, the over-
whelming demands of the SIMD data movement instructions
can easily saturate the load and store ports in emerging CPUs,
and significantly hurts the memory bandwidth between the
registers and L1 cache and packet latency of vRAN platform.
Considering future processor architecture will extend the
width of registers (e.g. larger than 512 bit in next-generation
Intel processor and 4K bit in GPU) and pour more data into
L1 cache through load and store ports, current hardware port
management will not be sustainable in the next-generation
vRAN platform since the SIMD data movement can account
for more that 50% of the CPU time.
Our observation motivates an architectural-aware data

arrangement process that better leverages the available ALU
ports and load/store ports in emerging CPU architecture
to reduce the data movement overheads for vRAN. Since
the throttled memory bandwidth in load and store ports
is mainly caused by the intensive CPU computation spent
on data re-organization, we propose an instruction-level
data arrangement mechanism named "Arithmetic Ports Con-
sciousness Mechanism" (APCM) that optimizes the data or-
ganization for the SIMD data arrangement. Interestingly, the
under-utilization of the available ALU ports for the SIMD cal-
culation instructions genuinely motivates us to strategically
offload the data re-organization computation to ALU ports
which are idle during SIMD data movement. The APCM effec-
tively reduces the pressure of load/store ports and increases
the utilization of ALU ports without modifying the hardware
architecture. We evaluate the APCM mechanism and our
results demonstrate that the APCM can reduce the backend
bound from 45% to 3% and improve memory bandwidth uti-
lization by 4X-16X. The CPU time of the data arrangement
process can be reduced by 67% - 92% and the overall latency
of the RAN packet transmission will be decreased by 12% -
20%.

Summarily, we make the following contributions:

• We demonstrate a thorough profiling for the vRAN
platform through the detailed architectural characteri-
zation. Our extensive characterization shows that the
data arrangement process utilized to align the data to
the SIMD type for the SIMD accelerated modules is
remarkably inefficient. Its under-level SIMD port uti-
lization leads to high backend bound and meanwhile
fails to saturate the memory bandwidth between reg-
isters and L1 cache. This will become a severe hotspot
when further extending the width of the registers.

• To optimize the data arrangement process, we pro-
pose a new mechanism "APCM" which utilizes idle
ALU ports to eliminate the high backend bound and
meanwhile promote the memory bandwidth utiliza-
tion efficiency. The APCM mechanism decreases the
backend bound from 45% to 3% and promotes memory
bandwidth utilization by 4X-16X for the data arrange-
ment process. The CPU time of the process can be
reduced by 67% - 92% and the overall latency of the
vRAN packet transmission is decreased by 12% - 20%.

2 Background
vRAN platforms: Nowadays, there are several mainstream
vRAN platforms, such as Intel FlexRAN[10], Wibench[24],
srsLTE[3], and OpenAirInterface[14]. Among them, Intel
FlexRAN is the Intel released Software Development Kit
(SDK) modules, which is the most highly optimized libraries
for LTE and 5G NR Layer 1 workload. However, the Intel
FlexRAN does not contain a comprehensive top-down frame-
work. FlexRAN lacks the the data arrangement process for
the layer 1 modules and it also does not include the layer 2
and layer 3 modules which are essential to realize the real
communication between the base stations and the mobile
devices. Compared to the Intel FlexRAN, OpenAirInterface
(OAI) is the most complete open-source vRAN experimenta-
tion and prototyping platform, which includes layer 1 work-
loads as well as their data arrangement process code and
the complete layer 2 and layer 3 management workloads.
The OAI platform includes a full software implementation
of mobile cellular systems compliant with 3GPP standards
in C under real time Linux optimized for x86. OAI realizes
the real end to end (E2E) communication between the base
station and the mobile devices. Consequently, we deploy our
test-bed on the OAI platform in order to characterize and op-
timize the vRAN platform top-down instead of concentrating
on the performances of the separated workloads.
Acceleration mechanisms: Today, there is a trend to ex-
plore the acceleration methods for the critical modules of
NFV platforms. For example, [8] utilizes the GPU to accel-
erate the proportional fair scheduling algorithm for the 5G
NR platform. [2] proposes the specialized FPGA hardware
to speed up the Network Interface Card for the public cloud.
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Figure 1: Typical RAN architecture for the uplink
OAI utilizes Single Instruction Multiple Data (SIMD) to accel-
erate the processing of the network physical layer protocols.
The recent popular Data Plane Development Kit (DPDK)
mechanism concentrates on the system level optimization,
from which the packets can be processed directly on the
user space by passing through the kernel space. As shown
in Figure 2, DPDK can be deployed by the vRAN platform to
accelerate the data transfer process from the NIC to the user
space and the SIMD mechanism can be utilized by the vRAN
platform to speed up the following protocols computation. In
this paper, we focus our analysis on OAI’s SIMD optimized
top-down framework.

3 Methodology
In this section, we first introduce our testbed based on the
open-source virtualized RAN framework OpenAirInterface
(OAI). We then discuss the COTS CPU architecture and
demonstrate the general background of the SIMD accelera-
tion enabled by COTS CPU.

3.1 Experimental Platform Overview
We choose the OpenAirInterface (OAI) as our vRAN frame-
work. OAI is the most complete open-source vRAN experi-
mentation and prototyping platform created by EURECOM.
The OAI platform includes a full software implementation of
mobile cellular systems compliant with 3GPP standards in C
under realtime Linux optimized for x86. For the 3GPP Access-
Stratum, OAI provides standard-compliant implementations
of PHY, MAC, RLC, PDCP and RRC, spanning the entire pro-
tocol stack from the physical to networking layer, for both
vRAN and UE. For the core network, the OAI provides stan-
dard compliant implementations of a subset of 3GPP Evolved
Packet Core (EPC) components such as the Serving Gateway
(S-GW), the Packet Data Network Gateway (P-GW), the Mo-
bility Management Entity (MME), and the Home Subscriber
Server (HSS). Figure 1 shows a typical uplink path and the
key network functions in OAI edge and core networks, note
that both vRAN and core functions are hosted in containers.
Hardware platform: As shown in Figure 1, the experimen-
tal testbed consists of one/two units of Commercial off-the-
shelf (COTS) UE, one unit of vRAN Unit and one unit of EPC.
We use Intel Core machines (Core i7-8700 @ 3.20GHz 16GB
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Figure 2: Intel core micro-architecture and APCM
mechanism

RAM) for vRAN, Intel Xeon machine (E5405 @ 2.00GHz 4G
RAM) for EPC and Huawei Honor 8 as our UE. The testbed
is implemented with a real RF front-end (Ettus B210 USRP).
Software platform: The vRAN version we use is branch
2018-w25. For EPC, the version we use is branch "develop".
The operation system used for both machines is Ubuntu
16.04. In order to run the vRAN smoothly, all power man-
agement features in the BIOS (p-state, c-state and power
clamp) and CPU frequency scaling (CPU frequency control
and Intel SpeedStep) are disabled. All the experiments were
conducted with the same configuration, namely FDD with
5 MHz bandwidth in band 7. We use Intel VTune Amplifier
[12, 20, 21] to profile architectural data of key network func-
tions as illustrated in 1. All the applications are implemented
in a docker container environment. The docker version we
use is 18.09.1.

3.2 COTS CPU Architecture and SIMD
Instruction Overview

The COTS servers we utilized to deploy the OAI platform
are Intel Xeon and Core Server. The micro-architecture of
our Intel server are Skylake (Xeon) and Coffee Lake (Core).
The Skylake and Coffee Lake share the typical Intel Proces-
sor architecture [9, 11]. Figure 2 illustrates fundamental port
architecture of the state-of-the-art Intel core. Intel Server rep-
resents the most up-to-date server platform available from
Intel and it fully embraces the Single instruction multiple
data (SIMD) extensions, which is one of the most significant
capabilities of recent General Purpose Processors (GPPs)
which improves the performance of applications with less
hardware modification. Intel has introduced SIMD technolo-
gies such as Streaming SIMD Extensions (SSE128), Advanced
Vector eXtensions (AVX256 and AVX512 sets). For SSE128,
AVX256 and AVX512, register width has been extended from
64 bits to 128 bits (xmm), 256 bits (ymm) and 512 bits (zmm)
respectively [15, 16]. The work concept of the SIMD is to
execute multiple data in single instruction. Wider registers
provide more parallelism ways and more registers reduce
extra data movement to the cache memory. The OAI plat-
form efficiently utilizes the SIMD to accelerate its critical
submodules to decrease the packets’ processing time.
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Figure 3: CPU utilization and IPC for uplink
4 The Architectural Implications of vRAN
We conduct a preliminary characterization and measure that
average end-to-end (e2e) delay of the current vRAN software
pipeline is 31ms. Clearly, the current e2e latency of vRAN
is insufficient to meet the strict requirement for the inter-
active real-time applications like VR and AR. To discover
the potential bottlenecks leading to high e2e delay of the
current vRAN platform, we conduct a thorough architectural
characterization of the solo-run vRAN. We report our key
learnings and illustrate the root cause of the performance
bottlenecks of the edge NFV workloads which causes the
high e2e delay.
4.1 Micro-architectural Inefficiency
Architectural implicationmetrics:The fundamental met-
rics to describe micro-architectural performance are Instruc-
tion per cycle (IPC), frontend bound, bad speculation and
backend bound. IPC is a metric indicating the average num-
ber of instructions executed for each clock cycle, which is
used to measure instruction level parallelism. There are four
micro-architectural metrics relates to the IPC – retiring, bad
speculation, frontend bound and backend bound. Retiring
reflects the issued micro-operations (µop) eventually get
retired while the other 3 metrics mean the issued micro-
operations (µop) get stalled. The high percentage of retiring
usually means the high IPC value of an application. The high
percentage of the other three categories will hurt the retir-
ing, which will lead to the low IPC. A thorough analysis of
frontend bound, bad speculation and backend bound would
help us locate the bottlenecks of the edge NFV workloads.

We begin by profiling the IPCs for the mainmodules inside
the vRAN platform. Figure 3 and Figure 4 breakdown the
IPC and CPU time of the main modules inside OAI vRAN
for uplink and downlink respectively. We can observe that
for both uplink and downlink cases, the IPCs for Downlink
Control Information (DCI), Rate Matching, and Scrambling
are near to the ideal value of 4 for modern Intel processor.
However, the IPC of Turbo Decoding module is around only
2.1, which suggests potential headroom for optimization.
Furthermore, we examine the root cause for the poor

IPCs by exploring the micro-architectural metrics related
to IPC. Frontend bound denotes that instruction-fetch stall

Figure 4: CPU utilization and IPC for downlink
will prevent core from making forward progress due to lack
of instructions. Bad speculation reflects slots wasted due
to incorrect speculations. Backend bound illustrates that
no micro-operations (µop) are being delivered at the issue
pipeline, due to lack of required resources in the backend.
Figure 5 and Figure 6 demonstrate the micro-architectural
profile, the results reveal that across all the modules, the
frontend bound and bad speculation overheads are negligi-
ble. The main stall of vRAN applications are concentrated at
backend bound, which means the optimization for backend
bound is necessary for vRAN applications. For the most CPU
consuming module - turbo decoding, we observe that the
backend bound is more than 50%, which is the main reason
causing its poor IPC.
Backend bound bottleneck analysis:We investigate the
source of backend bound by dividing it into two separate
metrics: Memory bound and core bound. Memory bound
manifests with execution units getting starved after a short
while. Core bound manifests either with short execution
starvation periods or with sub-optimal execution ports uti-
lization. We can find the root cause of non-uniform backend
bound. Memory bound and core bound both suffer from the
current vRAN platform. For memory bound, most of the
protocols suffer on the L1 and L2 cache bound. Memory
bound can be mitigated by simply increasing the cache size
of the server, or by leveraging memory which can control the
mapping of instruction and data storage for each core. Core
bound can be mitigated by prohibiting execution starvation
or better ports utilization inside the processor.
Our first effort to mitigate the backend bound stall is to

prohibit the memory bound by deploying the vRAN on an
alternative high-end beefy COTS server platform (W2195
@ 2.30GHz, 128GB RAM) with higher cache size. Table 1
compares the cache size of the wimpy server and the beefy
server. Figure 7 shows the memory bound and core bound
details of the dominant functions in vRAN on the wimpy
server and the beefy server. Our finding is that although the
memory bound is significantly mitigated by the larger cache
resources, the core bound overhead deteriorates on the beefy
server. Thus the counteracts of lower memory bound and higher
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Figure 5: Micro-architecture value for uplink
core bound on beefy server platform makes the overall backend
bound stay almost the same to the wimpy server platform.

Consequently, increasing the cache size cannot effectively
improve the vRAN performance on general COTS processors.
To achieve better performance, further architectural explo-
ration for the core bound is requested to find out the better
state-of-the-art CPU utilization opportunity to mitigate the
overall backend bound stall of vRAN platform.

4.2 SIMD Processing Causes Backend
Bound Inefficiency

In this section, we choose to use the beefy server as our basic
platform whose cache size is large enough to rule out the
memory bound impacts. We look into the OAI platform’s
submodules to find out the root cause of the high backend
bound.
Low IPC caused by SIMD instructions: By examining the
submodules of the OAI platform, we observe that the sub-
modules involving the SIMD instructions such as _mm_adds,
_mm_subs, _mm_max and _mm_extract incur significant
high backend bound overheads compared to the general scalar
instructions. The high backend bound overhead is the domi-
nant reason causing the low IPC. The SIMD instructions can
be categorized as two types based on their functionalities,
one is the SIMD calculation instructions and the other is the
SIMD data movement instructions. As shown in Figure 7, the
average IPC for the SIMD calculation instructions such as
_mm_adds, _mm_subs, and _mm_max is around 2.5, whose
backend bound is around 35%. The average IPC for the SIMD
data movement instruction such as _mm_extract is around
1.5, whose backend bound is around 55%. While utilizing
scalar instructions (do_OFDM) whose backend bound is neg-
ligible, the IPC can reach around 3.8, which is near the ideal
value (i.e. 4) of the Intel processors.
Table 1: Cache size and frequency in wimpy and beefy
node

Wimpy Node Beefy Node
L1 cache 384KB 1152KB
L2 cache 1536KB 18432KB
L3 cache 12288KB 25344KB

Figure 6: Micro-architecture value for downlink
WhySIMD instructions cause high backend boundover-
heads? Since the high backend bound is the root cause of the
low IPC, we further investigate the reason for the high back-
end bound overheads. The backend bound can be divided
into memory bound and core bound. As shown in Figure 7,
we can see the memory bound is completely eliminated by
utilizing high-end beefy COTS server platform with large
cache resources, thus the core bound becomes the dominant
reason for the high backend bound. Core bound manifests
either with short execution starvation periods or with sub-
optimal execution ports utilization. We will go through the
micro-architecture of the Intel CPU core to find out whether
the sub-optimal execution port utilization is the root cause
for the high core bound overhead of the SIMD instruction.
By examining the state-of-the-art CPU architecture, we

find that the reason for the high core bound overhead of
the SIMD calculation instruction is due to the limitation of
available ports for SIMD instructions. As shown in Figure 2,
the SIMD calculation instructions sustainable ALU ports are
port 0, 1 and 2, while the general scalar ALU ports are port 0,
1, 2 and 3. Consequently, the maximum IPC value involved in
the SIMD calculation is 3 compared to the ideal IPC value of
the scalar instructions value, which is 4. For data movement
SIMD instructions, port 4 and 5 hold the load instruction
and port 6 and 7 hold the store instruction, which means the
ideal IPC value for the data movement instructions is 2. This
is the reason why the IPC value for _mm_extract is below 2.

Figure 7: IPC, memory and core bound under beefy
and wimpy server
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SIMD calculation instructions analysis: We investigate
the SIMD calculation instruction code inside submodule func-
tions to see if there is optimization headroom to promote the
performance of these submodules. We extract the C code and
the corresponding assembly code for the turbo decoding sub-
module functions. We observe that for the SIMD calculation
instructions, the codes are well organized. For _mm_adds,
_mm_subs, when the data is moved into the SIMD 128 bits
register (xmm), they do all the operations required before
the data are moved out of the xmm registers. The proce-
dures involving in the SIMD calculation instructions utilize
all the available ports inside the CPU core. As a result, the
IPC value for the _mm_adds, _mm_subs are 2.8 and 2.7 re-
spectively, which is approaching the ideal value 3. For the
_mm_max instruction, the IPC for it is around 2.2, which is
a little lower compared to _mm_adds and _mm_subs. The
reason is that the decoding algorithm involved in _mm_max
has some unavoidable data dependencies, which leads to the
low IPC value for the _mm_max compared to the _mm_adds
and _mm_subs. Besides, as illustrated in Figure 8b, all of the
available SIMD ports are efficiently utilized. Especially, the
memory bandwidth between SIMD ports’ registers and cache
are fully occupied. Therefore, when extending the width of
the register, the process involving the SIMD calculation in-
structions can be accelerated significantly, as illustrated in
Figure 9. Consequently, these processes will not become
hotspot of the OAI platform for the further development.
SIMD data movement instructions analysis: We go
through the data arrangement process which contains the
data movement instruction _mm_extract. As illustrated in
Figure 8a, the data movement instructions are utilized by the
data arrangement process of the signal processingmodules of
the vRAN platform. The data arrangement process is utilized
to align the data into the SIMD type so that the data can
be used as the input of the SIMD calculation instructions.
Our profiling reveals that even though the process utilizes all
the available SIMD data movement ports inside CPU core, it
suffers severe low memory bandwidth utilization between the
ports’ registers and L1 cache for this submodule function. The
data arrangement generates the input values systematic1,
yparity1 and yparity2 for the gamma, alpha, beta and ext
calculations. The data arrangement operations are 16 bits

one time and thus the data arrangement operation times is
8 for 128 bits register. However, as shown in Figure 8b, the
bandwidth between xmm register and cache is 128 bits, which
means that only 12.5% are used. For 256 bits ymm registers
and 512 bits zmm registers, the store operation times will
be 16 and 32 respectively, the bandwidth utilization ratio
will be 6.25% and 3.125% respectively. The store operation
times will be extremely high and the bandwidth utilization
will be significantly low when further utilizing GPU to do
the acceleration. As shown in Figure 9, the operation time
proportion of the data arrangement will become larger and
larger compared to the modules involving SIMD calculation
instructions.

The performance impacts of data arrangement process in
the vRAN platform is neglected by most of the current vRAN
platforms, such as FlexRAN. The current platforms always
concentrated on the optimization of the signal processing
modules’ calculation process rather than the data arrange-
ment process between the modules. However, we have to
pay attention to this elephant in the room as it turns out to
be a major performance issue for a vRAN system and can
generalize to other SIMD applications.

5 Optimization for the Data Arrangement
Data arrangement process occurs in SIMD accelerated mod-
ules of the vRAN platform. The data arrangements’ under-
optimization widely exist in the vRAN platform. Since the
decoding module occupies more than 50% of the processing
time of the vRAN platform, we choose the data arrangement
process of decoding as our optimization object in this paper.
The main reason for the low IPC of the data arrangement
process is that only store ports are utilized by the process.
Besides, the bandwidth between registers and L1 cache is not
efficiently utilized during the data transmission. Therefore,
it is essential to efficiently utilize the Intel CPU core’s hard-
ware to accelerate the data arrangement process to eliminate
its severe effect.

5.1 Arithmetic Ports Consciousness
Mechanism

By examining the micro-architecture of the state-of-the-art
CPU, we find that ALU ports are paralleled with the data
movement ports and these ports are idle when implementing
the data arrangement. Motivated by this observation, we pro-
pose "Arithmetic Ports Consciousness Mechanism"(APCM)
to leverage these idle ALU ports concurrently with the store
ports to solve the data arrangement inefficiency problem. As
shown in Figure 2, after the data is transferred directly into
the user space by DPDK, APCM utilizes the ALU ports to al-
leviate the backend bound since the process utilizes not only
the data movement ports but also the ALU ports inside CPU
core compared to the original solely store ports utilization

6



(a) SSE128 SIMD Module Processing Time (b) AVX256 SIMD Module Processing Time (c) AVX512 SIMD Module Processing Time

_mm_extract_mm_max _mm_subs _mm_adds _mm_extract_mm_max _mm_subs _mm_adds _mm_extract_mm_max _mm_subs _mm_adds

13%

4.7%

17%

3.4%

19.5%

1.8%

Figure 9: SIMD module processing time under SSE128, AVX256 and AVX512

mechanism. The ALU vector ports are utilized to batch the
systematic, yparity1 and yparity2 data in segregated regis-
ters. After the batching process, the data are moved batch
by batch from the register to L1 cache by data movement
ports. The APCM will promote the utilization of the memory
bandwidth between registers and L1 caches.

Figure 10 shows the detail of the APCM process. The orig-
inal registers contain the combined data from the clusters
systematic (S1), yparity1 (YP1) and yparity2 (YP2). We firstly
sampling out each element in each cluster and then congre-
gate elements of the same cluster in segregated registers.
After the congregation, we left rotate elements in YP1 16
bits and YP2 32 bits to align elements in S1, YP1 and YP2.
Figure 11 illustrates this process inside the processor. As
shown in Figure 11, 3 instructions can be implemented in
one cycle by 3 parallel ports. Since completing batching
S1, YP1 and YP2 will totally require 17 instructions and 5.7
((17instructions)/(3instructionspercycle)) cycles. Therefore,
thememory bandwidth per cycle under APCMwill be around
67 bits/cycle ((128bits/register)∗(3register)/(5.7cycles)).When
extending the width of the registers, the total instructions
and cycles required for the APCM will stay the same. The-
oretically, the memory bandwidth utilization will be 134
bits/cycle ((256bits/register) ∗ (3register)/(5.7cycles)) and
270 bits/cycle ((512bits/register) ∗ (3register)/(5.7cycles)) for
AVX256 and AVX512 respectively. The promoted memory

Figure 10: Data arrangement process under APCM

bandwidth will decrease the CPU time of the data arrange-
ment process.

5.2 Implementation of the Optimization
In this section, we first demonstrate the original data arrange-
ment process. For 128 bits registers (xmm), it utilizes ’pextrw’
instruction to extract 16 bits data from register to cache. For
256 bits registers (ymm), it utilizes the same instruction to
extract data for the lower 128 bits of ymm from register to
cache. After completing the movement of the lower 128 bits,
it uses ’vextracti128’ instruction to move the upper 128 bits
data of ymm register to the lower 128 bits register and do the
data extraction since no instruction can extract data directly
from upper 256 bits registers (ymm). For the 512 bits regis-
ters, it uses ’vextracti32*8 $0 ∗ 0’ to extract the lower 256 bits
data from zmm to ymm and then do the same process as the
256 bits registers. After completing the data arrangement for
the lower 256 bits of zmm, it needs to reload the data into
the zmm since utilizing ’vextracti32*8 $0 ∗ 0’ will remove
the upper 256 bits data automatically. After the data reload,
’vextracti32*8 $0 ∗ 1’ is utilized to load the upper 256 bits
data from zmm to ymm and do the same data arrangement
process as ymm.
Furthermore, we create our optimized code according to

the APCM. For 128 bits xmm registers and 256 bits ymm
registers, we utilize vpand and vpor to filter out and combine
the data for S1, YP1 and YP2. For the 512 bits zmm registers,
we use ’vpandd’ and ’vpord’ to do the data filtering and
combination. Since the SIMD register does not provide left
rotate instruction directly, we show our mimic process in
Figure 12. For YP1, we load extra YP16 after the YP1 array
in the cache. When utilizing YP1 array, we extract the data
with the start address at 2nd YP1 element. We do the similar
thing for YP2, we load extra YP23 and YP26 after the YP2
array in the cache. When utilizing YP2 array, we extract the
data with the start address at 3rd YP2 element.

6 Evaluation Results
The data arrangement performance is determined primar-
ily by its processing time, IPC and its architectural metrics.
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Figure 11: Micro-architectural data arrangement process under APCM

We begin with examining these metrics in this section. Be-
sides, we estimate the submodules proportion time inside
decoding process and the overall transmission latency to
ensure the performance enhancement of the APCM mech-
anism. Eventually, we evaluate the maximum bandwidth
each COTS processor’s core can provide and the core num-
bers required to support the current RAN station before and
after the optimization to indict the equipment utilization
promotion collected by the APCM mechanism.
Processing timeper packet under different packet sizes:
Processing time is a critical metric to depict the performance
of the packet transmission. Figure 13 demonstrates the pro-
cessing time per packet under different packet size for both
UDP and TCP packet before and after APCM optimization.
We observe that the APCM mechanism efficiently decreases
the processing time for both UDP and TCP packets. For the
same packet size, we can observe that the APCM decrease
the processing time for both UDP and TCP packet from 12%
(SSE128) to 20% (AVX512).

Figure 12: Rotation mimic mechanism

Processing time proportion for different process: To
illustrate the efficiency of the APCM, we present the process-
ing time for the data arrangement processing time and calcu-
lation processing time under the standard network transmis-
sion packet size (1500 Bytes) in Figure 14. For the registers
with sizes of 128 bits, 256 bits, and 512 bits, the processing
time for the data arrangement process reduce 67%, 82%, and
92%, respectively compared to the baseline. As a result, the
proportion of the data arrangement process on the whole
packet processing becomes trivial so that it will not become
a hotspot when extending the registers’ width.
Based on the results shown in Figure 14, we see that

the performance deteriorates when extending the registers’
width for the same volume of the workload with the original
mechanism. Comparing the 128 bits registers and the 256
bits registers, 2.2% more CPU time is required for 256 bits
registers. The reason is that the ymm (256 bits register) does
not have an extract instruction to move upper 128 bits data
directly, an operation to move the data from upper 128 bits
to lower 128 bits is required before executing data extraction.
A similar result is depicted when comparing the 256 bits
registers and the 512 bits registers, 6.4% more CPU time is
required for 512 bits registers. For the zmm (512 bits regis-
ter), it needs to move the data from zmm (512 bits register)
to ymm (256 bits register) before executing data extraction.
Besides, when utilizing vextracti32*8 to move lower 256 bits
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data to ymm register, the upper 256 bits in zmm will be re-
moved. Therefore, when moving the data for the upper 256
bits, another load operation (vmovdqa64) is required.

To ensure the efficiency of the APCM, it is also critical to
compare the processing time under different width of the
registers. As illustrated in Figure 14, we can see the CPU
time decreases proportionally when extending the width of
the registers for the same volume of the workload. Compar-
ing the optimized code for 128 bits registers and 256 bits
registers, the 256 bits registers’ CPU time decreases 49%.
Comparing the optimized code for 512 bits registers and 256
bits registers, the 512 bits registers CPU time decrease 51%,
which demonstrates that the extended width of the registers
do accelerate the data arrangement process under the APCM
mechanism.
The micro-architectural metrics and IPC: Figure 15 il-
lustrates the micro-architectural and IPC value of original
and APCM data arrangement process. For the same volume
of the workload, we can observe that for registers with the
width 128 bits, 256 bits and 512 bits, the retiring percentage
increases from 55.6% to 97%, from 52% to 96% and from 48%
to 95% respectively. The main backend bound stall decreases
from 44.4% to 3%, from 48.2% to 4% and from 52% to 5% re-
spectively. The IPC soar from 1.2, 1.1, and 1.05 to 3.6, 3.5,
and 3.3, respectively, which demonstrates that the APCM
can utilize the CPU ports far more efficiently by exploiting
the idle ALU ports comparing to the original mechanism.
Submodule processing time proportion: The submod-
ule functions’ processing time reflects the efficiency of the
APCM. Figure 9 shows the submodule functions’ processing
time under the APCM, we can see that data arrangement
module’s processing time is decreased significantly when
further extending the width of the register. For the registers
with the width 128 bits, 256 bits and 512 bits, the data ar-
rangement process time proportion decrease from 13%, 17%,
and 19.5% to 4.7%, 3.4%, and 1.8% respectively. This illustrates
that the data arrangement will not become a hotspot when
extending the width of the registers.
Bandwidth per core and system utilization: We calcu-
late the bandwidth which can be supported by each core and
the core numbers required to provide 300 Mbps for current
RAN [19] before and after the optimization to illustrate the
equipment utilization efficiency of the APCM. As shown in
Figure 16, we can see that for the SSE1, AVX2 and AVX512,

(a) SSE128 (b) AVX256 (c) AVX512

Figure 13: Processing time for UDP and TCP under dif-
ferent packetsizewith originalmechanism andAPCM

SSE128 AVX256 AVX512

2.2% 6.4%

49% 51%

12%

18%

16%

Figure 14: Processing time for procedures and mod-
ules under original mechanism and APCM
the maximum bandwidth per core increase from 16.4 Mbps
to 18.5 Mbps, from 21.6 Mbps to 26.0 Mbps and from 25.5
Mbps to 32.9 Mbps respectively, which means the system
utilization increase around 12% to 29%. The core numbers re-
quired to provide 300 Mbps for the SSE1, AVX2 and AVX512
decreases from 18 to 16, 14 to 12 and 12 to 9, respectively.

7 Related Work
Main network NFV workloads: Network Virtualization
Networks (NFV) has received substantial attention from the
communities in recent years with both academia and indus-
try recognizing its benefits on operational mobile networks.
Among the works of the NFV area, some focus on the core
network virtualization [1, 4–6, 17] and others concentrate on
the edge network [14, 18, 23]. While the above-mentioned
work includes the RAN virtualization and network slicing re-
alization, they lack a detailed architectural characterization
of the virtual network platform.
RAN characterization: In the last few years, several works
[3, 7, 13, 22, 24] provide the performance analysis and study
on the vRAN platform. [13, 22] introduce the concepts and
architecture of the vRAN platform. [22] validates two MAC
schedulers and analyzes the vRAN platform, in terms of
memory occupancy and execution time. [13] performs thor-
ough profiling of OAI, in terms of execution time, on the
user plane data flow.

SSE128 AVX256 AVX512

Figure 15: Micro-architecture value under original
mechanism and APCM
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SSE128 AVX256 AVX512

Figure 16: Bandwidth and core numbers under origi-
nal mechanism and APCM
8 Conclusion
In this paper, we propose a mechanism named "Arithmetic
Ports Consciousness Mechanism" (APCM) to overcome the
inefficiency of the data arrangement process of a mainstream
edge network vRAN platform. The APCM will decrease the
data arrangement’s Backend Bound from 45% to 3% and
promote its memory bandwidth utilization by 4X-16X. Its
CPU time can be reduced by 67% - 92% and the overall latency
of the RAN packet transmission will be decreased by 12% -
20%.
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