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ABSTRACT

We consider a ranking and selection problem whose configuration depends on a common input model
estimated from finite real-world observations. To find a solution robust to estimation error in the input
model, we introduce a new concept of robust optimality: the most probable best. Taking the Bayesian view,
the most probable best is defined as the solution whose posterior probability of being the best is the largest
given the real-world data. Focusing on the case where the posterior on the input model has finite support, we
study the large deviation rate of the probability of incorrectly selecting the most probable best and formulate
an optimal computing budget allocation (OCBA) scheme for this problem. We further approximate the
OCBA problem to obtain a simple and interpretable budget allocation rule and propose sequential learning
algorithms. A numerical study demonstrates good performances of the proposed algorithms.

1 INTRODUCTION

When randomness in a simulation model is driven by input models estimated from finite real-world data, the
simulation output is subject to uncertainty caused by estimation error in the input models. This additional
uncertainty, distinguished from inherent stochastic simulation error, is often referred to as input uncertainty.
If the simulation model is applied to find an optimal design or policy for the target real-world system, then
input uncertainty must be accounted for the optimization procedure to make a correct statistical inference
on the real word performance of a selected solution.

Several optimization via simulation frameworks have been proposed to account for input uncertainty,
which we categorize into three groups according to their treatments of input uncertainty. The first is to apply
a risk measure with respect to input model estimation error to the simulation output mean and optimize
it; Corlu and Biller (2015), Wu and Zhou (2017), Pearce and Branke (2017), Ungredda et al. (2020) use a
risk-neutral measure (mean) and Xie and Zhou (2015), Wu et al. (2018), Zhu et al. (2020) explore value
at risk or conditional value at risk. The second category focuses on inference to provide a probability
guarantee that the best solution chosen under the current input model is in fact optimal; Corlu and Biller
(2013), Song et al. (2015), Song and Nelson (2019) take this view, however, point out that when estimation
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error of input model is large, the desired probability guarantee may not be attained. The last category takes
the distributionally robust optimization approach, which first assumes an ambiguity set on the input model,
finds the worst-case input model for each solution within the ambiguity set, and selects the solution with
the best worst-case performance; Gao et al. (2017), Fan et al. (2020) fall under this category.

In this work, we consider a ranking and selection (R&S) problem under input uncertainty focusing on
the case when all k solutions in comparison share a common input model estimated from data. Specifically,
we take the parametric Bayesian approach to input modeling, thus uncertainty about the input model is
captured by the posterior distribution on the input model parameters. Because the simulation output mean is
a functional of the input model, the configuration of the R&S problem (and its optimum, correspondingly)
depends on the input model, which itself is uncertain. To find a solution with robust performance, we
define a new concept of robust optimality, the most probable best, which is the solution with the largest
posterior probability of being the best.

Our work is related to the contextual R&S studied by Gao et al. (2019), Li et al. (2020), and Shen et al.
(2021). Personalized decision making is an example of contextual R&S problems in which the problem
configuration depends on the covariates of an individual. Thus, their objective is to learn the best policies
under all covariate values equitably, which differs from finding the most probable best.

To devise a R&S algorithm to select the most probable best, we study the large deviation property
of the probability of incorrectly selecting the most probable best focusing on the case when the posterior
distribution of the input parameter is approximated with an empirical distribution. We formulate the optimal
computing budget allocation (OCBA) problem to minimize the asymptotic probability of incorrect selection
based on the large deviation analysis. We further approximate the OCBA problem to obtain a simple and
interpretable budget allocation rule. Since this rule is based on unknown quantities of the problem, we
propose sequential learning algorithms that aim to achieve an optimal allocation in the limit.

The remainder of the paper is organized as follows. In Section 2, we present some background on
the Bayesian statistical models. Section 3 formally defines our problem of interest. Section 4 presents
the OCBA formulation for our problem, which is then approximated to provide easy-to-compute balance
conditions in Section 5. Two sequential learning algorithms are introduced and discussed in Section 6
followed by numerical demonstrations in Section 7. Proofs of all theorems and propositions are omitted
from the paper due to space limit.

2 PRELIMINARIES

Consider the following R&S problem:

i0 := argmin1≤i≤k E [Yi(θ
c)] , (1)

where Yi(θ
c) is the simulation output of the ith solution whose inputs are generated from a parametric

input model fθ c . We assume i0 is unique.
Typically in real-world applications, θ c is unknown and must be estimated from observations. We

assume that size-m i.i.d. observations Zm := {Z1,Z2, · · · ,Zm} are collected from fθ c . Taking the Bayesian
approach, uncertainty about θ c can be modeled with θ that has prior distribution π0. Given Zm, its posterior
is derived as πm(θ) =

π0(θ)Lm(θ)∫
π0(θ1)Lm(θ1)dθ1

, where Lm(θ) is the likelihood function of Zm.
Let yi(θ) := E [Yi(θ)|θ ] be the mean response at solution i conditional on realized θ . Note that yi(θ)

can only be estimated via simulation given θ . We introduce stochastic process ηi(θ) to model uncertainty
about yi(θ). Instead of taking a purely Bayesian stance, we view yi(θ) to be fixed and adopt ηi(θ) to
simply assist the learning process of yi(θ). The following normal-normal model for ηi(θ) and Yi(θ) is
adapted as in Ryzhov (2016).

Yi(θ)∼ N(ηi(θ),λ
2
i (θ)), ηi(θ)∼ N(µi,0(θ),σ

2
i,0(θ)), (2)

where λi(θ) is the simulation error variance, and µi,0(θ) and σ2
i,0(θ) are mean and variance of the prior

distribution of ηi(θ), respectively. Model (2) assumes that the simulation error at each (i,θ) pair is normally
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distributed. For non-normal simulation error, this assumption can be justified by batching (Kim and Nelson
2006). Furthermore, we assume λi(θ) to be known; for an unknown λi(θ), a normal-gamma model can
be applied; see for instance, Section 5 in Ryzhov (2016).

Suppose n replications have been made under some sampling policy. We denote the number of replications
allocated to (i,θ) by Nn

i (θ). Conditional on the simulation outputs, Yi1(θ),Yi2(θ), . . . ,YiNn
i (θ)

(θ), at (i,θ),
the posterior mean and variance, µi,n(θ) and σ2

i,n(θ), of ηi(θ) are updated as

σ
2
i,n(θ) =

(
1

σ2
i,0(θ)

+
Nn

i (θ)

λ 2
i (θ)

)−1

, µi,n(θ) = σ
2
i,n(θ)

(
µi,0(θ)

σ2
i,0(θ)

+ 1
λ 2

i (θ)
∑

Nn
i (θ)

r=1 Yir(θ)

)
. (3)

Assuming noninformative prior σ2
i,0(θ) =∞ for all (i,θ), (3) becomes σ2

i,n(θ) = λ 2
i (θ)/Nn

i (θ) and µi,n(θ) =

∑
Nn

i (θ)
r=1 Yir(θ)/Nn

i (θ). Further, let En denote the information set consisting of n simulation outputs.

3 PROBLEM FORMULATION

Song and Nelson (2019) point out that solving the plug-in version of (1) in which θ c is replaced with θ

introduces input model risk as the plug-in optimum is suboptimal to (1) in general. Instead, our goal is to
solve the following problem:

i∗(πm) := argmax1≤i≤k Pπm

(
yi(θ)−min j 6=i y j(θ)≤ δ

)
(4)

where δ ≥ 0 is an error tolerance. Formulation (4) aims to find a solution that has the highest probability
of being δ -optimal considering all realizations of θ from the posterior density πm. Clearly, i∗(πm) may fail
to be equal to i0 with finite Zm. Nevertheless, with a limited amount of data, we argue that our formulation
is robust to input uncertainty as it maximizes the posterior probability of selecting a correct δ -optimum.

In this paper, we focus on the case when δ = 0; the case of δ > 0 is currently under investigation. In
the former, (4) returns a solution that has the highest probability of being a minimizer with respect to the
posterior density πm. Thus, we refer to i∗(πm) as the most probable best under πm.

The definition of the most probable best exploits the common input data (CID) effect, which refers to
the dependence among y1(θ),y2(θ), . . . ,yk(θ) caused by common θ estimated from data (Song and Nelson
2019). If the CID effect induces positive correlations among the conditional means, pairwise comparisons
among them become sharper, which increases the posterior probability of i∗(πm) being optimal.

As a first step, we approximate the posterior distribution, πm(θ), by an empirical distribution constructed
from size B sample {θ1, · · · ,θB} ∼ πm(θ). Then, (4) can be rewritten as

i∗(πm) = argmax
i

1
B

B

∑
b=1

1
{

yi(θb) = min
j

y j(θb)

}
= argmax

i

1
B

B

∑
b=1

1
{

yi(θb) = yib(πm)(θb)
}
, (5)

where ib(πm) is a conditional optimum at θb, i.e., ib(πm) := argmini yi(θb). Since we fix the input data
size and its corresponding posterior, we omit πm for notational convenience in the remainder of the paper,
i.e., i∗ = i∗(πm) and ib = ib(πm). Further, i∗ and ib for each θb are assumed to be unique to simplify the
analysis.

Problem (5) has a nested structure, which distinguishes it from the classical R&S or the contextual
R&S problems. At the inner level, the goal is to correctly identify ib at each b. At the outer level, i∗

is determined by aggregating the inner level decisions. We present a high-level algorithmic scheme for
selecting the most probable best in the following page.

The goal of this paper is to develop a novel sampling strategy to be adopted in Step 4 of the algorithm
above so that i∗ can be learned efficiently. We measure efficiency by computing the probability of correct
selection (PCS), P(CS) = P(i∗n = i∗), or equivalently, by computing the probability of false selection (PFS),
P(FS) := P(i∗n 6= i∗) = 1−P(CS). Many R&S algorithms aim to provide a static or dynamic sampling
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Selection of Most Probable Best
1: for n = 0,1,2, · · · do
2: Inner problem : For each b, find ibn := argmini µi,n(θb).

3: Outer problem : Find i∗n = argmaxi
1
B ∑

B
b=1 1

{
µi,n(θb) = µibn,n(θb)

}
.

4: Make the next sampling decision (i,θb) depending on some criteria given current information.
5: Run simulation at (i,θb) and update the belief according to the update rule (3).
6: end for

framework that maximizes the PCS (or minimize the PFS). However, this objective does not have a closed-
form expression in general. To overcome this issue, we discuss a large deviation perspective for our problem
in Section 4.

4 OPTIMAL COMPUTING BUDGET ALLOCATION

The false selection event becomes a rare event as simulation budget n increases. The OCBA scheme, first
proposed by Chen et al. (2000), aims to find the optimal sampling rule that minimizes the PFS. Using the
large deviation theory, Glynn and Juneja (2004) further show that

lim
n→∞
−1

n
logP(FS) = G(ααα), if αi > 0,1≤ i≤ k

for some function G(·)where ααα = (α1,α2, · · · ,αk) is a vector of fixed sampling proportions at the k solutions.
The quantity G(ααα) is often referred to as the large deviation rate (LDR) of PFS. Thus, maximizing G(ααα)
is equivalent to minimizing PFS. Hence, OCBA can be formulated as the following program.

max
ααα=(α1,··· ,αk)

G(ααα) subject to
k

∑
i=1

αi = 1, αi ≥ 0,1≤ i≤ k. (6)

In general, the rate function G depends on unknown quantities, which makes it difficult to solve (6)
exactly. Instead, many algorithms that learn G sequentially from sample statistics have been proposed in the
hope to achieve near-optimal sampling ratios. For instance, we refer the readers to Pasupathy et al. (2014),
Shin et al. (2018), and Chen and Ryzhov (2019) that take this approach in solving their own problems.

In the following, we establish large deviation theory for Problem (5) and an optimal sampling strategy
based on the theory. We define the following quantities for further development:

Gi(θb) :=
(yi(θb)− yib(θb))

2

2
(
λ 2

i (θb)/αi(θb)+λ 2
ib(θb)/αib(θb)

) , i 6= ib,

di := ∑
B
b=1 1

{
i∗ = ib

}
−∑

B
b=1 1

{
i = ib

}
.

The quantity Gi(θb) is the LDR of false selection under Model (2) (Glynn and Juneja 2004) for the
conditional problem given θb; if αi,n(θb) := Nn

i (θb)/n→ αi(θ), then we have limn→∞− 1
n logP(µi,n(θb)<

µib,n(θb)) = Gi(θb). The di measures dominance of i∗ over the ith solution.
One can easily observe that maxi6=i∗ P(i∗n = i)≤ P(i∗n 6= i∗)≤ ∑i6=i∗ P(i∗n = i). This directly implies that

liminf
n→∞

−1
n

logP(i∗n 6= i∗) = min
i6=i∗

LDRi,i∗ , where LDRi,i∗ := liminf
n→∞

−1
n

logP(i∗n = i). (7)

In words, (7) implies that characterizing the target LDR reduces to finding the LDR of marginal false
selection for each i. The marginal false selection, {i∗n = i}, occurs when some i 6= ib is selected as the
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conditional optimum at some θb. We define a collection of sets of solution-parameter pairs for each i 6= i∗:

Ai :=
{

I ⊂ Itot
∣∣i performs equally or better than i∗ if ∀( j,θb) ∈ I, j is misspecified to be ib,

while at any θb′ not included in I, ib
′

is specified correctly
}
, (8)

where Itot := {(i,θb)|1≤ i≤ k,1≤ b≤ B} is the total index set. Clearly, the set Ai is a subset of the power
set 2Itot . Since we assume the conditional optimum at each θb to be unique, each I ∈Ai may include at
most one solution-θb pair for each b. In fact, such Ai is not unique; in the subsequent development, we
define Ai to be the largest set that satisfies (8). Note that |Ai| is upper bounded by |2Itot |= 2kB (loosely).

To illustrate Ai, consider the example in Figure 1, where k = 4 and B = 8 and ib is marked with a
solid circle for 1≤ b≤ 8. Clearly, i∗ = 1. As an example, let us focus on A4. Suppose i3n = 4 and ibn = ib

for all b 6= 3, i.e., the solution 4 is incorrectly selected as the optimum at θ3 while the other conditional
optima are correctly specified after n simulation runs. Then, solutions 1 and 4 have the same performance
measure values leading to an incorrect selection. Therefore, {(4,θ3)} ∈ A4. Similarly, one can confirm
that {(3,θ1),(3,θ2)} and {(4,θ4),(4,θ5)} are elements of A4. Of course, these are only a few examples;
A4 contains more elements.

Figure 1: An example with k = 4 and B = 8. Conditional optima are marked with solid circles.

The following theorem stipulates the LDR of PFS for any fixed sampling scheme ααα .
Theorem 1 Given ααα , liminfn→∞− 1

n logP{i∗n 6= i∗}= mini6=i∗ LDRi,i∗ , where

LDRi,i∗ = minI∈Ai ∑( j,θb)∈I G j(θb). (9)

Theorem 1 shows that the LDR of marginal false selection is determined by the slowest rate at which i 6= i∗

is falsely selected to be optimum among all possible misspecification cases in Ai. Therefore, constructing
Ai and finding the corresponding slowest rate for each i are central parts to determining the LDR of false
selection for Problem (5). We close this section by presenting the OCBA framework for Problem (5):

LDR∗ := max
ααα

min
i6=i∗

LDRi,i∗ subejct to
k

∑
i=1

B

∑
b=1

αi(θb) = 1,αi(θb)≥ 0,1≤ i≤ k. (10)

5 APPROXIMATE SOLUTION TO OCBA FORMULATION

Computational complexity of characterizing Ai increases combinatorially in k and B. To derive LDRi,i∗ ,
however, it is not necessary to find Ai exactly. To see this, consider J1 and J2 ∈Ai such that J1 ⊂ J2. Then,
LDRi,i∗ remains unchanged when Ai is replaced with Ai−{J2} in (9). In other words, we may remove all
elements of Ai that are supersets of other elements without affecting the value of LDRi,i∗ . This approach is
top-down, i.e., it can be carried out once Ai is fully characterized. Nevertheless, this observation motivates
us to devise a computationally efficient bottom-up method to approximate LDRi,i∗ closely without fully
characterizing Ai.
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Table 1: Five disjoint subsets of Ξ; each subset belongs to Vi,` with the corresponding value of `.

ib = i ib 6= i & ib 6= i∗ ib = i∗

j = i
`= 0

`= 1 `= 2
j 6= i `= 0 `= 1

To this end, suppose we define Ξ= {( j,θb) : j 6= i∗ and j 6= ib at θb}, and we have a realized sample mean
µi,n(θb). In words, Ξ includes all solution-parameter pairs, where the solution is neither i∗ nor the conditional
best at the paired parameter. For i 6= i∗, let Vi,` be a subset of Ξ such that ( j,θb)∈Vi,` if and only if ibn = j and
ib
′

n = ib
′
results in `= (di− d̃i,n)

+ for nonnegative integer `, where d̃i,n =∑
B
b=1 1

{
i∗ = ibn

}
−∑

B
b=1 1

{
i = ibn

}
is

the estimated dominance of i∗ over i. Then, simple arithmetic shows that {Vi,0,Vi,1,Vi,2} constitutes a partition
of Ξ. This is evident in Table 1, which classifies all ( j,θb) in Ξ into five disjoint subsets and each subset is
marked with the corresponding Vi,` it belongs to. For the example in Figure 1, ( j,θb) = (4,θ1) belongs to
V4,2 as j = i = 4 and i1 = 1, which corresponds to the upper right corner of Table 1. Proceeding similarly,
one can show thatV4,1 = {(2,θ1),(2,θ2),(2,θ3),(3,θ1),(3,θ2),(3,θ3),(4,θ4),(5,θ4),(6,θ4),(7,θ4)},V4,2 =
{(4,θ1),(4,θ2),(4,θ3)}, and V4,0 = Ξ\(V4,1∪V4,2).

From the definition of Ai, any I ∈Ai is a subset of Ξ, and thus can be written as I = I0∪ I1∪ I2, where
I` := I∩Vi,` for `= 0,1,2. As elements in Vi,0 do not cause d̃i,n to be smaller than di when misspecified,
any I ∈Ai such that I0 6= /0 can be replaced with I1∪ I2 without affecting the value of LDRi,i∗ . Note that
|I1|+2|I2| is equal to (di− d̃i,n)

+ when all solution-parameter pairs in I1∪ I2 are misspecified, while at any
parameter not included in the pairs in I1∪ I2, the conditional optimum is correctly specified. Therefore,
|I1|+2|I2| ≥ di is a necessary condition for I to be in Ai. Now, for any I, the lower bound on

∑( j,θb)∈I1
G j(θb)+∑( j,θb)∈I2

G j(θb)

can be obtained by replacing G j(θb),∀( j,θb) ∈ I1 with min( j,θb)∈Vi,1 G j(θb) and G j(θb),∀( j,θb) ∈ I2 with
min( j,θb)∈Vi,2 G j(θb), respectively. Expanding this argument and exploiting the necessary condition mentioned
above, we can further obtain an easy-to-compute lower bound on LDRi,i∗ as follows.

Proposition 1 Let LDRi,i∗ := di min
{

min( j,θb)∈Vi,1 G j(θb),
1
2 min( j,θb)∈Vi,2 G j(θb)

}
. Then, LDRi,i∗ ≥ LDRi,i∗ .

Intuitively, a correct specification of an element in Ii,2 is more important since misspecifying it reduces di
twice as much as misspecifying an element in Ii,1. Our lower bound reflects this intuition by giving a half
weight to Vi,2. Accordingly, an approximate version of (10) is formulated as below.

LDR∗ := max
ααα

min
i6=i∗

LDRi,i∗ subject to
k

∑
i=1

B

∑
b=1

αi(θb) = 1,αi(θb)≥ 0. (11)

Proposition 1 implies that LDR∗ ≤ LDR∗. Since (11) is a convex program, the Karush-Kuhn-Tucker
conditions provide simple and interpretable optimality conditions for (11) as stated in Theorem 2.
Theorem 2 (Balance conditions for (11)) Any allocation rule ααα = {αi(θb)}1≤i≤k,1≤b≤B is optimal for (11),
if and only if, ααα satisfies the following system of equations;

• αi∗(θb) = 0 for all b such that ib 6= i∗.
• (Pairwise balance condition) For all (i,θb),( j,θb′) ∈ Ξ,

Wi(θb)Gi(θb) =Wj(θb′)G j(θb′), (12)

where Wi(θb) is defined as

Wi(θb) =

{
min

(
min j 6=i∗ d j,

di
2

)
, if ib = i∗

di, if ib 6= i∗
. (13)
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• (Global balance condition) For all 1≤ b≤ B,
α2

ib(θb)

λ 2
ib(θb)

= ∑i6=ib
α2

i (θb)

λ 2
i (θb)

.

The first condition states that the asymptotically optimal sampling ratio for i∗ at any parameter that
does not have i∗ as its conditional optimum is 0. This may be surprising as the optimal sampling ratios for
the classical R&S problem obtained by solving (6) are strictly positive (Glynn and Juneja 2004). This stark
difference has implications in our problem setting. Suppose i∗ is correctly identified as the conditional
optimum at all θb such that ib = i∗. Then, for other θbs, it only matters whether the best among the solutions
other than i∗ is correctly identified not to advantage i 6= i∗ when determining the most probable best. Even
if i∗ is incorrectly identified as the conditional optimum at those θbs, correct selection still occurs.

The pairwise balance condition provides the weight Wi(θb) of Gi(θb) at each (i,θb), which we refer to
as balance weight. The balance weight for each Gi(θb) depends on the dominance factor, di. The smaller
di is, the more important to simulate solution i is, since it is more likely to outperform i∗ due to simulation
error. Also, notice that Wi(θb) is smaller for θb whose conditional optimum is i∗ as it is important to
correctly find the conditional optimum at such θb to make correct selection. The following k×B matrix
shows the balance weights computed according to (13) for the example in Figure 1

W :=


∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0.5 0.5 0.5 ∞ ∞ 1 1 1
0.5 0.5 0.5 1 1 ∞ ∞ 1
1 1 1 2 2 2 2 ∞

 .
We fill the elements corresponding to (ib,θb) and (i∗,θb) for all b with ∞ since these pairs are not included
in Ξ, and thus do not appear in (12).

Let G be a k×B matrix whose (i,b)th entry corresponds to Gi(θb). For two matrices A and B with
the same size, the Hadamard product, A◦B, is defined as (A◦B)i j = Ai jBi j. Condition (12) implies that
the elements of W◦G corresponding to all (i,θb) ∈ Ξ are identical.

Lastly, the global balance condition ensures that the conditional best at each θb is correctly identified.

6 SEQUENTIAL LEARNING PROCEDURE

Since yi(θ) is unknown in advance, we need a dynamic sampling policy that simultaneously learns the mean
surface and optimal allocation. We present a novel sequential sampling algorithm based on the balance
weights derived in Theorem 2 in this section.

Given En, we approximate i∗ with i∗n, and LDRi,i∗ with

LDRi,i∗n(En) = di,n min
{

2min( j,θb)∈V̂i,1
G j,n(θb),

1
2

min( j,θb)∈V̂i,2
G j,n(θb)

}
,

respectively. Note that V̂i,` is a plug-in version of Vi,` constructed in the same way as Vi,` by replacing
i∗ with i∗n, and ib with ibn for all b, respectively, from Table 1. The quantities, Gi,n and di,n, are plug-in
versions of Gi and di, respectively, defined by replacing yi(θb), αi(θ), ib, and i∗ with µi,n(θb), αi,n(θ), ibn,
and i∗n, respectively, which are all En-measurable. Similarly, we denote the plug-in versions of W and G
by Wn and Gn, respectively. All plug-in quantities are constructed based on simulation results up to the
nth replication, and therefore En-measurable. Moreover, these plug-in quantities depend on the sampling
policy deployed up to the nth replication, although we do not explicitly denote the dependence due to
notational convenience. Recall that we denote the fraction of replications allocated to (i,θb) up to the nth
replication by αi,n(θb). The following proposition stipulates sufficient conditions for {αi,n(θb)} to satisfy
in order for the resulting LDRi,i∗n(En) to converge to LDRi,i∗ for each i as n increases.

Proposition 2 For all 1≤ i≤ k,1≤ b≤ B, suppose Nn
i (θb) = nαi,n(θb)→∞ and αi,n(θb)→ αi(θb) almost

surely. Then, |LDRi,i∗−LDRi,i∗n(En)| → 0 as n→ ∞ with probability 1.
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Thanks to Proposition 2, it suffices to find a dynamic sampling policy satisfying Nn
i (θb)→ ∞ and

αi,n(θb)→ αi(θb) almost surely to achieve LDR∗ in the limit. To accomplish this, we exploit the balance
conditions in Theorem 2. Namely, we find the solution-parameter pair corresponding to the smallest entry
of Wn ◦Gn, say (i,θb), and select either (i,θb) or (ibn,θb) to simulate based on the global balance condition.

Before we present our main algorithm, we briefly explain how to handle a case when there is a tie in
identifying i∗n. Although we only consider the case when i∗ is unique, i∗n may not be for finite n. Let us
visit the example in Figure 1 once again for exposition. Suppose after sampling n solution-parameter pairs,
i6 is incorrectly specified to be solution 2 instead of solution 3 while all other ibs are selected correctly.
This scenario is depicted in Figure 2, where ibn for all θb are boxed. As a result, Solutions 1 and 2 are
tied given En. Suppose a tie-breaking rule (e.g. random selection) is applied and solution 1 is picked as
i∗n. Then, the resulting balance weight matrix is

Wn :=


∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

0 0 0 ∞ ∞ ∞ 0 0
0 0 0 2 2 2 ∞ 2
0 0 0 2 2 2 2 ∞

 .
Notice that some balance weights are zero since d2 = 0. As a consequence, if we choose the next solution-
parameter pair to simulate by finding the smallest element of Wn ◦Gn, then several elements of the matrix
have zero entries making them indistinguishable from each other. To resolve such a deadlock, we modify
Wn by substituting zeroes with ones and non-zeros with ∞ should a tie occurs when determining i∗n. We
describe the intuition for this modification in the following.

One of the reasons for the tie to occur is when i∗n 6= i∗. In the example discussed above, both i∗n and i∗

happen to be Solution 1, however, this is not always the case. Assuming i∗n 6= i∗, the tie can be broken by
correcting a misspecification at θb where i∗n is selected as the conditional optimum or at a θb where a tied
solution is deemed (conditional) suboptimal. This strategy corresponds to sampling a solution-parameter
pair among those with 0 entries in Wn. If the sampling algorithm allocates infinitely many replications to
all (i,θb), the strong law of large numbers implies that the event of tie happens only finitely many times
with probability 1, so the modification to Wn does not affect the limiting behavior of our algorithm.

Based on these observations, we propose Algorithm 1. Algorithm 1 is easy to implement as we only
need to compute Gn, Wn, and (Nn

i (θb)/λi(θb))
2 at each iteration. We cannot enjoy this convenience with

(10) due to complexity of Ai.
We conjecture that αi,n(θb) allocated by Algorithm 1 converges to αi(θb) satisfying Theorem 2 as

n increases, which is the second part of the sufficient condition for Proposition 2 to hold. However,
Algorithm 1 cannot guarantee the first part of the condition: Nn

i (θb)→∞ for all (i,θb). To see why, let us
define Θ∗ :=

{
θb : i∗ = ib

}
. Algorithm 1 stops assigning replications to

{
(i∗n,θb) : ibn 6= i∗n

}
once it correctly

specifies the minimum number of
{

b : i∗ = ib
}

needed to distinguish i∗n from the second best. For instance,
suppose that B = 50, |Θ∗|= 15, and the second best solution is the conditional optima at 10 θbs. Then, it

Figure 2: The same example as in Figure 1. The solutions in boxes are the selected conditional optima
given a sample path.
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Algorithm 1 Rate Optimal Sequential Sampling Algorithm

1: Warm-start by allocating n0 simulation budgets for all (i,θb). Let n = n0kB and update µi,n(θb) and
Gi,n(θb).

2: while simulation budget remains do
3: Form a balance weight matrix Wn and a LDR matrix Gn. Find (i,θb) = argminWn ◦Gn.

4: if
(

Nn
ib(θb)/λibn(θb)

)2
< ∑ j 6=ibn

(
Nn

j (θ)/λ j(θb)
)2

then
5: Run a replication at (ibn,θb).
6: else
7: Run a replication at (i,θb).
8: end if
9: Update µi,n(θb),Gi,n(θb) and di,n at (i,θb). Update V̂i,1 and V̂i,2 at all i. Let n← n+1.

10: end while

is enough to correctly specify i∗ as the conditional optima at 13 out of 15 parameters in Θ∗ to make correct
selection provided that the conditional optima are correctly specified at all other parameters not in Θ∗.
Then, even if at 2 remaining parameters in Θ∗ the second best is incorrectly specified as the conditional
optima, correct selection occurs.

As this behavior may impede performance of the algorithm, we modify Algorithm 1 to guarantee
that Nn

i∗(θb) increases sublinearly in n for all (i∗,θb), ib /∈ Θ∗, which in turn results in Nn
i∗(θb)→ ∞ and

αi∗,n(θb)→ 0, the exact sufficient condition of Proposition 2 Algorithm 1 fails to achieve.
The modification involves a notable sampling criterion, expected improvement (EI), first introduced

by Jones et al. (1998). The information valuation function is defined as f (x) = xΦ(x)+φ(x), where φ

and Φ are probability density and cumulative distribution functions of standard normal random variable,
respectively. Given θb, the EI of (i,θb) with respect to (ibn,θb), is computed as

νi,n(θb) = E
[(

µibn,n(θb)−ηi(θb)
)+ ∣∣∣∣En

]
= σi,n(θb) f

(
−
|µi,n(θb)−µibn,n(θb)|

σi,n(θb)

)
.

The EI has been widely applied in Bayesian optimization and best-arm identification problems. For classical
R&S, Ryzhov (2016) shows that sequentially sampling the largest-EI solution at each iteration allocates
simulation budget to a suboptimal solution at the rate of O(logn) as the total budget n increases. Although
this behavior leads to a suboptimal LDR for the traditional R&S problem, it is precisely what we need to
guarantee for all (i∗,θb), ib /∈Θ∗ in our problem. Algorithm 2 below presents our modification.

Algorithm 2 Modified Rate Optimal Sequential Sampling Algorithm

1: Choose (i,θb) according to Algorithm 1 without simulating it.
2: if ibn 6= i∗n and αibn,n(θb)

1/2νibn,n(θb)< νi∗n,n(θb) then
3: Run a replication at (i∗n,θb).
4: else
5: Run a replication at (i,θb).
6: end if

Once (i,θb) is selected in Step 1, Step 2 compares the (scaled) EI of (ibn,θb) with the EI of (i∗n,θb) to
select the next pair to simulate. If it turns out the EI of (i∗n,θb) is relatively small compared to (ibn,θb),
then we simulate (i∗n,θb). Otherwise, we simulate (i,θb) selected in Step 1. Notice that we slightly
modify the EI criterion for (ibn,θb) by multiplying αibn,n(θb)

1/2 to νibn,n(θb). Without the multiplier, we have
Nn

i∗n
(θb) = O(logNn

ibn
(θb)) following the result in Ryzhov (2016) as Nn

ibn
(θb) is the amount allocated to the

conditional best at θb. If k and B are large, then Nibn(θb) becomes small for finite n. As a result, Step 3 of
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Algorithm 2 rarely occurs. With the multiplier, we have

αibn,n(θb)
1/2

νibn,n(θb) =
(

Nn
ibn
(θb)/n

)1/2
νibn,n(θb) = n−1/2

λibn(θb) f (0). (14)

Note that the right-hand side of (14) would be the EI of (ibn,θb) if n replications were allocated to (ibn,θb).
Therefore, our modification makes Algorithm 2 allocate the effort to (i∗n,θb) as if n replications are allocated
to (ibn,θb). As a result, we expect Step 3 to occur at the rate of O(logn) as desired.

Asymptotic properties of Algorithms 1 and 2 remain to be investigated further in future research.

7 EMPIRICAL ANALYSIS

In this section, we present a numerical performance analysis using a synthetic example with k = 10 and
B = 50. We compare Algorithms 1 and 2 with two existing dynamic sampling policies described below.

• Equal allocation (EA) : This policy allocates the simulation budget uniformly over {(i,θb)}.
• Contextual R&S allocation (C-OCBA) : Proposed by Gao et al. (2019), it aims to maximize the

worst-case probability of correct selection (worst-case PCS over all contexts), which is defined as
minb P(ibn = ib) for our problem if θbs represent contexts. Finding ib for each b is equally important
under this framework.

We assume λ 2
i (θb) = 52 for all (i,θb). For each θb, we fix the conditional optimum to be

ib =


j, if 5 j−4≤ b≤ 5 j, for some 1≤ j ≤ 7,
8, if 36≤ b≤ 41,
10, if 42≤ b≤ 50.

.

This implies i∗ = 10 as its posterior probability of being optimal is 9/50 = 0.18. All solutions except
for solution 9 is a conditional optimum at some θb. For each 1 ≤ b ≤ 50, we set yib(θb) = 1 and fill in
{yi(θb)}1≤i≤k,i6=ib randomly without replacement from {2,3, · · · ,k} for each macro run. In Algorithms 1
and 2, we apply the smallest index rule as the tie-breaking rule; this makes i∗ never selected as i∗n when
tied.

Figure 3 presents empirical performances of four algorithms we compare. All results are averaged from
10,000 macro runs and the initial sample size, n0, is set to 5 for all algorithms. The left-hand side panel of
Figure 3 shows that the logarithmic PFS decreases as the simulation budget increases for each algorithm.
Notice that our algorithms outperform other methods; EI slightly improves the convergence rate.

The right-hand side panel of Figure 3 displays the number of parameters at which i∗n = i∗ is selected as the
conditional optima; we have |Θ∗|= 9 for this problem. Notice that C-OCBA outperforms Algorithms 1 and 2
in this measure. Recall that the goal of our algorithm is to achieve the faster convergence of PCS. For this
purpose, misspecifying ib for one b is allowed since the second best (i = 8) is the conditional optimum at
6 parameters, i.e., min j 6=i∗ d j = 3. For this reason, Algorithm 1 tends not to characterize all conditional
optima correctly once it correctly specifies 8 conditional optima.

We ran longer simulations to observe the long-run behavior of Algorithm 1 and 2 in estimating Θ∗ as
presented in Figure 4. As we conjectured, for Algorithm 1, the size of estimated Θ∗ converges to 8. In
contrast, for Algorithm 2, the same statistic inches toward 9 albeit more slowly than C-OCBA. This result
confirms that Algorithm 2 serves the exact purpose it is designed for; that is, to ensure increasing number
of replications are allocated to (i∗n,θb) at all θb in Θ∗.
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Figure 3: The logarithimic PFS (left) and the estimated size of Θ∗ (right) averaged over 10000 macro runs.
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Figure 4: Long-run behaviors of Algorithms 1 and 2 in estimating Θ∗.
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