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ABSTRACT

We consider a ranking and selection problem whose configuration depends on a common input model
estimated from finite real-world observations. To find a solution robust to estimation error in the input
model, we introduce a new concept of robust optimality: the most probable best. Taking the Bayesian view,
the most probable best is defined as the solution whose posterior probability of being the best is the largest
given the real-world data. Focusing on the case where the posterior on the input model has finite support, we
study the large deviation rate of the probability of incorrectly selecting the most probable best and formulate
an optimal computing budget allocation (OCBA) scheme for this problem. We further approximate the
OCBA problem to obtain a simple and interpretable budget allocation rule and propose sequential learning
algorithms. A numerical study demonstrates good performances of the proposed algorithms.

1 INTRODUCTION

When randomness in a simulation model is driven by input models estimated from finite real-world data, the
simulation output is subject to uncertainty caused by estimation error in the input models. This additional
uncertainty, distinguished from inherent stochastic simulation error, is often referred to as input uncertainty.
If the simulation model is applied to find an optimal design or policy for the target real-world system, then
input uncertainty must be accounted for the optimization procedure to make a correct statistical inference
on the real word performance of a selected solution.

Several optimization via simulation frameworks have been proposed to account for input uncertainty,
which we categorize into three groups according to their treatments of input uncertainty. The first is to apply
a risk measure with respect to input model estimation error to the simulation output mean and optimize
it; Corlu and Biller (2015), Wu and Zhou (2017), Pearce and Branke (2017), Ungredda et al. (2020) use a
risk-neutral measure (mean) and Xie and Zhou (2015), Wu et al. (2018), Zhu et al. (2020) explore value
at risk or conditional value at risk. The second category focuses on inference to provide a probability
guarantee that the best solution chosen under the current input model is in fact optimal; Corlu and Biller
(2013), Song et al. (2015), Song and Nelson (2019) take this view, however, point out that when estimation
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error of input model is large, the desired probability guarantee may not be attained. The last category takes
the distributionally robust optimization approach, which first assumes an ambiguity set on the input model,
finds the worst-case input model for each solution within the ambiguity set, and selects the solution with
the best worst-case performance; Gao et al. (2017), Fan et al. (2020) fall under this category.

In this work, we consider a ranking and selection (R&S) problem under input uncertainty focusing on
the case when all & solutions in comparison share a common input model estimated from data. Specifically,
we take the parametric Bayesian approach to input modeling, thus uncertainty about the input model is
captured by the posterior distribution on the input model parameters. Because the simulation output mean is
a functional of the input model, the configuration of the R&S problem (and its optimum, correspondingly)
depends on the input model, which itself is uncertain. To find a solution with robust performance, we
define a new concept of robust optimality, the most probable best, which is the solution with the largest
posterior probability of being the best.

Our work is related to the contextual R&S studied by Gao et al. (2019), Li et al. (2020), and Shen et al.
(2021). Personalized decision making is an example of contextual R&S problems in which the problem
configuration depends on the covariates of an individual. Thus, their objective is to learn the best policies
under all covariate values equitably, which differs from finding the most probable best.

To devise a R&S algorithm to select the most probable best, we study the large deviation property
of the probability of incorrectly selecting the most probable best focusing on the case when the posterior
distribution of the input parameter is approximated with an empirical distribution. We formulate the optimal
computing budget allocation (OCBA) problem to minimize the asymptotic probability of incorrect selection
based on the large deviation analysis. We further approximate the OCBA problem to obtain a simple and
interpretable budget allocation rule. Since this rule is based on unknown quantities of the problem, we
propose sequential learning algorithms that aim to achieve an optimal allocation in the limit.

The remainder of the paper is organized as follows. In Section 2, we present some background on
the Bayesian statistical models. Section 3 formally defines our problem of interest. Section 4 presents
the OCBA formulation for our problem, which is then approximated to provide easy-to-compute balance
conditions in Section 5. Two sequential learning algorithms are introduced and discussed in Section 6
followed by numerical demonstrations in Section 7. Proofs of all theorems and propositions are omitted
from the paper due to space limit.

2 PRELIMINARIES
Consider the following R&S problem:
ig 1= argminlSiSkE[Yi(Gc)] , €))

where Y;(0¢) is the simulation output of the ith solution whose inputs are generated from a parametric
input model fy.. We assume iy is unique.

Typically in real-world applications, 8¢ is unknown and must be estimated from observations. We
assume that size-m i.i.d. observations 2, :={Z,,Z,,--- ,Z,,} are collected from fy.. Taking the Bayesian
approach, uncertainty about 8¢ can be modeled with 0 that has prior distribution 7. Given 2, its posterior

is derived as m,,(0) = %, where L,,(0) is the likelihood function of Z,.

Let y;(0) := E[Y;(6)|6] be the mean response at solution i conditional on realized 6. Note that y;(0)
can only be estimated via simulation given 6. We introduce stochastic process 1;(6) to model uncertainty
about y;(0). Instead of taking a purely Bayesian stance, we view y;(0) to be fixed and adopt 1;(6) to
simply assist the learning process of y;(0). The following normal-normal model for 1;(6) and Y;(0) is
adapted as in Ryzhov (2016).

Yi(6) ~ N(1:i(6),A7(6)),  mi(8) ~ N(1io(6),07(6)), 2

where A4;(0) is the simulation error variance, and p;(6) and 0'30(9) are mean and variance of the prior
distribution of 1;(0), respectively. Model (2) assumes that the simulation error at each (i, 8) pair is normally
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distributed. For non-normal simulation error, this assumption can be justified by batching (Kim and Nelson
2006). Furthermore, we assume A;(6) to be known; for an unknown A;(6), a normal-gamma model can
be applied; see for instance, Section 5 in Ryzhov (2016).

Suppose n replications have been made under some sampling policy. We denote the number of replications
allocated to (i, 0) by Nj'(8). Conditional on the simulation outputs, ¥;1(6),Y2(0), ..., Y1) (0), at (i,0),
the posterior mean and variance, {i;,(6) and 67,(6), of 1;(6) are updated as

=

-1
N (O 0(6 N (O
0= (o =550 ) + ma®)=h0) (B0 g EEON®). O
Assuming noninformative prior 61%0(9) =ooforall (i,0), (3) becomes an(e) =A?(0)/N™"(6) and y; ,(0) =

er\z(le) Y;(0)/N!"(0). Further, let &, denote the information set consisting of n simulation outputs.

3 PROBLEM FORMULATION

Song and Nelson (2019) point out that solving the plug-in version of (1) in which 6¢ is replaced with 6
introduces input model risk as the plug-in optimum is suboptimal to (1) in general. Instead, our goal is to
solve the following problem:

i* (M) == argmax ;< Pz, (yi(6) —min;;y;(0) < §) 4)

where 6 > 0 is an error tolerance. Formulation (4) aims to find a solution that has the highest probability
of being §-optimal considering all realizations of 6 from the posterior density 7,,. Clearly, i*(m,,) may fail
to be equal to iy with finite 2. Nevertheless, with a limited amount of data, we argue that our formulation
is robust to input uncertainty as it maximizes the posterior probability of selecting a correct §-optimum.

In this paper, we focus on the case when 6 = 0; the case of 6 > 0 is currently under investigation. In
the former, (4) returns a solution that has the highest probability of being a minimizer with respect to the
posterior density 7,,. Thus, we refer to i*(7,,) as the most probable best under T,,.

The definition of the most probable best exploits the common input data (CID) effect, which refers to
the dependence among y;(0),y2(0),...,yx(0) caused by common 6 estimated from data (Song and Nelson
2019). If the CID effect induces positive correlations among the conditional means, pairwise comparisons
among them become sharper, which increases the posterior probability of i*(7,) being optimal.

As a first step, we approximate the posterior distribution, 7,,(6), by an empirical distribution constructed
from size B sample {6, --,0p} ~ m,(0). Then, (4) can be rewritten as

, 1 & . 1 &
i*(m,) = argmax — Z 14i(6p) =miny;(6) p = argmax — Z 1 {y,'(G;,) = yib(ﬂ"l)(Ob)} , 5)
i B = J i Bb:l

1 ]

where i*(7,,) is a conditional optimum at 8, i.e., i’(7,) := argmin,y;(6,). Since we fix the input data
size and its corresponding posterior, we omit 7, for notational convenience in the remainder of the paper,
ie., i* =i*(m,) and i’ = i®(m,,). Further, i* and i® for each @), are assumed to be unique to simplify the
analysis.

Problem (5) has a nested structure, which distinguishes it from the classical R&S or the contextual
R&S problems. At the inner level, the goal is to correctly identify i” at each b. At the outer level, i*
is determined by aggregating the inner level decisions. We present a high-level algorithmic scheme for
selecting the most probable best in the following page.

The goal of this paper is to develop a novel sampling strategy to be adopted in Step 4 of the algorithm
above so that i* can be learned efficiently. We measure efficiency by computing the probability of correct
selection (PCS), P(CS) = P(i}, = i*), or equivalently, by computing the probability of false selection (PFS),
P(FS) :=P(i, #i") = 1 —P(CS). Many R&S algorithms aim to provide a static or dynamic sampling
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Selection of Most Probable Best
1: for n=0,1,2,--- do
2: Inner problem : For each b, find i% := argmin; y; ,(6p).

3:  Outer problem : Find i; = argmax; é Y2 1 {‘LL,'?"(G;,) = uigﬁn(e,,)} .

4:  Make the next sampling decision (i, 6,) depending on some criteria given current information.
5:  Run simulation at (i, 6,) and update the belief according to the update rule (3).

6: end for

framework that maximizes the PCS (or minimize the PFS). However, this objective does not have a closed-
form expression in general. To overcome this issue, we discuss a large deviation perspective for our problem
in Section 4.

4 OPTIMAL COMPUTING BUDGET ALLOCATION

The false selection event becomes a rare event as simulation budget n increases. The OCBA scheme, first
proposed by Chen et al. (2000), aims to find the optimal sampling rule that minimizes the PFS. Using the
large deviation theory, Glynn and Juneja (2004) further show that

1
lim ——1ogP(FS) = G(a), ifo; >0,1<i<k
n—o n
for some function G(-) where @ = (o, 2, - - - , &) is a vector of fixed sampling proportions at the k solutions.
The quantity G(&) is often referred to as the large deviation rate (LDR) of PFS. Thus, maximizing G(a)
is equivalent to minimizing PFS. Hence, OCBA can be formulated as the following program.

k

max G(a) subject to Z =1 o;>01<i<k. (6)
a=(a,,0) i=1

In general, the rate function G depends on unknown quantities, which makes it difficult to solve (6)
exactly. Instead, many algorithms that learn G sequentially from sample statistics have been proposed in the
hope to achieve near-optimal sampling ratios. For instance, we refer the readers to Pasupathy et al. (2014),
Shin et al. (2018), and Chen and Ryzhov (2019) that take this approach in solving their own problems.

In the following, we establish large deviation theory for Problem (5) and an optimal sampling strategy
based on the theory. We define the following quantities for further development:

_ ._ (yi(6) =y (65))* b
Gi(6y) = 2(z’iz(eb)/ai(eb)+Ai%(9b)/aib(9b))7 i#0,

di = Y, {r=th-y, 1{i=i},

The quantity G;(6,) is the LDR of false selection under Model (2) (Glynn and Juneja 2004) for the
conditional problem given 6,; if 0;,,(6) := N(6y)/n — a;(6), then we have lim,_,o. — 1 log P(; 1(6) <
Uy ,(60)) = Gi(6p). The d; measures dominance of i* over the ith solution.

~One can easily observe that max; P(i = i) < P(i} #i*) < ¥, P(if = i). This directly implies that

NP | . . NI .
h}gl;lf—;logP(ln #£i*) = l;-gléli?LDRivi*’ where LDR;; = h}gl;lf—;logP(ln =1i). 7

In words, (7) implies that characterizing the target LDR reduces to finding the LDR of marginal false
selection for each i. The marginal false selection, {i* =i}, occurs when some i # i is selected as the
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conditional optimum at some 6;,. We define a collection of sets of solution-parameter pairs for each i 7 i*:

o = {I C Itot’i performs equally or better than i* if V(j,6,) € I, j is misspecified to be i

while at any 6, not included in /, ¥ is specified correctly}, ®)

where ot == {(i,0p)|1 <i<k,1 <b < B} is the total index set. Clearly, the set <7 is a subset of the power
set 2%t Since we assume the conditional optimum at each 6, to be unique, each I € <7 may include at
most one solution-6), pair for each b. In fact, such 27 is not unique; in the subsequent development, we
define .7 to be the largest set that satisfies (8). Note that |.2Z| is upper bounded by |2%t| = 2% (loosely).

To illustrate .7, consider the example in Figure 1, where k = 4 and B = 8 and i* is marked with a
solid circle for 1 < b < 8. Clearly, i* = 1. As an example, let us focus on 7. Suppose i’ =4 and i = i*
for all b # 3, i.e., the solution 4 is incorrectly selected as the optimum at 83 while the other conditional
optima are correctly specified after n simulation runs. Then, solutions 1 and 4 have the same performance
measure values leading to an incorrect selection. Therefore, {(4,603)} € <%. Similarly, one can confirm
that {(3,0;),(3,6,)} and {(4,64),(4,65)} are elements of <7. Of course, these are only a few examples;
27, contains more elements.

02 03
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Figure 1: An example with k =4 and B = 8. Conditional optima are marked with solid circles.

The following theorem stipulates the LDR of PFS for any fixed sampling scheme o.
Theorem 1 Given &, liminf,_,.. f% logP {iy # i*} = min;; LDR; j-, where

LDRI'J'* = minledi Z(j,eb)el G](Gb) (9)

Theorem 1 shows that the LDR of marginal false selection is determined by the slowest rate at which i # i*
is falsely selected to be optimum among all possible misspecification cases in .<%. Therefore, constructing
7; and finding the corresponding slowest rate for each i are central parts to determining the LDR of false
selection for Problem (5). We close this section by presenting the OCBA framework for Problem (5):

k B

LDR* := mgx;r;inLDRi,i* subejet to Y Y 04(6) = 1,06(6,) > 0,1 <i<k. (10)
7 i=1b=1

5 APPROXIMATE SOLUTION TO OCBA FORMULATION

Computational complexity of characterizing .27 increases combinatorially in k and B. To derive LDR, ;-,
however, it is not necessary to find o7 exactly. To see this, consider J; and J, € 7 such that J; C J,. Then,
LDR; ;- remains unchanged when o7 is replaced with o7 — {J,} in (9). In other words, we may remove all
elements of .o7; that are supersets of other elements without affecting the value of LDR; ;+. This approach is
top-down, i.e., it can be carried out once .7 is fully characterized. Nevertheless, this observation motivates
us to devise a computationally efficient bottom-up method to approximate LDR; ;- closely without fully
characterizing 7.
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Table 1: Five disjoint subsets of Z; each subset belongs to V;, with the corresponding value of /.

=i A0 &£ =i
j=i B (=1 =2

To this end, suppose we define £ = {(j,6,) : j #i* and j# i’ at 6}, and we have arealized sample mean
Uin(6p). In words, = includes all solution-parameter pairs, where the solution is neither i* nor the conditional
best at the paired parameter. For i # i*, let V; ; be a subset of = such that (j, 6),) € V; ¢ if and only if i = jand

i,’?[ =it resultsin £ = (di— d:-ﬂ)+ for nonnegative integer £, where J,n = Zle 1 {i* = 1ﬁ} — Zle 1 {i = 12} is
the estimated dominance of i* over i. Then, simple arithmetic shows that {V; o, Vi 1,Vi2} constitutes a partition
of E. This is evident in Table 1, which classifies all (j, 6;) in Z into five disjoint subsets and each subset is
marked with the corresponding V; ¢ it belongs to. For the example in Figure 1, (j,6,) = (4, 6;) belongs to
Vys as j=i=4and i' = 1, which corresponds to the upper right corner of Table 1. Proceeding similarly,
one can show thatV4,1 = {(2, 91), (2, 92), (2, 93), (3, 91), (3, 92), (3, 93), (4, 94), (5, 94), (6, 94), (7, 94)},‘/4’2 =
{(4, 91), (4, 92), (4, 93)}, and V4y() = E\(V471 U V472).

From the definition of %, any I € .7 is a subset of E, and thus can be written as I = I Ul U, where
Iy :==1NV;, for £=0,1,2. As elements in V;o do not cause J,n to be smaller than d; when misspecified,
any I € «7; such that Iy # 0 can be replaced with /; UL, without affecting the value of LDR, ;. Note that
|I1|+2|L| is equal to (d; — d:,,)Jr when all solution-parameter pairs in I; Ul are misspecified, while at any
parameter not included in the pairs in I; UL, the conditional optimum is correctly specified. Therefore,
|I1| +2|L,| > d; is a necessary condition for / to be in <. Now, for any /, the lower bound on

Y i00en Gi(0) + X 0c, Gi(B6)

can be obtained by replacing G;(6,),V(j, 6,) € I with min(; g,)cv,, G;(65) and G;(6,),V(j,65) € L with
min(; g,)cv,, G;(0p), respectively. Expanding this argument and exploiting the necessary condition mentioned
above, we can further obtain an easy-to-compute lower bound on LDR; ;+ as follows.

Proposition 1 Let LDR; ;. := d;min {min(j,eb)ev,-,l Gi(6p), %min(j’@b)evi,2 Gj(Gb)}. Then, LDR; ;+ > LDR, ;.

Intuitively, a correct specification of an element in /;; is more important since misspecifying it reduces d;
twice as much as misspecifying an element in /; ;. Our lower bound reflects this intuition by giving a half
weight to V;>. Accordingly, an approximate version of (10) is formulated as below.

k B
LDR" := mgxn;inLDRi # subject to Z Z 0;(6p) =1,0,(6) > 0. (11)
i ’ i=1b=1

Proposition 1 implies that LDR* < LDR*. Since (11) is a convex program, the Karush-Kuhn-Tucker
conditions provide simple and interpretable optimality conditions for (11) as stated in Theorem 2.

Theorem 2 (Balance conditions for (11)) Any allocation rule & = {¢(6) }, <i<k.1<p<p 18 optimal for (11),
if and only if, & satisfies the following system of equations; /

*  :(6,) =0 for all b such that i® # i*.
e  (Pairwise balance condition) For all (i,6}),(j,0y) € &,

Wi(65)Gi(6,) = W;(6)G(6y), (12)
where W;(6) is defined as
min (minjd;, %), if = 7°

. (13)
d:, if i £ i

Wi(6p) = {
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a3 (6, 2(6,
*  (Global balance condition) For all 1 <5 <B, 72229:; = Lizp j:zégz;

The first condition states that the asymptotically optimal sampling ratio for i* at any parameter that
does not have i* as its conditional optimum is 0. This may be surprising as the optimal sampling ratios for
the classical R&S problem obtained by solving (6) are strictly positive (Glynn and Juneja 2004). This stark
difference has implications in our problem setting. Suppose i* is correctly identified as the conditional
optimum at all 6, such that i = i*. Then, for other s, it only matters whether the best among the solutions
other than * is correctly identified not to advantage i # i* when determining the most probable best. Even
if i* is incorrectly identified as the conditional optimum at those 65, correct selection still occurs.

The pairwise balance condition provides the weight W;(6;) of G;(6;) at each (i, 8,), which we refer to
as balance weight. The balance weight for each G;(6),) depends on the dominance factor, d;. The smaller
d; is, the more important to simulate solution i is, since it is more likely to outperform i* due to simulation
error. Also, notice that W;(6,) is smaller for 6, whose conditional optimum is i* as it is important to
correctly find the conditional optimum at such 6, to make correct selection. The following k x B matrix
shows the balance weights computed according to (13) for the example in Figure 1

05 05 05 o o 1 1 1
W= 05 05 05 1 1 o0 oo 1
1 1 1 2 2 2 o

2
We fill the elements corresponding to (i®, 6),) and (i*, 6),) for all b with oo since these pairs are not included
in E, and thus do not appear in (12).

Let G be a k x B matrix whose (i,b)th entry corresponds to G;(6). For two matrices A and B with
the same size, the Hadamard product, Ao B, is defined as (A oB);; = A;;B;;. Condition (12) implies that
the elements of Wo G corresponding to all (,6,) € E are identical.

Lastly, the global balance condition ensures that the conditional best at each 6, is correctly identified.

6 SEQUENTIAL LEARNING PROCEDURE

Since y;(0) is unknown in advance, we need a dynamic sampling policy that simultaneously learns the mean
surface and optimal allocation. We present a novel sequential sampling algorithm based on the balance
weights derived in Theorem 2 in this section.

Given &,, we approximate i* with 7;, and LDR, ;. with

. . I .
Mzﬁz’;ﬁ(@@n) = d,-,,mm{Zmln(j?@b)d,i.l Gj’”(eb)’imln(jﬂb)evi,z G,-,n(e,,)},

respectively. Note that V,[ is a plug-in version of V;, constructed in the same way as V;, by replacing
i* with i*, and ## with i for all b, respectively, from Table 1. The quantities, G, and d,,, are plug-in
versions of G; and d;, respectively, defined by replacing y;(6,), a;(8), i*, and i* with p; ,(6p), & ,(8), i,
and i, respectively, which are all &,-measurable. Similarly, we denote the plug-in versions of W and G
by W, and G, respectively. All plug-in quantities are constructed based on simulation results up to the
nth replication, and therefore &,-measurable. Moreover, these plug-in quantities depend on the sampling
policy deployed up to the nth replication, although we do not explicitly denote the dependence due to
notational convenience. Recall that we denote the fraction of replications allocated to (i, 6)) up to the nth
replication by ¢; ,(6)). The following proposition stipulates sufficient conditions for {a; ,(6)} to satisfy

in order for the resulting LDR, ;- (&,) to converge to LDR, ;. for each i as n increases.

Proposition 2 For all 1 <i<k,1<b <B, suppose N (6,) =nct; ,(6,) — o and 0; ,(6,) — ¢;(6) almost
surely. Then, |LDR,; ;- — LDR, ;-(&,)| — 0 as n — oo with probability 1.
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Thanks to Proposition 2, it suffices to find a dynamic sampling policy satisfying N/'(6;) — o and
0 n(6y) — @;(6)) almost surely to achieve LDR* in the limit. To accomplish this, we exploit the balance
conditions in Theorem 2. Namely, we find the solution-parameter pair corresponding to the smallest entry
of W, 0G,, say (i, 0y), and select either (i, 8)) or (i, 6,) to simulate based on the global balance condition.

Before we present our main algorithm, we briefly explain how to handle a case when there is a tie in
identifying i;. Although we only consider the case when i* is unique, i;, may not be for finite n. Let us
visit the example in Figure 1 once again for exposition. Suppose after sampling » solution-parameter pairs,
i is incorrectly specified to be solution 2 instead of solution 3 while all other i’s are selected correctly.
This scenario is depicted in Figure 2, where i? for all 6, are boxed. As a result, Solutions 1 and 2 are
tied given &,. Suppose a tie-breaking rule (e.g. random selection) is applied and solution 1 is picked as
i*. Then, the resulting balance weight matrix is

0 0 0 0 0 o 0 O
W= 0 0 0 2 2 2 o 2
0 0 0 2 2 2 2 o

Notice that some balance weights are zero since d» = 0. As a consequence, if we choose the next solution-
parameter pair to simulate by finding the smallest element of W,, 0 G,,, then several elements of the matrix
have zero entries making them indistinguishable from each other. To resolve such a deadlock, we modify
W,, by substituting zeroes with ones and non-zeros with oo should a tie occurs when determining i;,. We
describe the intuition for this modification in the following.

One of the reasons for the tie to occur is when i) # i*. In the example discussed above, both i) and i*
happen to be Solution 1, however, this is not always the case. Assuming i; # i*, the tie can be broken by
correcting a misspecification at 6, where i is selected as the conditional optimum or at a 6, where a tied
solution is deemed (conditional) suboptimal. This strategy corresponds to sampling a solution-parameter
pair among those with 0 entries in W,,. If the sampling algorithm allocates infinitely many replications to
all (i,0)), the strong law of large numbers implies that the event of tie happens only finitely many times
with probability 1, so the modification to W,, does not affect the limiting behavior of our algorithm.

Based on these observations, we propose Algorithm 1. Algorithm 1 is easy to implement as we only
need to compute G,, W, and (N'(6;)/ 2i(6,))? at each iteration. We cannot enjoy this convenience with
(10) due to complexity of 7.

We conjecture that @ ,(6)) allocated by Algorithm 1 converges to ¢;(6)) satisfying Theorem 2 as
n increases, which is the second part of the sufficient condition for Proposition 2 to hold. However,
Algorithm 1 cannot guarantee the first part of the condition: N/'(6;,) — e for all (i, 6,). To see why, let us
define ®* := {Gb it = } Algorithm 1 stops assigning replications to {(if,, 0y) : ib # l:;} once it correctly
specifies the minimum number of {b i = } needed to distinguish i, from the second best. For instance,
suppose that B =50, |®*| = 15, and the second best solution is the conditional optima at 10 6,s. Then, it

O O|@F
O O|@F
O O|@F
O|@O=
O|@O=
@ OO=

@O O+
@O OO0

s

OO0 0000O0

Figure 2: The same example as in Figure 1. The solutions in boxes are the selected conditional optima
given a sample path.
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Algorithm 1 Rate Optimal Sequential Sampling Algorithm

1: Warm-start by allocating no simulation budgets for all (i,6,). Let n = nokB and update ;,(6,) and
Gin(6p).

2: while simulation budget remains do

3:  Form a balance weight matrix W,, and a LDR matrix G,. Find (i, 0;) = argmin W, 0 G,,.

2 2
4 i (N3(8)/4(6,)) < Xy (N1(6)/A;(64))  then
5: Run a replication at (&£, 6).
6: else
7: Run a replication at (i, 6p).
8: end if

9:  Update ; ,(6p),Gin(6y) and d; , at (i,6),). Update ‘7,1 and \7,2 atalli. Let n<n—+1.
10: end while

is enough to correctly specify i* as the conditional optima at 13 out of 15 parameters in ®* to make correct
selection provided that the conditional optima are correctly specified at all other parameters not in ®*.
Then, even if at 2 remaining parameters in ®* the second best is incorrectly specified as the conditional
optima, correct selection occurs.

As this behavior may impede performance of the algorithm, we modify Algorithm 1 to guarantee
that N (6p) increases sublinearly in n for all (i*,6;),i” ¢ ®*, which in turn results in N (6;) — e and
0= n(6) — 0, the exact sufficient condition of Proposition 2 Algorithm 1 fails to achieve.

The modification involves a notable sampling criterion, expected improvement (EI), first introduced
by Jones et al. (1998). The information valuation function is defined as f(x) = x®(x) + ¢ (x), where ¢
and & are probability density and cumulative distribution functions of standard normal random variable,
respectively. Given 6}, the EI of (i, 6)) with respect to (i%,6;), is computed as

_ |I‘Li7ﬂ(9b) - I'Liﬁ,n(eb) | >
G;.n(6y)

The EI has been widely applied in Bayesian optimization and best-arm identification problems. For classical
R&S, Ryzhov (2016) shows that sequentially sampling the largest-EI solution at each iteration allocates
simulation budget to a suboptimal solution at the rate of O(logn) as the total budget n increases. Although
this behavior leads to a suboptimal LDR for the traditional R&S problem, it is precisely what we need to
guarantee for all (i*,6y),i” ¢ ®* in our problem. Algorithm 2 below presents our modification.

Vin(6p) =E |:(:uiﬁ,n(9b> - ni(Gb)) i

@@] — Gin(6)f (

Algorithm 2 Modified Rate Optimal Sequential Sampling Algorithm

Choose (i, 6,) according to Algorithm 1 without simulating it.
if iZ 7& i; and ai37n(9b)1/2vigqn(9b) < Vi;_’n(eb) then
Run a replication at (i, 6y).
else
Run a replication at (i, ).
end if

SAN AN S o e

Once (i, 6)) is selected in Step 1, Step 2 compares the (scaled) EI of (i, 6,) with the EI of (i, 6;) to
select the next pair to simulate. If it turns out the EI of (if,6)) is relatively small compared to (i2, 6}),
then we simulate (i},6,). Otherwise, we simulate (i,6,) selected in Step 1. Notice that we slightly
modify the EI criterion for (i2, 6,) by multiplying %ip 6,)'/? to Vi 1(65). Without the multiplier, we have
N;:(6) = O(log N, (65)) following the result in Ryzhov (2016) as lNl.'},(Ob) is the amount allocated to the
conditional best atneb. If k and B are large, then Nl-g(eb) becomes small for finite 7. As a result, Step 3 of
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Algorithm 2 rarely occurs. With the multiplier, we have

1/2
0ty (0)' 12y (05) = (N3 (86)/n) iy u(85) = n™ 225 (05) £(0). (14)

Note that the right-hand side of (14) would be the EI of (i2,8,) if n replications were allocated to (i2, 6}).
Therefore, our modification makes Algorithm 2 allocate the effort to (i%, 6),) as if n replications are allocated
to (i£,6). As a result, we expect Step 3 to occur at the rate of O(logn) as desired.

Asymptotic properties of Algorithms 1 and 2 remain to be investigated further in future research.

7 EMPIRICAL ANALYSIS

In this section, we present a numerical performance analysis using a synthetic example with k = 10 and
B =50. We compare Algorithms 1 and 2 with two existing dynamic sampling policies described below.

* Equal allocation (EA) : This policy allocates the simulation budget uniformly over {(i,6;)}.

* Contextual R&S allocation (C-OCBA) : Proposed by Gao et al. (2019), it aims to maximize the
worst-case probability of correct selection (worst-case PCS over all contexts), which is defined as
min, P(i% = i) for our problem if @ys represent contexts. Finding i® for each b is equally important
under this framework.

We assume A2(6;) = 52 for all (i,6y). For each 6, we fix the conditional optimum to be

Js if5j—4<b<5j, forsome 1 <j<7,
=<8 if36<b<4l,
10, if 42 < b < 50.

This implies i* = 10 as its posterior probability of being optimal is 9/50 = 0.18. All solutions except
for solution 9 is a conditional optimum at some 6,. For each 1 < b <50, we set y»(6,) =1 and fill in
{9i(6s) }1<j< izv Tandomly without replacement from {2,3,--- k} for each macro run. In Algorithms 1
and 2, we apply the smallest index rule as the tie-breaking rule; this makes i* never selected as i; when
tied.

Figure 3 presents empirical performances of four algorithms we compare. All results are averaged from
10,000 macro runs and the initial sample size, ng, is set to 5 for all algorithms. The left-hand side panel of
Figure 3 shows that the logarithmic PFS decreases as the simulation budget increases for each algorithm.
Notice that our algorithms outperform other methods; EI slightly improves the convergence rate.

The right-hand side panel of Figure 3 displays the number of parameters at which i}, = i* is selected as the
conditional optima; we have |®*| = 9 for this problem. Notice that C-OCBA outperforms Algorithms 1 and 2
in this measure. Recall that the goal of our algorithm is to achieve the faster convergence of PCS. For this
purpose, misspecifying i for one b is allowed since the second best (i = 8) is the conditional optimum at
6 parameters, i.e., min;; d; = 3. For this reason, Algorithm 1 tends not to characterize all conditional
optima correctly once it correctly specifies 8 conditional optima.

We ran longer simulations to observe the long-run behavior of Algorithm 1 and 2 in estimating ®* as
presented in Figure 4. As we conjectured, for Algorithm 1, the size of estimated ®* converges to 8. In
contrast, for Algorithm 2, the same statistic inches toward 9 albeit more slowly than C-OCBA. This result
confirms that Algorithm 2 serves the exact purpose it is designed for; that is, to ensure increasing number
of replications are allocated to (i}, ;) at all 6, in ®*.
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Figure 3: The logarithimic PFS (left) and the estimated size of @* (right) averaged over 10000 macro runs.
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Figure 4: Long-run behaviors of Algorithms 1 and 2 in estimating ®*.
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