

1 **Title:** Arbuscular mycorrhizal tree communities have greater soil fungal diversity and relative
2 abundances of saprotrophs and pathogens compared to ectomycorrhizal tree communities

3 **Authors:** Andrew C. Eagar^{1*}, Ryan M. Mushinski², Amber L. Horning³, Kurt A. Smemo⁴,
4 Richard P. Phillips⁵, and Christopher B. Blackwood¹

5 1. Department of Biological Sciences, 256 Cunningham Hall, Kent State University, Kent, OH
6 44242, USA

7 2. School of Life Sciences, University of Warwick, Coventry, UK

8 3. Department of Integrative Biology, University of Texas, Austin, TX 78712, USA

9 4. Environmental Studies and Sciences Program, Skidmore College, Saratoga Springs, NY
10 12866, USA

11 5. Department of Biology, Indiana University, Bloomington, IN, 47403, USA

12 *Corresponding Author Email: aeagar@kent.edu

13 *Corresponding Author Phone Number: 615-957-5557

14 **Abstract**

15 Trees associating with different mycorrhizas often differ in their effects on litter decomposition,
16 nutrient cycling, soil organic matter (SOM) dynamics, and plant-soil interactions. For example,
17 due to differences between arbuscular mycorrhizal (AM) and ectomycorrhizal (ECM) tree leaf
18 and root traits, ECM-associated soil has slower rates of C and N cycling and lower N availability
19 compared to AM-associated soil. These observations suggest many groups of non-mycorrhizal
20 fungi should be affected by the mycorrhizal associations of dominant trees through controls on
21 nutrient availability. To test this overarching hypothesis, we explored the influence of

22 predominant forest mycorrhizal type and mineral N availability on soil fungal communities using
23 next-generation amplicon sequencing. Soils from four temperate hardwood forests in Southern
24 Indiana, USA, were studied; three forests formed a natural gradient of mycorrhizal dominance
25 (100% AM tree basal area – 100% ECM basal area), while the fourth forest contained a factorial
26 experiment testing long-term N addition in both dominant mycorrhizal types. We found that
27 overall fungal diversity, as well as the diversity and relative abundance of plant pathogenic and
28 saprotrophic fungi, increased with greater AM tree dominance. Additionally, tree community
29 mycorrhizal associations explained more variation in fungal community composition than abiotic
30 variables, including soil depth, SOM content, nitrification rate, and mineral N availability. Our
31 findings suggest that tree mycorrhizal associations may be good predictors of the diversity,
32 composition, and functional potential of soil fungal communities in temperate hardwood forests.
33 These observations help explain differing biogeochemistry and community dynamics found in
34 forest stands dominated by differing mycorrhizal types.

35 **Importance**

36 Our work explores how differing mycorrhizal associations of temperate hardwood trees (i.e.,
37 arbuscular (AM) vs ectomycorrhizal (ECM) associations) affect soil fungal communities by
38 altering the diversity and relative abundance of saprotrophic and plant pathogenic fungi along
39 natural gradients of mycorrhizal dominance. Because temperate hardwood forests are predicted
40 to become more AM-dominant with climate change, studies examining soil communities along
41 mycorrhizal gradients are necessary to understand how these global changes may alter future soil
42 fungal communities and their functional potential. Ours, along with other recent studies, identify
43 possible global trends in the frequency of specific fungal functional groups responsible for
44 nutrient cycling and plant-soil interactions as they relate to mycorrhizal associations.

45 **Keywords**

46 Fungal functional diversity, mycorrhizal associated nutrient economy (MANE), nitrogen
47 deposition, plant-microbe interactions, temperate hardwood forests, spillover effects

48 **1. Introduction**

49 Mycorrhizal fungi are well-known for their effects on plant-soil interactions, particularly
50 through enhancing plant nutrient uptake from the soil. However, the type of mycorrhizal
51 association of a plant may explain a much broader array of processes affecting soil
52 biogeochemistry and plant community dynamics (1). In temperate forests, the decomposition of
53 labile leaf litter from arbuscular mycorrhizal (AM) trees by saprotrophic fungi induces greater
54 soil mineral nutrient availability (2, 3) and greater amounts of N-rich mineral-associated organic
55 matter (4, 5) compared to lignin-rich, high C:N leaf litter from ectomycorrhizal (ECM) trees (6,
56 7). The direction of plant-soil feedback is also structured by mycorrhizal type, with ECM trees
57 experiencing positive feedback and AM trees experiencing negative feedback (8, 9, 10). These
58 differences imply that effects of the mycorrhizal type of dominant plants extends beyond
59 mycorrhizal fungi alone to include saprotrophic and pathogenic fungi. As tree species' ranges
60 shift due to global change factors, temperate forests are expected to become more AM-dominant
61 (11, 12) and may therefore experience changes in these broad processes. Thus, there is a pressing
62 need to study concomitant changes between mycorrhizal dominance and soil fungal communities
63 if we are to understand the full impact that shifts in mycorrhizal dominance will have in
64 temperate forests.

65 Soil fungal communities are likely influenced by mycorrhizal associations through both
66 direct interactions between free-living and mycorrhizal fungi, and through differences in leaf and

67 root litter quality between AM and ECM trees. AM fungi have limited saprotrophic capabilities
68 and primarily scavenge for mineral nutrients released from the decomposition of plant tissue by
69 saprotrophic fungi (13, 14). Conversely, many ECM fungi have saprotrophic capabilities and
70 produce extracellular enzymes that decompose plant tissue to acquire organic forms of nutrients
71 (15, 16). Direct competition between ECM and saprotrophic fungi therefore has the potential to
72 reduce saprotroph relative abundances and diversity, in addition to rates of litter decomposition
73 (17, 18, 19). ECM fungi also likely provide a greater defensive benefit to host trees compared to
74 AM fungi by covering the outer surface of roots with a protective sheath, weakening the effects
75 of plant pathogens on ECM trees (20, 21).

76 Similarly, differences in leaf litter quality between AM and ECM tree species may indirectly
77 affect fungal community composition. The breakdown of N-rich, labile AM leaf litter results in
78 increased mineral N availability and changes SOM content relative to ECM soil (2, 3, 7). Higher
79 available soil resources such as N can affect fungal diversity (22, 23) and biomass (24, 25),
80 leading to notable increases in fungal species richness (26). Furthermore, a positive relationship
81 has been observed between soil resource availability and plant disease severity, particularly for
82 AM trees (27; 28), suggesting that labile AM leaf litter with increased N content may also lead to
83 increased plant pathogen presence or diversity. When considered together, the direct and indirect
84 interactions between mycorrhizas and soil fungi should lead to lower fungal diversity and
85 decreased saprotroph and plant pathogen relative abundances in ECM soil compared to AM soil,
86 as recently observed in one study of Baltic temperate and boreal forests (29).

87 As described above, N availability is a major factor driving the hypothesized effects of
88 dominant mycorrhizal type on soil fungal communities. Increasing the supply of N in an
89 ectomycorrhizal system should facilitate saprotrophic activity on otherwise N-poor litter by

90 alleviating competitive interactions between ECM and saprotrophic fungi (as well as
91 necrotrophic fungal pathogens that live saprotrophically between hosts). While soil N availability
92 is strongly influenced by leaf litter chemistry and microbial activity, anthropogenic N deposition
93 is now an important source of available soil N, which may disrupt systems such as ECM
94 symbioses that are adapted to low soil resource conditions. Nitrogen deposition has been
95 associated with increasing abundance of AM tree species (11), and also alters soil organic matter
96 (SOM) content in different ways depending on dominant tree species (30, 31). Importantly,
97 increased anthropogenic N deposition has been shown to alter soil fungal community
98 composition (32, 33), leading to increased saprotroph diversity and decreased ECM fungal
99 diversity in forest soil (34, 35). Furthermore, increases in soil N availability may increase plant
100 pathogen diversity (27, 26). Thus, the effects of anthropogenic N deposition on fungal
101 community composition may be particularly strong in ECM-dominated systems where elevated
102 N can alleviate competitive interactions, reducing ECM fungal activity on leaf litter while
103 increasing saprotrophic fungal activity. AM tree-associated fungal communities, on the other
104 hand, may see little response to N deposition as a result of their already faster mineral N cycling
105 and greater mineral N availability.

106 In this study, we explored how the taxonomic and functional composition of soil fungal
107 communities differ in relation to AM or ECM tree species dominance and change in response to
108 experimental mineral N addition in temperate hardwood forests. Our study employed two
109 sampling designs to test our overarching hypothesis: one is a natural gradient consisting of plots
110 ranging from 100% AM trees to 100% ECM trees across three temperate forests. The other
111 sampling design is a complete factorial experiment in which forest plots of AM- or ECM-tree
112 dominance have been subjected to a long-term mineral N addition experiment. Based on the

113 above-mentioned influences on communities of free-living soil fungi within differing
114 mycorrhizal systems, we tested the following two predictions: Soil associated with forest stands
115 dominated by AM trees will have **P1**) greater fungal taxonomic diversity, and **P2**) higher relative
116 abundances of plant pathogenic and saprotrophic fungi when compared to soil associated with
117 ECM trees. We also tested a third prediction specific to N deposition, **P3**) that elevating
118 available N will increase the relative abundances of plant pathogenic and saprotrophic fungi, and
119 that this effect will be stronger in ECM-dominant forest stands.

120 **2. Materials and Methods**

121 *2.1 Site Descriptions*

122 *2.1.1 Natural Mycorrhizal Gradients*

123 Five soil cores (0-5cm depth, 5cm diameter) were collected in August 2014 from 48
124 experimental plots in three mixed deciduous forests in southern Indiana, USA. Within each
125 forest, study plots represent a gradient of mycorrhizal dominance ranging from 0% AM basal
126 area (ECM trees dominant) to 100% AM basal area (AM trees dominant). The mycorrhizal
127 dominance of each plot was calculated by summing the basal areas of all tree species of a
128 particular mycorrhizal type and dividing by the total basal area of the plot.

129 The three sites included in the gradient represent a range of forest conditions in the
130 region. Soil types at Griffy Woods (GW; 15 study plots; 39°11'N, 86°30'W) and Morgan-
131 Monroe State Forest (MMSF; 15 study plots; 39°19'N, 86°25'W) are loamy-skeletal, mixed,
132 active, mesic Typic Dystrudepts and Hapludults in the Brownstown–Gilwood complex, while the
133 third site at Lilly-Dickey Woods (LDW; 18 study plots; 39°14'N, 86°13'W) has loamy-skeletal,
134 mixed, active, mesic Typic Dystrudepts, Ultic Hapludalfs, and Typic Hapludults in the Berks-

135 Trevlac-Wellston complex. All three sites are broadleaf hardwood forests with similar tree
136 communities that vary in which species are dominant (i.e., abundant) and are part of Indiana
137 University's Research and Teaching Preserve. At Griffy Woods, the dominant AM trees are
138 sugar maple (*Acer saccharum*), yellow poplar (*Liriodendron tulipifera*) and black cherry (*Prunus*
139 *serotina*) whereas dominant ECM trees are Northern red oak (*Quercus rubra*), white oak (*Q.*
140 *alba*), and American beech (*Fagus grandifolia*). Canopy trees at Griffy Woods are ~90 years-old
141 and the forest has little understory due to high deer densities and the presence of invasive plant
142 species (36). Morgan-Monroe State Forest is the same age as Griffy Woods and has similar
143 overstory tree species, as well as dominant AM trees such as sassafras (*Sassafras albidum*), and
144 ECM trees such black oak (*Q. velutina*), shagbark hickory (*Carya ovata*) and pignut hickory (*C.*
145 *glabra*) (37). Here, deer densities are much lower than Griffy Woods resulting in a dense
146 understory. Lilly-Dickey Woods is the oldest site, resembling an old-growth forest with many
147 trees exceeding 150 years-old due to forest succession following agricultural abandonment. It
148 contains many of the same tree species as the other sites, but the dominant ECM species is
149 chestnut oak (*Q. montana*). This site is also free of invasive species (38). Trees were assigned a
150 mycorrhizal type based on information from Brundrett (39) and Maherli *et al.* (40).

151 *2.1.2 Mycorrhizal Type × Nitrogen Fertilization Experiment*

152 Moores Creek (MC) is also part of the IU Research and Teaching Preserve and is located
153 in southern Indiana a few kilometers away from the other study sites (39°05' N, 86°28' W). It
154 contains a similar tree species composition to GW, LDW, and MMSF and has loamy, mixed,
155 semiactive, mesic Typic Dystrudepts and Hapludults in the Brownstown–Gilwood complex.
156 Here, sixteen 20 x 20-m² paired plots were located across eight forest stands. Four stands with
157 eight plots were dominated by AM tree species, while the other four stands with eight plots were

158 dominated by ECM species (dominance indicates >85% of the basal area of the stand). One plot
159 in each pair was treated with $(\text{NH}_4)_2\text{SO}_4$ and NaNO_3 granular fertilizer monthly (May to
160 October) beginning in 2011 for a total of $50 \text{ kg N ha}^{-1} \text{ y}^{-1}$. The mass ratio of N from ammonium
161 and nitrate was equivalent for each monthly fertilizer application (41, 42). Five soil cores 5cm in
162 diameter from each plot were sampled to a depth of 15 cm and separated by approximate horizon
163 ($\text{O} = 0\text{--}5 \text{ cm}$; $\text{A} = 5\text{--}15 \text{ cm}$) in August 2017 before being pooled for DNA extraction and
164 analysis.

165 *2.2 DNA Sequencing and Taxonomic Assignments*

166 All soil samples were passed through a 2-mm sieve for homogenization and processed to
167 remove fine roots and other non-soil particulates. Once homogenized, a subsample of soil was
168 stored at $-80 \text{ }^{\circ}\text{C}$ for DNA extraction, which was carried out within a month of sampling, while
169 the remaining soil was used to measure abiotic soil properties (see *2.3 Abiotic Soil Property*
170 *Measurements*). For samples from the mycorrhizal gradient sites, DNA was extracted from soil
171 samples using a PowerSoil DNA isolation kit (MOBIO Laboratories, Inc, Carlsbad, CA, USA)
172 following the manufacturer's guidelines. Polymerase chain reaction (PCR) amplification of the
173 ITS1 region of fungi (43) was achieved using barcode-labeled primers ITS1F (5'-CTT GGT
174 CAT TTA GAG GAA GTA A) and ITS2 (5' GCT GCG TTC TTC ATC ATC GAT GC)
175 following methods from Buée *et al.* (44) using a Bio-Rad C1000 Touch Thermal Cycler (Bio-
176 Rad Laboratories, Hercules, CA, USA). Briefly, 2 μl of dilute DNA template was amplified in
177 four, 25 μl PCR reactions. Cycle numbers varied between 28 – 35 cycles for each sample to
178 achieve similar band intensities on an agarose gel, with negative controls included to verify lack
179 of contamination. One hundred μl of amplified PCR product was purified using an Agencourt
180 AMPure XP magnetic bead cleanup kit (Beckman Coulter Life Sciences, Indianapolis, IN, USA)

181 following the manufacturer's instructions. Purified PCR products from all 48 samples were then
182 combined in equimolar concentration (values obtained via fluorometric assay using an
183 AccuClear Ultra High Sensitivity dsDNA Quantitation Kit from Biotium (Biotium, Inc.,
184 Fremont, CA, USA) and a BioTek Synergy 2 Microplate Reader (BioTek Instruments, Winooski,
185 VT, USA) following Biotium's supplied protocol and submitted for single-lane, paired-end 2x
186 300 bp MiSeq Illumina sequencing at the Ohio State University's Molecular and Cellular
187 Imaging Center (Wooster, OH, USA). Resulting sequence data (approximately 2 million reads)
188 were analyzed with the bioinformatics platform Qiime (45) by clustering sequences into
189 operational taxonomic units (OTUs) based on a 97% sequence similarity threshold using the
190 UCLUST algorithm (46). Chimeric sequences were removed and OTUs representing < 10 total
191 sequences across all samples were discarded prior to analysis. Taxonomic information was
192 assigned to representative OTU sequences using the UNITE database ver. 7.2 (47) and a Naive
193 Bayesian classifier with a confidence threshold of > 80%. Community composition data was
194 rarified to 2788 sequences for each of the 48 sampled plots.

195 For samples from the nitrogen fertilizer experiment, DNA was extracted using a DNEasy
196 PowerSoil DNA isolation kit (Qiagen, Hilden, Germany) following the manufacturer's
197 guidelines. PCR amplification and sequencing were performed by the DOE Joint Genome
198 Institute (Walnut Creek, CA, USA). PCR amplification of the ITS2 region (43) was achieved
199 using the primers ITS9F (5'- GAA CGC AGC RAA IIG YGA) and ITS4R (5'- TCC TCC GCT
200 TAT TGA TAT GC) following protocol from Ihrmark *et al.* (48) prior to single-lane, paired-end
201 2x 300 bp MiSeq Illumina sequencing. Resulting amplicon reads were quality controlled,
202 clustered, aligned, and assigned taxonomy using iTagger V2.2 (49;

203 https://bitbucket.org/berkeleylab/jgi_itagger). Samples were rarified to 473,143 sequences per
204 sample.

205 For all samples, the functional role (e.g., primary saprotroph, ectomycorrhizal, etc.) of
206 each taxon was assigned using the FUNguild database from Nguyen *et al.* (50). Taxa with
207 multiple or unknown functional assignments were checked against a thorough literature review
208 and corrections were made when applicable, with plant pathogens being further categorized as
209 biotrophic or necrotrophic plant pathogens. Pathogens of animals and fungi were excluded from
210 our functional analyses, as they were low abundance and unrelated to our hypotheses. Taxa with
211 multiple assignments that remained unresolved were grouped into a “various” category, while
212 those with no known function were placed into an “unknown” category. Taxa in both of these
213 categories were excluded from our functional group analyses, but were retained during the
214 taxonomic level analyses. Due to the specific nature of our hypotheses, we limited our analyses
215 on functional groups to these groups of interest: primary saprotrophs (non-wood degrading
216 saprotrophs), biotrophic plant pathogens, necrotrophic plant pathogens, and ectomycorrhizal
217 fungi. Arbuscular mycorrhizal fungi were excluded from our analyses due to their overall low
218 relative abundances, as shown previously by Tedersoo *et al.* (51) regardless of primer choice.

219 *2.3 Abiotic Soil Property Measurements*

220 Abiotic soil properties (moisture, pH, organic matter, soil organic matter content, total C
221 & N, nitrification, and N mineralization) were measured for the mycorrhizal gradient samples.
222 Methods used to measure soil properties are described briefly here, with additional details
223 provided in Midgley and Phillips (41). Soil moisture was measured gravimetrically, and SOM
224 content was measured by ashing soils in a muffle furnace at 450 °C for 16 h. Soil pH was
225 measured using an Orion pH meter (ThermoFisher Scientific, Waltham, MA, USA) in a 1:2

226 solution of air-dried soil and 0.01 M CaCl₂. Total soil C and N were measured by drying a 10-g
227 aliquot of sieved soil at 60 °C for 48 h and using a mortar and pestle to pulverize the sample
228 before analysis on a Costech ECS 4010 elemental analyser (Costech Analytical Technologies
229 Inc.). Nitrification and N mineralization rates were determined by quantifying changes in 2 M
230 KCl-extractable pools of NH₄⁺-N + NO₃⁻-N on 4.5g of soil after a 21-d incubation period at 23
231 °C using a Lachat QuikChem 8000 Flow Injection Analyzer (Lachat Instruments, Loveland, CO,
232 USA).

233 *2.4 Statistical Analysis*

234 All analyses were performed in R v. 3.3.0 (R Development Core Team 2017). Sequence
235 data from three samples from our mycorrhizal gradient were discarded before analysis due to low
236 numbers of reads. OTUs that did not receive a taxonomy assignment or those that were only
237 assigned to “Fungi” were removed prior to analysis (~2% of all sequences). OTU abundance
238 data were rarified and Hellinger-transformed before analysis using the vegan package (52). We
239 performed redundancy analysis (RDA) to examine how fungal community composition changed
240 in response to our mycorrhizal dominance gradient. RDAs were performed for each taxonomic
241 rank (phyla through OTUs), as well as for functional group composition. Significance of
242 predictor variables was assessed using 999 random permutations of sample identity. Percent AM
243 basal area (0% - 100%) and location (GW, LDW, or MMSF) were supplied as predictor
244 variables. The goodness() command in vegan was used to obtain R² values for changes in fungal
245 family relative abundances related to the mycorrhizal gradient. Additionally, these same
246 community data were analyzed by stepwise, forward selection RDAs using the vegan ordiR2step
247 command to determine their response to abiotic predictor variables, selecting only those that
248 were both significant ($P < 0.05$) and resulted in an increase in adjusted R² value (53). Thus, soil

249 moisture, soil organic matter, soil pH, and nitrification rate were tested as abiotic predictor
250 variables. Other abiotic variables were eliminated before the analysis using a variance inflation
251 factor cutoff of < 10 to detect confounded predictor variables (54) through the vegan command
252 `vif.cca()`. The adjusted R^2 values from the RDAs with mycorrhizal percent and the stepwise
253 RDAs were used to assess the fit of significant models (55).

254 Our first prediction, that AM soil will have greater fungal taxonomic diversity compared
255 to ECM soil (**P1**), was tested using the full community as well as separately for each functional
256 group of interest. For each plot, OTUs were used to calculate the first three Hill numbers (56),
257 representing a gradient of emphasis on evenness: 0D or richness, 1D or the exponentiated
258 Shannon-Wiener diversity index, and 2D or the inverse Simpson index. To test for an effect of
259 mycorrhizal dominance on these diversity measures, we performed mixed-effects linear
260 modeling using the `nlme` package (57) after testing for normality. Forest site (GW, LDW, and
261 MMSF) was used as a random factor while percent AM basal area (0% - 100%) was tested as the
262 predictor. In order to test our second prediction that AM soil has higher relative abundances of
263 pathogenic and saprotrophic fungal taxa compared to ECM soil (**P2**), we again used linear
264 modeling. For each functional group of interest (biotrophs, necrotrophs, and primary
265 saprotrophs), relative abundances were used as the response variable, percent AM basal area of
266 the plots as the predictor variable, and location was used as a random effect. R^2 values were used
267 to assess the fit of each linear model for each taxonomic and functional group of interest and
268 were obtained using the `MuMIn` package (58).

269 In addition to testing **P1** and **P2**, samples from the nitrogen fertilization experiment were
270 used to test our third prediction that chronic inorganic N addition will increase the relative
271 abundances of non-mycorrhizal soil fungi and have a larger impact on fungal communities

272 associated with ECM-dominant forests (**P3**). First, RDAs were performed as described above for
273 each taxonomic rank (phylum through genus), as well as for functional group composition.
274 Dominant tree mycorrhizal type (AM or ECM), sampling depth (0 – 5 or 5 – 15cm), and N
275 treatment were included (with interactions) as predictor variables. Next, linear modeling was
276 used to evaluate the responses of biotroph, necrotroph, and primary saprotroph relative
277 abundances, as well as the first three Hill numbers, to the same predictor variables.

278 *2.5 Data Availability*

279 Sequence data for GW, LDW, and MMSF has been deposited in the Sequence Read Archive
280 (SRR13120641) (59), while sequence data for MC has been deposited in the Joint Genome
281 Institute Genome Portal (1182214) (60). GW, LDW, and MMSF data are available from doi
282 10.111/nph.14343. MC data are available from doi 10.1002/ecy.1595.

283 **3. Results**

284 *3.1 Fungal Community Response to the Gradient in Mycorrhizal Types*

285 For samples from the mycorrhizal gradient sites, 133,824 sequences (after rarefaction)
286 representing 11,729 OTUs were assigned to 1347 unique fungal taxa. All Hill numbers, ⁰D or
287 OTU richness ($R^2 = 23.2\%$), ¹D ($R^2 = 21.6\%$), and ²D ($R^2 = 16.2\%$), displayed a significant,
288 positive trend with increasing AM-tree dominance (d.f. = 41; $P < 0.005$; Fig. 1a-c), in agreement
289 with our first prediction (fungal diversity is greater in AM soil). Examining the changes in
290 diversity for each functional group revealed that biotrophic plant pathogen ($R^2 = 13.3\%$),
291 necrotrophic plant pathogen ($R^2 = 15.6\%$), and primary saprotroph ($R^2 = 32.2\%$) OTU richness
292 significantly increased with AM-tree dominance ($P < 0.02$; Fig. 2a-c), while ¹D and ²D were not
293 significantly affected. Meanwhile, ectomycorrhizal fungal OTU richness showed the opposite

294 trend, significantly decreasing with increasing AM-tree dominance ($P < 0.001$; $R^2 = 24.7\%$; Fig.
295 2d), while 1D and 2D were not significantly correlated.

296 Redundancy analyses revealed that both AM-tree dominance and site location affected
297 fungal community composition at every taxonomic rank, explaining from 4.7% of the variation
298 at the OTU rank up to 43.3% at the rank of phyla ($P < 0.05$; Table 1). When analyzed separately,
299 AM-tree dominance explained approximately twice as much variance as site at all taxonomic
300 ranks except species and OTU (Table 1). Results from the stepwise forward selection RDAs with
301 abiotic data as explanatory variables indicated that, for genera through phyla, nitrification was
302 the only significant variable selected, whereas SOM and nitrification were both selected at the
303 species and OTU ranks (Table 1). Significant abiotic variables ($P < 0.05$) explained a similar
304 amount of variation in fungal community composition as did AM-tree dominance at every
305 taxonomic rank. Nitrification rate was positively correlated with increasing AM-tree dominance
306 ($P < 0.001$; $R^2 = 50.0\%$).

307 Linear modeling of relative abundances of separate functional groups was used to test our
308 second prediction (relative abundances of fungal plant pathogens and saprotrophs are greater in
309 AM-tree dominant soil compared to ECM-tree dominant soil). Fungal biotrophic plant pathogen
310 ($R^2 = 11.5\%$), necrotrophic plant pathogen ($R^2 = 14.9\%$), and primary saprotroph ($R^2 = 28.3\%$)
311 relative abundances all significantly increased with increasing AM-tree dominance, while
312 ectomycorrhizal fungal ($R^2 = 39.6\%$) relative abundances decreased ($P < 0.05$; Fig. 3a-d).

313 According to the RDA, AM-tree dominance and site location explained 33.3% of the variation in
314 fungal functional group frequency (Table 1). No abiotic variables were selected as significant
315 explanatory factors for fungal functional groups. Note that these functional group abundances
316 were obtained from the lowest taxonomic level identified wherever possible, often genus or

317 species. Table 2 displays relative abundances of fungal families with >1% average relative
318 abundance in AM-tree or ECM-tree dominant soils along with the major functional groups
319 assigned to various taxa found within each family. Ten out of 15 families containing plant
320 biotrophic, plant necrotrophic, and saprotrophic members increased in relative abundance in
321 AM-tree dominant soil. Notable exceptions include the Atheliaceae, Cortinariaceae,
322 Thelephoraceae, and Tricholomataceae (all Basidiomycota), which decreased in relative
323 abundance in AM-tree dominant soil, but which also contain ectomycorrhizal taxa in addition to
324 their saprotrophic members. Similarly, four families dominated by ectomycorrhizal members
325 (Russulaceae, Amanitaceae, Clavulinaceae, and Boletaceae) decreased in relative abundance in
326 AM-tree dominant soil, with the Russulaceae (Basidiomycota) demonstrating the largest change
327 (a decrease) in relative abundance of 55.5%. On the other hand, the ectomycorrhizal families
328 Inocybaceae (Basidiomycota), Sebacinaceae (Basidiomycota), and Tuberaceae (Ascomycota),
329 increased in relative abundance in AM-tree dominant soil (although their variance explained was
330 <3%).

331 *3.2 Dominant mycorrhizal type × nitrogen amendment factorial experiment*

332 For samples from the nitrogen amendment experiment, 7,570,288 sequences (after
333 rarefaction) representing 2180 unique OTUs were assigned to 492 different taxa. Redundancy
334 analysis indicated that dominant mycorrhizal type significantly affected fungal community
335 composition, explaining from 9.7% of the variation at the OTU rank, up to 42.7% of the
336 variation at the rank of phyla (d.f. = 29; P < 0.05; Table 3). Additionally, depth was a significant
337 factor for intermediate taxonomic ranks, but explained only 2-3% of variation in community
338 composition (Table 3). Nitrogen treatment and all interaction terms were not significant for any
339 taxonomic rank (Table 3).

340 OTU richness was significantly higher in AM-tree dominant soil ($P = 0.0001$; $R^2 =$
341 59.4%; Fig. 1d) and significantly higher at a sampling depth of 0 – 5 cm ($P = 0.0001$; $R^2 =$
342 18.9%). Additionally, there was no significant effect of N addition treatment or any significant
343 interactions between dominant mycorrhizal type, depth, or treatment on OTU richness. Likewise,
344 1D ($R^2 = 32.2\%$) and 2D ($R^2 = 25.1\%$) were higher in AM-tree dominant soil ($P < 0.008$; Fig. 1e-
345 f), while depth, N addition treatment, and all interactions were not significant. Plant biotroph (R^2
346 = 39.7%), plant necrotroph ($R^2 = 49.9\%$), and primary saprotroph ($R^2 = 51.2\%$) OTU richness
347 were all significantly higher in AM-tree dominant soil $P = 0.003$; Fig. 2e-g), while only primary
348 saprotroph 1D ($R^2 = 68.5\%$) and 2D ($R^2 = 55.1\%$) were significantly higher in AM-tree dominant
349 soil ($P < 0.05$). Additionally, plant necrotroph and primary saprotroph OTU richness were
350 significantly higher at a depth of 0 – 5 cm than the 5 – 15 cm depth. A significant interaction
351 between dominant mycorrhizal type and sampling depth for plant necrotroph OTU richness was
352 also identified ($P = 0.01$; $R^2 = 76.6\%$), with AM-tree dominant soil having greater plant
353 necrotroph OTU richness at a depth of 0 – 5 cm compared to the 5 – 15 cm depth and ECM-tree
354 dominant soil showing no differences between depths. Ectomycorrhizal fungal OTU richness
355 was significantly higher in ECM plots compared to AM plots only at a depth of 0 – 5 cm ($P =$
356 0.003; $R^2 = 33.1\%$), while ectomycorrhizal fungal 1D and 2D were not significantly affected by
357 dominant plot mycorrhizal type, depth, N treatment, or any interactions.

358 Dominant mycorrhizal type explained 32% of the variation in relative abundance
359 between functional groups, but depth was not significant (Table 3). Nitrogen treatment and
360 interaction terms were also not significant for functional groups (Table 3). Similar to the results
361 from our mycorrhizal gradient analyses, significant changes in fungal functional group
362 composition at MC were the result of reduced ectomycorrhizal fungal ($R^2 = 36.3\%$) relative

363 abundance and increased plant biotroph ($R^2 = 12.5\%$), plant necrotroph ($R^2 = 30.5\%$), and
364 primary saprotroph ($R^2 = 34.6\%$) relative abundances in AM-tree dominant soil ($P < 0.05$; Fig.
365 3e-h). Differences in the relative abundance of fungal families from MC with $>1\%$ average
366 relative abundance in AM-tree or ECM-tree dominated soil are reported in Table 4. Generally,
367 families with biotrophic plant pathogen, necrotrophic plant pathogen, and saprotrophic members
368 again increased in relative abundance in AM-tree dominant soil while families containing
369 ectomycorrhizal members decreased in relative abundance. The Elaphomycetaceae, a family in
370 Ascomycota containing ectomycorrhizal taxa, and the Marasmiaceae, a family in Basidiomycota
371 containing various saprotrophic and ectomycorrhizal taxa, however, both increased in relative
372 abundance in AM-tree dominant soil. Additionally, 58% of fungal families with $>1\%$ average
373 relative abundance overlapped between the MC and mycorrhizal gradient datasets, with 12 out of
374 14 of these shared families demonstrating similar responses to dominant tree mycorrhizal type.
375 The two exceptions were both ectomycorrhizal families in Basidiomycota: the Boletaceae
376 increased in relative abundance in AM-tree dominant soil at MC but decreased in the
377 mycorrhizal gradient sites, while the trends for Sebacinaceae were the opposite.

378 **4. Discussion**

379 *4.1 Dominance of different mycorrhizal tree types affects fungal functional group relative
380 abundances and overall fungal species diversity*

381 In this study, we found that AM and ECM tree communities affect soil fungal
382 communities in distinct ways, consistent with our overarching hypothesis that many groups of
383 non-mycorrhizal fungi are affected by the mycorrhizal associations of dominant trees through
384 controls on nutrient availability, which likely have important consequences for forest community
385 dynamics and ecosystem processes. Within all four forests, areas with increased AM tree

386 dominance were associated with increased fungal diversity and increased relative abundances of
387 biotrophic plant pathogens, necrotrophic plant pathogens, and primary saprotrophs (Figs. 1 – 3).
388 Additionally, percent AM tree basal area consistently explained as much or more variation in
389 fungal community composition as soil properties, such as SOM content and nitrification rate,
390 sampling depth, and mineral N availability (Table 1). Mycorrhizal type is increasingly viewed as
391 a key trait with cascading effects that go well beyond nutrient acquisition, potentially affecting
392 global patterns in soil biogeochemistry and plant-soil feedbacks (3, 61, 1). Such broad effects
393 imply that tree mycorrhizal types must consistently influence non-mycorrhizal fungi, as
394 demonstrated here across four forest stands. Indeed, our findings are similar to Bahram *et al.*
395 (29), who demonstrated comparable patterns in relative abundance of plant pathogens and
396 saprotrophs in Baltic temperate forests based on mycorrhizal dominance, and support the ideas
397 offered by Netherway *et al.* (62) regarding differences between plant pathogen and saprotroph
398 abundance between AM- and ECM-dominant systems.

399 Plant-soil feedbacks tend to be more negative for AM trees than ECM trees (8, 28),
400 including at Lilly-Dickey Woods (38), and this pattern has recently been associated with greater
401 accumulation of potentially pathogenic fungi on AM tree roots vs. ECM tree roots (21, 10). Our
402 data on bulk soil fungal communities suggests that this effect on biotrophic and necrotrophic
403 plant pathogen abundances may create a “mycorrhizal spillover” effect that influences the fungal
404 functional groups responsible for plant-soil feedback encountered by other trees within the
405 community (9). Due to the increased diversity of plant biotrophs and necrotrophs in AM-tree
406 dominated stands, both heterospecific and conspecific plants may experience a greater likelihood
407 of encountering a pathogenic fungal strain capable of causing an infection. Increased relative
408 abundances of fungal biotrophic and necrotrophic plant pathogens also suggests that infectious

409 populations encountered may be a larger fraction of the community, increasing the likelihood of
410 plant disease (63). Hence, these patterns should result in more negative plant-soil feedback in
411 AM-dominated stands, helping to explain how juvenile tree recruitment, regardless of the
412 juvenile species mycorrhizal type, can be strongly influenced by the mycorrhizal type of
413 surrounding dominant trees (38, 21, 9).

414 Plant pathogen relative abundances may be greater in AM-dominant soil because of the
415 greater association of pathogens with AM roots as noted above, but other factors are likely to
416 drive increased primary saprotroph relative abundance and diversity, as well as contribute to
417 specialized necrotrophic plant pathogens that are facultatively saprotrophic (62). ECM-dominant
418 tree communities are known to induce slower rates of nutrient and SOM cycling compared to
419 AM-dominant tree communities (64, 2, 5, 65), which may be explained by the lower primary
420 saprotroph relative abundances observed in our study. AM leaf litter also tends to be more labile
421 than ECM leaf litter due to increased nutrient and polyphenol contents (3, 66, 7), creating more
422 favorable conditions for fungal plant pathogens and saprotrophs that rely on plant litter for
423 carbon and energy (22, 23). Increased labile carbon and energy availability may also drive
424 enhanced saprotrophic fungal diversity (67, 23), which may be tied to plant diversity through
425 controls on available types of leaf litter (i.e., labile vs. recalcitrant). Furthermore, reduced
426 saprotroph relative abundance (and necrotrophic plant pathogen relative abundance) in ECM-
427 dominant tree communities may also be a consequence of competitive interactions with ECM
428 fungi (68, 19). Although ECM fungi obtain most of their carbon from their host tree, they
429 compete with free-living fungi for nitrogen and other resources, including access to leaf litter.

430 While dominant mycorrhizal types have emerged as a convenient framework by which to
431 classify forests, shifts in fungal community composition have also been attributed to many other

432 factors, such as soil organic matter (69) or the species identity of dominant trees (70), which may
433 be confounded with mycorrhizal associations in these systems. Trees that do not conform to trait
434 predictions under the MANE framework, such as AM trees with recalcitrant leaf litter (e.g.,
435 *Platanus occidentalis*) or ECM trees with labile leaf litter (e.g., *Carya ovata*; personal
436 observations) may induce weaker effects on soil carbon and nutrient cycling and could
437 potentially drive opposite patterns in local fungal community composition to those observed in
438 our study. Likewise, tree species that are dual mycorrhizal, such as members of *Alnus*, *Populus*,
439 and *Salix* (71), may also drive different relationships between soil microbial communities and
440 soil nutrient dynamics. Dual mycorrhizal relationships and their effects on soil in comparison to
441 AM or ECM associations are currently an underexplored area warranting further research (71).
442 Finally, variation among broad controls on decomposition caused by geographic factors, such as
443 temperature and precipitation, may override mycorrhizal-associated patterns in nutrient cycling
444 and fungal community composition. It is therefore critical to continue testing the hypotheses
445 presented here in forests of varying tree species composition and geographical range before
446 drawing ultimate conclusions about the role mycorrhizas play in structuring soil community
447 dynamics.

448 *4.2 Mineral N addition and soil depth do not influence fungal communities as much as forest*
449 *mycorrhizal dominance.*

450 Soil sampling depth has been shown to affect the community composition of root-
451 associated fungi (72), with depth interacting with tree mycorrhizal dominance to influence the
452 relative abundances of saprotrophic and mycorrhizal fungi (73). While sampling depth explained
453 some variation in OTU richness of our various functional groups in our experimental plots, we
454 found this depth x mycorrhizal type interaction to only be significant for plant necrotroph OTU

455 richness. This appears to suggest that plant necrotroph diversity is primarily associated with the
456 more organic horizons of AM soil, but further work is needed to fully explain the drivers behind
457 this result. Additionally, sampling depth did not significantly affect fungal relative abundances,
458 either as a main effect or as an interaction with dominant mycorrhizal type. Dominant
459 mycorrhizal type consistently explained more than twice as much variation in plant biotroph,
460 plant necrotroph, and primary saprotroph OTU richness compared to sampling depth,
461 demonstrating the strong influence different mycorrhizal associations have on soil fungal
462 communities.

463 Contrary to our third prediction, mineral N addition did not increase the relative
464 abundances of plant pathogenic and saprotrophic soil fungi in our study. Neither the relative
465 abundance of fungal taxa and functional groups, nor fungal OTU richness, were affected by the
466 six years of inorganic N addition at Moores Creek. Only plant necrotroph OTU evenness
467 appeared to be weakly influenced by a mycorrhizal dominance x mineral N treatment interaction
468 ($P = 0.07$), with N treatment slightly increasing necrotroph OTU evenness in ECM soil while
469 having no effect in AM soil. While some studies on the effects of simulated mineral N deposition
470 on temperate hardwood forest soils have demonstrated changes to overall fungal community
471 composition (e.g., 74, 75, 76), other studies have shown that fungi may instead alter the
472 expression of extracellular enzyme genes when community composition remains unchanged (32,
473 33, 77, 78). Additionally, in relation to dominant mycorrhizal associations, extracellular enzyme
474 production has been documented to shift from C-degrading to N-degrading enzymes with
475 increasing ECM dominance (79). These variable responses of soil fungi to changes in mineral N
476 availability suggest that our fungal communities may have altered their activity instead of
477 composition, as seen in ECM-dominant plots from Midgley and Phillips (41). Alternatively,

478 larger amounts of N than those applied at Moores Creek can induce changes in fungal
479 community composition, as observed at Harvard Forest (76, 80). It is also possible our plots may
480 be limited by resources other than N or co-limited by multiple nutrients (81, 82). For example,
481 DeForest *et al.* (81) documented microbial community composition changes in response to P
482 addition in unglaciated forest soils in southern Ohio, but not in glaciated northern Ohio soils.

483 While mineral N addition can elicit varying responses in soil fungal communities, the
484 form or quality of N added can also affects fungal community composition and function. For
485 example, Cline *et al.* (22) found that saprotrophic and ECM fungal species richness responded
486 negatively to organic N addition, indicating that inorganic vs. organic N availability is an
487 important consideration when studying fungal community responses to N addition. Similarly,
488 Beidler *et al.* (83) found that high-quality substrates, represented by fungal tissue with low
489 melanin and high N content, decomposed much more rapidly than low-quality substrates. They
490 also demonstrated variable responses in fungal community composition to substrate quality
491 depending on dominant mycorrhizal associations, with low substrate quality, AM-associated
492 communities having overall higher relative abundances of pathogens and saprotrophs (83). Both
493 of these studies suggest that the addition of bioavailable, mineral N may bypass important
494 metabolic barriers that would otherwise alter the representation of specific fungi in soil
495 communities of varying mycorrhizal dominance. It would therefore be worthwhile to examine
496 whether fungal enzyme activity or gene expression changes on the basis of inorganic vs. organic
497 N addition in forests of different dominant mycorrhizal types.

498 *4.3 Conclusions*

499 Our study and those from Bahram *et al.* (29) and Netherway *et al.* (62) suggest that there
500 are widespread patterns in the distribution of fungal functional groups based on tree mycorrhizal

501 types present in forest ecosystems. Additional research in other forests will be required to
502 confirm that these patterns in functional groups are ubiquitous, or if these patterns are instead
503 driven by other factors such as specific dominant tree species, specific fungal taxa, or geography.
504 The effect of mycorrhizal dominance on the diversity and relative abundance of saprotrophic and
505 plant pathogenic fungi is closely related to important differences in nutrient and SOM cycling (2,
506 84) and plant-soil feedback (8, 9). Future work should address the relative importance of these
507 mechanisms as drivers of carbon storage and community dynamics in ecosystems of varying
508 mycorrhizal composition, while also examining how widespread these phenomena are globally.
509 With temperate forests expected to become more AM-tree dominant under global change factors
510 (11, 12), understanding these patterns of co-occurrence between tree mycorrhizal associations
511 and soil microbial communities is vital if we are to understand the full effects of global change
512 on temperate forests.

513 **ACKNOWLEDGEMENTS**

514 Project funding was provided by grants from the U.S. National Science Foundation (DEB-
515 1834241) and U.S. Department of Energy (DE-SC0004335). Additionally, we thank Meghan
516 Midgley for establishing the plots and long-term N deposition experiment at MC and Edward
517 Brzostek for establishing the plots at GW, LDW, and MMSF. We also thank Laura Podzikowski,
518 Elizabeth Huenupi, and Mark Sheehan for maintaining the N deposition experiment at MC and
519 Michael Chitwood, manager of Indiana University's Research and Teaching Preserve, for
520 maintaining those properties.

521 **AUTHOR CONTRIBUTIONS**

522 CBB, RPP, and KAS designed the study. ACE, RMM, and ALH collected the data, with ACE
523 and ALH handling samples from GW, LDW, and MMSF and RMM handling samples from MC.
524 ACE performed the bioinformatic and statistical analyses. ACE and CBB wrote the manuscript
525 with input from all authors.

526 **REFERENCES**

- 527 1. Tedersoo, L., Bahram, M. and Zobel, M., 2020. How mycorrhizal associations drive plant
528 population and community biology. *Science*, 367(6480).
- 529 2. Phillips, R.P., Brzostek, E. and Midgley, M.G., 2013. The mycorrhizal-associated
530 nutrient economy: a new framework for predicting carbon–nutrient couplings in
531 temperate forests. *New Phytologist*, 199(1), pp.41-51.
- 532 3. Lin, G., McCormack, M.L., Ma, C. and Guo, D., 2017. Similar below-ground carbon
533 cycling dynamics but contrasting modes of nitrogen cycling between arbuscular
534 mycorrhizal and ectomycorrhizal forests. *New Phytologist*, 213(3).
- 535 4. Cotrufo, M.F., Wallenstein, M.D., Boot, C.M., Denef, K. and Paul, E., 2013. The
536 Microbial Efficiency-Matrix Stabilization (MEMS) framework integrates plant litter
537 decomposition with soil organic matter stabilization: do labile plant inputs form stable
538 soil organic matter?. *Global change biology*, 19(4), pp.988-995.
- 539 5. Craig, M.E., Turner, B.L., Liang, C., Clay, K., Johnson, D.J. and Phillips, R.P., 2018.
540 Tree mycorrhizal type predicts within-site variability in the storage and distribution of
541 soil organic matter. *Global change biology*, 24(8), pp.3317-3330.
- 542 6. Wurzburger, N. and Hendrick, R.L., 2009. Plant litter chemistry and mycorrhizal roots
543 promote a nitrogen feedback in a temperate forest. *Journal of Ecology*, 97(3), pp.528-
544 536.

- 545 7. Keller, A.B. and Phillips, R.P., 2019. Leaf litter decay rates differ between mycorrhizal
546 groups in temperate, but not tropical, forests. *New Phytologist*, 222(1), pp.556-564.
- 547 8. Bennett, J.A., Maherali, H., Reinhart, K.O., Lekberg, Y., Hart, M.M. and Klironomos, J.,
548 2017. Plant-soil feedbacks and mycorrhizal type influence temperate forest population
549 dynamics. *Science*, 355(6321).
- 550 9. Eagar, A.C., Cosgrove, C.R., Kershner, M.W. and Blackwood, C.B., 2020. Dominant
551 community mycorrhizal types influence local spatial structure between adult and juvenile
552 temperate forest tree communities. *Functional Ecology*, 34(12), pp.2571-2583.
- 553 10. Liang, M., Johnson, D., Burslem, D.F., Yu, S., Fang, M., Taylor, J.D., Taylor, A.F.,
554 Helgason, T. and Liu, X., 2020. Soil fungal networks maintain local dominance of
555 ectomycorrhizal trees. *Nature Communications*, 11(1), pp.1-7.
- 556 11. Jo, I., Fei, S., Oswalt, C.M., Domke, G.M. and Phillips, R.P., 2019. Shifts in dominant
557 tree mycorrhizal associations in response to anthropogenic impacts. *Science advances*,
558 5(4), p.eaav6358.
- 559 12. Steidinger, B.S., Crowther, T.W., Liang, J., Van Nuland, M.E., Werner, G.D., Reich,
560 P.B., Nabuurs, G.J., de-Miguel, S., Zhou, M., Picard, N. and Hérault, B., 2019. Climatic
561 controls of decomposition drive the global biogeography of forest-tree symbioses.
562 *Nature*, 569(7756), pp.404-408.
- 563 13. Smith, S.E. and Smith, F.A., 2011. Roles of arbuscular mycorrhizas in plant nutrition and
564 growth: new paradigms from cellular to ecosystem scales. *Annual review of plant
565 biology*, 62.

- 566 14. Whiteside, M.D., Digman, M.A., Gratton, E. and Treseder, K.K., 2012. Organic nitrogen
567 uptake by arbuscular mycorrhizal fungi in a boreal forest. *Soil Biology and Biochemistry*,
568 55.
- 569 15. Read, D.J. and Perez-Moreno, J., 2003. Mycorrhizas and nutrient cycling in ecosystems—
570 a journey towards relevance?. *New Phytologist*, 157(3).
- 571 16. Lindahl, B.D. and Tunlid, A., 2014. Ectomycorrhizal fungi—potential organic matter
572 decomposers, yet not saprotrophs. *New Phytologist*, 205(4).
- 573 17. Gadgil, R.L. and Gadgil, P.D., 1971. Mycorrhiza and litter decomposition. *Nature*,
574 233(5315).
- 575 18. Averill, C., Turner, B.L. and Finzi, A.C., 2014. Mycorrhiza-mediated competition
576 between plants and decomposers drives soil carbon storage. *Nature*, 505(7484).
- 577 19. Averill, C. and Hawkes, C.V., 2016. Ectomycorrhizal fungi slow soil carbon cycling.
578 *Ecology Letters*, 19(8).
- 579 20. Teste, F.P., Kardol, P., Turner, B.L., Wardle, D.A., Zemunik, G., Renton, M. and
580 Laliberté, E., 2017. Plant-soil feedback and the maintenance of diversity in
581 Mediterranean-climate shrublands. *Science*, 355(6321).
- 582 21. Chen, L., Xiang, W., Wu, H., Ouyang, S., Zhou, B., Zeng, Y., Chen, Y. and Kuzyakov,
583 Y., 2019. Tree species identity surpasses richness in affecting soil microbial richness and
584 community composition in subtropical forests. *Soil Biology and Biochemistry*, 130.
- 585 22. Cline, L.C., Huggins, J.A., Hobbie, S.E. and Kennedy, P.G., 2018. Organic nitrogen
586 addition suppresses fungal richness and alters community composition in temperate forest
587 soils. *Soil Biology and Biochemistry*, 125.

- 588 23. Bai, Z., Wu, X., Lin, J.J., Xie, H.T., Yuan, H.S. and Liang, C., 2019. Litter-, soil-and C:
- 589 N-stoichiometry-associated shifts in fungal communities along a subtropical forest
- 590 succession. *Catena*, 178.
- 591 24. Smolander, A., Kurka, A., Kitunen, V. and Mälkönen, E., 1994. Microbial biomass C and
- 592 N, and respiratory activity in soil of repeatedly limed and N-and P-fertilized Norway
- 593 spruce stands. *Soil Biology and Biochemistry*, 26(8).
- 594 25. Frey, S.D., Knorr, M., Parrent, J.L. and Simpson, R.T., 2004. Chronic nitrogen
- 595 enrichment affects the structure and function of the soil microbial community in
- 596 temperate hardwood and pine forests. *Forest Ecology and Management*, 196(1).
- 597 26. Castaño, C., Dejene, T., Mediavilla, O., Geml, J., Oria-de-Rueda, J.A. and Martín-Pinto,
- 598 P., 2019. Changes in fungal diversity and composition along a chronosequence of
- 599 Eucalyptus grandis plantations in Ethiopia. *Fungal Ecology*, 39.
- 600 27. LaManna, J.A., Walton, M.L., Turner, B.L. and Myers, J.A., (2016). Negative density
- 601 dependence is stronger in resource-rich environments and diversifies communities when
- 602 stronger for common but not rare species. *Ecology Letters*, 19(6).
- 603 28. Segnitz, R.M., Russo, S.E., Davies, S.J. and Peay, K.G., 2020. Ectomycorrhizal fungi
- 604 drive positive phylogenetic plant–soil feedbacks in a regionally dominant tropical plant
- 605 family. *Ecology*, p.e03083.
- 606 29. Bahram, M., Netherway, T., Hildebrand, F., Pritsch, K., Drenkhan, R., Loit, K., Anslan,
- 607 S., Bork, P. and Tedersoo, L., 2020. Plant nutrient-acquisition strategies drive topsoil
- 608 microbiome structure and function. *New Phytologist*.

- 609 30. Waldrop, M.P., Zak, D.R., Sinsabaugh, R.L., Gallo, M. and Lauber, C., 2004. Nitrogen
610 deposition modifies soil carbon storage through changes in microbial enzymatic activity.
611 *Ecological Applications*, 14(4).
- 612 31. Janssens, I.A., Dieleman, W., Luyssaert, S., Subke, J.A., Reichstein, M., Ceulemans, R.,
613 Ciais, P., Dolman, A.J., Grace, J., Matteucci, G. and Papale, D., 2010. Reduction of forest
614 soil respiration in response to nitrogen deposition. *Nature Geoscience*, 3(5).
- 615 32. Entwistle, E.M., Zak, D.R. and Edwards, I.P., 2013. Long-term experimental nitrogen
616 deposition alters the composition of the active fungal community in the forest floor. *Soil
617 Science Society of America Journal*, 77(5).
- 618 33. Freedman, Z.B., Romanowicz, K.J., Upchurch, R.A. and Zak, D.R., 2015. Differential
619 responses of total and active soil microbial communities to long-term experimental N
620 deposition. *Soil Biology and Biochemistry*, 90.
- 621 34. Kjøller, R., Nilsson, L.O., Hansen, K., Schmidt, I.K., Vesterdal, L. and Gundersen, P.,
622 2012. Dramatic changes in ectomycorrhizal community composition, root tip abundance
623 and mycelial production along a stand-scale nitrogen deposition gradient. *New
624 phytologist*, 194(1).
- 625 35. van Strien, A.J., Boomsluiter, M., Noordeloos, M.E., Verweij, R.J. and Kuyper, T.W.,
626 2018. Woodland ectomycorrhizal fungi benefit from large-scale reduction in nitrogen
627 deposition in the Netherlands. *Journal of applied ecology*, 55(1).
- 628 36. Midgley, M.G., Brzostek, E. and Phillips, R.P., 2015. Decay rates of leaf litters from
629 arbuscular mycorrhizal trees are more sensitive to soil effects than litters from
630 ectomycorrhizal trees. *Journal of Ecology*, 103(6).

- 631 37. Schmid, H.P., Grimmond, C.S.B., Cropley, F., Offerle, B. and Su, H.B., 2000.
632 Measurements of CO₂ and energy fluxes over a mixed hardwood forest in the mid-
633 western United States. *Agricultural and Forest Meteorology*, 103(4).
- 634 38. Johnson, D.J., Clay, K. and Phillips, R.P., 2018. Mycorrhizal associations and the spatial
635 structure of an old-growth forest community. *Oecologia*, 186(1), pp.195-204.
- 636 39. Brundrett, M.C., 2009. Mycorrhizal associations and other means of nutrition of vascular
637 plants: understanding the global diversity of host plants by resolving conflicting
638 information and developing reliable means of diagnosis. *Plant and Soil*, 320(1-2).
- 639 40. Maherli, H., Oberle, B., Stevens, P.F., Cornwell, W.K. and McGinn, D.J., 2016.
640 Mutualism persistence and abandonment during the evolution of the mycorrhizal
641 symbiosis. *The American Naturalist*, 188(5).
- 642 41. Midgley, M.G. and Phillips, R.P., 2016. Resource stoichiometry and the biogeochemical
643 consequences of nitrogen deposition in a mixed deciduous forest. *Ecology*, 97(12).
- 644 42. Mushinski, R.M., Phillips, R.P., Payne, Z.C., Abney, R.B., Jo, I., Fei, S., Pusede, S.E.,
645 White, J.R., Rusch, D.B. and Raff, J.D., 2019. Microbial mechanisms and ecosystem flux
646 estimation for aerobic NO_y emissions from deciduous forest soils. *Proceedings of the
647 National Academy of Sciences*, 116(6).
- 648 43. White, T.J., Bruns, T., Lee, S.J.W.T. and Taylor, J., 1990. Amplification and direct
649 sequencing of fungal ribosomal RNA genes for phylogenetics. *PCR protocols: a guide to
650 methods and applications*, 18(1), pp.315-322.
- 651 44. Buée, M., Reich, M., Murat, C., Morin, E., Nilsson, R.H., Uroz, S. and Martin, F., 2009.
652 454 Pyrosequencing analyses of forest soils reveal an unexpectedly high fungal diversity.
653 *New Phytologist*, 184(2).

- 654 45. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello,
655 E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I. and Huttley, G.A., 2010.
656 QIIME allows analysis of high-throughput community sequencing data. *Nature Methods*,
657 7(5).
- 658 46. Edgar, R.C., 2010. Search and clustering orders of magnitude faster than BLAST.
659 *Bioinformatics*, 26(19), pp.2460-2461.
- 660 47. UNITE Community (2017): UNITE QIIME release. Version 01.12.2017. UNITE
661 Community. <https://doi.org/10.15156/BIO/587481>
- 662 48. Ihrmark, K., Bödeker, I., Cruz-Martinez, K., Friberg, H., Kubartova, A., Schenck, J.,
663 Strid, Y., Stenlid, J., Brandström-Durling, M., Clemmensen, K.E. and Lindahl, B.D.,
664 2012. New primers to amplify the fungal ITS2 region—evaluation by 454-sequencing of
665 artificial and natural communities. *FEMS Microbiology Ecology*, 82(3).
- 666 49. Tremblay, J., Singh, K., Fern, A., Kirton, E.S., He, S., Woyke, T., Lee, J., Chen, F.,
667 Dangl, J.L. and Tringe, S.G., 2015. Primer and platform effects on 16S rRNA tag
668 sequencing. *Frontiers in Microbiology*, 6.
- 669 50. Nguyen, N.H., Song, Z., Bates, S.T., Branco, S., Tedersoo, L., Menke, J., Schilling, J.S.
670 and Kennedy, P.G., 2016. FUNGuild: an open annotation tool for parsing fungal
671 community datasets by ecological guild. *Fungal Ecology*, 20.
- 672 51. Tedersoo, L., Bahram, M., Põlme, S., Anslan, S., Riit, T., Kõljalg, U., Nilsson, R.H.,
673 Hildebrand, F. and Abarenkov, K., 2015. Response to Comment on “Global diversity and
674 geography of soil fungi”. *Science*, 349(6251), pp.936-936.
- 675 52. Oksanen, J., Kindt, R., Legendre, P., O’Hara, B., Stevens, M.H.H., Oksanen, M.J. and
676 Suggs, M.A.S.S., 2007. The vegan package. *Community ecology package*, 10.

- 677 53. Blanchet, F.G., Legendre, P. and Borcard, D., 2008. Forward selection of explanatory
678 variables. *Ecology*, 89(9), pp.2623-2632.
- 679 54. Borcard, D., Gillet, F. and Legendre, P., 2018. *Numerical ecology with R*. Springer.
- 680 55. Peres-Neto, P.R., Legendre, P., Dray, S. and Borcard, D., 2006. Variation partitioning of
681 species data matrices: estimation and comparison of fractions. *Ecology*, 87(10).
- 682 56. Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K. and Ellison,
683 A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling
684 and estimation in species diversity studies. *Ecological monographs*, 84(1).
- 685 57. Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., Heisterkamp, S., Van Willigen, B. and
686 Maintainer, R., 2017. Package ‘nlme’. Linear and Nonlinear Mixed Effects Models.
- 687 58. Barton, K., 2009. MuMIn: multi-model inference. R package version 1. 0. 0. [http://r-
688 forge. r-project. org/projects/mumin/](http://r-forge.r-project.org/projects/mumin/).
- 689 59. <https://www.ncbi.nlm.nih.gov/sra/?term=SRR13120641>
- 690 60. https://genome.jgi.doe.gov/portal/BiosouITagplate1_FD/BiosouITagplate1_FD.info.html
- 691 61. Jiang, F., Lutz, J.A., Guo, Q., Hao, Z., Wang, X., Gilbert, G.S., Mao, Z., Orwig, D.A.,
692 Parker, G.G., Sang, W. and Liu, Y., 2020. Mycorrhizal type influences plant density
693 dependence and species richness across 15 temperate forests. *Ecology*, p.e03259.
- 694 62. Netherway, T., Bengtsson, J., Krab, E.J. and Bahram, M., 2020. Biotic interactions with
695 mycorrhizal systems as extended nutrient acquisition strategies shaping forest soil
696 communities and functions. *Basic and Applied Ecology*.
- 697 63. Liu, Y. and He, F., 2019. Incorporating the disease triangle framework for testing the
698 effect of soil-borne pathogens on tree species diversity. *Functional Ecology*, 33(7),
699 pp.1211-1222.

- 700 64. Talbot, J.M. and Finzi, A.C., 2008. Differential effects of sugar maple, red oak, and
701 hemlock tannins on carbon and nitrogen cycling in temperate forest soils. *Oecologia*,
702 155(3).
- 703 65. Tatsumi, C., Taniguchi, T., Du, S., Yamanaka, N. and Tateno, R., 2020. Soil nitrogen
704 cycling is determined by the competition between mycorrhiza and ammonia-oxidizing
705 prokaryotes. *Ecology*, 101(3), p.e02963.
- 706 66. Averill, C., Bhatnagar, J.M., Dietze, M.C., Pearse, W.D. and Kivlin, S.N., 2019. Global
707 imprint of mycorrhizal fungi on whole-plant nutrient economics. *Proceedings of the
708 National Academy of Sciences*, 116(46), pp.23163-23168.
- 709 67. Feinstein, L.M. and Blackwood, C.B., 2012. Taxa-area relationship and neutral dynamics
710 influence the diversity of fungal communities on senesced tree leaves. *Environmental
711 Microbiology*, 14(6), pp.1488-1499.
- 712 68. McGuire, K.L., Zak, D.R., Edwards, I.P., Blackwood, C.B. and Upchurch, R., 2010.
713 Slowed decomposition is biotically mediated in an ectomycorrhizal, tropical rain forest.
714 *Oecologia*, 164(3), pp.785-795.
- 715 69. Tedersoo, L., Anslan, S., Bahram, M., Drenkhan, R., Pritsch, K., Buegger, F., Padari, A.,
716 Hagh-Doust, N., Mikryukov, V., Gohar, D. and Amiri, R., 2020. Regional-scale in-depth
717 analysis of soil fungal diversity reveals strong pH and plant species effects in Northern
718 Europe. *Frontiers in microbiology*, 11, p.1953.
- 719 70. Prescott, C.E. and Grayston, S.J., 2013. Tree species influence on microbial communities
720 in litter and soil: current knowledge and research needs. *Forest Ecology and
721 Management*, 309, pp.19-27.

- 722 71. Teste, F.P., Jones, M.D. and Dickie, I.A., 2020. Dual-mycorrhizal plants: their ecology
723 and relevance. *New Phytologist*, 225(5), pp.1835-1851.
- 724 72. Clemmensen, K.E., Finlay, R.D., Dahlberg, A., Stenlid, J., Wardle, D.A. and Lindahl,
725 B.D., 2015. Carbon sequestration is related to mycorrhizal fungal community shifts
726 during long-term succession in boreal forests. *New Phytologist*, 205(4).
- 727 73. Carteron, A., Beigas, M., Joly, S., Turner, B.L. and Laliberté, E., 2020. Temperate forests
728 dominated by arbuscular or ectomycorrhizal fungi are characterized by strong shifts from
729 saprotrophic to mycorrhizal fungi with increasing soil depth. *Microbial Ecology*, pp.1-14.
- 730 74. Pregitzer, K.S., Burton, A.J., Zak, D.R. and Talhelm, A.F., 2008. Simulated chronic
731 nitrogen deposition increases carbon storage in Northern Temperate forests. *Global
732 change biology*, 14(1).
- 733 75. Edwards, I.P., Zak, D.R., Kellner, H., Eisenlord, S.D. and Pregitzer, K.S., 2011.
734 Simulated atmospheric N deposition alters fungal community composition and
735 suppresses ligninolytic gene expression in a northern hardwood forest. *PLoS one*, 6(6).
- 736 76. Morrison, E.W., Frey, S.D., Sadowsky, J.J., van Diepen, L.T., Thomas, W.K. and
737 Pringle, A., 2016. Chronic nitrogen additions fundamentally restructure the soil fungal
738 community in a temperate forest. *Fungal Ecology*, 23, pp.48-57.
- 739 77. Hesse, C.N., Mueller, R.C., Vuyisich, M., Gallegos-Graves, L.V., Gleasner, C.D., Zak,
740 D.R. and Kuske, C.R., 2015. Forest floor community metatranscriptomes identify fungal
741 and bacterial responses to N deposition in two maple forests. *Frontiers in Microbiology*,
742 6.

- 743 78. Zak, D.R., Argiroff, W.A., Freedman, Z.B., Upchurch, R.A., Entwistle, E.M. and
744 Romanowicz, K.J., 2019. Anthropogenic N deposition, fungal gene expression, and an
745 increasing soil carbon sink in the Northern Hemisphere. *Ecology*.
- 746 79. Cheeke, T.E., Phillips, R.P., Kuhn, A., Rosling, A. and Fransson, P., 2020. Variation in
747 hyphal production rather than turnover regulates standing fungal biomass in temperate
748 hardwood forests. *Ecology*, p.e03260.
- 749 80. Morrison, E.W., Pringle, A., van Diepen, L.T. and Frey, S.D., 2018. Simulated nitrogen
750 deposition favors stress-tolerant fungi with low potential for decomposition. *Soil Biology*
751 and *Biochemistry*, 125, pp.75-85.
- 752 81. DeForest, J.L., Smemo, K.A., Burke, D.J., Elliott, H.L. and Becker, J.C., 2012. Soil
753 microbial responses to elevated phosphorus and pH in acidic temperate deciduous forests.
754 *Biogeochemistry*, 109(1), pp.189-202.
- 755 82. Rosling, A., Midgley, M.G., Cheeke, T., Urbina, H., Fransson, P. and Phillips, R.P.,
756 2016. Phosphorus cycling in deciduous forest soil differs between stands dominated by
757 ecto- and arbuscular mycorrhizal trees. *New Phytologist*, 209(3), pp.1184-1195.
- 758 83. Beidler, K.V., Phillips, R.P., Andrews, E., Maillard, F., Mushinski, R.M. and Kennedy,
759 P.G., 2020. Substrate quality drives fungal necromass decay and decomposer community
760 structure under contrasting vegetation types. *Journal of Ecology*, 108(5), pp.1845-1859.
- 761 84. Frey, S.D., 2019. Mycorrhizal fungi as mediators of soil organic matter dynamics. *Annual
762 Review of Ecology, Evolution, and Systematics*, 50, pp.237-259.

763 **TABLES**764 Table 1: Adjusted R² values from the RDAs conducted on fungal community composition in the
765 samples representing a gradient of mycorrhizal types expressed as percent of variance explained.

Explanatory Variables	Phylum	Class	Order	Family	Genus	Species	OTU	Functional Group
AM Percent + Site	43.3	30.0	18.7	16.8	13.9	8.5	4.7	33.3
AM Percent	27.1	19.5	11.6	11.5	9.2	4.5	2.6	26.6
Site	15.3	9.8	6.6	5.1	4.6	4.1	2.1	6.5
Soil Properties	26.5a	22.1a	12.3a	11.9a	10.2a	7.1b	3.8b	-

766 Sites include Griffy Woods, Lilly-Dickey Woods, and Morgan-Monroe State Forest. A value

767 displayed in the table indicates that the explanatory variable was significant ($\alpha = 0.05$).

768 a. Nitrification identified as significant during the stepwise, forward selection RDA.

769 b. b. SOM + nitrification identified as significant during the stepwise, forward selection

770 RDA.

771 Table 2: Fungal families with an average relative abundance > 1% from the mycorrhizal gradient across Griffy Woods, Lilly-Dickey
 772 Woods, and Morgan-Monroe State Forest.

Phylum	Family	Functional Role	R ²	AM-tree dominant soil	Intermediate soil	ECM-tree dominant soil
Ascomycota	Tuberaceae	Ectomycorrhizal	1.1	1.6 ± 3.51	0.69 ± 0.75	1.08 ± 1.39
	Nectriaceae	Necrotroph or Primary Saprotoph	32.75	1.42 ± 0.78	0.5 ± 0.32	0.52 ± 1.05
	Mycosphaerellaceae	Necrotroph or Various	21.34	2.57 ± 2.14	1.78 ± 2.3	1.05 ± 1.55
	Helotiaceae	Necrotroph, Primary or Wood Saprotoph, Ectomycorrhizal, Ericoid Mycorrhizal, Endophyte, or Various	12.41	3.91 ± 4.34	2.01 ± 0.97	1.92 ± 1.29
	Herpotrichiellaceae	Necrotroph, Primary or Wood Saprotoph, Endophyte, or Various	3.2	1.31 ± 0.72	0.63 ± 0.31	1.09 ± 0.73
	Helotiales (inc. sed.)	Necrotroph, Primary Saprotoph, Ectomycorrhizal, Endophyte, Various, or Unknown	20.04	2.34 ± 1.75	1.82 ± 1.4	1.04 ± 0.96
	Dermateaceae	Necrotroph, Primary Saprotoph, Unknown, or Various	2.41	0.59 ± 0.39	1.9 ± 3.77	1.09 ± 1.51
	Hyaloscyphaceae	Primary or Wood Saprotoph, Endophyte, Fungal Parasite, or Various	2.08	1.55 ± 1.67	0.8 ± 0.55	0.89 ± 0.75
	Clavicipitaceae	Primary Saprotoph or Fungal Parasite	30.02	1.24 ± 0.95	0.53 ± 0.29	0.48 ± 0.3
Basidiomycota	Hygrophoraceae	Biotroph, Primary Saprotoph, Ectomycorrhizal, or Various	15.86	5.17 ± 6.96	1.22 ± 1.34	1.74 ± 2.5
	Russulaceae	Ectomycorrhizal	22.26	17.5 ± 14.8	31.5 ± 14.5	31.5 ± 13.7
	Inocybaceae	Ectomycorrhizal	0.24	3.6 ± 4.61	3.16 ± 2.93	2.2 ± 2.49
	Amanitaceae	Ectomycorrhizal	12.53	0.15 ± 0.19	0.76 ± 1.13	1.29 ± 2.24
	Sebacinaceae	Ectomycorrhizal or Various	2.77	5.64 ± 6.34	5.7 ± 4.25	3.11 ± 3.65
	Clavulinaceae	Ectomycorrhizal or Various	1.81	0.68 ± 0.65	0.6 ± 0.88	1.79 ± 2.99
	Boletaceae	Ectomycorrhizal or Various	3.26	0.73 ± 0.87	0.53 ± 0.54	1.59 ± 3.37
	Trimorphomycetaceae	Fungal Parasite or Various	11.96	1.11 ± 0.77	0.67 ± 0.56	0.65 ± 0.35

	Atheliaceae	Necrotroph, Primary Saprotoph, Ectomycorrhizal, or Various	18.07	1.16 ± 0.94	4.63 ± 5.3	10.5 ± 13.9	
	Cortinariaceae	Primary Saprotoph or Ectomycorrhizal	8.43	0.49 ± 0.37	6.26 ± 13.9	5.92 ± 11.8	
	Clavariaceae	Primary Saprotoph or Various	37.31	2.5 ± 2.39	1.07 ± 0.68	0.64 ± 1.14	
	Tricholomataceae	Primary Saprotoph, Ectomycorrhizal, or Various	4.22	0.49 ± 0.45	0.52 ± 0.76	3.04 ± 7.6	
	Thelephoraceae	Primary Saprotoph, Ectomycorrhizal, or Various	6.04	4.09 ± 3.5	5.69 ± 4.71	6.04 ± 3.58	
	Zygomycota	Mortierellaceae	Primary Saprotoph	21.69	17.9 ± 11.1	13.2 ± 12.1	7.45 ± 7.5

773 Functional role includes all taxa present in each family. Biotroph and Necrotroph designations are specific to plant pathogens and do
 774 not include animal or fungal pathogens. The Various designation was used for taxa within a family who were assigned multiple
 775 functional roles that remained unresolved after a thorough literature search. Average relative abundances and standard deviations were
 776 obtained from plots with > 65% relative basal area of one mycorrhizal type (AM or ECM dominant) and from plots with < 60%
 777 relative basal area of both mycorrhizal types (Intermediate). Adjusted R^2 values reported are from the redundancy analysis performed
 778 at the family rank. Relative abundance values are displayed as percentages and include standard deviations.

779 Table 3: Adjusted R² values from the RDAs conducted on the fungal community data from the
780 mycorrhizal type × N fertilization experiment at Moores Creek.

Explanatory Variables	Phylum	Class	Order	Family	Genus	OTU	Functional Group
Mycorrhizal Type	42.7	29.6	18.3	22.6	16.4	9.7	32.0
Depth	-	3.3	2.2	2.1	2.2	-	-
N Treatment	-	-	-	-	-	-	-
All Interactions	-	-	-	-	-	-	-

781 A value displayed in the table indicates that the explanatory variable was significant ($\alpha = 0.05$).

Table 4: Fungal families with an average relative abundance > 1% from AM-tree and ECM-tree dominant plots at Moores Creek.

Phylum	Family	Functional Role	R2	AM-tree dominant soil	ECM-tree dominant soil
Ascomycota	Elaphomycetaceae	Ectomycorrhizal	0.05	3.12 ± 9.5	0.95 ± 1.45
	Herpotrichiellaceae	Primary Saprotoph, Endophyte, or Various	31.27	2.46 ± 2.29	0.49 ± 0.41
Basidiomycota	Hygrophoraceae	Biotroph or Ectomycorrhizal	30.59	10.9 ± 15.9	0.22 ± 0.75
	Russulaceae	Ectomycorrhizal	21.25	19.4 ± 18.9	35.8 ± 18.5
	Amanitaceae	Ectomycorrhizal	25.40	0.77 ± 1.48	8.99 ± 15.9
	Boletaceae	Ectomycorrhizal	15.19	6.05 ± 8.48	0.6 ± 1.14
	Cortinariaceae	Ectomycorrhizal	23.43	2.25 ± 7.95	5.35 ± 5.27
	Hydnangiaceae	Ectomycorrhizal	10.73	0.03 ± 0.08	1.93 ± 5.08
	Sebacinaceae	Ectomycorrhizal	5.14	2.51 ± 5.8	3 ± 3.04
	Hydnaceae	Ectomycorrhizal or Various	16.68	0.05 ± 0.08	7.29 ± 12.9
	Clavulinaceae	Ectomycorrhizal or Various	2.22	2.29 ± 5.4	6.37 ± 14.2
	Ceratobasidiaceae	Necrotroph, Ectomycorrhizal, or Various	52.45	2.02 ± 3.04	0 ± 0
	Tricholomataceae	Necrotroph, Primary Saprotoph, or Ectomycorrhizal	25.13	0.3 ± 0.44	9.91 ± 17.4
	Strophariaceae	Primary or Wood Saprotoph, or Ectomycorrhizal	38.23	3.41 ± 4.33	0.17 ± 0.61
	Clavariaceae	Primary Saprotoph	50.06	5.38 ± 4.29	0.83 ± 2.01
	Agaricaceae	Primary Saprotoph	44.48	1.83 ± 2.27	0.12 ± 0.14
	Geminibasidiaceae	Primary Saprotoph	25.00	1.48 ± 2.13	0.09 ± 0.16
	Entolomataceae	Primary Saprotoph or Ectomycorrhizal	77.12	2.32 ± 1.76	0.03 ± 0.07
	Marasmiaceae	Primary Saprotoph or Ectomycorrhizal	0.31	0.66 ± 1.26	2.15 ± 8.01
	Thelephoraceae	Primary Saprotoph or Ectomycorrhizal	0.41	2.19 ± 2.32	2.36 ± 2.46
	Atheliaceae	Primary Saprotoph, Ectomycorrhizal, or Various	30.24	0.19 ± 0.49	3.65 ± 6.22
	Inocybaceae	Wood Saprotoph or Ectomycorrhizal	18.09	4.19 ± 5.3	0.66 ± 1.11
Mucoromycota	Umbelopsidaceae	Primary Saprotoph	4.65	5.22 ± 8.15	5.12 ± 1.93
Zygomycota	Mortierellaceae	Primary Saprotoph	59.69	14.3 ± 12	1.33 ± 2.72

783 Functional role includes all taxa present in each family. Biotroph and Necrotroph designations are specific to plant pathogens and do
784 not include animal or fungal pathogens. The Various designation was used for taxa within a family who were assigned multiple
785 functional roles that remained unresolved after a thorough literature search. Average relative abundances and standard deviations were
786 obtained from plots with > 85% relative basal area of one mycorrhizal type (AM or ECM dominant). Adjusted R² values reported are
787 from the redundancy analysis performed at the family rank. Relative abundance values are displayed as percentages and include
788 standard deviations.

789 **FIGURE CAPTIONS**

790 Figure 1: Overall fungal OTU richness (0D), 1D , and 2D from: a-c) sites forming natural
791 gradients of mycorrhizal dominance (circles = Griffy Woods, triangles = Lilly-Dickey Woods,
792 squares = Morgan-Monroe State Forest) and d-f) plots with > 85% relative basal area of ECM or
793 AM trees from Moores Creek. Colored regression lines correspond to each individual site, while
794 the black regression line and reported R^2 value correspond to the entire linear model conducted
795 with site as a random effect.

796 Figure 2: OTU richness (0D), 1D , and 2D for biotrophic pathogens, necrotrophic pathogens,
797 primary saprotrophs, and ectomycorrhizal fungi from: a-d) sites forming natural gradients of
798 mycorrhizal dominance (circles = Griffy Woods, triangles = Lilly-Dickey Woods, squares =
799 Morgan-Monroe State Forest) and e-h) plots with > 85% relative basal area of ECM or AM trees
800 from Moores Creek. Colored regression lines correspond to each individual site, while the black
801 regression line and reported R^2 value correspond to the entire linear model conducted with site as
802 a random effect.

803 Figure 3: Percent relative abundances of biotrophic pathogens, necrotrophic pathogens, primary
804 saprotrophs, and ectomycorrhizal fungi from: a-d) sites forming natural gradients of mycorrhizal
805 dominance (circles = Griffy Woods, triangles = Lilly-Dickey Woods, squares = Morgan-Monroe
806 State Forest) and e-h) plots with > 85% relative basal area of ECM or AM trees from Moores
807 Creek. Colored regression lines correspond to each individual site, while the black regression
808 line and reported R^2 value correspond to the entire linear model conducted with site as a random
809 effect.