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ABSTRACT 
Video accessibility is crucial for blind screen-reader users as on-
line videos are increasingly playing an essential role in education, 
employment, and entertainment. While there exist quite a few tech-
niques and guidelines that focus on creating accessible videos, there 
is a dearth of research that attempts to characterize the accessibility 
of existing videos. Therefore in this paper, we defne and investi-
gate a diverse set of video and audio-based accessibility features 
in an efort to characterize accessible and inaccessible videos. As 
a ground truth for our investigation, we built a custom dataset of 
600 videos, in which each video was assigned an accessibility score 
based on the number of its wins in a Swiss-system tournament, 
where human annotators performed pairwise accessibility compar-
isons of videos. In contrast to existing accessibility research where 
the assessments are typically done by blind users, we recruited 
sighted users for our efort, since videos comprise a special case 
where sight could be required to better judge if any particular scene 
in a video is presently accessible or not. Subsequently, by examin-
ing the extent of association between the accessibility features and 
the accessibility scores, we could determine the features that sig-
nifcantly (positively or negatively) impact video accessibility and 
therefore serve as good indicators for assessing the accessibility of 
videos. Using the custom dataset, we also trained machine learning 
models that leveraged our handcrafted features to either classify 
an arbitrary video as accessible/inaccessible or predict an accessi-
bility score for the video. Evaluation of our models yielded an �1 
score of 0.675 for binary classifcation and a mean absolute error of 
0.53 for score prediction, thereby demonstrating their potential in 
video accessibility assessment while also illuminating their current 
limitations and the need for further research in this area. 

CCS CONCEPTS 
• Human-centered computing → Accessibility theory, con-
cepts and paradigms; Accessibility systems and tools. 
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1 INTRODUCTION 
Videos are increasingly becoming a frst-choice medium to share 
information in several domains including education, news, and 
social media. Websites such as Youtube allow users all over the 
world to create, share, and consume videos of diferent kinds such 
as how-to videos, tutorials, lectures, highlights, events, and even 
presentations. For instance, more than 500 hours of content gets 
uploaded every minute on the Youtube website which has in excess 
of 2 billion monthly users as of 2021 [40]. 

Video format is inherently multi modal, where the information 
is conveyed to a user via a combination of both visual content 
and complementing audio. As the default audio present in a video 
typically by itself cannot provide the full information contained 
in that video, it needs to be extended to cover the information 
conveyed by the visual content as well in order to make the video 
accessible to blind users who can only listen to the video content. 
In this regard, prior works exist that either provide accessibility 
guidelines for video content creators[38, 39], or propose automated 
methods for creating video descriptions[4]. 

However in practice, the guidelines are rarely followed as the 
whole process requires signifcant manual efort, thereby making 
it expensive, time consuming, and selective. Even the automated 
methods have not yet achieved mainstream acceptance. As a conse-
quence, videos found on websites vary signifcantly in how acces-
sible they are to blind screen-reader users. At one extreme, there 
exist videos where all information is conveyed visually, e.g., a video 
showing a nature scene with no sound, or with a background mu-
sic would likely convey no information to the blind user, and in 
the other extreme, there are videos where the audio covers all the 
necessary information in the videos, e.g., a narrator accurately de-
scribing a nature scene would make it possible for the video to be 
followed by blind users. Most videos however exhibit accessibility 
between these two extremities where the audio partially covers the 
information present in the videos. 

Full Paper Track CIKM ’21, November 1–5, 2021, Virtual Event, Australia

58

https://doi.org/10.1145/3459637.3482457
https://doi.org/10.1145/3459637.3482457
mailto:vganjigu@odu.edu
mailto:permissions@acm.org
mailto:ram@cs.stonybrook.edu


Figure 1: Accessibility analysis using handcrafted features. From left to right: (i) Two main sources of information, namely 
the video and the audio. (ii) Handcrafted feature computation. (iii) Use of features for predicting accessibility scores. 

If the accessibility of a video can be expressed in some quantifed 
form (e.g., a score), the blind users can then use this cue to com-
pare and select more accessible videos to watch among the several 
alternatives available in search results. Without this cue, they have 
to follow a tedious and frustrating trial-and-error approach where 
they have to test each video in the search results by listening to 
a portion of it before deciding whether to continue listening or 
move on to test the next search result video [27]. Therefore in this 
paper, we explore a statistical approach for quantifying the degree 
of accessibility exhibited by any arbitrary video. Specifcally, we ex-
plore the following research challenge: Can we quantify the degree 
of accessibility of a video in the form of a rating or score, and then 
explain or justify this rating? 

In this regard, we frst constructed a dataset comprising subjec-
tive accessibility evaluations of 600 videos, where multiple sighted 
raters evaluated the accessibility of each video via a Swiss-system 
tournament [17] thereby resulting in a fnal accessibility score (i.e., 
number of wins) for each video at the end of the tournament. Lever-
aging this dataset, we then investigated a diverse assortment of 
handcrafted visual and audio features with regard to the strength 
of their associations with the accessibility scores, i.e., what features 
better correlate with high/low accessible scores. Using these cus-
tom features, we also trained: (i) a binary classifer that can predict 
whether a video is accessible or not with a performance of 0.675 
�1 score; and (ii) a neural network based prediction model (see Fig-
ure 1) that can provide reasonable estimates (mean absolute error 
of 0.53) of the accessibility score of unseen videos in the dataset. 
The use of custom handcrafted features in the models facilitates 
explainable predictions, i.e., the features can be used to justify the 
predicted scores or the assigned accessible/inaccessible labels. 

Our contributions are as follows: 

• We collect annotations for a dataset for quantifying video ac-
cessibility that consists of subjective accessibility evaluations 
of 600 short videos 

• We perform statistical analysis of associations between ac-
cessibility of a video and a set of handcrafted visual and 
audio features that represent the video, both similar to the 
ones existing in the literature, and new ones 

• We design and perform evaluation of predictive models that 
can either classify a video as accessible/inaccessible or gen-
erate accessibility scores/labels automatically for the video. 

2 RELATED WORK 
Our contributions in this paper closely relate to the following extant 
literature: (i) general accessibility evaluation frameworks; (ii) video 
accessibility; and (iii) multimedia feature extraction. 

2.1 Accessibility Evaluation and Diagnostics 
Evaluating accessibility of software, tools and websites is immensely 
benefcial for both users and developers, therefore there exist plenty 
of works that facilitate such evaluations[11, 35]. However, many of 
these methods focus predominantly on assessing the accessibility 
of websites. For instance, [19] proposed two metrics to evaluate 
webpage accessibility. The frst metric attempts to quantify navi-
gability by considering factors such as estimated time it takes to 
navigate to page sections of interest, use of headings in HTML 
source, and the accessibility of links. The second metric attempts 
to quantify listenability aspect by considering factors such as ex-
istence of alternative (‘ALT’) text, and repetition of content. On 
the other hand Gonzalez et al. [21] proposed a system named KAI 
for not only measuring the accessibility of webpages for people 
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with visual impairments, but also producing an accessibility report 
for diferent sections of a webpage. A comparative study of seven 
diferent accessibility metrics is presented in [37]. Other than the 
work by Asakawa et al. [8] that focuses on accessibility of online 
Flash content, all other aforementioned techniques, to the best of 
our knowledge, do not focus on evaluating video content. 

Several automated accessibility diagnostics tools or accessibility 
checkers also presently exist that can analyze an arbitrary web-
page or a PDF document, and subsequently generate a detailed 
accessibility report highlighting the issues that need to be fxed 
by the web developers of that page. For example, Darvishy et al. 
[13] and Doblies et al. [14] both proposed a tool for diagnosing 
and correcting accessibility problems in PDF documents. On the 
other hand, WAVE (Web Accessibility Evaluation Tool) [2] can pin-
point accessibility issues with webpages. In the context of mobile 
application development, GSCXScanner for iOS [1] and Lint in An-
droid Studio [3] can assist the developers in evaluating the code 
structures and then improve the accessibility of their applications. 

2.2 Video Accessibility 
Prior work on video accessibility exists mainly in the form of guide-
lines for creating accessible videos. One such example is the W3C 
guidelines on video accessibility [39]. W3C guidelines outline con-
siderations for accessibility for video creators not only for people 
with visual impairments, but also people with hearing difculties. 
These guidelines suggest that the videos should contain audio de-
scriptions when there is visual content that is essential to convey 
the meaning of the video [38]. It also introduces various video 
description methods and ways of creating video descriptions [38]. 

In addition to creation guidelines, there also exist prior works 
that focus on improving the accessibility of existing videos. For 
example, Yuksel et al. [41] present an approach based on creating 
video descriptions for improving the video accessibility for both 
people who are blind and those with low-vision. Better utilization 
of the audio modality via annotations has also been proposed to 
improve video accessibility [15]. A more recent work [9] describes 
a method that leverages the concept of visual saliency as a guid-
ing signal for detecting the important regions in the video and 
then selecting magnifying these regions for improved low-vision 
interaction with the video. 

Compared to the sizeable literature on improving video accessi-
bility, research on video accessibility assessment and evaluation re-
mains an under-studied topic. As an example work in this direction, 
the work of Acosta et al. [5] concerns accessibility of educational 
videos produced by universities. Their manual analysis revealed 
widespread accessibility issues of these videos. While the analysis 
performed here is manual, as opposed to our goal of investigating 
the possibility of an automated system, this work identifes the 
nature and the scope of many video accessibility problems. 

Perhaps the closest research related to our work in this paper is 
by Liu et al. [27] who explore the same problem, but difer from us 
with regard to the methods and formulations. First, their work is a 
macro-level assessment that focuses on entire videos, similar to the 
ones that could be found on online video platforms, whereas our 
work is more fne-grained in that we focus on individual scenes in 
a video or short videos. Second, the core heuristics used in their 

analysis was determined from the fndings of a user study with 
blind participants, where these participants assessed the accessibil-
ity of diferent videos. In contrast, we recruited sighted users for 
our analysis, since videos comprise a special case where sight is 
potentially more suited to judge if any particular scene in a video 
is presently accessible or not; without the beneft of visual confr-
mation, blind users are likely to miss several inaccessible parts of a 
video during accessibility assessment. Nonetheless, some of their 
fndings do seem comparable with our observations, and we report 
these details later in Section 3.2 and Section 4.3. 

2.3 Feature Extraction 
Automatically computing the handcrafted features used in our anal-
ysis and models requires the use of some state-of-the-art techniques 
in computer vision and audio analysis. We discuss some of the tech-
niques relevant to our work next. 

2.3.1 Object Detection. One way to understand the factors that 
impact the accessibility of a video is by handcrafting diferent visual 
and audio features that represent the video and then determining 
how these features correlate with the accessibility (score/rating) 
of the video. Object detection, which has witnessed signifcant 
improvement in recent years due to advent of deep learning tech-
niques, is one of the main sources of information for computing the 
visual features that represent a video. Object detection has been 
a well-studied topic for the past decade [42]. YOLO is one of the 
widely used object detection frameworks [10, 32–34], so we lever-
age this framework to compute many of the visual features (see 
Table 1) in our work. We also leverage a cloud-based service as a 
secondary source[6], as detailed in Section 3. 

2.3.2 Audio Event Detection. Audio event detection is a vital part 
of our system pipeline for understanding the relationship between 
the video and audio modalities. Stowell et al. [36] provide a sur-
vey of pre-deep learning era work on audio event detection and 
datasets. Deep learning advancement has led to increased use of 
neural network models for audio event detection, typically using 
convolutional layers. In our work, we leverage a recent model pro-
posed by Kong et al. [25] to extract audio events from videos. 

3 DESIGN 
Our accessibility analysis and the proposed rating system leverage 
existing techniques in computer vision, audio analysis and natural 
language processing. Our system focuses on short scenes instead 
of full-length videos, as scene level analysis captures detailed fne-
grained information, that could be then generalized in a bottom-up 
manner to cover the entire duration of a video. 

3.1 Techniques for Video Analysis 
3.1.1 Object Detection. One of the main components of our video 
analysis toolkit is object detection. Since object detection is a well-
studied problem in computer vision, there are many publicly avail-
able solutions that we can leverage in our system, even in the form 
of cloud-based services. Our object detection pipeline processes 
videos frame-by-frame. Specifcally, let a video � be a collection of 
individual frames, � = �0, �1, ..., �� where � is the number frames. 
The object detector generates object proposals for each frame in 
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the video, resulting in zero or more bounding box coordinates, with 
each bounding box having an associated object class label. For our 
analysis, this predicted object class label is of more interest than the 
bounding box coordinates. In our analysis, we used two existing 
tools for object detection: 1) YOLO [34] object detector, trained 
on COCO dataset [26], and 2) Amazon Rekognition, a cloud-based 
image and video labelling service [6]. We used the object detection 
information from these sources to compute features that capture 
the nature and variety of objects that appear in a video, which we 
explain later in Section 3.2. 

3.1.2 Audio Event Detection. Detection of audio events in a video 
facilitates a better understanding of the video. For example, if the 
only audio event in a documentary scene is music, the non-visual 
accessibility of the video will likely be very low, since all infor-
mation in the scene is visual. On the other hand, the presence of 
diferent speech events in a video could enhance the accessibility 
of a video as the speech could contain cues about the visual in-
formation in the video. Having an understanding of audio events 
requires the use of an audio event detection model. In our work, we 
use the model proposed in [25]. This model generates audio class 
predictions for each time point of the video. Also, the model was 
trained on [20] dataset, which supports 527 output classes, thereby 
enabling a detailed analysis of the audio events in the videos. We 
utilize the model predictions for computing audio features such 
as event types that involve manually determined meta-class labels 
(i.e., audio events pointing to a person, such as speech) and also 
features that provide cumulative descriptive statistics such as the 
total number of audio events belonging to diferent classes. 

3.1.3 Optical Flow. Optical fow captures the nature of movement 
in a video, and it has found use in numerous applications[18]. We 
utilized optical fow to quantify the total amount of movement in a 
video. Specifcally, we computed optical fow maps for each frame 
in a video using Farneback method [16], which allowed us to derive 
features related to the extent of movement in the video. 

3.1.4 Transcription. Although fnding associations between the 
diferent classes may potentially provide us with a general under-
standing of the co-occurrences of the audio and object classes, the 
information provided by these associations does not often provide a 
complete picture. For example, it is a very common occurrence that 
a video contains a narrator who may never actually appear in the 
video, but provides informative content about the visual content 
in the video. To better understand the relationship between the 
speech content and the visual content, we transcribed the videos 
in our dataset and used features derived from these transcriptions. 
For transcription task, we used Amazon Transcribe [7], which is 
an automated service for video and audio transcription. 

3.1.5 Text Analysis. Analysis of speech content could reveal details 
about the relationship between the audio and the visual content. For 
example, if the detected objects in a video are also described in the 
speech, it may lead to higher accessibility. To extract features related 
to speech content, we used Natural Language toolkit – NLTK [28]. 
We utilized NLTK specifcally for part-of-speech tagging, which 

assigns part-of-speech tags (e.g., singular noun, verb) to all the 
words in the transcribed speech content. 

3.2 Handcrafting Features for Assessing Video 
Accessibility 

To understand the extent to which various visual and audio aspects 
of a video impact its accessibility, we handcrafted diferent features 
(see Table 1) and then examined the correlations between these 
features and the accessibility scores (obtained from sighted users in 
a study described later in Section 4.3), so as to uncover the reasons 
impacting these scores, and also identify potential sources of acces-
sibility issues. In contrast, using embedding features (such as the 
ones from residual networks[22]) extracted from the visual/sound 
modalities of a video could result in better model performance 
for a sufciently large dataset, but it would be challenging if not 
impossible to leverage these features for providing justifcations 
or explanations for the model predictions. In sum, an explainable 
model for predicting video accessibility is essential and more useful 
than a blackbox model that only outputs the accessibility ratings. 

The design of features shown in Table 1 was based on manual 
exploratory analysis of the videos in a custom built video dataset 
(described later in Section 4.1). This set of features provides us the 
means to analyze the accessibility of videos from various aspects. 
For example, the positive correlation between the transcript length 
and the accessibility could suggest ample speech content in a video 
is more likely to result in more accessible videos. On the other 
hand, a negative correlation between the number of detected object 
types and the accessibility score could mean that more object types 
in a video could imply more entities that need to be mentioned 
and explained in a video, possibly leading to greater accessibility 
challenges than having a lower number of object types. 

Some of the features described above share similarities with 
those proposed in a very recent contemporary related work [27]. 
Specifcally, features �1, �2, �3, �6, �9 and �13 are similar to some 
of the metrics proposed in that prior work [27], however exact 
implementation and representation of many of these features difer 
signifcantly between the two works. Also notice that some of the 
features described in Table 1 capture similar information (e.g �1 and 
�4), hence are highly likely to be correlated. 

Lastly, note that Table 1 does not include all the features we 
initially considered as some of these features did not exhibit a strong 
or signifcant relationship with the user-generated accessibility 
ratings, and therefore have been excluded from the table for brevity. 
Specifcally, in addition to the features in Table 1, we had also 
considered features based on video saliency and motion vector 
information. However, in a correlation test, we did not fnd any 
meaningful relationships between these features and the assigned 
accessibility scores, and therefore these features were removed from 
further consideration. 

4 EXPERIMENTS 
In this section, we describe (i) the dataset we built by selecting 
videos from two other commonly used datasets for visual saliency 
prediction[23] and action recognition[29] respectively; (ii) the ac-
cessibility evaluation annotation procedure with sighted users; (iii) 
observations related to our handcrafted features; and (iv) a user 
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Feature ID Feature name Corr. Signifcance Explanation 
� ∗ 1 Speech ratio 0.4217 � < 0.001 Speech duration, normalized by the video length 
� ∗ 2 # of object predictions 0.1685 � < 0.001 Total number of objects prediction events in the video 

� ∗ 3 # of object prediction types -0.1042 � = 0.011 Total number of diferent types of object predicted in a 
video 

�4 Does speech audio event exist? 0.4147 � < 0.001 Binary feature describing if speech event detected 

�5 Avg. Sum of optical fow magnitude -0.1206 � = 0.003 Sum of optical fow vectors for each frame, averaged 
over frames 

� ∗ 6 Transcription number of words 0.5476 � < 0.001 Number of words in the transcribed speech of the video 
�7 Does music audio event exist? -0.1320 � = 0.001 Binary feature describing if music event detected 
�8 Music ratio -0.2229 � < 0.001 Music duration, normalized by the video length 
� ∗ 9 Nouns ratio 0.3741 � < 0.001 Frequency of the nouns as result of POS tagging 
�10 Counts ratio 0.2160 � < 0.001 Frequency of the counts as result of POS tagging 
�11 Pronouns ratio 0.3629 � < 0.001 Frequency of the pronouns as result of POS tagging 
�12 # of person detections 0.1918 � < 0.001 Number of person detection events 

� ∗ 13 Obj. detection-transcription match 0.2823 � < 0.001 Number of times a detected object name appears in the 
transcription 

�14 Speech-person coexistence 0.1730 � < 0.001 If a video has speech audio event and a person has been 
detected at the same time 

Table 1: Notable features extracted, along with their Spearmans’s correlation with the aggregate user-generated accessibility 
ratings. Notice that some of the metrics proposed in [27] are aimed to capture information similar to the ones captured by the 
features �1, �2, �3, �6, �9, and �13 (Highlighted with *), although the exact realizations of these features are diferent. Also, all 
features were normalized if applicable. 

study with users having visual impairments to understand the 
relationship between their perceptions of accessibility and the ac-
cessibility evaluations previously obtained from sighted users. 

4.1 Video Dataset 
In order to perform a statistical analysis to determine the asso-
ciations between handcrafted features and video accessibility, it 
is imperative to frst quantify accessibility over a representative 
sample of videos. Non-visual accessibility of videos can be highly 
subjective to quantify, hence we conducted a data-collection study 
to obtain aggregate ratings of video accessibility. 

We frst compiled a dataset by sampling videos from LEDOV 
dataset[23] and AviD dataset[29], which were originally collected 
for benchmarking video saliency detection and action recognition 
tasks respectively. The diverse topics of the videos and presence 
of audio made LEDOV dataset a suitable choice for this task. The 
videos chosen from this dataset depict a wide range of scenarios 
including nature scenes, sports/artistic performances, playing in-
struments, interviews, conversations and other similar settings. To 
make annotations feasible, we restricted our focus to videos in Eng-
lish language. Furthermore, we removed videos that do not contain 
any sounds (i.e., no audio channel). We also removed videos longer 
than 20 seconds to remove outliers and be consistent with other 
sources. In total, we collected 399 videos from LEDOV dataset. 

AviD dataset [29] contains a diverse set of action videos. Since 
the dataset contains around 450k videos, we randomly sampled 
videos from this dataset subject to a few constraints. First, we fl-
tered out long videos, and as in case of LEDOV dataset, we focused 
on videos containing English speech. Sampled videos from AviD 
dataset belonged to action classes such as playing an instrument, 

playing sports, outdoor events, and instructional videos. In total, 
we sampled 201 videos from AviD dataset, which along with 399 
videos from LEDOV dataset resulted in a total of exactly 600 videos 
in our dataset. Overall, the combined dataset consisted of videos 
that have 10 seconds duration on average (Max: 20 seconds, min: 3 
seconds, standard deviation: 3.2 seconds). Majority of the videos in 
the combined dataset consisted of single scenes, with some videos 
containing more than one scene with the same theme (e.g., a snow-
boarding performance shown at diferent angles). 

4.2 Accessibility Annotation of the Dataset 
We conducted a user study with 9 sighted participants to obtain 
accessibility ratings for videos in our dataset. First, the users were 
introduced to the task of interest, which is answering the following 
question: If you were only hearing this video, how well would you 
understand this video?. The participants were then introduced to 
sample videos that belong to both extremes with regard to accessi-
bility (i.e., full narration vs. no narration, e.g., a video that depicts 
a natural scene and the music played vs. a video where the scene 
is perfectly described by the narrator in a detailed manner), and 
video(s) that fall in between these extremes. Next, the users were 
introduced to the annotation interface, where pairs of videos were 
shown to user for making comparisons with aforementioned ques-
tion. The users had to choose between the following three options 
to make this comparison: (i) frst video, meaning frst video had 
higher accessibility, (ii) second video, meaning second video had 
higher accessibility, or (iii) equal, denoting an inconclusive compar-
ison. Pairwise comparisons have been previously used for similar 
annotation tasks, such as predicting video interestingness [24], and 
visual quality assessment [30, 31]. 
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Figure 2: Annotation pipeline. The participants are shown 
pairs of videos chosen from the dataset, for which they pro-
vide one of the three options (A, B or equal). The videos with 
the same scores are paired together in the next round. 

One crucial aspect of this annotation process is the cost of anno-
tation with videos. Video annotation is hard to scale even when the 
video duration is limited, mainly due to the time overhead involved 
in annotating a large number of videos. Ideally, we would like to 
minimize the number of comparisons while obtaining reliable rat-
ings. Therefore, for the purposes of our data annotation study, we 
decided to use the Swiss system [17], which has been widely used 
in dataset construction for visual quality assessment [30, 31]. Swiss 
system considers the ranking process as a tournament, where each 
comparison between pairs of samples is a match. We start with 
randomly chosen pairs, after which the winner samples are paired 
together and losing samples are paired together for consecutive 
rounds. This allows for an approximate ranking to be obtained in 
signifcantly lower number of steps compared to � (�2) approach 
of comparing all pairs of videos. In our study, we added 1 point to 
the score of the winning video and 0.5 to each videos for a draw, 
and compared each video 4 times (except in the cases of bye, where 
such videos are automatically given a score of 1 for the round), 
resulting in accessibility scores between 0 and 4, with increments 
of 0.5. Figure 3 shows the histogram of accessibility scores at the 
end of the labeling. 

4.3 Accessibility Analysis 
The correlations between handcrafted features and the accessibility 
ratings are shown in Table 1. Based on these correlations, below 
are some of the key relationships that we observed to be important 
in assessing the accessibility of a video from our dataset. 

Object Detection. We found out object detection results are 
linked to the accessibility ratings in various ways. For instance, we 
found out that having more object types in a video correlated with a 
lower corresponding accessibility rating. This could likely be due to 
the increase in the quantity of visual information that cannot all be 
explained via audio for ensuring accessibility of the video content. 
Also, we observed that increased references to the video objects in 
the transcribed speech positively afected the accessibility ratings, 
which presumably is due to more visual information being made 
available via audio to blind screen reader users. 

Figure 3: Number of samples with respect to accessibility 
scores. 

Speech Event-Person Co-Occurrence. We found out that ac-
cessibility of a video was higher when a speech-related audio event 
coincided with the presence of a person (determined using object 
detection) in the video. This is best explained by the positive corre-
lation value (0.173) between the feature �14 and accessibility score 
as shown in Table 1. 

Motion. Average sum of optical fow magnitude was found to be 
negatively correlated with the accessibility score. More movement 
in a video could indicate that more actions will need to be explained 
in audio for accessibility. However, note that this by itself is not a 
very strong inference – it needs to be supplemented with a higher 
level information source, such as results from an action recognition 
model. 

Audio Recognition. Existence of a detected speech event was 
found to be a major signal that predicts accessibility, as suggested 
by the high corresponding correlation value (0.4147) in Table 1. 
This is in a way an unsurprising observation – unless the point of 
interest in a video is also expressed in the audio stream with a well-
known sound(e.g., piano sound for a video where the main event is 
a piano being played), it is hard for the listener to understand the 
video with the remaining audio information. 

Speech Analysis. We found a strong relationship between the 
length of the transcribed speech, both in terms of number of charac-
ters and words, and the accessibility ratings provided by the users. 
This implies that more speech content generally captures more 
context about the visual content of the video, which makes it easier 
for blind users to comprehend the events in the video. 

Part-of-Speech Tagging Analysis. Part-of-Speech tagging re-
vealed several signals that could be used to predict accessibility, 
which is expressed via �9, �10 and �11 features in Table 1. For ex-
ample, we found a positive relationship between the frequency 
of nouns and the accessibility score, regardless of the relevance 
of these nouns to the objects detected in the video. Although it 
does not establish a causal relationship, this suggests that more 
nouns could mean higher number of entities being referred to in a 
video, hence a higher chance of visual content or related entities 
being explained via audio. Similarly, higher number of counts and 
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(a) From LEDOV[23] dataset. (b) From AViD[29] dataset. 

(c) From LEDOV[23] dataset. (d) From AViD[29] dataset. 

Figure 4: Sample videos from the dataset. (a) and (b): sample videos with high rating, with both have 4/4 score. (c) and (d): 
sample videos with low ratings, with both having 0.5 score. 

pronouns could also possibly capture several entities or persons in 
the visual content, thereby increasing the accessibility of the video. 

Music. Both the existence of music (�7) and the proportion of 
the video covered by a music event (�8) features were found to be 
negatively correlated with the accessibility score. We found many 
examples in our dataset where the videos had background music 
that was completely unrelated to the visual content, thereby lower-
ing the accessibility of these videos. In fact, this was one of the main 
motivations that led us to consider features related to background 
music in our analysis. An exception to this scenario comprised 
instances where the music event detected was accompanied by an 
instrument or instruments being played in the video. 

Comparison with Contemporary Video Accessibility As-
sessment [27]: We remark the above fndings from our analysis 
share many similarities with those of a contemporary related re-
search work [27]. For instance, the positive impact of feature �1 
(Speech ratio) on video accessibility was also observed in that prior 
work although by a diferent approach – by showing that the % 
Non-Speech feature that captured the proportion of non-speech 
duration in the video was negatively correlated with video acces-
sibility. Similarly, the positive correlation between the feature �9 
(Nouns ratio) and �13 (Object-transcription match) and accessibility 
rating too was also equivalently captured as negative correlations 
between the features low lexical density speech and % visual entities 
not in speech in the prior work [27]. However, as the ground truth 
accessibility ratings in that work were obtained from people with 
visual impairments, they were unable to determine (with statistical 
signifcance) the type of correlation between the number of visual 
entities/min feature and the accessibility ratings, although their ini-
tial model suggested a negative correlation. In our work however, 
as the ratings were obtained from sighted users, we did not face 

this problem; we instead observed that there was a positive corre-
lation between �2 (Number of object predictions) and accessibility 
ratings. However, we observed that the feature �3 (number of object 
prediction types) exhibited a negative correlation with the ratings. 

4.4 Videos with High/Low Accessibility 
In this section, we provide and discuss examples of a few videos 
in our dataset that were assigned high and low accessibility scores 
respectively by sighted users. 

4.4.1 Videos with High Accessibility. We report the fndings of a 
qualitative analysis of the videos in our dataset that were rated high 
(i.e., 3.5 or 4.0) by the sighted users. One of the common aspects 
we observed regarding the highly-rated videos was the existence 
of speech. Examples of this ilk included speech videos, where the 
videos contain a single person speaking with a constant background. 
Similarly, videos where the scenes were vividly and accurately 
described by a narrator in detail, also had high accessibility ratings. 

Figure 4a and 4b depict a couple of example videos that were 
rated as highly accessible. The video in Figure 4a was taken from 
a scene where two pandas are shown with a background narrator 
speaking about the pandas. Although the exact scene itself is not 
described, the audio content being closely related to the visual 
content is presumably why the sighted raters concluded that the 
video is highly accessible. Figure 4b is from a scene where snow 
shoveling tips are being instructed by a background narrator while 
a man is shown shoveling snow in the video. The speech content, 
along with the shoveling sound together convey the visual content 
of the video via its audio, which may have led users to provide a 
high accessibility rating for this video. 
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ID Age & Sex Diagnosis Media Video Habits 
P1 48/F LCA Mobile, PC Everyday 
P2 37/F Congenital Glaucoma Mobile Everyday 
P3 55/M Optical atrophy Mobile Once-twice a week 
P4 46/M Diabetic Retinopathy Mobile, TV, PC Everyday 
P5 41/M Congenital cataracts TV, PC Everyday 
P6 58/F Congenital cataracts PC, Mobile, TV Every other day 

Table 2: User study participant demographics. 

4.4.2 Videos with Low Accessibility. Similar to the videos with high 
accessibility scores, we also observed certain patterns among the 
videos with low accessibility rating (i.e., videos with 0 or 0.5 score). 
For example, one class of videos had background music that was 
totally unrelated to the video content. Another type of videos in 
this category where those where the background sound was not 
discernible enough to be associated with a particular source. 

Two examples of videos with poor accessibility ratings are shown 
in Figure 4c and Figure 4d. The video for Figure 4c is from a scene 
where background sound could be interpreted as coming from 
various sources, which possibly led users to provide low ratings 
to these videos. Figure 4d contains background music as the only 
audio theme, which makes it impossible for the user to comprehend 
the visual content just from the audio. 

Overall, the examples we have seen in Figure 4 highlight the 
importance of the concordance between the audio and the visual 
channels of a video for improved accessibility. Notice how the 
example videos although of similar nature, as in the case of Figure 
4a and Figure 4c, had contrasting accessibility scores, purely due to 
the nature of their audio content. 

4.5 Evaluation with Visually-Impaired Users 
We conducted a pilot study to better understand the video listening 
experience of users with visual impairments. Towards this, we 
recruited 6 users with visual impairments (3 male, 3 female) to 
better understand their habits of video interaction (See Table 2). 
All users except P1 relied on listening as the only way to consume 
videos. In the study, we asked the participants to listen to recordings 
of 30 randomly chosen videos from the dataset. The videos were 
presented to users in random order. For each video, the users were 
asked to describe the video, and their perception of how well they 
understood the video (On a Likert scale from 1 to 7). Below are 
some of our fndings from this study: 

Findings. Due to the diferences between the methodology of 
collecting the ratings (i.e., pairwise comparisons vs Likert scale), we 
do not report correlation information between the ratings. We how-
ever observed signifcant diferences between the ratings provided 
by sighted and visually-impaired users in certain specifc videos. 
For example, a participant misinterpreted the sound of the wind 
outdoors in a kite running video as the sound of fre and gave a 
high accessibility score of 7. In another example, an interview video 
where only a person is shown speaking (which received a high 
accessibility score of 3.5/4 in our earlier evaluation with sighted 
users) was instead deemed inaccessible by two visually-impaired 
participants in this study – the video received low scores of 2 and 3 
respectively. Lastly, the video that received the lowest score by the 

sighted participants (0.5/4) was instead considered average in terms 
of accessibility ratings given by the visually-impaired participants. 

We observed during the study the participants were indeed aware 
of the fact that they were missing some information when the 
main audio theme in a video was music. However, in some cases, 
the participants were also able to distinguish between the cases 
where an instrument was being played in a video (hence possibly 
high-accessibility) and the cases where music was being played in 
background which was unrelated to the visual content of the video. 
When asked, one participant �4 stated that ambient noise in the 
video was helpful in distinguishing between such cases. 

4.6 Automatic Evaluation of Video 
Accessibility 

We formulated the video accessibility evaluation task in two ways: 
(i) As a classifcation task by binarizing the accessibility scores into 
two classes; and (ii) As a prediction task by learning a regression 
model and computing the mean absolute error (MAE). 

4.6.1 Accessibility Evaluation by Classification. In the binary clas-
sifcation task, the accessibility ratings were collapsed into two 
groups – accessible and inaccessible. Specifcally, all videos which 
had an accessibility rating of at least 2.5 were labelled as accessible, 
and those with ratings below 2.5 were treated as inaccessible. This 
binning scheme resulted in 37.8% of the videos being labeled as ac-
cessible, and the remaining 62.2% as inaccessible. We trained several 
classifers to learn this binary classifcation task with diferent com-
binations of our handcrafted features, and found out that a support 
vector machine (SVM[12]) classifer with RBF kernel and � = 3.5 
yielded the highest �1 score of 0.675 (precision=0.746, recall=0.550) 
for the positive class (i.e., accessible) after 5-fold cross validation, 
averaged over 10 runs. This shows that there is still scope for im-
provement in this classifcation task, and it could beneft from a 
larger annotated dataset and more expressive features. 

4.6.2 Accessibility Evaluation by Regression. For this task, we trained 
a multi-layer neural network (3 fully connected layers with ReLU 
nonlinearities in between) as the regression model that can predict 
an accessibility score for a given video. This model accepts input in 
the form of a vector of handcrafted features, which were previously 
described in Section 3.2. For ground truth, we leveraged the acces-
sibility ratings produced by sighted users. 5-fold cross validation 
averaged over 10 runs resulted in a Mean absolute error (MAE) of 
0.53. Note that most ground truth ratings were between 0 and 4, 
while only 10 videos had a rating of exactly either 0 or 4. 
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Note that prior related work [27] also trained and evaluated a 
prediction model based on regression to assess video accessibility. 
However, in their work, they used a linear regression model whereas 
we performed both a neural regression task and a classifcation task. 

5 DISCUSSION 
5.1 Video diagnostics 
An advantage of handcrafted features is the possibility of deducing 
the causes underlying the predictions made by either the classifca-
tion or the regression model. In our approach, providing explana-
tions for the predictions is as important as providing an accessibility 
rating or class, since the underlying reasons could have implications 
for both consumers and creators of videos. For example, accurately 
predicting a video as inaccessible while also explaining to the video 
creator that a particular video scene does not contain any speech 
event, can immensely help the creator ‘fx’ the accessibility issues 
by supplementing that scene with video descriptions. 

Our approach is simply based on comparing handcrafted fea-
tures computed for a particular video against the distribution of 
the overall dataset. A similar comparison approach was used in 
[27].From this comparison to the overall distribution, we can iden-
tify sources of accessibility issues by detecting undesirable values 
for the various features. For instance, for features that positively 
correlate with accessibility rating, a low value may indicate a po-
tential reason for accessibility problems. Similarly, a high value for 
a negatively correlated feature can also point to a potential source 
of the accessibility problems. This insightful knowledge will enable 
both video content creators and consumers to be informed about 
the potential reasons behind a prediction, thereby permitting bet-
ter allocation of resources for improving accessibility (e.g., adding 
video descriptions). 

5.2 Limitations & Future Work 
We discuss some of the aspects of our work which can be further 
improved, and future directions that can be explored next. 

Dataset size & variety. Although the two datasets we used for 
labeling consisted of diverse sets of scenes and actions, the cost of 
manual fltering and annotation limited the number of videos that 
made their way into our fnal dataset. This created an inevitable 
dataset bias. For example, although we believe the features de-
scribed in Table 1 will generalize to many videos outside our dataset, 
the exact correlation values are still highly dependent on the videos 
included in the dataset. A more general analysis and accurate model 
for evaluating accessibility will require larger and diverse datasets 
from which complex relationships can be derived, an observation 
that was also made by prior related work [27]. Also, more compar-
isons per video in the dataset will result in more fne-grained and 
reliable scores. 

Dataset Artifacts. Some of the videos included from the AViD 
dataset contained blurred faces to preserve anonymity. Even though 
we observed that a lower confdence threshold for object detection 
mitigates this problem, this could have still impacted the perfor-
mance of person detection in our work as it is possible that fewer 
than actual number of persons were detected during our analysis. 
Second, due to pre-processing, some of the videos have a still frame 
at the end. The still frame appears longer than a second for 16% of 

the videos, and more than two seconds for 1% of the videos. For 
these videos, we computed the audio and video features for the 
duration only when both video and audio are present and changing. 

Better understanding of audio-video relationship. The anal-
ysis of relationship between the visual content and the audio in 
our approach was limited to explicit signals such as transcribed 
speech and detected audio events. While this approach has been 
demonstrated to be useful, it is not as powerful as a thorough anal-
ysis of understanding how much of the visual content is explained 
by the accompanying audio, which can be a research problem in 
itself. Further work in this regard can potentially result in better 
handling of the video accessibility evaluation task. 

On-screen text. We did not attempt to analyze text that may 
sometimes appear in videos (e.g., subtitles), which is another source 
of inaccessibility that we (and also prior work [27]) discovered 
during the study with users having visual impairments. One way 
to incorporate such text content into accessibility evaluation is to 
assess whether text content exists or not, and to analyze the rela-
tionship between the on-screen text and the speech/audio events, 
similar to that suggested in [27]. 

Improved feature extraction. Features extracted in our model 
were handcrafted and targeted at fnding specifc properties based 
on our manual observations regarding accessibility of videos. While 
these features indeed facilitate diagnostics, an accurate predictive 
model does not necessarily have to rely only on handcrafted fea-
tures. Visual information that is not captured by our handcrafted 
features can possibly be captured by state-of-the-art deep learning 
methods and is very likely to boost the prediction performance. 

6 CONCLUSION 
In this paper, we analyzed a diverse set of handcrafted features that 
characterize accessibility of videos, and built prediction models 
for quantifying accessibility of videos. Towards this, we collected 
a labeled dataset of accessibility evaluations from sighted users, 
and then used handcrafted features, some of which exist in the 
literature, extracted from the videos in this dataset to fnd features 
that correlate either positively or negatively with video accessibility. 
These handcrafted features can not only be used as a means for 
predicting accessibility scores of videos, but also provide users 
with explanations regarding the factors that impacted the predicted 
accessibility score. Through a user study with 6 participants who 
were visually impaired, we found cases where the participants’ 
perception of accessibility difered from the annotations provided 
by the sighted users. This work could pave the way for future video 
accessibility research with more data and use of more sophisticated 
machine learning models to understand in-depth the accessibility 
relationships between the visual and speech aspects of a video. 
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