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ABSTRACT

Video accessibility is crucial for blind screen-reader users as on-
line videos are increasingly playing an essential role in education,
employment, and entertainment. While there exist quite a few tech-
niques and guidelines that focus on creating accessible videos, there
is a dearth of research that attempts to characterize the accessibility
of existing videos. Therefore in this paper, we define and investi-
gate a diverse set of video and audio-based accessibility features
in an effort to characterize accessible and inaccessible videos. As
a ground truth for our investigation, we built a custom dataset of
600 videos, in which each video was assigned an accessibility score
based on the number of its wins in a Swiss-system tournament,
where human annotators performed pairwise accessibility compar-
isons of videos. In contrast to existing accessibility research where
the assessments are typically done by blind users, we recruited
sighted users for our effort, since videos comprise a special case
where sight could be required to better judge if any particular scene
in a video is presently accessible or not. Subsequently, by examin-
ing the extent of association between the accessibility features and
the accessibility scores, we could determine the features that sig-
nificantly (positively or negatively) impact video accessibility and
therefore serve as good indicators for assessing the accessibility of
videos. Using the custom dataset, we also trained machine learning
models that leveraged our handcrafted features to either classify
an arbitrary video as accessible/inaccessible or predict an accessi-
bility score for the video. Evaluation of our models yielded an F;
score of 0.675 for binary classification and a mean absolute error of
0.53 for score prediction, thereby demonstrating their potential in
video accessibility assessment while also illuminating their current
limitations and the need for further research in this area.

CCS CONCEPTS

« Human-centered computing — Accessibility theory, con-
cepts and paradigms; Accessibility systems and tools.
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1 INTRODUCTION

Videos are increasingly becoming a first-choice medium to share
information in several domains including education, news, and
social media. Websites such as Youtube allow users all over the
world to create, share, and consume videos of different kinds such
as how-to videos, tutorials, lectures, highlights, events, and even
presentations. For instance, more than 500 hours of content gets
uploaded every minute on the Youtube website which has in excess
of 2 billion monthly users as of 2021 [40].

Video format is inherently multi modal, where the information
is conveyed to a user via a combination of both visual content
and complementing audio. As the default audio present in a video
typically by itself cannot provide the full information contained
in that video, it needs to be extended to cover the information
conveyed by the visual content as well in order to make the video
accessible to blind users who can only listen to the video content.
In this regard, prior works exist that either provide accessibility
guidelines for video content creators[38, 39], or propose automated
methods for creating video descriptions[4].

However in practice, the guidelines are rarely followed as the
whole process requires significant manual effort, thereby making
it expensive, time consuming, and selective. Even the automated
methods have not yet achieved mainstream acceptance. As a conse-
quence, videos found on websites vary significantly in how acces-
sible they are to blind screen-reader users. At one extreme, there
exist videos where all information is conveyed visually, e.g., a video
showing a nature scene with no sound, or with a background mu-
sic would likely convey no information to the blind user, and in
the other extreme, there are videos where the audio covers all the
necessary information in the videos, e.g., a narrator accurately de-
scribing a nature scene would make it possible for the video to be
followed by blind users. Most videos however exhibit accessibility
between these two extremities where the audio partially covers the
information present in the videos.
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Figure 1: Accessibility analysis using handcrafted features. From left to right: (i) Two main sources of information, namely
the video and the audio. (ii) Handcrafted feature computation. (iii) Use of features for predicting accessibility scores.

If the accessibility of a video can be expressed in some quantified
form (e.g., a score), the blind users can then use this cue to com-
pare and select more accessible videos to watch among the several
alternatives available in search results. Without this cue, they have
to follow a tedious and frustrating trial-and-error approach where
they have to test each video in the search results by listening to
a portion of it before deciding whether to continue listening or
move on to test the next search result video [27]. Therefore in this
paper, we explore a statistical approach for quantifying the degree
of accessibility exhibited by any arbitrary video. Specifically, we ex-
plore the following research challenge: Can we quantify the degree
of accessibility of a video in the form of a rating or score, and then
explain or justify this rating?

In this regard, we first constructed a dataset comprising subjec-
tive accessibility evaluations of 600 videos, where multiple sighted
raters evaluated the accessibility of each video via a Swiss-system
tournament [17] thereby resulting in a final accessibility score (i.e.,
number of wins) for each video at the end of the tournament. Lever-
aging this dataset, we then investigated a diverse assortment of
handcrafted visual and audio features with regard to the strength
of their associations with the accessibility scores, i.e., what features
better correlate with high/low accessible scores. Using these cus-
tom features, we also trained: (i) a binary classifier that can predict
whether a video is accessible or not with a performance of 0.675
F1 score; and (ii) a neural network based prediction model (see Fig-
ure 1) that can provide reasonable estimates (mean absolute error
of 0.53) of the accessibility score of unseen videos in the dataset.
The use of custom handcrafted features in the models facilitates
explainable predictions, i.e., the features can be used to justify the
predicted scores or the assigned accessible/inaccessible labels.

Our contributions are as follows:
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e We collect annotations for a dataset for quantifying video ac-
cessibility that consists of subjective accessibility evaluations
of 600 short videos

e We perform statistical analysis of associations between ac-
cessibility of a video and a set of handcrafted visual and
audio features that represent the video, both similar to the
ones existing in the literature, and new ones

e We design and perform evaluation of predictive models that
can either classify a video as accessible/inaccessible or gen-
erate accessibility scores/labels automatically for the video.

2 RELATED WORK

Our contributions in this paper closely relate to the following extant
literature: (i) general accessibility evaluation frameworks; (ii) video
accessibility; and (iii) multimedia feature extraction.

2.1 Accessibility Evaluation and Diagnostics

Evaluating accessibility of software, tools and websites is immensely
beneficial for both users and developers, therefore there exist plenty
of works that facilitate such evaluations[11, 35]. However, many of
these methods focus predominantly on assessing the accessibility
of websites. For instance, [19] proposed two metrics to evaluate
webpage accessibility. The first metric attempts to quantify navi-
gability by considering factors such as estimated time it takes to
navigate to page sections of interest, use of headings in HTML
source, and the accessibility of links. The second metric attempts
to quantify listenability aspect by considering factors such as ex-
istence of alternative (‘ALT’) text, and repetition of content. On
the other hand Gonzalez et al. [21] proposed a system named KAI
for not only measuring the accessibility of webpages for people
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with visual impairments, but also producing an accessibility report
for different sections of a webpage. A comparative study of seven
different accessibility metrics is presented in [37]. Other than the
work by Asakawa et al. [8] that focuses on accessibility of online
Flash content, all other aforementioned techniques, to the best of
our knowledge, do not focus on evaluating video content.

Several automated accessibility diagnostics tools or accessibility
checkers also presently exist that can analyze an arbitrary web-
page or a PDF document, and subsequently generate a detailed
accessibility report highlighting the issues that need to be fixed
by the web developers of that page. For example, Darvishy et al.
[13] and Doblies et al. [14] both proposed a tool for diagnosing
and correcting accessibility problems in PDF documents. On the
other hand, WAVE (Web Accessibility Evaluation Tool) [2] can pin-
point accessibility issues with webpages. In the context of mobile
application development, GSCXScanner for iOS [1] and Lint in An-
droid Studio [3] can assist the developers in evaluating the code
structures and then improve the accessibility of their applications.

2.2 Video Accessibility

Prior work on video accessibility exists mainly in the form of guide-
lines for creating accessible videos. One such example is the W3C
guidelines on video accessibility [39]. W3C guidelines outline con-
siderations for accessibility for video creators not only for people
with visual impairments, but also people with hearing difficulties.
These guidelines suggest that the videos should contain audio de-
scriptions when there is visual content that is essential to convey
the meaning of the video [38]. It also introduces various video
description methods and ways of creating video descriptions [38].

In addition to creation guidelines, there also exist prior works
that focus on improving the accessibility of existing videos. For
example, Yuksel et al. [41] present an approach based on creating
video descriptions for improving the video accessibility for both
people who are blind and those with low-vision. Better utilization
of the audio modality via annotations has also been proposed to
improve video accessibility [15]. A more recent work [9] describes
a method that leverages the concept of visual saliency as a guid-
ing signal for detecting the important regions in the video and
then selecting magnifying these regions for improved low-vision
interaction with the video.

Compared to the sizeable literature on improving video accessi-
bility, research on video accessibility assessment and evaluation re-
mains an under-studied topic. As an example work in this direction,
the work of Acosta et al. [5] concerns accessibility of educational
videos produced by universities. Their manual analysis revealed
widespread accessibility issues of these videos. While the analysis
performed here is manual, as opposed to our goal of investigating
the possibility of an automated system, this work identifies the
nature and the scope of many video accessibility problems.

Perhaps the closest research related to our work in this paper is
by Liu et al. [27] who explore the same problem, but differ from us
with regard to the methods and formulations. First, their work is a
macro-level assessment that focuses on entire videos, similar to the
ones that could be found on online video platforms, whereas our
work is more fine-grained in that we focus on individual scenes in
a video or short videos. Second, the core heuristics used in their
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analysis was determined from the findings of a user study with
blind participants, where these participants assessed the accessibil-
ity of different videos. In contrast, we recruited sighted users for
our analysis, since videos comprise a special case where sight is
potentially more suited to judge if any particular scene in a video
is presently accessible or not; without the benefit of visual confir-
mation, blind users are likely to miss several inaccessible parts of a
video during accessibility assessment. Nonetheless, some of their
findings do seem comparable with our observations, and we report
these details later in Section 3.2 and Section 4.3.

2.3 Feature Extraction

Automatically computing the handcrafted features used in our anal-
ysis and models requires the use of some state-of-the-art techniques
in computer vision and audio analysis. We discuss some of the tech-
niques relevant to our work next.

2.3.1 Object Detection. One way to understand the factors that
impact the accessibility of a video is by handcrafting different visual
and audio features that represent the video and then determining
how these features correlate with the accessibility (score/rating)
of the video. Object detection, which has witnessed significant
improvement in recent years due to advent of deep learning tech-
niques, is one of the main sources of information for computing the
visual features that represent a video. Object detection has been
a well-studied topic for the past decade [42]. YOLO is one of the
widely used object detection frameworks [10, 32-34], so we lever-
age this framework to compute many of the visual features (see
Table 1) in our work. We also leverage a cloud-based service as a
secondary source[6], as detailed in Section 3.

2.3.2  Audio Event Detection. Audio event detection is a vital part
of our system pipeline for understanding the relationship between
the video and audio modalities. Stowell et al. [36] provide a sur-
vey of pre-deep learning era work on audio event detection and
datasets. Deep learning advancement has led to increased use of
neural network models for audio event detection, typically using
convolutional layers. In our work, we leverage a recent model pro-
posed by Kong et al. [25] to extract audio events from videos.

3 DESIGN

Our accessibility analysis and the proposed rating system leverage
existing techniques in computer vision, audio analysis and natural
language processing. Our system focuses on short scenes instead
of full-length videos, as scene level analysis captures detailed fine-
grained information, that could be then generalized in a bottom-up
manner to cover the entire duration of a video.

3.1 Techniques for Video Analysis

3.1.1 Object Detection. One of the main components of our video
analysis toolkit is object detection. Since object detection is a well-
studied problem in computer vision, there are many publicly avail-
able solutions that we can leverage in our system, even in the form
of cloud-based services. Our object detection pipeline processes
videos frame-by-frame. Specifically, let a video V be a collection of
individual frames, V = Iy, I1, ..., Iy where N is the number frames.
The object detector generates object proposals for each frame in
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the video, resulting in zero or more bounding box coordinates, with
each bounding box having an associated object class label. For our
analysis, this predicted object class label is of more interest than the
bounding box coordinates. In our analysis, we used two existing
tools for object detection: 1) YOLO [34] object detector, trained
on COCO dataset [26], and 2) Amazon Rekognition, a cloud-based
image and video labelling service [6]. We used the object detection
information from these sources to compute features that capture
the nature and variety of objects that appear in a video, which we
explain later in Section 3.2.

3.1.2  Audio Event Detection. Detection of audio events in a video
facilitates a better understanding of the video. For example, if the
only audio event in a documentary scene is music, the non-visual
accessibility of the video will likely be very low, since all infor-
mation in the scene is visual. On the other hand, the presence of
different speech events in a video could enhance the accessibility
of a video as the speech could contain cues about the visual in-
formation in the video. Having an understanding of audio events
requires the use of an audio event detection model. In our work, we
use the model proposed in [25]. This model generates audio class
predictions for each time point of the video. Also, the model was
trained on [20] dataset, which supports 527 output classes, thereby
enabling a detailed analysis of the audio events in the videos. We
utilize the model predictions for computing audio features such
as event types that involve manually determined meta-class labels
(i.e., audio events pointing to a person, such as speech) and also
features that provide cumulative descriptive statistics such as the
total number of audio events belonging to different classes.

3.1.3 Optical Flow. Optical flow captures the nature of movement
in a video, and it has found use in numerous applications[18]. We
utilized optical flow to quantify the total amount of movement in a
video. Specifically, we computed optical flow maps for each frame
in a video using Farneback method [16], which allowed us to derive
features related to the extent of movement in the video.

3.1.4 Transcription. Although finding associations between the
different classes may potentially provide us with a general under-
standing of the co-occurrences of the audio and object classes, the
information provided by these associations does not often provide a
complete picture. For example, it is a very common occurrence that
a video contains a narrator who may never actually appear in the
video, but provides informative content about the visual content
in the video. To better understand the relationship between the
speech content and the visual content, we transcribed the videos
in our dataset and used features derived from these transcriptions.
For transcription task, we used Amazon Transcribe [7], which is
an automated service for video and audio transcription.

3.1.5 Text Analysis. Analysis of speech content could reveal details
about the relationship between the audio and the visual content. For
example, if the detected objects in a video are also described in the
speech, it may lead to higher accessibility. To extract features related
to speech content, we used Natural Language toolkit — NLTK [28].
We utilized NLTK specifically for part-of-speech tagging, which
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assigns part-of-speech tags (e.g., singular noun, verb) to all the
words in the transcribed speech content.

3.2 Handcrafting Features for Assessing Video
Accessibility

To understand the extent to which various visual and audio aspects
of a video impact its accessibility, we handcrafted different features
(see Table 1) and then examined the correlations between these
features and the accessibility scores (obtained from sighted users in
a study described later in Section 4.3), so as to uncover the reasons
impacting these scores, and also identify potential sources of acces-
sibility issues. In contrast, using embedding features (such as the
ones from residual networks[22]) extracted from the visual/sound
modalities of a video could result in better model performance
for a sufficiently large dataset, but it would be challenging if not
impossible to leverage these features for providing justifications
or explanations for the model predictions. In sum, an explainable
model for predicting video accessibility is essential and more useful
than a blackbox model that only outputs the accessibility ratings.

The design of features shown in Table 1 was based on manual
exploratory analysis of the videos in a custom built video dataset
(described later in Section 4.1). This set of features provides us the
means to analyze the accessibility of videos from various aspects.
For example, the positive correlation between the transcript length
and the accessibility could suggest ample speech content in a video
is more likely to result in more accessible videos. On the other
hand, a negative correlation between the number of detected object
types and the accessibility score could mean that more object types
in a video could imply more entities that need to be mentioned
and explained in a video, possibly leading to greater accessibility
challenges than having a lower number of object types.

Some of the features described above share similarities with
those proposed in a very recent contemporary related work [27].
Specifically, features fi, f2, f3, f. fo and fi3 are similar to some
of the metrics proposed in that prior work [27], however exact
implementation and representation of many of these features differ
significantly between the two works. Also notice that some of the
features described in Table 1 capture similar information (e.g fi and
f4), hence are highly likely to be correlated.

Lastly, note that Table 1 does not include all the features we
initially considered as some of these features did not exhibit a strong
or significant relationship with the user-generated accessibility
ratings, and therefore have been excluded from the table for brevity.
Specifically, in addition to the features in Table 1, we had also
considered features based on video saliency and motion vector
information. However, in a correlation test, we did not find any
meaningful relationships between these features and the assigned
accessibility scores, and therefore these features were removed from
further consideration.

4 EXPERIMENTS

In this section, we describe (i) the dataset we built by selecting
videos from two other commonly used datasets for visual saliency
prediction[23] and action recognition[29] respectively; (ii) the ac-
cessibility evaluation annotation procedure with sighted users; (iii)
observations related to our handcrafted features; and (iv) a user
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Feature ID | Feature name Corr. | Significance | Explanation
i Speech ratio 0.4217 p < 0.001 Speech duration, normalized by the video length
1 # of object predictions 0.1685 p < 0.001 Total number of objects prediction events in the video
Total f diffe f obj i i
£ # of object prediction types -0.1042 p=0011 Viodtzl0 number of different types of object predicted in a
fa Does speech audio event exist? 0.4147 p < 0.001 Binary feature describing if speech event detected
. . S f optical fl tors f h f; , d
f Avg. Sum of optical flow magnitude | -0.1206 p =0.003 um ot optical How veclors for each frame, average
over frames
- Transcription number of words 0.5476 p < 0.001 Number of words in the transcribed speech of the video
f7 Does music audio event exist? -0.1320 p =0.001 Binary feature describing if music event detected
R Music ratio -0.2229 p < 0.001 Music duration, normalized by the video length
fo Nouns ratio 0.3741 p < 0.001 Frequency of the nouns as result of POS tagging
fio Counts ratio 0.2160 p <0.001 Frequency of the counts as result of POS tagging
fi1 Pronouns ratio 0.3629 p < 0.001 Frequency of the pronouns as result of POS tagging
fiz # of person detections 0.1918 p < 0.001 Number of person detection events
Number of ti detected object in th
15 Obj. detection-transcription match | 0.2823 p < 0.001 Lmber o) Hies a delectec object hame appeats m the
transcription
If a video h h audi tand has b
fia Speech-person coexistence 0.1730 p < 0.001 & viden fas speech audio evelt and a person Has beel
detected at the same time

Table 1: Notable features extracted, along with their Spearmans’s correlation with the aggregate user-generated accessibility
ratings. Notice that some of the metrics proposed in [27] are aimed to capture information similar to the ones captured by the
features fi, f2, f3, fs, fo, and fi3 (Highlighted with *), although the exact realizations of these features are different. Also, all

features were normalized if applicable.

study with users having visual impairments to understand the
relationship between their perceptions of accessibility and the ac-
cessibility evaluations previously obtained from sighted users.

4.1 Video Dataset

In order to perform a statistical analysis to determine the asso-
ciations between handcrafted features and video accessibility, it
is imperative to first quantify accessibility over a representative
sample of videos. Non-visual accessibility of videos can be highly
subjective to quantify, hence we conducted a data-collection study
to obtain aggregate ratings of video accessibility.

We first compiled a dataset by sampling videos from LEDOV
dataset[23] and AviD dataset[29], which were originally collected
for benchmarking video saliency detection and action recognition
tasks respectively. The diverse topics of the videos and presence
of audio made LEDOV dataset a suitable choice for this task. The
videos chosen from this dataset depict a wide range of scenarios
including nature scenes, sports/artistic performances, playing in-
struments, interviews, conversations and other similar settings. To
make annotations feasible, we restricted our focus to videos in Eng-
lish language. Furthermore, we removed videos that do not contain
any sounds (i.e., no audio channel). We also removed videos longer
than 20 seconds to remove outliers and be consistent with other
sources. In total, we collected 399 videos from LEDOV dataset.

AviD dataset [29] contains a diverse set of action videos. Since
the dataset contains around 450k videos, we randomly sampled
videos from this dataset subject to a few constraints. First, we fil-
tered out long videos, and as in case of LEDOV dataset, we focused
on videos containing English speech. Sampled videos from AviD
dataset belonged to action classes such as playing an instrument,
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playing sports, outdoor events, and instructional videos. In total,
we sampled 201 videos from AviD dataset, which along with 399
videos from LEDOV dataset resulted in a total of exactly 600 videos
in our dataset. Overall, the combined dataset consisted of videos
that have 10 seconds duration on average (Max: 20 seconds, min: 3
seconds, standard deviation: 3.2 seconds). Majority of the videos in
the combined dataset consisted of single scenes, with some videos
containing more than one scene with the same theme (e.g., a snow-
boarding performance shown at different angles).

4.2 Accessibility Annotation of the Dataset

We conducted a user study with 9 sighted participants to obtain
accessibility ratings for videos in our dataset. First, the users were
introduced to the task of interest, which is answering the following
question: If you were only hearing this video, how well would you
understand this video?. The participants were then introduced to
sample videos that belong to both extremes with regard to accessi-
bility (i.e., full narration vs. no narration, e.g., a video that depicts
a natural scene and the music played vs. a video where the scene
is perfectly described by the narrator in a detailed manner), and
video(s) that fall in between these extremes. Next, the users were
introduced to the annotation interface, where pairs of videos were
shown to user for making comparisons with aforementioned ques-
tion. The users had to choose between the following three options
to make this comparison: (i) first video, meaning first video had
higher accessibility, (ii) second video, meaning second video had
higher accessibility, or (iii) equal, denoting an inconclusive compar-
ison. Pairwise comparisons have been previously used for similar
annotation tasks, such as predicting video interestingness [24], and
visual quality assessment [30, 31].
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Figure 2: Annotation pipeline. The participants are shown
pairs of videos chosen from the dataset, for which they pro-
vide one of the three options (A, B or equal). The videos with
the same scores are paired together in the next round.

One crucial aspect of this annotation process is the cost of anno-
tation with videos. Video annotation is hard to scale even when the
video duration is limited, mainly due to the time overhead involved
in annotating a large number of videos. Ideally, we would like to
minimize the number of comparisons while obtaining reliable rat-
ings. Therefore, for the purposes of our data annotation study, we
decided to use the Swiss system [17], which has been widely used
in dataset construction for visual quality assessment [30, 31]. Swiss
system considers the ranking process as a tournament, where each
comparison between pairs of samples is a match. We start with
randomly chosen pairs, after which the winner samples are paired
together and losing samples are paired together for consecutive
rounds. This allows for an approximate ranking to be obtained in
significantly lower number of steps compared to O(n?) approach
of comparing all pairs of videos. In our study, we added 1 point to
the score of the winning video and 0.5 to each videos for a draw,
and compared each video 4 times (except in the cases of bye, where
such videos are automatically given a score of 1 for the round),
resulting in accessibility scores between 0 and 4, with increments
of 0.5. Figure 3 shows the histogram of accessibility scores at the
end of the labeling.

4.3 Accessibility Analysis

The correlations between handcrafted features and the accessibility
ratings are shown in Table 1. Based on these correlations, below
are some of the key relationships that we observed to be important
in assessing the accessibility of a video from our dataset.

Object Detection. We found out object detection results are
linked to the accessibility ratings in various ways. For instance, we
found out that having more object types in a video correlated with a
lower corresponding accessibility rating. This could likely be due to
the increase in the quantity of visual information that cannot all be
explained via audio for ensuring accessibility of the video content.
Also, we observed that increased references to the video objects in
the transcribed speech positively affected the accessibility ratings,
which presumably is due to more visual information being made
available via audio to blind screen reader users.
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Figure 3: Number of samples with respect to accessibility
scores.

Speech Event-Person Co-Occurrence. We found out that ac-
cessibility of a video was higher when a speech-related audio event
coincided with the presence of a person (determined using object
detection) in the video. This is best explained by the positive corre-
lation value (0.173) between the feature fi4 and accessibility score
as shown in Table 1.

Motion. Average sum of optical flow magnitude was found to be
negatively correlated with the accessibility score. More movement
in a video could indicate that more actions will need to be explained
in audio for accessibility. However, note that this by itself is not a
very strong inference - it needs to be supplemented with a higher
level information source, such as results from an action recognition
model.

Audio Recognition. Existence of a detected speech event was
found to be a major signal that predicts accessibility, as suggested
by the high corresponding correlation value (0.4147) in Table 1.
This is in a way an unsurprising observation — unless the point of
interest in a video is also expressed in the audio stream with a well-
known sound(e.g., piano sound for a video where the main event is
a piano being played), it is hard for the listener to understand the
video with the remaining audio information.

Speech Analysis. We found a strong relationship between the
length of the transcribed speech, both in terms of number of charac-
ters and words, and the accessibility ratings provided by the users.
This implies that more speech content generally captures more
context about the visual content of the video, which makes it easier
for blind users to comprehend the events in the video.

Part-of-Speech Tagging Analysis. Part-of-Speech tagging re-
vealed several signals that could be used to predict accessibility,
which is expressed via fo, fip and fi1 features in Table 1. For ex-
ample, we found a positive relationship between the frequency
of nouns and the accessibility score, regardless of the relevance
of these nouns to the objects detected in the video. Although it
does not establish a causal relationship, this suggests that more
nouns could mean higher number of entities being referred to in a
video, hence a higher chance of visual content or related entities
being explained via audio. Similarly, higher number of counts and
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(c) From LEDOV[23] dataset.
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— o it N

(d) From AViD[29] dataset.

Figure 4: Sample videos from the dataset. (a) and (b): sample videos with high rating, with both have 4/4 score. (c) and (d):

sample videos with low ratings, with both having 0.5 score.

pronouns could also possibly capture several entities or persons in
the visual content, thereby increasing the accessibility of the video.
Music. Both the existence of music (f7) and the proportion of
the video covered by a music event (f3) features were found to be
negatively correlated with the accessibility score. We found many
examples in our dataset where the videos had background music
that was completely unrelated to the visual content, thereby lower-
ing the accessibility of these videos. In fact, this was one of the main
motivations that led us to consider features related to background
music in our analysis. An exception to this scenario comprised
instances where the music event detected was accompanied by an
instrument or instruments being played in the video.
Comparison with Contemporary Video Accessibility As-
sessment [27]: We remark the above findings from our analysis
share many similarities with those of a contemporary related re-
search work [27]. For instance, the positive impact of feature f;
(Speech ratio) on video accessibility was also observed in that prior
work although by a different approach — by showing that the %
Non-Speech feature that captured the proportion of non-speech
duration in the video was negatively correlated with video acces-
sibility. Similarly, the positive correlation between the feature fo
(Nouns ratio) and fi3 (Object-transcription match) and accessibility
rating too was also equivalently captured as negative correlations
between the features low lexical density speech and % visual entities
not in speech in the prior work [27]. However, as the ground truth
accessibility ratings in that work were obtained from people with
visual impairments, they were unable to determine (with statistical
significance) the type of correlation between the number of visual
entities/min feature and the accessibility ratings, although their ini-
tial model suggested a negative correlation. In our work however,
as the ratings were obtained from sighted users, we did not face
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this problem; we instead observed that there was a positive corre-
lation between f; (Number of object predictions) and accessibility
ratings. However, we observed that the feature f3 (number of object
prediction types) exhibited a negative correlation with the ratings.

4.4 Videos with High/Low Accessibility

In this section, we provide and discuss examples of a few videos
in our dataset that were assigned high and low accessibility scores
respectively by sighted users.

4.4.1 Videos with High Accessibility. We report the findings of a
qualitative analysis of the videos in our dataset that were rated high
(i.e., 3.5 or 4.0) by the sighted users. One of the common aspects
we observed regarding the highly-rated videos was the existence
of speech. Examples of this ilk included speech videos, where the
videos contain a single person speaking with a constant background.
Similarly, videos where the scenes were vividly and accurately
described by a narrator in detail, also had high accessibility ratings.

Figure 4a and 4b depict a couple of example videos that were
rated as highly accessible. The video in Figure 4a was taken from
a scene where two pandas are shown with a background narrator
speaking about the pandas. Although the exact scene itself is not
described, the audio content being closely related to the visual
content is presumably why the sighted raters concluded that the
video is highly accessible. Figure 4b is from a scene where snow
shoveling tips are being instructed by a background narrator while
a man is shown shoveling snow in the video. The speech content,
along with the shoveling sound together convey the visual content
of the video via its audio, which may have led users to provide a
high accessibility rating for this video.
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ID | Age & Sex Diagnosis Media Video Habits
P1 48/F LCA Mobile, PC Everyday

P2 37/F Congenital Glaucoma Mobile Everyday

P3 55/M Optical atrophy Mobile Once-twice a week
P4 46/M Diabetic Retinopathy | Mobile, TV, PC Everyday

P5 41/M Congenital cataracts TV, PC Everyday

P6 58/F Congenital cataracts | PC, Mobile, TV | Every other day

Table 2: User study participant demographics.

4.4.2  Videos with Low Accessibility. Similar to the videos with high
accessibility scores, we also observed certain patterns among the
videos with low accessibility rating (i.e., videos with 0 or 0.5 score).
For example, one class of videos had background music that was
totally unrelated to the video content. Another type of videos in
this category where those where the background sound was not
discernible enough to be associated with a particular source.

Two examples of videos with poor accessibility ratings are shown
in Figure 4c and Figure 4d. The video for Figure 4c is from a scene
where background sound could be interpreted as coming from
various sources, which possibly led users to provide low ratings
to these videos. Figure 4d contains background music as the only
audio theme, which makes it impossible for the user to comprehend
the visual content just from the audio.

Overall, the examples we have seen in Figure 4 highlight the
importance of the concordance between the audio and the visual
channels of a video for improved accessibility. Notice how the
example videos although of similar nature, as in the case of Figure
4a and Figure 4c, had contrasting accessibility scores, purely due to
the nature of their audio content.

4.5 Evaluation with Visually-Impaired Users

We conducted a pilot study to better understand the video listening
experience of users with visual impairments. Towards this, we
recruited 6 users with visual impairments (3 male, 3 female) to
better understand their habits of video interaction (See Table 2).
All users except P1 relied on listening as the only way to consume
videos. In the study, we asked the participants to listen to recordings
of 30 randomly chosen videos from the dataset. The videos were
presented to users in random order. For each video, the users were
asked to describe the video, and their perception of how well they
understood the video (On a Likert scale from 1 to 7). Below are
some of our findings from this study:

Findings. Due to the differences between the methodology of
collecting the ratings (i.e., pairwise comparisons vs Likert scale), we
do not report correlation information between the ratings. We how-
ever observed significant differences between the ratings provided
by sighted and visually-impaired users in certain specific videos.
For example, a participant misinterpreted the sound of the wind
outdoors in a kite running video as the sound of fire and gave a
high accessibility score of 7. In another example, an interview video
where only a person is shown speaking (which received a high
accessibility score of 3.5/4 in our earlier evaluation with sighted
users) was instead deemed inaccessible by two visually-impaired
participants in this study - the video received low scores of 2 and 3
respectively. Lastly, the video that received the lowest score by the
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sighted participants (0.5/4) was instead considered average in terms
of accessibility ratings given by the visually-impaired participants.

We observed during the study the participants were indeed aware
of the fact that they were missing some information when the
main audio theme in a video was music. However, in some cases,
the participants were also able to distinguish between the cases
where an instrument was being played in a video (hence possibly
high-accessibility) and the cases where music was being played in
background which was unrelated to the visual content of the video.
When asked, one participant P4 stated that ambient noise in the
video was helpful in distinguishing between such cases.

4.6 Automatic Evaluation of Video
Accessibility

We formulated the video accessibility evaluation task in two ways:
(i) As a classification task by binarizing the accessibility scores into
two classes; and (ii) As a prediction task by learning a regression
model and computing the mean absolute error (MAE).

4.6.1 Accessibility Evaluation by Classification. In the binary clas-
sification task, the accessibility ratings were collapsed into two
groups — accessible and inaccessible. Specifically, all videos which
had an accessibility rating of at least 2.5 were labelled as accessible,
and those with ratings below 2.5 were treated as inaccessible. This
binning scheme resulted in 37.8% of the videos being labeled as ac-
cessible, and the remaining 62.2% as inaccessible. We trained several
classifiers to learn this binary classification task with different com-
binations of our handcrafted features, and found out that a support
vector machine (SVM[12]) classifier with RBF kernel and C = 3.5
yielded the highest F; score of 0.675 (precision=0.746, recall=0.550)
for the positive class (i.e., accessible) after 5-fold cross validation,
averaged over 10 runs. This shows that there is still scope for im-
provement in this classification task, and it could benefit from a
larger annotated dataset and more expressive features.

4.6.2  Accessibility Evaluation by Regression. For this task, we trained
a multi-layer neural network (3 fully connected layers with ReLU
nonlinearities in between) as the regression model that can predict
an accessibility score for a given video. This model accepts input in
the form of a vector of handcrafted features, which were previously
described in Section 3.2. For ground truth, we leveraged the acces-
sibility ratings produced by sighted users. 5-fold cross validation
averaged over 10 runs resulted in a Mean absolute error (MAE) of
0.53. Note that most ground truth ratings were between 0 and 4,
while only 10 videos had a rating of exactly either 0 or 4.
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Note that prior related work [27] also trained and evaluated a
prediction model based on regression to assess video accessibility.
However, in their work, they used a linear regression model whereas
we performed both a neural regression task and a classification task.

5 DISCUSSION

5.1 Video diagnostics

An advantage of handcrafted features is the possibility of deducing
the causes underlying the predictions made by either the classifica-
tion or the regression model. In our approach, providing explana-
tions for the predictions is as important as providing an accessibility
rating or class, since the underlying reasons could have implications
for both consumers and creators of videos. For example, accurately
predicting a video as inaccessible while also explaining to the video
creator that a particular video scene does not contain any speech
event, can immensely help the creator ‘fix’ the accessibility issues
by supplementing that scene with video descriptions.

Our approach is simply based on comparing handcrafted fea-
tures computed for a particular video against the distribution of
the overall dataset. A similar comparison approach was used in
[27].From this comparison to the overall distribution, we can iden-
tify sources of accessibility issues by detecting undesirable values
for the various features. For instance, for features that positively
correlate with accessibility rating, a low value may indicate a po-
tential reason for accessibility problems. Similarly, a high value for
a negatively correlated feature can also point to a potential source
of the accessibility problems. This insightful knowledge will enable
both video content creators and consumers to be informed about
the potential reasons behind a prediction, thereby permitting bet-
ter allocation of resources for improving accessibility (e.g., adding
video descriptions).

5.2 Limitations & Future Work

We discuss some of the aspects of our work which can be further
improved, and future directions that can be explored next.

Dataset size & variety. Although the two datasets we used for
labeling consisted of diverse sets of scenes and actions, the cost of
manual filtering and annotation limited the number of videos that
made their way into our final dataset. This created an inevitable
dataset bias. For example, although we believe the features de-
scribed in Table 1 will generalize to many videos outside our dataset,
the exact correlation values are still highly dependent on the videos
included in the dataset. A more general analysis and accurate model
for evaluating accessibility will require larger and diverse datasets
from which complex relationships can be derived, an observation
that was also made by prior related work [27]. Also, more compar-
isons per video in the dataset will result in more fine-grained and
reliable scores.

Dataset Artifacts. Some of the videos included from the AViD
dataset contained blurred faces to preserve anonymity. Even though
we observed that a lower confidence threshold for object detection
mitigates this problem, this could have still impacted the perfor-
mance of person detection in our work as it is possible that fewer
than actual number of persons were detected during our analysis.
Second, due to pre-processing, some of the videos have a still frame
at the end. The still frame appears longer than a second for 16% of
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the videos, and more than two seconds for 1% of the videos. For
these videos, we computed the audio and video features for the
duration only when both video and audio are present and changing.

Better understanding of audio-video relationship. The anal-
ysis of relationship between the visual content and the audio in
our approach was limited to explicit signals such as transcribed
speech and detected audio events. While this approach has been
demonstrated to be useful, it is not as powerful as a thorough anal-
ysis of understanding how much of the visual content is explained
by the accompanying audio, which can be a research problem in
itself. Further work in this regard can potentially result in better
handling of the video accessibility evaluation task.

On-screen text. We did not attempt to analyze text that may
sometimes appear in videos (e.g., subtitles), which is another source
of inaccessibility that we (and also prior work [27]) discovered
during the study with users having visual impairments. One way
to incorporate such text content into accessibility evaluation is to
assess whether text content exists or not, and to analyze the rela-
tionship between the on-screen text and the speech/audio events,
similar to that suggested in [27].

Improved feature extraction. Features extracted in our model
were handcrafted and targeted at finding specific properties based
on our manual observations regarding accessibility of videos. While
these features indeed facilitate diagnostics, an accurate predictive
model does not necessarily have to rely only on handcrafted fea-
tures. Visual information that is not captured by our handcrafted
features can possibly be captured by state-of-the-art deep learning
methods and is very likely to boost the prediction performance.

6 CONCLUSION

In this paper, we analyzed a diverse set of handcrafted features that
characterize accessibility of videos, and built prediction models
for quantifying accessibility of videos. Towards this, we collected
a labeled dataset of accessibility evaluations from sighted users,
and then used handcrafted features, some of which exist in the
literature, extracted from the videos in this dataset to find features
that correlate either positively or negatively with video accessibility.
These handcrafted features can not only be used as a means for
predicting accessibility scores of videos, but also provide users
with explanations regarding the factors that impacted the predicted
accessibility score. Through a user study with 6 participants who
were visually impaired, we found cases where the participants’
perception of accessibility differed from the annotations provided
by the sighted users. This work could pave the way for future video
accessibility research with more data and use of more sophisticated
machine learning models to understand in-depth the accessibility
relationships between the visual and speech aspects of a video.
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