
End-to-End Learning for Fair Ranking Systems
James Kotary

Syracuse University
Syracuse, NY, USA
jkotary@syr.edu

Ferdinando Fioretto
Syracuse University
Syracuse, NY, USA
�orett@syr.edu

Pascal Van Hentenryck
Georgia Institute of Technology

Atlanta, GA, USA
pvh@isye.gatech.edu

Ziwei Zhu
Texas A&M University
College Station, TX, USA
zhuziwei@tamu.edu

ABSTRACT
The learning-to-rank problem aims at ranking items to maximize
exposure of those most relevant to a user query. A desirable prop-
erty of such ranking systems is to guarantee some notion of fairness
among speci�ed item groups. While fairness has recently been con-
sidered in the context of learning-to-rank systems, current methods
cannot provide guarantees on the fairness of the predicted rank-
ings. This paper addresses this gap and introduces Smart Predict
and Optimize for Fair Ranking (SPOFR), an integrated optimization
and learning framework for fairness-constrained learning to rank.
The end-to-end SPOFR framework includes a constrained optimiza-
tion sub-model and produces ranking policies that are guaranteed
to satisfy fairness constraints, while allowing for �ne control of
the fairness-utility tradeo�. SPOFR is shown to signi�cantly im-
prove on current state-of-the-art fair learning-to-rank systems with
respect to established performance metrics.

CCS CONCEPTS
•Computingmethodologies!Machine learning algorithms;
• Information systems ! Learning to rank; • Applied com-
puting! Multi-criterion optimization and decision-making.

KEYWORDS
Learning to Rank; Fairness; Optimization; Decision Focused Learn-
ing; Smart Predict and Optimize

ACM Reference Format:
James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Ziwei Zhu.
2022. End-to-End Learning for Fair Ranking Systems. In Proceedings of the
ACM Web Conference 2022 (WWW ’22), April 25–29, 2022, Virtual Event,
Lyon, France. ACM, New York, NY, USA, 11 pages. https://doi.org/10.1145/
3485447.3512247

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9096-5/22/04. . . $15.00
https://doi.org/10.1145/3485447.3512247

1 INTRODUCTION
Ranking systems are a pervasive aspect of our everyday lives: They
are an essential component of online web searches, job searches,
property renting, streaming content, and even potential friendships.
In these systems, the items to be ranked are products, job candidates,
or other entities associated with societal and economic bene�ts, and
the relevance of each item is measured by implicit feedback from
users (click data, dwell time, etc.). It has been widely recognized
that the position of an item in the ranking has a strong in�uence
on its exposure, selection, and, ultimately economic success.

The algorithms used to learn these rankings are typically oblivi-
ous to their potential disparate impact on the exposure of di�erent
groups of items. For example, it has been shown that in a job can-
didate ranking system, a small di�erence in relevance can incur a
large di�erence in exposure for candidates from a minority group
[7]. Similarly, in an image search engine, a disproportionate number
of males may be shown in response to the query ‘CEO’ [16].

Ranking systems that ignore fairness considerations, or are un-
able to bound these e�ects, are prone to the “rich-get-richer” dy-
namics that exacerbate the disparate impacts. The resulting biased
rankings can be detrimental to users, ranked items, and ultimately
society. There is thus a pressing need to design learning-to-rank (LRT)
systems that can deliver accurate ranking outcomes while controlling
disparate impacts.

Current approaches to fairness in learning-to-rank systems rely
on using a loss function representing a weighted combination of
expected task performance and fairness. This strategy is e�ective
in improving the fairness of predicted rankings on average, but has
three key shortcomings: (1) The resulting rankings, even when fair
in expectation across all queries, can admit large fairness disparities
for some queries. This aspect may contribute to exacerbate the rich-
get-richer dynamics, while giving a false sense of controlling the
system’s disparate impacts. (2)While a tradeo� between fairness
and ranking utility is usually desired, these models cannot be di-
rectly controlled through the speci�cation of an allowed magnitude
for the violation of fairness. (3) A large hyperparameter search is
required to �nd the weights of the loss function that deliver the
desired performance tradeo�. Furthermore, each of these issues
becomes worse as the number of protected groups increases.

This paper addresses these issues and proposes the �rst fair
learning to rank system–named Smart Predict and Optimize for
Fair Ranking (SPOFR)–that guarantees satisfaction of fairness in
the resulting rankings. The proposed framework uses a unique

https://doi.org/10.1145/3485447.3512247
https://doi.org/10.1145/3485447.3512247
https://doi.org/10.1145/3485447.3512247

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. James Kotary et al.

Symbol Semantic

Size of the training dataset
= Number of items to rank, for each query
x@ = (G8@)=8=1 List of items to rank for query @
a@ = (08@)=8=1 protected groups associated with items G8@
~@ = (~8@)=8=1 relevance scores (1-hot labels)
f Permutation of the list [=] (individual rankings)
⇧ Ranking policy
v = (E8)=8=1 Position bias vector
w = (F8)=8=1 Position discount vector

Table 1: Common symbols

integration of a constrained optimization model within a deep
learning pipeline, which is trained end-to-end to produce optimal
fair ranking policies with respect to empirical relevance scores.

Contributions The paper makes the following contributions:
(1) It proposes SPOFR, a Fair LTR system that predicts and opti-
mizes through an end-to-end composition of di�erentiable func-
tions, guaranteeing the satisfaction of user-speci�ed group fairness
constraints. (2) Due to their discrete structure, imposing fairness
constraints over ranking challenges the computation and back-
propagation of gradients. To overcome this challenge, SPOFR in-
troduces a novel training scheme which allows direct optimization
of empirical utility metrics on predicted rankings using e�cient
back-propagation through constrained optimization programs. (3)
The model ensures uniform fairness guarantees over all queries,
a directly controllable fairness-utility tradeo�, and guarantees for
multi-group fairness. (4) These unique aspects are demonstrated
on two LTR datasets in the partial information setting. Additionally,
SPOFR is shown to signi�cantly improve on current state-of-the-art
fair LTR systems with respect to established performance metrics.

2 RELATEDWORK
The imposition of fairness constraints over discrete rankings can
require nontrivial optimizations. To address this challenge, mul-
tiple notions of fairness in ranking have been developed. Celis
et al. [6] propose to directly require fair representation between
groups within each pre�x of a ranking, by specifying a mixed in-
teger programming problem to solve for rankings of the desired
form. Zehlike et al. [21] design a greedy randomized algorithm to
produce rankings which satisfy fairness up to a threshold of statis-
tical signi�cance. The approach taken by Singh and Joachims [16]
also constructs a randomized ranking policy by formalizing the
ranking policy as a solution to a linear optimization problem with
constraints ensuring fair exposure between groups in expectation.

Fairness in learning-to-rank is studied by Zehlike and Castillo
[22], which adopts the LTR approach of Cao et al. [5] and introduces
a penalty term to the loss function to account for the violation of
group fairness in the top ranking position. Stronger fairness results
are reported by Yadav et al. [20] and Singh and Joachims [17], which
apply a policy gradient method to learn fair ranking policies. The
notion of fairness is enforced by a penalty to its violation in the loss
function, forming a weighted combination of terms representing
fairness violation and ranking utility over rankings sampled from
the learned polices using a REINFORCE algorithm [19].

3 SETTINGS AND GOALS
The LTR task consists in learning a mapping between a list of =
items and a permutation f of the list [=], which de�nes the order in
which the items should be ranked in response to a user query. The
LTR setting considers a training dataset J = (x@, a@,~@)#@=1 where
the x@ 2 X describe lists (G8@)=8=1 of = items to rank, with each item
G8@ de�ned by a feature vector of size : . The a@ = (08@)=8=1 elements
describe protected group attributes in some domain G for each item
G8@ . The ~@ 2 Y are supervision labels (~8@)=8=1 that associate a non-
negative value, called relevance scores, with each item. Each sample
x@ and its corresponding label ~@ in J corresponds to a unique
query denoted @. For example, on a image web-search context, a
query @ denotes the search keywords, e.g., “nurse”, the feature
vectors G8@ in x@ encode representations of the items relative to @,
the associated protected group attribute 08@ may denote gender or
race, and the label ~8@ describes the relevance of item 8 to query @.

The goal of learning to rank is to predict, for any query @, a
distribution of rankings ⇧, called a ranking policy, from which
individual rankings can be sampled. The utility * of a ranking
policy ⇧ for query @ is de�ned as

* (⇧,@) = Ef⇠⇧
⇥
�(f,~@)

⇤
, (1)

where � measures the utility of a given ranking with respect to
given relevance scores ~@ .

Let M\ be a machine learning model, with parameters \ , which
takes as input a query and returns a ranking policy. The LTR goal
is to �nd parameters \⇤ that maximize the empirical risk:

\⇤ = argmax
\

1
#

#’
@=1

* (M\ (x@),~@). (P)

This description refers to the Full-Information setting [11], in which
all target relevance scores are assumed to be known. While this
setting is described to ease notation, the methods proposed in this
work are not limited to this setting and Section 7 and Appendix B.1
discuss the Partial-Information setting.

Fairness. This paper aims at learning ranking policies that satisfy
group fairness. It considers a predictorM satisfying some group
fairness notion on the learned ranking policies with respect to
protected attributes a@ . A desired property of fair LTR models is
to ensure that, for a given query, items associated with di�erent
groups receive equal exposure over the ranked list of items. The
exposure E(8,f) of item 8 within some ranking f is a function of
only its position, with higher positions receiving more exposure
than lower ones. Thus, similar to [17], this exposure is quanti�ed
by E(8,f) = Ef8 , where the position bias vector v is de�ned with
elements E 9 = 1/(1+9)? , for 9 2 [=] andwith ? > 0 being an arbitrary
power.

For ranking policy M\ (x@) and query @, fairness of exposure
requires that, for every group indicator 6 2 G, M’s rankings are
statistically independent of the protected attribute 6:

Ef⇠M\ (x@)
8⇠[=]

h
E (8,f) |08@ = 6

i
= Ef⇠M\ (x@)

8⇠[=]
[E (8,f)] . (2)

End-to-End Learning for Fair Ranking Systems WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

This paper considers bounds on fairness de�ned as the di�erence
between the group and population level terms, i.e.,

a (M\ (x@),6) = E
h
E(8,f) |08@ = 6

i
� E [E(8,f)] . (3)

D��������� 1 (X���������). A modelM\ is X-fair, with respect
to exposure, if for any query @ 2 [#] and group 6 2 G:��a (M\ (x@),6)

��  X .
In other words, the fairness violation on the resulting ranking policy
is upper bounded by X � 0.

The goal of this paper is to design accurate LTR models that
guarantee X-fairness for any prescribed fairness level X � 0. As
noted by Agarwal et al. [1] and Fioretto et al. [10], several fairness
notions, including those considered in this paper, can be viewed as
linear constraints between the properties of each groupwith respect
to the population. While the above description focuses on exposure,
the methods discussed here can handle any fairness notion that
can be formalized as a (set of) linear constraints, including merit
weighted fairness, introduced in Section 5.2. A summary of the
common adopted symbols is provided in Table 1.

4 LEARNING FAIR RANKINGS: CHALLENGES
When interpreted as constraints of the form (3), fairness properties
can be explicitly imposed to problem (P), resulting in a constrained
empirical risk problem, formalized as follows:

\⇤ = argmax
\

1
#

#’
@=1

* (M\ (x@),~@) (4a)

s.t.

��a (M\ (x@),6)
��  X 8@ 2 [#],6 2 G. (4b)

Solving this new problem, however, becomes challenging due to
the presence of constraints. Rather than enforcing constraints (4b)
exactly, state of the art approaches in fair LTR (e.g., [16, 20]) rely
on augmenting the loss function (4a) with a term that penalizes the
constraint violations a weighted by a multiplier _. This approach,
however, has several undesirable properties:
(1) Because the constraint violation term is applied at the level of

the loss function, it applies only on average over the samples
encountered during training. Because the sign (±) of a fairness
violation depends on which group is favored, disparities in favor
of one group can cancel out those in favor of another group for
di�erent queries. This can lead to models which predict individ-
ual policies that are far from satisfying fairness in expectation,
as desired. These e�ects will be shown in Section 7.

(2) The multiplier _ must be treated as a hyperparameter, increas-
ing the computational e�ort required to �nd desirable solutions.
This is already challenging for binary groups and the task be-
comes (exponentially) more demanding with the increasing of
the number of protected groups.

(3) When a tradeo� between fairness and utility is desired, it can-
not be controlled by specifying an allowable magnitude for
fairness violation. This is due to the lack of a reliable relation-
ship between the hyperparameter _ and the resulting constraint
violations. In particular, choosing _ to satisfy De�nition 1 for a
given X is near-impossible due to the sensitivity and unreliabil-
ity of the relationship between these two values.

The approach proposed in this paper avoids these di�culties by
providing an end-to-end integration of predictions and optimization
into a single machine-learning pipeline, where (1) fair policies are
obtained by an optimization model using the predicted relevance
scores and (2) the utility metrics are back-propagated from the loss
function to the inputs, through the optimization model and the
predictive models. This also ensures that the fairness constraints
are satis�ed on each predicted ranking policy.

5 SPOFR
Overview. The underlying idea behind SPOFR relies on the real-
ization that constructing an optimal ranking policy ⇧@ associated
with a query @ can be cast as a linear program (as detailed in the
next section) which relies only on the relevance scores~@ . The cost
vector of the objective function of this program is however not
observed, but can be predicted from the feature vectors G8@ (8 2 [=])
associated with the item list x@ to rank. The resulting framework
thus operates into three steps:
(1) First, for a given query @ and its associated item list x@ , a neural

network model M\ is used to predict relevance scores ~̂@ =
(~̂1@, . . . , ~̂=@);

(2) Next, the predicted relevance scores are used to specify the
objective function of a linear program whose solution will re-
sult in a fair optimal (with the respect to the predicted scores)
ranking policy ⇧⇤ (~̂@);

(3) Finally, a regret function, which measures the loss of optimality
relative to the true optimal policy ⇧⇤ (~@) is computed, and
gradients are back-propagated along each step, including in the
argmax operator adopted by the linear program, creating an
end-to-end framework.

The overall scheme is illustrated in Figure 1. It is important to note
that, rather thanminimizing a standard error (such as amean square
loss) between the predicted quantities ~̂@ and the target scores ~@ ,
SPOFR minimizes directly a loss in optimality of the predicted
ranking with respect to the optimal ones. Minimizing this loss
is however challenging as ranking are discrete structures, which
requires to back-propagate gradients through a linear program.
These steps are examined in detail in the rest of this section.

While the proposed framework is general and can be applied
to any linear utility metric * for rankings (see Problem (1)), this
section grounds the presentation on a widely adopted utility metric,
the Discounted Cumulative Gain (DCG):

DCG(f,~@) =
=’
8=1

~8@Ff8 , (5)

where f is a permutation over [=], ~@ are the true relevance scores,
andw is an arbitrary weighting vector over ranking positions, cap-
turing the concept of position discount. Commonly, and throughout
this paper, F8=1/log2 (1+8). Note that following [17, 20], these dis-
count factors are considered distinct from the position bias factors
v used in the calculation of group exposure.

5.1 Predict: Relevance Scores
Given a query @ with a list of items x@ = (G1@, . . . , G=@) to be ranked,
the predict step uses a single fully connected ReLU neural network
M\ acting on each individual item G8@ to predict a score ~̂8@ (8 =

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. James Kotary et al.

<latexit sha1_base64="MnKpTpCeqjBG1DMxLQbMYOPz2Yc=">AAAB/3icbZDNSgMxFIXv+FvrX9Wlm2ARXJWZIuqyqAuXLdgfaIeSSe+0ocnMkGSEUrpw7VafwZ249VF8BN/CtJ2Ftj0Q+DjnXpKcIBFcG9f9dtbWNza3tnM7+d29/YPDwtFxQ8epYlhnsYhVK6AaBY+wbrgR2EoUUhkIbAbDu2nefEKleRw9mlGCvqT9iIecUWOt2n23UHRL7kxkGbwMipCp2i38dHoxSyVGhgmqddtzE+OPqTKcCZzkO6nGhLIh7WPbYkQlan88e+iEnFunR8JY2RMZMnP/boyp1HokAzspqRnoxWxqrswCucpupya88cc8SlKDEZvfH6aCmJhMyyA9rpAZMbJAmeL2C4QNqKLM2MrythtvsYllaJRL3lWpXLssVm6zlnJwCmdwAR5cQwUeoAp1YIDwAq/w5jw7786H8zkfXXOynRP4J+frF4vGlgE=</latexit>

D

<latexit sha1_base64="ycrDA2R7lCH2G7JLXWK7UvamFQw=">AAADl3icpVLbitswEJXXvWzdW7Z9Kn0RDYENLMHKzfVTlxbKPnTpLiS7C3EIsiInZiXZWHJLUPUf/bV+QX+jcpKW3N46YDg6R3M8mpk4Z6lUvv/LOXIfPHz0+PiJ9/TZ8xcvayevbmRWFoQOScay4i7GkrJU0KFKFaN3eUExjxm9je8/VfrtN1rINBMDtcjpmOOZSJOUYGWpSe13I0oKTHSU40KlmMFojtXCbJwHxos4VnOCmb40k2jg7aX8lb+Y03/4q8XWSkcx1wtjmmdwS1qyzabxGrCKA2a7Bvbqf/xoUqv7LX8ZcB+gNaiDdVxNTpyf0TQjJadCEYalHCE/V2NdlUkYtU0pJc0xucczOrJQYE7lWC8nYmDDMlOYZIX9hIJLdjNDYy7lgsf2ZlWs3NUq8qAW84O0SAmthnJIHJUqeT/WqchLRQVZFZeUDKoMVisBp2lBiWILCzApUvs+SObYuim7OJ4XCfqdZJxjMdV2G7SOls8ZFbN4rG0LQ9RB/TO/FfhBPwgt6IdBp49M1fpIzanCxphtl9WO7RiFbdQLkc1vB92g27GgE6Kw3TOb47VOnp0l2p3cPrhpt1Cv5V936+cf11M9Bm/BO3AKEAjAObgAV2AIiHPpSOeHY9w37gf3s3uxunrkrHNeg61wr/8A1EYl6Q==</latexit>

M�
Dataset

LP fair ranking policy

with data points

Regret loss

<latexit sha1_base64="BDDEC+UwfjQKt+ocSn8f6MZmock=">AAAB+HicbVDLSgNBEOz1GeMr6tHLYBA8hd0g6jHgxWMC5gHJEmYnvcmQ2dl1ZlaIS77Aq969iVf/xqtf4iTZgyYWNBRV3VRTQSK4Nq775aytb2xubRd2irt7+weHpaPjlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7GtzO//YhK81jem0mCfkSHkoecUWOlxkO/VHYr7hxklXg5KUOOer/03RvELI1QGiao1l3PTYyfUWU4Ezgt9lKNCWVjOsSupZJGqP1s/uiUnFtlQMJY2ZGGzNXfFxmNtJ5Egd2MqBnpZW8m/usF0VKyCW/8jMskNSjZIjhMBTExmbVABlwhM2JiCWWK298JG1FFmbFdFW0p3nIFq6RVrXhXlWrjslyr5fUU4BTO4AI8uIYa3EEdmsAA4Rle4NV5ct6cd+djsbrm5Dcn8AfO5w8VFJOg</latexit>q

<latexit sha1_base64="iRgT20zFP20nE8mpNFQEtHZ2Pak=">AAAB/HicbVA9SwNBFHznZ4xfUUubxSBYhbsgamERsLGM4CWB5Ax7m71kye7eubsnhiP+BVvt7cTW/2LrL3GTXKGJAw+GmfeYx4QJZ9q47peztLyyurZe2Chubm3v7Jb29hs6ThWhPol5rFoh1pQzSX3DDKetRFEsQk6b4fBq4jcfqNIslrdmlNBA4L5kESPYWMl/7N7fed1S2a24U6BF4uWkDDnq3dJ3pxeTVFBpCMdatz03MUGGlWGE03Gxk2qaYDLEfdq2VGJBdZBNnx2jY6v0UBQrO9Kgqfr7IsNC65EI7abAZqDnvYn4rxeKuWQTXQQZk0lqqCSz4CjlyMRo0gTqMUWJ4SNLMFHM/o7IACtMjO2raEvx5itYJI1qxTurVG9Oy7XLvJ4CHMIRnIAH51CDa6iDDwQYPMMLvDpPzpvz7nzMVpec/OYA/sD5/AHhD5Uq</latexit>

x1
q

<latexit sha1_base64="Zz5YwbrNCRH/zvDY7XaiShmrwgE=">AAAB/HicbVA9SwNBFHznZ4xfUUubxSBYhbsgamERsLGM4CWB5Ax7m71kye7eubsnhiP+BVvt7cTW/2LrL3GTXKGJAw+GmfeYx4QJZ9q47peztLyyurZe2Chubm3v7Jb29hs6ThWhPol5rFoh1pQzSX3DDKetRFEsQk6b4fBq4jcfqNIslrdmlNBA4L5kESPYWMl/7N7fVbulsltxp0CLxMtJGXLUu6XvTi8mqaDSEI61bntuYoIMK8MIp+NiJ9U0wWSI+7RtqcSC6iCbPjtGx1bpoShWdqRBU/X3RYaF1iMR2k2BzUDPexPxXy8Uc8kmuggyJpPUUElmwVHKkYnRpAnUY4oSw0eWYKKY/R2RAVaYGNtX0ZbizVewSBrVindWqd6clmuXeT0FOIQjOAEPzqEG11AHHwgweIYXeHWenDfn3fmYrS45+c0B/IHz+QPio5Ur</latexit>

x2
q

<latexit sha1_base64="me15z8DprdFLia+WP6hc8KoDjUw=">AAAB/HicbVA9SwNBFHznZ4xfUUubxSBYhbsgamERsLGM4CWB5Ax7m71kye7eubsnhiP+BVvt7cTW/2LrL3GTXKGJAw+GmfeYx4QJZ9q47peztLyyurZe2Chubm3v7Jb29hs6ThWhPol5rFoh1pQzSX3DDKetRFEsQk6b4fBq4jcfqNIslrdmlNBA4L5kESPYWMl/7N7fyW6p7FbcKdAi8XJShhz1bum704tJKqg0hGOt256bmCDDyjDC6bjYSTVNMBniPm1bKrGgOsimz47RsVV6KIqVHWnQVP19kWGh9UiEdlNgM9Dz3kT81wvFXLKJLoKMySQ1VJJZcJRyZGI0aQL1mKLE8JElmChmf0dkgBUmxvZVtKV48xUskka14p1Vqjen5dplXk8BDuEITsCDc6jBNdTBBwIMnuEFXp0n5815dz5mq0tOfnMAf+B8/gBBYpVn</latexit>

xn
q

Query
<latexit sha1_base64="39ruL/kVV/hgTP/M1h9IGDUd1xQ=">AAAB+XicbVC7SgNBFL0bXzG+opY2g0GwCrtB1MIiYGMZxTwgWcLsZDYZMo9lZlYIS/7AVns7sfVrbP0SJ8kWmnjgwuGcezmXEyWcGev7X15hbX1jc6u4XdrZ3ds/KB8etYxKNaFNorjSnQgbypmkTcssp51EUywiTtvR+Hbmt5+oNkzJRztJaCjwULKYEWyd9NDL+uWKX/XnQKskyEkFcjT65e/eQJFUUGkJx8Z0Az+xYYa1ZYTTaamXGppgMsZD2nVUYkFNmM0/naIzpwxQrLQbadFc/X2RYWHMRERuU2A7MsveTPzXi8RSso2vw4zJJLVUkkVwnHJkFZrVgAZMU2L5xBFMNHO/IzLCGhPryiq5UoLlClZJq1YNLqu1+4tK/SavpwgncArnEMAV1OEOGtAEAjE8wwu8epn35r17H4vVgpffHMMfeJ8/2iiUDA==</latexit>

{ <latexit sha1_base64="s9oepbf6e/FOxvZMRekNN6+jBfg=">AAAB/XicbVC7SgNBFL3rM8ZX1NJmMAhWYTeIWlgEbCwjmAckS5idnU3GzGOZmRVCCP6CrfZ2Yuu32PolTpItNPHAhcM593IuJ0o5M9b3v7yV1bX1jc3CVnF7Z3dvv3Rw2DQq04Q2iOJKtyNsKGeSNiyznLZTTbGIOG1Fw5up33qk2jAl7+0opaHAfckSRrB1UrPLY2VNr1T2K/4MaJkEOSlDjnqv9N2NFckElZZwbEwn8FMbjrG2jHA6KXYzQ1NMhrhPO45KLKgJx7NvJ+jUKTFKlHYjLZqpvy/GWBgzEpHbFNgOzKI3Ff/1IrGQbJOrcMxkmlkqyTw4yTiyCk2rQDHTlFg+cgQTzdzviAywxsS6woqulGCxgmXSrFaCi0r17rxcu87rKcAxnMAZBHAJNbiFOjSAwAM8wwu8ek/em/fufcxXV7z85gj+wPv8ARXCld8=</latexit>

...

Feature vect.

<latexit sha1_base64="MdsdBEABBZFg7IPox0UMkVNWkNU=">AAACLXicdVDLSgMxFM34rPVVdekmWAQXMsxMp9aCi4IblxXsA9qxZNK0Dc1kxiQjlGF+xJ/wF9zq3oUgLtz4G6Yv0KIHAodzz33k+BGjUlnWm7G0vLK6tp7ZyG5ube/s5vb26zKMBSY1HLJQNH0kCaOc1BRVjDQjQVDgM9Lwh5fjeuOeCElDfqNGEfEC1Oe0RzFSWurk3KQ9GdISfd9LLLPs2MWyfWqZTsktuQVNCmW77BTT9gCpZJR27m552snl5044d8K5E9qmNUEezFDt5D7b3RDHAeEKMyRly7Yi5SVIKIoZSbPtWJII4SHqk5amHAVEesnksBQea6ULe6HQjys4UX92JCiQchT42hkgNZCLtbH4Z80PFjar3rmXUB7FinA8XdyLGVQhHEcHu1QQrNhIE4QF1bdDPEACYaUDzupQ5j+H/5O6Y9pnpnPt5isXs3gy4BAcgRNggxKogCtQBTWAwQN4As/gxXg0Xo1342NqXTJmPQfgF4yvb901pdY=</latexit>

ŷn
q

<latexit sha1_base64="gysYkniSo8AfBj+9JSX7Ur6LeQE=">AAACLXicdVDLSsNAFJ34rPUVdelmsAguJCRpai24KLhxWcE+oI1lMp22QycPZyZCCPkRf8JfcKt7F4K4cONvOH2BFj0wcDj33MccL2JUSNN805aWV1bX1nMb+c2t7Z1dfW+/IcKYY1LHIQt5y0OCMBqQuqSSkVbECfI9Rpre6HJcb94TLmgY3MgkIq6PBgHtU4ykkrq6k3YmQ9p84LmpaVRsq1SxTk3DLjtlp6hIsWJV7FLWGSKZJln37tbOunph7oRzJ5w7oWWYExTADLWu/tnphTj2SSAxQ0K0LTOSboq4pJiRLN+JBYkQHqEBaSsaIJ8IN50clsFjpfRgP+TqBRJO1J8dKfKFSHxPOX0kh2KxNhb/rHn+wmbZP3dTGkSxJAGeLu7HDMoQjqODPcoJlixRBGFO1e0QDxFHWKqA8yqU+c/h/6RhG9aZYV87herFLJ4cOARH4ARYoAyq4ArUQB1g8ACewDN40R61V+1d+5hal7RZzwH4Be3rG35JpZo=</latexit>

ŷ2
q

<latexit sha1_base64="fvcrvZwpEaOxMKoSyDzHBYHd0hU=">AAACLXicdVDLSsNAFJ34rPUVdelmsAguJCRpai24KLhxWcE+oI1lMp22QycPZyZCCPkRf8JfcKt7F4K4cONvOH2BFj0wcDj33MccL2JUSNN805aWV1bX1nMb+c2t7Z1dfW+/IcKYY1LHIQt5y0OCMBqQuqSSkVbECfI9Rpre6HJcb94TLmgY3MgkIq6PBgHtU4ykkrq6k3YmQ9p84LmpaVRsq1SxTk3DLjtlp6hIsWJV7FLWGSKZJln37tbKunph7oRzJ5w7oWWYExTADLWu/tnphTj2SSAxQ0K0LTOSboq4pJiRLN+JBYkQHqEBaSsaIJ8IN50clsFjpfRgP+TqBRJO1J8dKfKFSHxPOX0kh2KxNhb/rHn+wmbZP3dTGkSxJAGeLu7HDMoQjqODPcoJlixRBGFO1e0QDxFHWKqA8yqU+c/h/6RhG9aZYV87herFLJ4cOARH4ARYoAyq4ArUQB1g8ACewDN40R61V+1d+5hal7RZzwH4Be3rG3y0pZk=</latexit>

ŷ1
q

<latexit sha1_base64="AnPCgKKxcDyfbl1u9ORGFxCY7Co=">AAACJHicdVDLSsNAFJ3UV62vqEs3g0UQlJCkrW12BTcuK9gHtKFMptN26OTBzEQoIR/hT/gLbnXvTly4ceGXOE1b0KIHBg7nnvuY40WMCmmaH1pubX1jcyu/XdjZ3ds/0A+PWiKMOSZNHLKQdzwkCKMBaUoqGelEnCDfY6TtTa5n9fY94YKGwZ2cRsT10SigQ4qRVFJfv0h62ZAuH3luYhqObVUc69I07Gq5Wi4pUnIsx66kvTTt68WlAS4NcGmAlmFmKIIFGn39qzcIceyTQGKGhOhaZiTdBHFJMSNpoRcLEiE8QSPSVTRAPhFukt2TwjOlDOAw5OoFEmbqz44E+UJMfU85fSTHYrU2E/+sef7KZjmsuQkNoliSAM8XD2MGZQhnicEB5QRLNlUEYU7V7RCPEUdYqlwLKpTlz+H/pGUb1pVh35aL9doinjw4AafgHFigCurgBjRAE2DwAJ7AM3jRHrVX7U17n1tz2qLnGPyC9vkNDYKhqw==</latexit>

}
<latexit sha1_base64="PasoyuEIWxtsgoY8xE0h22lRKfk=">AAAEUHiclVJbb9MwFHbbDUaAXeCRF4tp0oqmKmm7hmhCmhgPPDBtSLtJdVU5rtuaJU5wHFhm+bfxH3jjib/BG9hp13VbXzhS5C/nO+ezzyVMI5ZJ1/1VqdaWlh89XnniPH32fHVtfePFWZbkgtBTkkSJuAhxRiPG6alkMqIXqaA4DiN6Hl4eWP78GxUZS/iJLFLai/GIsyEjWBpXf6NytYWGAhOFUiwkwxFEYywLPfd/op0tFGM5JjhSh7qPTpwHOTf0J709w0cGW636DrzjC2NV6HrdqEJrC1RmmfM3/4e0ybLsXPItCd9BhMUoZryvrOtaazicwEJPoq5NFNpDe9C+EEl6JVWWh18okVAmuqRKpgyFiPHbRxzomVTDKcWudP/rThmLZ6gwqN5f33QbbmnwIfCmYBNM7djM6gcaJCSPKZckwlnW9dxU9pTtHomodlCe0RSTSzyiXQM5jmnWU+WOaLhlPAM4TIT5uISldz5D4TjLijg0kbaY7D5nnQu5MF7o5oxQuySLyG4uh297ivE0l5STyeOGeWTaC+2SwgETpttRYQAmgpn6IBljoybNKjsO4vQ7SeIY84Ey66kUKsvpilHYU6aFgdfyOjtuw3f9jh8Y0An8VsfTtvdIjqnEWuu7KpOlvycUNL3dwDP5Tb/tt1sGtAIvaO5qG34zZ6v0gZqBCHpoCj1KqcAyEW/UdM20mp6OY0bu3R/wQ3DWbHidRvNze3P//XT4K+AVeA22gQd8sA8+gmNwCkjld3W5ulpdq/2s/an9XapMQqvTE7wEd2zJ+QcQCme0</latexit>

(xq, aq, yq)

Solver Execution

P r e d i c t a n d O p t i m i z e

end-to-end gradient computation

<latexit sha1_base64="0sGwvl3egbQsRVUOjp8lbejOTTc=">AAADi3iclVJda9swFJXrfXTeuqXb417EQqCBEqwkjecxWNkY7GFjHSRtIQ5BVpREVJI9S94IQn9k/6z/ZnKSlTTJyy4Yjs/RPb7yuWnOmdJheOsd+A8ePnp8+CR4+uzo+Yva8ctLlZUFoQOS8ay4TrGinEk60Exzep0XFIuU06v05lOlX/2ihWKZ7OtFTkcCzySbMoK1o8a120YyLTAxSY4LzTCHyRzrhd1479ugkQis5wRz882Ok36w0/NP/mpP7vB3hyuv5im8x6XCLGyz6VxhVXtc7jo3v/wf1sFSHNfqYStcFtwFaA3qYF0X42PvTzLJSCmo1IRjpYYozPXIVOMRTm2QlIrmmNzgGR06KLGgamSWGVjYcMwETrPCPVLDJbvZYbBQaiFSd7IaWW1rFblXS8VeWjJCqxT2icNST9+ODJN5qakkq+GmJYc6g9USwAkrKNF84QAmBXP3g2SOnZt2qxIEiaS/SSYElhPj8jcmWV5nWMzSkXG/MEYd1DsNW1EY9aLYgV4cdXrIVgEkek41ttbed1lt1ZZR3EZnMXL97agbdTsOdGIUt89sddys4rTjn84rcGmi7ex2wWW7hXqt9o9u/fzjOtdD8Bq8AScAgQicgy/gAgwA8T541JNe5h/5Hf+d/3519MBb97wC98r//Bfe9B8s</latexit>

ŷq <latexit sha1_base64="mDmRB1WvqkDi4+3CTGxw0g1Q5YU=">AAAESniclVLLbtNAFHUeQGteLSzZjIgqNaiK7KSNsRBSESxYUDVIfUmZKBpPJslQvxiPgTCab+MH+IH+BjvEAu44pkqTsGAky8f33nM8994TpCHPpONcVaq1+q3bdzY27bv37j94uLX96CxLckHZKU3CRFwEJGMhj9mp5DJkF6lgJApCdh5cvjb5809MZDyJT+QsZYOITGI+5pRICA23K2IHjwWhCqdESE5ChKdEzvTC94m2d3BE5JSSUB3pIT6xVzh/0+/07jU+Bmy0mnvoRiyI1Ew3m6CKzFmjcs1c/PN/SAPLZBfI1wT0EmEiJhGPh8qUf9UajQEWTe/OI00bISzZF6myPPjAqEQy0Qi/QCb9ClCPIxyyjyj49yAWW1ie7XCr4bSc4qBV4JagYZWnB1v6hkcJzSMWSxqSLOu7TioHyqjSkGkb5xlLCb0kE9YHGJOIZQNVuEOjHYiM0DgR8MQSFdFFhiJRls2iACrN7bPlnAmuzQXR2nDMKTNTWZfs53L8fKB4nOaSxXR+uXEewoSRsScacQEDD2cACBUc+kN0SkBNgoltG8fsM02iiMQjBcZUChft9MUkGCgYoe923O6e0/Icr+v5ALq+1+m62mwOyymTRGt9U2Vu9yUhv+0e+C7w296+t98B0PFdv32gTbma+6xQesNgIYIdQaPHKRNEJuKZKh2mVfm2bVi5u7zgVXDWbrndVvv9fuOwWy5/w3piPbV2LdfyrEPrrdWzTi1auar8rm5UN2vfaz9qP2u/5qXVSsl5bN049fof+rloAA==</latexit>

subject to A� � b

<latexit sha1_base64="OtShPc2HdjtwkDPWxA9MrKuX+o0=">AAAEYXiclVNdb9MwFE27Alv46gZvE8iiqrRNU5W0W0OYkCaNBx6YNqR2m1R3leO6rVniBMcBOsvP/C5+Bs+88xuw067rur5wpSgn99x74vvhIAlpKhznd6G4Unrw8NHqmv34ydNnz8vrG2dpnHFM2jgOY34RoJSElJG2oCIkFwknKApCch5cHRn+/BvhKY1ZS4wT0o3QkNEBxUhoV2+98LMKBxxhCRPEBUUhgCMkxmruu6XsKoyQGGEUymPVgy37Xs4N/UltzfCJxkZrexfc8QWRHKvtba0KjC1RmWXO//k/pHWWYeeSb0nwHkDEhxFlPWlc10qBwQSO1STqWkfBA3gAzAmhID+ETLPgC8ECiFjlVM7koQBSdnuIIzWTqtmLTTqllzuzwhYb3itXnJqTG7gP3CmoWFM71aP7BfsxziLCBA5RmnZcJxFdaVRxSJQNs5QkCF+hIeloyFBE0q7MV0aBqvb0wSDm+mEC5N75DImiNB1HgY40taWLnHEu5YJoqZtRTEw7lpGdTAzediVlSSYIw5PDDbJQdxuYnQV9ynXzw7EGCHOq6wN4hLSa0Jtt25CR7ziOIsT6Um+rlDAvp8OHQVfqFvpuw23uOjXP8Zqer0HT9xpNV5lBQTEiAiml7qpM7sCCkF93931X59e9PW+voUHDd/36vjLhN2PvfTVaH4geCSfHutSThHAkYr4jp3un5PRt23ro7uKI74Ozes1t1uqf9yqH76bjX7U2rTfWluVannVofbROrbaFC3+LL4uviq9X/pTWSuXSxiS0WJjmvLDuWGnzH34gbOI=</latexit>

���(ŷq)

�ŷq

<latexit sha1_base64="E1CKCM+0qXo7ewQxO9OfeP8yl8s=">AAADiXicnVJda9swFJXrfXTuPtLucS9iodBACVaSxvVgUOjLHgbroGkLcQiyoiSikuxZ8ooR+iP7Y2P/ZnIaRuLmaRcMx+fee3Slc9OcM6XD8I+35z97/uLl/qvg4PWbt+9ah0c3KisLQkck41lxl2JFOZN0pJnm9C4vKBYpp7fp/WWdv/1JC8Uyea2rnE4EXkg2ZwRrR01bv5N5gYlJclxohjlMllhXduP/2gbHzRqB9ZJgbr7ak3/4m8Ou1ySpMJW1nVO4lVqxnY4Tg3XsEGsK1Of+/0HTVjvshquATwFagzZYx9X00PuVzDJSCio14VipMQpzPTH1mIRTGySlojkm93hBxw5KLKiamJUDFh47ZgbnWeE+qeGK3ewwWChVidRV1sOqZq4md+ZSsZOWjNDalF3Jcann5xPDZF5qKsnjcPOSQ53BegXgjBWUaF45gEnB3P0gWWKnpt2iBEEi6QPJhMByZpz9xiSr64yLRTox7glj1EfD07AbhdEwih0YxlF/iGz99IleUo2ttdsqj0vVEIp76CxGrr8XDaJB34F+jOLemd20d/rDaQXOTdT07im46XXRsNv7PmhffFr7ug8+gI/gBCAQgQvwBVyBESDeZ4943BP+gY/8c39du+ete96DrfAv/wLIBiBn</latexit>

�ŷq

��

<latexit sha1_base64="tNgpRDFgDIiWmHH1eEPuoDZQ4b8=">AAADk3icbVJdb9MwFHUWPkb46kA88RJRVWrRVCVt1xB4mQAJHpgoUrtNqkvkuE5rzU6yxNkUWf4j/DMe+Sc4aUFt1ytFOj733uPrnBumjObCcX4bB+a9+w8eHj6yHj95+ux54+jFeZ4UGSYTnLAkuwxRThiNyURQwchlmhHEQ0YuwqtPVf7ihmQ5TeKxKFMy42gR04hiJDQVNP60YJQhLGGKMkERs+ESiVJtnMfKakGOxBIjJs9UAMfWnZ5/6W+q/R9/11hrSRhyWSrVOba3UjXb6Whxu4o9YrsCytq4BzISiTYc0Z9v66qy0l+d6vLgugMzuliKTtBoOl2nDvsucNegCdYxCo6MX3Ce4IKTWGCG8nzqOqmYyWo+zIgeo8hJivAVWpCphjHiJJ/J2gtltzQzt6Mk018s7Jrd7JCI53nJQ11ZvSbfzVXk3lzI99IxxaRyY19yWojo3UzSOC0EifFquKhgtkjsahnsOc0IFqzUAOGM6vfZeIm0mtArY1kwJrc44RzFc6n3QEpYP2eaLcKZ1L/Qd/vu8Njpeo439HwNhr7XH7qqsgCKJRFIKbWtstquHSG/5574ru7veQNv0Neg77t+70Rt+h9cay1Lu+nuencXnPe67rDb+zFonr5f+3oIXoM3oA1c4IFT8BWMwARg44vBjRvj1nxlfjA/mp9XpQfGuucl2Arz7C8dSiL6</latexit>

L (��(ŷq), �
�(yq))

<latexit sha1_base64="+r8MlzmYBQNDcsk3jZYfeIP7Lfg=">AAADc3icbVLbjtowEHWgl216Y9vHfbGWokK1ixJgSdOnlfrSh666lbisRChyjAFr7SRNnFbI8o/0b/oZ/ZC+1w6gZllGsnR8ZuZ4PDNhwmgmHOePVak+ePjo8dET++mz5y9e1o5fjbI4TzEZ4pjF6U2IMsJoRIaCCkZukpQgHjIyDm8/Gv/4B0kzGkcDsU7IlKNlRBcUI6GpWe13I1ikCMsgQamgiMFghcRale4DZTcCjsQKIyav1CwY2PspO+9n1Qyu6bd3zUKkdQa3t5DLtZp9b7WUDY2VUkvh5XeM0g5/Uf/1ylyh2mrNanWn7RQG7wN3C+pga9ezY+tXMI9xzkkkMENZNnGdREylKQkzouwgz0iC8C1akomGEeIkm8qi1wo2NDOHizjVJxKwYMsZEvEsW/NQR5pis32fIQ/6Qn6Qjigmpt2HnJNcLN5PJY2SXJAIb4pb5AyKGJphwzlNCRZsrQHCKdX/g3iFtJrQK2HbQUR+4phzFM2lnrOUQfGdSboMp1K30He7bv/MaXuO1/d8Dfq+1+27yrQ+ECsikFLqrspme/aE/I574bs6v+P1vF5Xg67v+p0LZcLlbj2Mlq2n6e7P7j4Yddpuv9352qtfftjO9QicgFPQBC7wwCX4BK7BEGDrrXVljaxx5W/1pHpafbMJrVjbnNfgjlXP/wFLOBT9</latexit>

�L(��(ŷq), ��(yq))

���(ŷq)

<latexit sha1_base64="0mdU0BkiUprUmxJWWT+F0ahhUSU=">AAAE03icnVJdb9MwFE1LgREG20DwwovFNGmbpippt4aoQpo0Hnhg2pDWbVLdVY7rtmaJExyHrVgWEuKVH8gf4Hdwk3aj6woSXCnK8f049r33BEnIU+U4P0rlO5W79+4vPLAfLj56vLS88uQ4jTNJWYvGYSxPA5KykAvWUlyF7DSRjERByE6C8708fvKJyZTH4kiNEtaJyEDwPqdEgau7UvqyhvuSUI0TIhUnIcJDokZm6nxk7DUcETWkJNT7pouP7Fs1V+F3Zv0aHwDOuTa20A1fEOmR2dgAVpTbHJbryumb/4EaqvKojQ/52eYkE71GmMhBRC67GvwGN8edKgQnlFdeFC/Cil0qnWbBB0YVUrFBuImbRQRyPsORi9+X7hlgK2411T9PZbqf2UF3l1edqlMYug3cCVi1JnbYXSk3cS+mWcSEoiFJ07brJKqjc1YaMmPjLGUJoedkwNoABYlY2tGFVAxaA08P9WMJn1Co8E5XaBKl6SgKIDN/fToby51zY0E01y04ZflU5gXbmeq/6mgukkwxQceP62chTB3lWkU9LmEJ4QgAoZJDf4gOCbApULRtY8EuaBxFRPQ0qFRrXLTTloOgo2GEvlt3G1tO1XO8hucDaPheveGafGFYDZkixpibLGPtzxD5NXfHd6G+5m1723UAdd/1azsmT79af/fjPC71v2RnWMUJMNr4DYMtS7YP0ztImCQqlpu6kDIXRk/+f0sjl+M0+Ns2yM2dFddtcFyruo1q7f326m5jIrwF64X10lq3XMuzdq231qHVsmjpZ3mx/Kz8vNKq6MrXyrdxark0qXlq3bDK918MaJXW</latexit>

��(ŷq) = argmax
�

ŷ�
q �w

Figure 1: SPOFR. A single neural network learns to predict item scores from individual feature vectors, which are used to
construct a linear objective function for the constrained program that produces a ranking policy.

Model 1 LP Computing the Fair Ranking Policy

⇧⇤ (~̂@) = argmax⇧ ~̂>@ ⇧w (6a)

subject to:
’
9

⇧8 9 = 1 88 2 [=] (6b)

’
8

⇧8 9 = 1 89 2 [=] (6c)

0  ⇧8 9  1 88, 9 2 [=] (6d)
|a (⇧,6) |  X 86 2 G (6e)

1, . . . ,=). Combined, the predicted scores for query @ are denoted
with ~̂@ and serve as the cost vector associatedwith the optimization
problem solved in the next phase.

5.2 Optimize: Fair Ranking Policies
The predicted relevance scores ~̂@ , combined with the constant
position discount valuesw , can be used to form a linear function that
estimates the utility metric (DCG) of a ranking policy. Expressing
the utility metric as a linear function makes it possible to form the
LTR model as an end-to-end continuous function.

Linearity of the Utility Function. The following description
omits subscripts “@” for readability. The references below to ranking
policy ⇧ and relevance scores ~ are to be interpreted in relation to
an underlying query @.

Using the Birkho�–von Neumann decomposition [4], any = ⇥ =
doubly stochastic matrix ⇧1 can be decomposed into a convex
combination of at most (= � 1)2 + 1 permutation matrices % (8) ,
each associated with a coe�cient `8  0, which can then represent
rankings f (8) under the interpretation wf (8) = % (8)w . A ranking
policy is inferred from the set of resulting convex coe�cients `8 ,
which sum to one, forming a discrete probability distribution: each
permutation has likelihood equal to its respective coe�cient

⇧ =
(=�1)2+1’

8=1
`8%

(8) . (7)

1A slight abuse of notation is used to refer to ⇧ as a matrix of marginal probabilities
encoding the homonyms ranking policy.

Next, note that any linear function on rankings can be formulated
as a linear function on their permutation matrices, which can then
be applied to any square matrix. In particular, applying the DCG
operator to a doubly stochastic matrix ⇧ results in the expected
DCG over rankings sampled from its inferred policy. Given item
relevance scores ~:

Ef⇠⇧DCG(f,~) =
(=�1)2+1’

8=1
`8 ~
>% (8) w

= ~> ©≠
´
(=�1)2+1’

8=1
`8 %

(8)™Æ
¨
w = ~>⇧w . (by Eq. (7))

The expected DCG of a ranking sampled from a ranking pol-
icy ⇧ can thus be represented as a linear function on ⇧, which
serves as the objective function for Model 1 (see Equation (6a)).
This analytical evaluation of expected utility is key to optimizing
fairness-constrained ranking policies in an end-to-end manner.

Importantly, and in contrast to state-of-the art methods, this
approach does not require sampling from ranking policies during
training in order to evaluate ranking utilities. Sampling is only
required during deployment of the ranking model.

Ranking Policy Constraints. Note that, with respect to any such
linear objective function, the optimal fair ranking policy ⇧⇤ can be
found by solving a linear program (LP). The linear programming
model for optimizing fair ranking DCG functions is presented in
Model 1, which follows the formulations presented in [16].

The ranking policy predicted by the SPOFR model takes the form
of a doubly stochastic = ⇥ = matrix ⇧, in which ⇧8 9 represents the
marginal probability that item 8 takes position 9 within the ranking.
The doubly stochastic form is enforced by equality constraints
which require each row and column of ⇧ to sum to 1. With respect
to row 8 , these constraints express that the likelihood of item 8 taking
any of = possible positions must be equal to 1 (Constraints (6b)).
Likewise, the constraint on column 9 says that the total probability
of some item occupying position 9 must also be 1 (Constraints (6c)).

For the policy implied by ⇧ to be fair, additional fairness con-
straints must be introduced.
Fairness Constraints. Enforcing fairness requires only one ad-
ditional set of constraints, which ensures that the exposures are

End-to-End Learning for Fair Ranking Systems WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

allocated fairly among the distinct groups. The expected exposure of
item 8 in rankings f derived from a policy matrix⇧ can be expressed
in terms of position bias factors v as Ef⇠⇧E(8,f) =

Õ=
9=1 ⇧8 9E 9 .

The X-fairness of exposure constraints associated with predicted
ranking policy ⇧ and group 6 2 G becomes:

�����

1
|⌧6

@ |
6 �

1
=

!>
⇧ v

�����  X, (8)

where, ⌧6
@ = {8 : (08@) = 6}, is the vector of all ones, and 6

is a vector whose values equal to 1 if the corresponding item to
be ranked is in ⌧6

@ , and 0 otherwise. This de�nition is consistent
with that of Equation (2). It is also natural to consider a notion of
weighted fairness of exposure:

�����

`

|⌧6
@ |

6 �
`6
=

!>
⇧ v

�����  X, (9)

which speci�es that group 6 receive exposure in proportion to
the weight `6 . In this paper, where applicable and for a notion of
merit-weighted fairness of exposure, `6 is chosen to be the average
relevance score of items in group 6, while ` is the average over all
items. Note that, while the above are natural choices for fairness in
ranking systems, any linear constraint can be used instead.

5.3 Regret Loss and SPO Training
The training of the end-to-end fair ranking model uses a loss func-
tion that minimizes the regret between the exact and approximate
policies, i.e.,

L(~, ~̂) = ~>⇧⇤ (~)w �~>⇧⇤ (~̂)w . (10)

To train the model with stochastic gradient descent, the main chal-
lenge is the back-propagation through Model (1), i.e., the �nal
operation of our learnable ranking function. It is well-known that
a parametric linear program with �xed constraints is a nonsmooth
mapping from objective coe�cients to optimal solutions. Nonethe-
less, e�ective approximations for the gradients of this mapping
can be found [8] (see also [12] for a review on the topic). Consider
the optimal solution to a linear programming problem with �xed
constraints, as a function of its cost vector ~̂:

⇧⇤ (~̂) = argmax
⇧

~̂>⇧

s.t. G⇧  1,

with � and 1 being an arbitrary matrix and vector, respectively.
Given candidate costs ~̂, the resulting optimal solution ⇧⇤ (~̂) can
be evaluated relative to a known cost vector~. Further, the resulting
objective value can be compared to that of the optimal objective
under the known cost vector using the regret metric L(~, ~̂).

The regret measures the loss in objective value, relative to the
true cost function, induced by the predicted cost. It is used as a loss
function by which the predicted linear program costs vectors can be
supervised by ground-truth values. However, the regret function is
discontinuous with respect to ~̂ for �xed~. Following the approach
pioneered in [8], this paper uses a convex surrogate loss function,
called the SPO+ loss, which forms a convex upper-bounding function

Algorithm 1: Training the Fair Ranking Function
input :⇡,U,w : Training Data, Learning Rate, Position Discount.

1 for epoch : = 0, 1, . . . do
2 foreach (x, a,~) ⇡ do
3 ~̂ M) (x)
4 ⇧1 ⇧⇤ (~>w) by Model 1
5 ⇧2 ⇧⇤ (2~̂>w �~>w) by Model 1
6 rL(~>w, ~̂>w) ⇧2 � ⇧1

7 \ \ � UrL(~>w, ~̂>~) m~̂
>w
m\

over L(~, ~̂). Its gradient is computed as follows:
m

m~
L(~, ~̂) ⇡ m

m~
LSPO+ (~, ~̂) = ⇧⇤ (2~̂ �~) � ⇧⇤ (~). (11)

Remarkably, risk bounds about the SPO+ loss relative to the SPO loss
can be derived [13], and the empirical minimizer of the SPO+ loss
is shown to achieve low excess true risk with high probability. Note
that, by de�nition,~>⇧⇤ (~) � ~>⇧⇤ (~̂) and therefore L(~, ~̂) � 0.
Hence, �nding the ~̂ minimizing L(~, ~̂) is equivalent to �nding
the ~̂ maximizing ~>⇧⇤ (~̂), since ~>⇧⇤ (~) is a constant value.

In the context of fair learning to rank, the goal is to predict
the cost coe�cients ~̂ for Model 1 which maximize the empirical
DCG, equal to ~> ⇧⇤ (~̂)w for ground-truth relevance scores ~. A
vectorized form can be written:

~>⇧w =
�����!
(~>w) · �!⇧ , (12)

where
�!
� represents the row-major-order vectorization of a matrix

�. Hence, the regret induced by prediction of cost coe�cients ~̂ is

L(~, ~̂) =
�����!
(~>w) ·

����!
⇧⇤ (~) �

�����!
(~>w) ·

����!
⇧⇤ (~̂). (13)

Note that while the cost coe�cients ~ can be predicted generically
(i.e., predicting an =2-sized matrix), the modeling approach taken
in this paper is to predict item scores independently from individ-
ual feature vectors (resulting in an =-sized vector). These values
combine naturally with the known position bias values v, to esti-
mate DCG in the absence of true item scores. This simpli�cation
allows for learning independently over individual feature vectors,
and was found in practice to outperform frameworks which use
larger networks which take as input the entire feature vector lists.

Algorithm 1 maximizes the expected DCG of a learned ranking
function by minimizing this regret. Its gradient is approximated as

����������������!
⇧⇤ (2~̂>w �~>w) �

�������!
⇧⇤ (~>w), (14)

with ~̂ predicted as described in Section 5.1. To complete the cal-
culation of gradients for the fair ranking model, the remaining
chain rule factor of line 7 is completed using the typical automatic
di�erentiation.

6 MULTIGROUP FAIRNESS
SPOFR generalizes naturally to more than two groups. In contrast,
multi-group fairness raises challenges for existing approaches that
rely on penalty terms in the loss function [17, 20, 22]. Reference
[20] proposes to formulate multi-group fairness using the single

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. James Kotary et al.

constraint
’
6<60

���⇣ 1
|⌧6

@ | ⌧6
@
� 1

|⌧60
@ | ⌧60

@

⌘>
⇧ v

���  X (15)

where 6 and 60 are groups indicators in G, so that the average
pairwise disparity between groups is constrained. However, this
formulation su�ers when X � 0, because the allowed fairness gap
can be occupied by disparities associated with a single group in
the worst case. Multiple constraints are required to provide true
multi-group fairness guarantees and allow a controllable tradeo�
between muti-group fairness and utility. Furthermore, the con-
straints (8) ensure satisfaction of (15) for appropriately chosen X
and are thus a generalization of (15). If unequal group disparities
are desired, X may naturally be chosen di�erently for each group
in the equations (8).

7 EXPERIMENTS
This section evaluates the performance of SPOFR against the prior
approaches of [20] and [22], the current state-of-the-art methods
for fair learning rank, which are denoted by FULTR and DELTR
respectively. The experimental evaluation follows the more realistic
Partial Information setting described in [20]. A formal description
of this setting is deferred to Appendix B.1.

Datasets. Two full-information datasets were used in [20] to gen-
erate partial-information counterparts using click simulation:
• German Credit Data is a dataset commonly used for studying
algorithmic fairness. It contains information about 1000 loan
applicants, each described by a set of attributes and labeled as
creditworthy or non-creditworthy. Two groups are de�ned by the
binary feature A43, indicating the purpose of the loan applicant.
The ratio of applicants between the two groups is around 8 : 2.

• Microsoft Learn to Rank (MSLR) is a standard benchmark dataset
for LTR, containing a large number of queries from Bing with
manually-judged relevance labels for retrieved web pages. The
QualityScore attribute (feature id 133) is used to de�ne binary
protected groups using the 40C⌘ percentile as threshold as in
[20]. For evaluating fairness between : > 2 groups (multi-group
fairness), : evenly-spaced quantiles de�ne the thresholds.

Following the experimental settings of [17, 20], all datasets are
constructed to contain item lists of size 20 for each query. The
German Credit and MSLR training sets consist of 100k and 120k
sample queries, respectively while full-information test sets consist
of 1500 and 4000 samples. Additionally, as reported in Appendix B,
much smaller training sets result in analogous performance.

The reader is referred to [20] for details of the click simulation
used to produce the training and validation sets.

Models and Hyperparameters. The prediction of item scores is
the same for each model, with a single neural network which acts
at the level of individual feature vectors as described in Section 5.1.
The size of each layer is half that of the previous, and the output is
a scalar value representing an item score. Hyperparameters were
selected as the best-performing on average among those listed in
Table 3, Appendix B.2). Final hyperparameters for each model are
as stated also in Table 3, and Adam optimizer is used throughout.

Figure 2: Fairness-Utility tradeo� for unweighted andmerit-
weighted fairness on credit (left) and MSLR (right) datasets.

The special fairness parameters, while also hyperparameters, are
treated di�erently. Recall that fair LTR systems often aim to o�er
a tradeo� between utility and group fairness, so that fairness can
be reduced by an acceptable tolerance in exchange for increased
utility. For the baseline methods FULTR and DELTR, this tradeo�
is controlled indirectly through the constraint violation penalty
term denoted _, as described in Section 5. Higher values of _ corre-
spond to a preference for stronger adherence to fairness. In order
to achieve X-fairness for some speci�ed X , many values of _ must
be searched until a trained model satisfying X-fairness is found.
As described in Section 5, this approach is unwieldly. In the case
of SPOFR, the acceptable violation magnitude X can be directly
speci�ed as in De�nition (1).

The performance of eachmethod is reported on the full-information
test set for which all relevance labels are known. Ranking utility
and fairness are measured with average DCG (Equation (1)) and
fairness violation (Equation (3)), where each metric is computed on
average over the entire dataset. The position bias power ? = 1, so
that E 9 = 1/(1+9) when computing fairness disparity.

Fairness-Utility Tradeo� for Two Groups. The analysis �rst
focuses on experiments involving two protected groups. Figure 2
shows the average test DCG attained by SPOFR on both the German
Credit and MSLR datasets, for each level of both unweighted and
merit-weighted X-fairness as input to the model. Each result comes
from a model trained with �nal hyperparameters as shown in Table
3. Recall that each value of X (de�ned as in De�nition 1) on the
x-axis is guaranteed to bound the ranking policy’s expected fairness
violation in response to each query. Note the clear trend showing
an increase in utility with the relaxation of the fairness bound X , for
all metrics and datasets. Note also that, in the datasets studied here,
average merit favors the majority group. Merit-weighted group
fairness can thus constrain the ranking positions of the minority
group items further down than in unweighted fairness, regardless
of their individual relevance scores, leading to more restricted (thus
with lower utility) policies than in the unweighted case.

Fairness Parameter Search. Figure 3 shows the average DCG
vs average fairness disparity over the test set due to SPOFR, and
compares it with those attained by FULTR and DELTR. Each point
represents the performance of a single trained model, taken from a
grid-search over fairness parameters X (for SPOFR) and _ (for FULTR
and DELTR) between the minimum and maximum values in Table
3. Darker colors represent more restrictive fairness parameters in
each case. Non-fairness hyperparameters take on the �nal values

End-to-End Learning for Fair Ranking Systems WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 3: Fairness-Utility tradeo� for unweighted (left) and
merit-weighted (right) fairness on credit (top) and MSLR
(bottom) datasets.

shown also in Table 3, and each model speci�cation is repeated with
3 random seeds. Note that points on the grid which are lower on the
x-axis and higher on the y-axis represent results which are strictly
superior relative to others, as they represent a larger utility for
smaller fairness violations. Dashed lines represent the maximum
utility attainable in each case, computed by averaging over the test
set the maximum possible DCG associated to each relevance vector.

Observe that the expected fairness violations due to SPOFR are
much lower than the fairness levels guaranteed by the listed fair-
ness parameters X . This is because X is a bound on the worst-case
violation of fairness associated with any query, but actual resulting
fairness disparities are typically much lower on average.

Second, the �gure shows that SPOFR attains a substantial im-
provement in utility over the baselines, while exhibiting more con-
sistent results across independently trainedmodels. Note the dashed
line represents the theoretical maximum attainable utility; remark-
ably, as the fairness parameter is relaxed, the DCG attained by
SPOFR converges very close to this value. Section 8 provides theo-
retical motivation to explain these marked improvements.

Finally, notice that for FULTR and DELTR, large _ values (darker
colors) should be associated with smaller fairness violations, com-
pared to models trained with smaller _ values (lighter colors). How-
ever, this trend is not consistently observable: These results show
the challenge to attain a meaningful relationship between the fair-
ness penalizers _ and the fairness violations in these fair LTR meth-
ods. A similar observation also pertains to utility; It is expected that
more permissive models in terms of fairness would attain larger util-
ities; this trend is not consistent in the FULTR and DELTR models.
In contrast, the ability of the models learned by SPOFR to guarantee
satisfying the desired fairness violation equips the resulting LTR
models with much more interpretable and consistent outcomes.

Query-level Guarantees. As discussed in Section 5, current fair
LTR methods apply a fairness violation term on average over all
training samples. Thus, disparities in favor of one group can cancel

out those in favor of another group leading to individual policies
that may not satisfy a desired fairness level. This section illustrates
on these behaviors and analyzes the fairness guarantees attained
by each model compared at the level of each individual query.

The results are summarized in Figure 7 which compares, SPOFR
with FULTR (top) and SPOFR with DELTR (bottom). Each bar rep-
resents the maximum expected DCG attained while guaranteeing
X-fairness at the query level for X as shown on the x-axis. Since
neither baseline method can satisfy X-fairness for every query, con-
�dence levels are shown which correspond to the percentage of
queries within the test set that resulted in ranking policies that
satisfy 34;C0-fairness. If no bar is shown at some fairness level, it
was satis�ed by no model at the given con�dence level.

Notably, SPOFR satis�es X-fairness with 100 percent con�dence
while also surpassing the baseline methods in terms of expected
utility. This is remarkable and is due partly to the fact that the
baseline methods can only be speci�ed to optimize for fairness
on average over all queries, which accomodates large query-level
fairness disparities when they are balanced in opposite directions;
i.e., in favor of opposite groups. In contrast SPOFR guarantees
the speci�ed fairness violation to be attained for ranking policies
associated with each individual query.

Multi-group Fairness. Finally, Figure 5 shows the fairness-utility
tradeo� curves attained by SPOFR for each number of groups be-
tween 2 and 7 on the MSLR dataset. Note the decrease in expected
DCG as the number of groups increases. This is not necessarily due
to a degradation in predictive capability from SPOFR; the expected
utility of any ranking policy necessarily decreases as fairness con-
straints are added. In fact, the expected utility converges for each
multi-group model as the allowed fairness gap increases. Because
this strict notion of multi-group fairness in LTR is uniquely possible
using SPOFR, no results from prior approaches are available for
direct comparison.

8 DISCUSSION
Theoretical Remarks. This section provides theoretical intu-
itions to explain the strong performance of SPOFR. As direct out-
puts of a linear programming solver, the ranking policy returned
by SPOFR are subject to the properties of LP optimal solutions.
This allows for certain insights on the representative capacity of
the ranking model and on the properties of its resulting ranking
policies. Let predicted scores be said to be regret-optimal if their re-
sulting policy induces zero regret, i.e, ~>⇧⇤ (~) v �~>⇧⇤ (~̂) w = 0.
That is equivalent to the maximization of the empirical utility.

T������ 1 (O������ P����� P���������). For any given ground-
truth relevance scores ~, there exist predicted item scores which maxi-
mize the empirical utility relative to ~.

P����. It su�ces to predict ~̂ = ~. These scores are regret-
optimal by de�nition, thus maximizing empirical utility. ⇤

Note that the above property is due to the alignment between the
structured policy prediction of SPOFR and the evaluation metrics,
and is not shared by prior fair learning to rank frameworks.

Next, recall that any linear programming problem has a �nite
number of feasible solutions whose objective values are distinct

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. James Kotary et al.

Figure 4: Query level guarantees: German credit unweighted (1st column) and merit-weighted fairness (2nd column); MSLR
unweighted (3rd column) and merit-weighted fairness (4th column).

Figure 5: Multigroup Fairness on MSLR 120k.

[3]. There is thus not only a single point but a region of ~̂ which are
regret-optimal under ~, with respect to any instance of Model 1. This
important property eases the di�culty in �nding model parameters
which maximize the empirical utility for any input sample, as item
scores do not need to be predicted precisely in order to do so.

Finally, the set of ~̂ which minimize the regret with respect to
any instance of Model 1 overlaps (has nonempty intersection) with
the set of ~̂ which minimize the regret with respect to any other
instance of the model, regardless of fairness constraints, under the
same ground-truth ~. To show this, it su�ces to exhibit a value of
~̂ which minimizes the respective regret in every possible instance
of Model 1, namely ~:

~>⇧⇤51 (~)w �~
>⇧⇤51 (~)w = 0 = ~>⇧⇤52 (~)w �~

>⇧⇤52 (~)w, (16)

where ⇧⇤51 (~) and ⇧
⇤
52
(~) are the optimal policies subject to distinct

fairness constraints 51 and 52. This implies that a model which
learns to rank fairly under this framework need not account for
the group composition of item lists in order to maximize empircal
utility; It su�ces to learn item scores from independent feature vectors,
rather than learn the higher-level semantics of feature vector lists
required to enforce fairness. This is because group fairness is ensured
automatically by the embedded optimization model.

The empirical results presented, additionally, show that the util-
ity attained by SPOFR is close to optimal on the test cases analyzed.
Together with the theoretical observations above, this suggests that,
on the test cases analyzed, fairness does not change drastically the
objective of the optimal ranking policy. This may be an artifact
of the LTR tasks, obtained from [20], being relatively easy predict
given a su�ciently powerful model. These observation may signal
a need for the study and curation of more challenging benchmark
datasets for future research on fairness in LTR.

SPOFR Limitations. The primary disadvantage of SPOFR is that
it cannot be expected to learn to rank lists of arbitrary size, as
runtime increases with the size of the lists to be ranked. In contrast
to penalty-based methods, which require a single linear pass to
the neural network to derive a ranking policy for a given query,
SPOFR requires solving a linear programming problem to attain an
optimal ranking policy. While this is inevitably computationally
more expensive, solving the LP of Model 1 requires low degree
polynomial time in the number of items to rank [18], due to the
sparsity of its constraints. Fortunately, this issue can be vastly
alleviated with the application of hot-starting schemes [14], since
the SPO framework relies on iteratively updating a stored solution
to each LP instance for slightly di�erent objective coe�cients as
model weights are updated. Thus, each instance of Model 1 need not
be solved from scratch. Appendix A reports a detailed discussion
on the steps taken in this work to render the proposed model both
computationally and memory e�cient.

9 CONCLUSIONS
This paper has described SPOFR, a framework for learning fair
ranking functions by integrating constrained optimization with
deep learning. By enforcing fairness constraints on its ranking poli-
cies at the level of each prediction, this approach provides direct
control over the allowed disparity between groups, which is guar-
anteed to hold for every user query. Since the framework naturally
accommodates the imposition of many constraints, it generalizes
to multigroup fair LTR settings without substantial degradation in
performance, while allowing for stronger notions of multigroup
fairness than previously possible. Further, it has been shown to out-
perform previous approaches in terms of both the expected fairness
and utility of its learned ranking policies. By integrating constrained
optimization algorithms into its fair ranking function, SPOFR al-
lows for analytical representation of expected utility metrics and
end-to-end training for their optimization, along with theoretical
insights into properties of its learned representations. These advan-
tages may highlight the integration of constrained optimization
and machine learning techniques as a promising avenue to address
further modeling challenges in future research on learning to rank.

ACKNOWLEDGEMENTS
This research is partially supported by NSF grants 2007164, 2133169,
and 2112533, and by CUSE grant II-37-2021. Its views and conclu-
sions are those of the authors only.

End-to-End Learning for Fair Ranking Systems WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

REFERENCES
[1] Alekh Agarwal, Alina Beygelzimer, Miroslav Dudik, John Langford, and Hanna

Wallach. 2018. A Reductions Approach to Fair Classi�cation. In Proceedings of
the International Conference on Machine Learning (ICML).

[2] Aman Agarwal, Ivan Zaitsev, Xuanhui Wang, Cheng Li, Marc Najork, and
Thorsten Joachims. 2019. Estimating Position Bias without Intrusive Interven-
tions. In WSDM. 474–482.

[3] Mokhtar S Bazaraa, John J Jarvis, and Hanis D Sherali. 2008. Linear programming
and network �ows. John Wiley & Sons.

[4] Garrett Birkho�. 1940. Lattice theory. Vol. 25. American Mathematical Soc.
[5] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[6] L Elisa Celis, Damian Straszak, and Nisheeth K Vishnoi. 2017. Ranking with
fairness constraints. arXiv preprint arXiv:1704.06840 (2017).

[7] Shady Elbassuoni, Sihem Amer-Yahia, Ahmad Ghizzawi, and Christine Atie. 2019.
Exploring fairness of ranking in online job marketplaces. In 22nd International
Conference on Extending Database Technology (EDBT).

[8] Adam N Elmachtoub and Paul Grigas. 2021. Smart “predict, then optimize”.
Management Science (2021).

[9] Zhichong Fang, Aman Agarwal, and Thorsten Joachims. 2019. Intervention
Harvesting for Context-Dependent Examination-Bias Estimation. In SIGIR. 825–
834.

[10] Ferdinando Fioretto, Pascal Van Hentenryck, Terrence W. K. Mak, Cuong Tran,
Federico Baldo, and Michele Lombardi. 2020. Lagrangian Duality for Constrained
Deep Learning. In Machine Learning and Knowledge Discovery in Databases -
European Conference, ECML PKDD, Vol. 12461. Springer, 118–135.

[11] Thorsten Joachims, Adith Swaminathan, and Tobias Schnabel. 2017. Unbiased
Learning-to-Rank with Biased Feedback. In WSDM. 781–789.

[12] James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder.
2021. End-to-End Constrained Optimization Learning: A Survey. In Proceedings
of the Thirtieth International Joint Conference on Arti�cial Intelligence, IJCAI-21.
4475–4482. https://doi.org/10.24963/ijcai.2021/610

[13] Heyuan Liu and Paul Grigas. 2021. Risk bounds and calibration for a smart
predict-then-optimize method. arXiv preprint arXiv:2108.08887 (2021).

[14] Jayanta Mandi, Peter J Stuckey, Tias Guns, et al. 2020. Smart predict-and-optimize
for hard combinatorial optimization problems. In Proceedings of the AAAI Con-
ference on Arti�cial Intelligence (AAAI), Vol. 34. 1603–1610.

[15]]ortools Laurent Perron and Vincent Furnon. [n. d.]. OR-Tools. Google. https:
//developers.google.com/optimization/

[16] Ashudeep Singh and Thorsten Joachims. 2018. Fairness of exposure in rankings.
In Proceedings of the 24th ACM SIGKDD International Conference on Knowledge
Discovery & Data Mining. 2219–2228.

[17] Ashudeep Singh and Thorsten Joachims. 2019. Policy learning for fairness in
ranking. arXiv preprint arXiv:1902.04056 (2019).

[18] Jan van den Brand. 2020. A deterministic linear program solver in current
matrix multiplication time. In Proceedings of the Fourteenth Annual ACM-SIAM
Symposium on Discrete Algorithms. SIAM, 259–278.

[19] Ronald J Williams. 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning 8, 3 (1992), 229–256.

[20] Himank Yadav, Zhengxiao Du, and Thorsten Joachims. 2021. Policy-Gradient
Training of Fair and Unbiased Ranking Functions. In Proceedings of the 44th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1044–1053.

[21] Meike Zehlike, Francesco Bonchi, Carlos Castillo, Sara Hajian, Mohamed Mega-
hed, and Ricardo Baeza-Yates. 2017. Fa*ir: A fair top-k ranking algorithm. In
Proceedings of the 2017 ACM on Conference on Information and Knowledge Man-
agement. 1569–1578.

[22] Meike Zehlike and Carlos Castillo. 2020. Reducing disparate exposure in ranking:
A learning to rank approach. In Proceedings of The Web Conference 2020. 2849–
2855.

https://doi.org/10.24963/ijcai.2021/610
https://developers.google.com/optimization/
https://developers.google.com/optimization/

WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France. James Kotary et al.

Figure 6: Top left: German Credit Unweighted Fairness;
Top right: German Credit Merit-Weighted Fairness; Bottom
left: MSLR Unweighted Fairness; Bottom right: MSLRMerit-
Weighted Fairness. Average DCG vs allowed fairness gap,
SPOFR on datasets of 3 di�erent sizes

A SPOFR: IMPLEMENTATION DETAILS AND
EFFICIENCY

For the implementation of SPOFR used to produce the experiments,
the linear programming solver of Google OR-Tools was used [?].
The algorithm has worst-case complexity that is exponential with
respect to the size of the problem, but is well known to be extremely
e�cient in the average case [3]. From an e�ciency standpoint, there
are three steps which must carried out to solve one instance of LP:
(1) Instantiation of the data structures through the solver API (2)
Finding a basic feasible solution to the LP problem (3) Finding the
optimal solution, given a basic feasible solution.

A straightforward implementation that carries out all three steps
is ine�cient and can lead to long training times. Fortunately, steps
(1) and (2) can be avoided by instantiating Model 1 only once for
each distinct (combination of) fairness constraints, and storing
the respective solver states in memory. These constraints depend
only on the group identities of the items to be ranked. Each time a
query is encountered during training, the solving of Model 1 can be
resumed beginning with the solution found to the last instance shar-
ing the same group composition. Using this solution as a hot start,
only step (3) is required to �nd the optimal policy and complete
the forward pass.

For a list of length =, the number of distinct possible fairness con-
straints in the case of 2 groups is 2= , which leads to unreasonable
memory requirements for storing each required solver state. How-
ever, simple manipulations can be used to carry out the required
calculations with only = solvers held in memory, by exploiting sym-
metry. The group identities within an item list take the form of
a binary vector ⌧ of length =. Once sorted, there are only = such
distinct binary vectors.

For an input sample (G@) and corresponding group identity vec-
tor ⌧ , let �B>AC = 0A6B>AC (⌧). The fairness constraints in Model 1
are then formulated based on the sorted ⌧ 0 = ⌧ [�B>AC].

Dataset size Models

SPOFR SPOFR* FULTR

5k Time per Epoch (s) 425 39 5
Epochs to Convergence 5 5 29

50k Time per Epoch (s) 2201 202 28
Epochs to Convergence 1 1 18

100k Time per Epoch (s) 4338 398 60
Epochs to Convergence 1 1 18

Table 2: Runtime comparison

Let ⇠8 9 be the objective coe�cients corresponding to ⇧8 9 in
Model 1. The rows of ⇠ (corresponding to individual items) are
permuted by the sorting indices of ⌧ :

⇠ 0 = ⇠ [�B>AC] [:] .
Model 1 is then solved using ⌧ 0 and ⇠ 0 in place of ⌧ and ⇠ . The
resulting optimal policy ⇧0 then need only be reverse-permuted in
its rows to restore the original orders with respect to items:

⇧ = ⇧0[0A6B>AC (�B>AC)] [:] .
While the number of variables in Model 1 increases quadrati-

cally with the size of the list to be ranked, its linear form ensures
that it can scale e�ciently to handle lists of reasonable size. Lin-
ear programming problems are routinely solved with millions of
variables [3], and additionally are well-suited to bene�t from hot-
starting, when solutions to similar problem instances are known.
Fortunately, the Smart Predict-and-Optimize framework is partic-
ularly amenable to hot-starting. Since a LP instance for each data
sample must be solved at each epoch, a feasible solution to each LP
is available from the previous epoch, corresponding to the same
constraints and a cost vector which changes based on updates to
the DNN model parameters during training [14]. Storing a hot-start
solution to each LP instance in a training set requires memory no
larger than that of training set, and as the model weights converge,
these hot-starts are expected to be very close to the optimal policies
for each LP. The implementation described in this paper does not
optimize the use of hot-starts since the use of the cached models, as
described in this section, already provided large speedups, render-
ing training times required for SPOFR to replicate the benchmark
evaluations of previous works very low.

SPOFR and its improved implementation (SPOFR*) as described
above are compared to FULTR with respect to runtime on German
Credit datasets. Table 2 records the number of epochs required
to converge on average over the hyperparameter search, along
with average computation time per epoch. While DELTR reaches
convergence relatively e�ciently, it cannot produce competitive
fair ranking results as shown in Section 7; thus only SPOFR and
FULTR are compared. Runtimes are reported as observed Intel(R)
Xeon(R) Platinum 8260 CPU @ 2.40GHz.

B EXPERIMENTAL SETTING
B.1 Partial-Information Setting
In the Full-Information setting, all relevance scores are typically
elicited via expert judgments, which may be infeasible to obtain. A
more practical and common setting is to utilize the implicit feedback

End-to-End Learning for Fair Ranking Systems WWW ’22, April 25–29, 2022, Virtual Event, Lyon, France.

Figure 7: Query level guarantees: German credit (5 top row and 50 bottom row) unweighted (1st col.) and merit-weighted
fairness (2nd col.); MSLR (12 top row and 36 bottom row) unweighted (3rd col.) and merit-weighted fairness (4th col.).

from users (e.g., clicks, views) collected in an existing LTR system
as alternative relevance signals. However, this implicit feedback
is biased and cannot be directly aligned with true relevance. Note
that for a given query @, a user click is observed exclusively if the
user examined an item 8 and the item was found relevant by the
underlying LTR model. Let 28 and >8 be a binary variables denoting,
respectively, whether the item 8 was clicked and whether it was
examined by the user; Then, 28 = >8 · ~8 holds. This is called the
Partial-Information setting [11].

Of course, it is not appropriate to directly replace labels ~8 with
28 in Equation (1). To learn an unbiased ranking policy in the Partial-
Information setting, the implicit feedback data must be debiased.
A widely adopted method is to use Inverse Propensity Scoring (IPS),
which introduces the “propensity” ? (>8 = 1) of when the implicit
feedback was logged. The propensity can be modelled in various
ways [9, 11]. The most common one is the position-based exami-
nation model, where the propensity depends on only the position
of item 8 in the ranking when the click was logged. This means
? (>8 = 1) = Ef (8) , where E: denotes the examination probability
at position : . These position biases E: can be estimated with swap
experiments [11] or intervention harvesting [2]. With knowledge
of the propensity, the unbiased estimator for � becomes [11]:

b�(f, 2) = ’
8:28=1

�
�
f,~@

�
? (>8 = 1|f) . (17)

The estimator is unbiased if all propensities are bounded away from
zero [11]. Replacing �(f,~@) in Equation (1) with b�(f, 2), leads to
the unbiased utility estimator used to learn from implicit feedback
in the Partial-Information setting.

B.2 Hyper-parameters
The prediction of item scores is the same for each model, with a
single neural network which acts at the level of individual feature
vectors as described in Section 5.1. The number of layers in each
case is the maximum possible when each subsequent layer is halved
in size; this depends on the length of a dataset’s item feature vectors,
which constitute the model inputs. Hyperparameters were selected

Hyperparameter Min Max Final Value

SPOFR FULTR DELTR

learning rate 14�6 14�3 1e�5 2.5e�4 2.5e�4
violation penalty _ 0 100 N/A * *
allowed violation X 0 0.4 * N/A N/A

entropy regularization decay 0.1 0.5 N/A 0.3 N/A
batch size 4 64 64 16 16

Table 3: Hyperparameters

as the best-performing on average among those listed in Table
B.2). Final hyperparameters for each model are as stated also in
Table 3, and Adam optimizer is used in the production of each
result. Asterisks (*) indicate that there is no option for a �nal value,
as all values of each parameter are of interest in the analysis of
fairness-utility tradeo�, as reported in the experimental setting
Section.

B.3 Additional Experiments
Additional results are provided which investigate the e�ect of
dataset size on the performance of SPOFR. For German Credit
data, sizes 5: , 50: and 100: are used along with 12: , 36: and 120:
for MSLR data. In both cases, the size of a dataset represents the
number of training ’clicks’ gathered by the click simulation. Figure
6 indicates that the size of the training set does not a�ect test ac-
curacy at convergence. In the case of merit-weighted fairness, the
slight divergence in utility can be attributed to the di�erence in
relative merit calculated on each di�erently-sized dataset. Figure 7
shows that both baseline methods bene�t in terms of query-level
fairness from increased dataset size, but the e�ect on SPOFR is
negligible. Note also that FULTR reports an increase in accuracy as
training samples are added [20]. This may indicate an advantage in
terms of data-e�ciency attributable to SPOFR.

	Abstract
	1 Introduction
	2 Related Work
	3 Settings and Goals
	4 Learning Fair Rankings: Challenges
	5 SPOFR
	5.1 Predict: Relevance Scores
	5.2 Optimize: Fair Ranking Policies
	5.3 Regret Loss and SPO Training

	6 Multigroup Fairness
	7 Experiments
	8 Discussion
	9 Conclusions
	References
	A SPOFR: Implementation Details and Efficiency
	B Experimental Setting
	B.1 Partial-Information Setting
	B.2 Hyper-parameters
	B.3 Additional Experiments

