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Abstract

Post-processing immunity is a fundamental prop-
erty of differential privacy: it enables arbitrary
data-independent transformations to differentially
private outputs without affecting their privacy guar-
antees. Post-processing is routinely applied in data-
release applications, including census data, which
are then used to make allocations with substan-
tial societal impacts. This paper shows that post-
processing causes disparate impacts on individuals
or groups and analyzes two critical settings: the re-
lease of differentially private datasets and the use
of such private datasets for downstream decisions,
such as the allocation of funds informed by US
Census data. In the first setting, the paper proposes
tight bounds on the unfairness for traditional post-
processing mechanisms, giving a unique tool to de-
cision makers to quantify the disparate impacts in-
troduced by their release. In the second setting,
this paper proposes a novel post-processing mech-
anism that is (approximately) optimal under differ-
ent fairness metrics, either reducing fairness issues
substantially or reducing the cost of privacy. The
theoretical analysis is complemented with numeri-
cal simulations on Census data.

1 Introduction

Differential privacy (DP) [Dwork et al., 2006] has become
a fundamental technology for private data release. Private
companies and federal agencies are rapidly developing their
own implementations of DP. It is particularly significant to
note that the U.S. Census Bureau adopted DP for its 2020
release [Abowd, 2018]. It is also of primary importance to
observe that the released data by corporation or federal agen-
cies are often used to make policy decisions with significant
societal and economic impacts for the involved individuals.
For example, U.S. census data users rely on the decennial
census data to apportion the 435 congressional seats, allocate
the $1.5 trillion budget, and distribute critical resources to
U.S. states and jurisdictions.

Although DP provides strong privacy guarantees on the
released data and is widely celebrated among privacy re-
searchers, its wide adoption among more federal agencies

and public policy makers presents a key challenge: without
careful considerations, DP methods may disproportionately
impact minorities in decision processes based on the private
data. Specifically, to protect individuals in a dataset, typical
DP data-release methods operate by adding calibrated noise
onto the data and then post-process the resulting noisy data
to restore some important data invariants. Since such a pro-
cess perturbs the original data, it necessarily introduces some
errors which propagate onto downstream decision tasks. In
fact, this paper will show that these errors may affect various
individuals differently. Although understanding the outcome
of these effects is extremely important, these disproportionate
impacts are poorly understood and have not received the at-
tention they deserve given their broad impact on various pop-
ulation segments.

This paper addresses this gap in understanding the effect
of DP, and analyzes the disproportionate effects of a family
of post-processing methods commonly adopted in data re-
lease tasks. The analysis focuses on two critical settings:
the release of differentially private datasets and the use of
such private datasets in critical allocation tasks, as those us-
ing U.S. Census data to allocate funds and benefits. The paper
makes two fundamental contributions:

1. In the release setting, the paper derives tight bounds on
the unfairness introduced by commonly adopted post-
processing mechanisms, providing a valuable tool for pol-
icy makers and information officers to understand the dis-
proportionate impact of their DP releases. These results
are complemented by numerical simulations on the cen-
sus data.

2. In the downstream decision setting, the paper proposes a
novel post-processing mechanism that integrates the data
invariant into the downstream decision processes. The re-
sulting mechanism achieves near-optimal results and re-
duces unfairness and the cost of privacy up to an order of
magnitude on practical case studies.

To the best of the authors’ knowledge, this is the first study
that analyzes the fairness impacts of DP post-processing
steps. The rest of this paper presents the related work, the pre-
liminaries, the settings considered, and the motivation. The
core of the paper is in Sections 6 and 7 that present the two
main contributions. The last section concludes the paper. All
the proofs are in the Appendices that also contain a nomen-
clature summary.
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Figure 1: Schematic problem representation.

2 Related Work

Privacy and fairness have been studied mostly in isolation
with a few exceptions. [Cummings er al., 2019] consid-
ered the tradeoffs arising between differential privacy and
equal opportunity. [Ekstrand et al., 2018] raised questions
about the tradeoffs involved between privacy and fairness,
and [Jagielski et al., 2018] showed two algorithms that sat-
isfy (e, d)-differential privacy and equalized odds. In the
context of data release and resource allocation, [Pujol et al.,
2020] were seemingly first to show, empirically, that there
might be privacy-fairness tradeoffs involved in resource al-
location settings. In particular, for census data, they show
that the noise added to achieve differential privacy could dis-
proportionately affect some groups over others. [Tran et al.,
2021] formalized the ideas developed in [Pujol et al., 2020]
and characterized the conditions for which fairness violations
can be bounded for a class of allocation problems. Finally,
[Abowd and Schmutte, 2019] considered statistical accuracy
and privacy protection as competing public goods, and de-
signed an economic framework to balance the tradeoff. This
paper departs from these results significantly: it provides
tight lower and upper bounds on the unfairness introduced
by post-processing steps that are critical for practical ap-
plications, and proposes new mechanisms that merge post-
processing and the downstream resource allocation for miti-
gating these fairness issues.

3 Preliminaries: Differential Privacy

Differential Privacy [Dwork et al., 2006] (DP) characterizes
the amount of individual data disclosed in a computation.

Definition 1. A randomized algorithm M : X — R with
domain X and range R satisfies (e, §)-differential privacy if
Sor any output O < R and datasets x,x’' € X differing by at
most one entry (written as © ~ x’)

Pr[M(z) € O] < exp(e) Pr[M(z') e O] +4. (1)

Parameter € > 0 is the privacy loss: values close to 0 denote
strong privacy and § > 0 represents a probability of failure.
Intuitively, DP states that every event has a similar probabil-
ity regardless of the participation of any individual data to
the dataset. DP satisfies several properties including immu-
nity to post-processing, which states that the privacy loss of
DP outputs is not affected by arbitrary data-independent post-
processing [Dwork and Roth, 2013].

A function f from a dataset € & to a result set R < R”
can be made differentially private by injecting random noise
onto its output. The amount of noise relies on the notion of
global sensitivity Ay = maxgq || f(x) — f(z')|, with p €

{1, 2}. The Laplace mechanism [Dwork et al., 2006] that out-
puts f(x) +n, where 1 € R™ is drawn from the i.i.d. Laplace
distribution with 0 mean and scale Ay /€ over n dimensions,
achieves e-DP. The Gaussian mechanism [Dwork and Roth,
2013] that outputs f(D) + m, where n € R"™ is drawn
from the multivariate normal distribution N'(0,021I,,) with
parameter o > cA /e, achieves (¢, §)-differential privacy, for
c? > 2In(1.25/9).

4 Settings and Goals

The paper considers datasets € R of n entities, whose
elements x; describe some measurable quantities of entity
i € [n], such as the number of individuals living in a geo-
graphical region 7. A data-release mechanism M is applied
to the dataset « (called true data in this paper) to produce
a privacy-preserving counterpart £ ~ M (x) (referred to as
noisy data). Given the released data, the paper considers al-
location problems P : R™ — R™ that distribute a finite set
of resources to the problem entities. For example, P may be
used to allocate funds to school districts.

The focus of the paper is to study the error disparities of a
DP data-release mechanism M in two contexts: (1) data re-
lease and (2) downstream decisions. The first context refers
to the case in which the noisy data must be post-processed be-
fore being released to satisfy desired invariants. The second
context refers to the case in which the noisy data is released
for use in an allocation problem. Again, the release data must
be post-processed to satisfy the problem-specific feasibility
constraints. The paper studies the disparate impacts of the
error introduced by post-processing among entities in both
scenarios.

Quantitatively, this error is represented by the bias associ-
ated with a post-processing mechanism 7, i.e.,

B(m,P,M,x) = Ezp(a) [7(E)] — P(x) .

The paper will often omit the last two arguments of the bias
term when there is no ambiguity. The disparate impact of the
error is then characterized by the following definition.

Definition 2 (a-fairness). A post-processing mechanism 7 is
said a-fair with respect to problem P if the maximum differ-
ence among the biases is bounded by a, i.e.,
IB(x. P = max B(x.P), —min B(r.P)
€[N

<a
i€[n]

with o referred to as a fairness bound that captures the fair-
ness violation.

S Motivating Applications

This section reviews two settings highlighting the disparate
impacts of DP post-processing in census releases.

Data Release. Consider a simplified version of the census
data release problem. The task is to release counts, such
as demographic information of individuals, which are re-
quired to be non-negative and summed up to a public quan-
tity. The latter is usually used to preserve known statistics at
a state or national level. To preserve these invariants, com-
monly adopted post-processing mechanisms (e.g., the one
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Figure 2: Data Release: (Left) bar chart of the true counts and line chart of the empirical biases (red dots) associated with the given post-
processing mechanism. Downstream decisions: (Right) scatter plot of the empirical biases (left y-axis) and misallocation funds (right y-axis)
resulting from the given post-processing mechanism against different school district sizes (x-axis). For both instances, Laplace mechanism is
taken for privacy protection and each experiment is repeated for 200,000 times.

used by the Top-Down algorithm in the release of several
2020 U.S. census data products) constrain the noisy DP out-
comes with an ¢5 projection step. Such post-processing step
will be described in detail and studied in the next section. Fig-
ure 2 (left) shows the (sorted) values of some synthetically
generated true counts (bars) and the (empirical) biases (red
dots), obtained by comparing the post-processed DP counts
with the true counterparts. Notice how the resulting biases
vary among entities. This is significant as sub-communities
may be substantially under- or over-counted affecting some
important data analysis tasks.

Downstream Decisions. These disparities may also have
negative socio-economic impacts. For instance, when agen-
cies allocate funds and benefits according to differentially pri-
vate data, an ill-chosen post-processing mechanism can result
in huge disparities and, as a consequence, lead to significant
inefficiencies of allocation. Consider the Title I of the Ele-
mentary and Secondary Education Act of 1965 [Sonnenberg,
2016]: It uses the US Census data to distribute about $6.5 bil-
lion in basic grants to qualified school districts in proportion
to the count x; of children aged 5 to 17 who live in necessi-
tous families in district <. The allocation is formalized by

Q; * Tj

Pr [ S
(@) iy aj T

, Vie[n],

where © = [z; ... m,]" is the vector of the districts’ true
counts and a; is a positive weight factor reflecting students
expenditures in district <. When a projection mechanism (de-
scribed in more details in Section 7) is used to guarantee non-
negativity of the private data @, the resulting errors on the
proposal of funds allocation can be consequential. Figure 2
(right) visualizes the misallocation (blue dots) for over 16,000
school districts (due to this post-processing mechanism) in
terms of proportions (left y-axis) and funds (right y-axis). In
this numerical simulation, which uses data based on the 2010
US census release, large school districts may be strongly pe-
nalized. For example the largest school district in Los Ange-
les can receive up to 99,000 dollars fewer than warranted.

The next sections analyze these effects and propose miti-
gating solutions. Due to space limitations, complete proofs
are deferred to the Appendix.

6 Unfairness in Data Release

This section studies the effects of post-processing in a com-
mon data-release setting, where the goal is to release popu-
lation counts that must also sum up to a public constant C'.
The section first introduces the projection mechanisms used
to restore non-negativity and other aggregate data invariants
and then studies its fairness effects.

Projections are common post-processing methods central
to many data-release applications, including energy [Fioretto
et al., 2019], transportation [Fioretto ef al., 2018], and census
data [Abowd et al., 2019]. They are defined as:

ms4 (&) = argmin ||[v — &, ,
’LJEICsur

with feasible region defined as

ICS+={v\ivi=C,v>0}.
i=1

Notice that Pg is a convex program, and its unique opti-
mal solution 7g (&) guarantees the desired data invariants
by definition. For the analysis, it is also useful to consider
a modified version Pg of Ps,, which differs from the latter
only in that it ignores the non-negativity constraint v > 0. Its
feasible region and optimal solution are denoted, respectively,
K S and 7 S ((i?) .

This section provides tight upper and lower bounds of the
unfairness arising from projection operators. Lemma 3 and 4
are critical components to derive the a-fairness bounds devel-
oped in Theorem 1. The tightness of the proposed bounds is
demonstrated in Example 1 and the existence of inherent un-
fairness in Example 2. Proposition 2 then presents an efficient
method to evaluate the a-fairness bounds under the Gaussian
mechanism, giving a uniquely valuable tool to decision mak-
ers to evaluate the impact of post-processing the data in their
applications. To ease notation, the section omits the second
argument P of the bias term B (as the P is an identity func-
tion for data-release settings). Additionally, unless otherwise
specified, it assumes that the noisy data & is an output of the
Laplace mechanism with parameter \ or the Gaussian mech-
anism with parameter o.

Lemma 1. [Zhu et al., 2021] For any noisy data & € R", the

closed-form solution 7s (&) to program (Ps) is,

2?21 nj -4 ¢ - 2?21 Tj
n ! n

(Psy)

ms(Z)i =z + 1 —
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Figure 3: Illustration of different post-processed counts of . The
solid line represents the feasible region g of program (Ps).

Sor any i € [n], with injected noise n = & — .

Unlike 75(&), the post-processed count mg+ (&) does not
have a close-form expression. However, the following lemma
introduces an implicit expression of 7g (&) on the basis of
s (&), establishing the foundation for the fairness analysis of
the post-processing mechanism 7g . .

Lemma 2. For any noisy data & € R", the solution g (&)
to program (Ps.) can be expressed as

s () = (rs(2) — T(7s(2)) - 1)

where (-)-, = max{-,0}, and T'(ns(Z)) is the non-negative
scalar that is the unique solution to the following equation

—T(7s(2)))=0

Z (ms(Z);

i=1

=C.

Figure 3 provides an illustrative example relating the two
post-processing mechanisms and the role of T(wg(Z)).
Given the noisy data @ (top of the figure) mg first projects
it onto the solid line, which is the feasible region KCg. Then,
T needs to be deducted from both entries of g (&) such that
the positive part of mg(&) — T - 1 equals mg4 (&).

The following lemma provides lower and upper bounds for
the bias difference of post-processing ms- and plays a critical
role in establishing the main results.
Lemma 3. For any pair (i, j) such that x; <
ing relations hold,

x;, the follow-

B(ms+), — B(rs+); = B((1s)s,), — B((7s)=0 )j (2a)
B(ms+); — B(ws+); <B((7s)s0), = B((7s)s0), (@)

+Eng@) [T(ms(2))]
with T' defined as in Lemma 2 and B ((75)+) used as short-
hand for Bz [(71'5(5:))20] — .
While important, the upper bound (2b) is dependent on func-
tion 7', which does not have a close-form expression; this

makes it difficult to evaluate it. The following proposition
provides an upper bound of T" using 7 (&).

Proposition 1. For any noisy data & € R"™, T(
upper bounded by the sum of negative parts in g (

r ) < i (775(1:)1),

7r
T

s(T)) is
)

where (-)_ =—min{-, 0} takes the negative part of the input.

The following lemma presents an upper bound of the differ-
ence between biases: unlike the bound developed in Lemma
3, this new bound is independent of the injected noise.

Lemma 4. For any pair (i, j) such that x; < x;j, the follow-

ing relation holds.
B(ms+);

The next theorem is the main result of this section: it
bounds the unfairness resulting from the projection mecha-
nism mg,. Without loss of generality, the true data x is as-
sumed to be sorted in an increasing order, i.e., ; < x;, for
any ¢ < j.

_B(Ws+)j<$j—$i. (3)

Theorem 1. The fairness bound o associated with the post-
processed mechanism wgy is bounded from the below by

a=B ((”S)zo)l -B ((”S)zo)n )
and bounded from the above by

a < min{z, — z, (

)20)1 —
B 7TS>0 Z

Proof Sketch. By Equation (2a) in Lemma 3, notice that
B (ms4 ), is the largest entry while B (7g; ), is the small-
est one among all the biases. The lower bound of the fairness
bound « can then be derived in the following way.

rs(@) [(ms(@)i) ]}

o =max B(m . —min B(w .
max (ms+); min (Ts+);

= B(WS+)1 - B(ﬂ—s+)n =B ((775);0>1 - B ((WS)>O)7,, :

Likewise, Lemma 3 and 4, along with Proposition 1, make
the joint effort to generate the upper bound. [

The tightness of the derived bounds follows from the follow-
ing instance.

Example 1 (Centroid). The lower and upper bounds pro-
posed in Theorem 1 hold with equality when the true data x
is exactly the centroid of the feasible region Ks. of program
(Ps4), i.e, x = [C/n ... C/n] € R", and the noisy data
x is an output of either Laplace or Gaussian mechanism. In
this case, the fairness bound « and its bounds in Theorem 1
happen to be 0, which also means that there is no fairness
violation.

The next example shows that post-processing definitely intro-
duces unfairness when the true is not at the centroid.

Example 2 (Non-centroid). Suppose that the true data x is
not the centroid of the feasible region Kg, i.e., x,, > x1. The
fairness bound o associated with the post-processing mecha-
nism wgy is strictly positive, i.e.,

a > B((7s)50), — B((7s)), > 0.

This negative result motivates the development of novel post-
processing mechanisms in downstream decision processes,
which are topics of the next section. The last result of this sec-
tion provides an efficient evaluation of the proposed bounds
via numerical integration methods.



Mechanism M | a-fairness Lower  Upper
0.0245 0.0242 0.0288

0.0910 0.0897 0.1085

Laplace |

Gaussian |

Table 1: Case study of Hawaii.

Proposition 2. Let & be the output of the Gaussian mecha-
nism with parameter o. The key component of both lower and
upper bounds in Theorem I can be written as

B ((Ws)>0)1 - B ((WS)zo)n = J_wl O (at)dt

—Tn
€ [P (—axy) (zp — 21), P (—axy) (z, — x1)] ,
where a = L, /-1~ and ®(-) is the standard Gaussian cu-
mulative distribution function.

It is interesting to demonstrate the tightness of these bounds
using the US Census households counts at the county level
for the state of Hawaii.

Example 3 (Hawaii). The state of Hawaii has a total number
of C = 453,558 households distributed in n = 5 counties.
The experiments use the Laplace mechanism with parameter
A = 10 and the Gaussian mechanism with parameter o = 25.
The empirical studies of a-fairness and its bounds in Theorem
1 associated with the post-processing mechanism mwgy over
1,000, 000 independent runs are reported in Table 1. The
bounds of Gaussian mechanism use Proposition 2; those of
Laplace mechanism are generated by the empirical means.

The derived lower and upper bounds are really tight and
provide decision makers a uniquely valuable tool to assess
the unfairness introduced by post-processing.

7 Mechanisms for Downstream Decisions

Having shown that unfairness is unavoidable in common
data-release settings, this section aims at designing post-
processing mechanisms for decision processes that minimize
their fairness impact on the resulting decisions. The mecha-
nisms studied are tailored for the allocation problem P de-
scribed in Section 5, which captures a wide class of resource
allocation problems.

A natural baseline, currently adopted in census data-release
tasks, is to first post-process the noisy data to meet the fea-
sibility requirement (i.e., non-negativity) and then apply the
allocation formula P¥" to the post-processed counts. To re-
store feasibility, it suffices to take the positive part of & to ob-
tain (&), or equivalently, project & onto the non-negative
orthant R”} .

Definition 3 (Baseline Mechanism (BL)). The baseline
mechanism outputs, for each i € [n],

- ai * (Ti) g
TL(Z); = on— = -
Zj:l a; - (xj);()
It is possible to derive results similar to Example 2 for (-).
when the baseline mechanism is used to produce feasible re-
leased data. Additionally, as shown in [Tran et al., 2021], the

disparate errors resulting from ()., can be further exacer-
bated when they are used as inputs to downstream decision
problems. It suggests that the baseline mechanism might not
be a good candidate for mitigating unfairness in this alloca-
tion problem. To address this limitation, consider the optimal
post-processing mechanism in this context, i.e.,

7* ;= argmin [|Ez [7(Z) — P" ()]|

‘ITEHA“

R C))
where IIn = {7 | 7 : R™ — A, } represents a class of post-
processing mechanisms whose images belong to the prob-
ability simplex A,,. The optimization problem in Equa-
tion (4) is intractable in its direct form, since P (z) is not
available to the mechanism, motivating the need to approx-
imate the objective function. Consider the following proxy
Es [||r(z) — PF (:E)Hﬁ], which first exchanges the order
of expectation and ||-||_. and then replaces the true alloca-
tion P¥ (z) with its noisy variant P (&). Then, the opti-
mal post-processing mechanism 7 associated with this new
proxy function becomes:

(Pa)

A mechanism, which is closely related to program (FP,), is
presented as follows.

(&) = argznin |v—PF (@)

veA,

Definition 4 (Projection onto Simplex Mechanism (PoS)).
The projection onto simplex mechanism outputs the alloca-
tion as follows.

Tpos (&) = argmin H’u - pF (5:)”2
veAn

(PPOS)

Program (Pp,s) projects P (&), which is not necessarily
an allocation since it may violate non-negativity constraints,
onto the closest feasible allocation. The next theorem estab-
lishes the equivalence between program (F,) and program
(Ppos): It leads to a near-optimal post-processing mecha-
nism. (The missing proofs of the rest of this paper can be
found in the Appendix).

Theorem 2. For any noisy data &, the mechanism Tp.g (&)
generates the unique optimal solution to program (P,,).

Figure 4 visualizes the resulting biases of the Title I alloca-
tion associated with these two mechanisms, mp,g and 7gy,.
It is noteworthy that these two mechanisms achieve roughly
same performance for the school districts that are allocated
small amounts. However, under the baseline mechanism, the
school districts that account for a significant portion of to-
tal budget receive much less funding than what they are sup-
posed to receive when no differential privacy is applied. This
is not the case for mechanism 7p,g, which reduces unfair-
ness significantly. Recall that the notion of a-fairness mea-
sures the maximum difference among biases associated with
different entities. Pictorially, the biases associated with mpyg
do not vary as drastically as the baseline mechanism. Table 2
quantifies the benefits of mp,g over 7pr..

8 Generalizations

The results in Section 7 can be generalized to other fairness
metrics. This section discusses an important metric that quan-
tifies the extra budget needed to ensure that all of the problem



Privacy Budgets | e=0.1 | e=10.01 | e = 0.001

Mechanisms | TBL TPos | TBL TPos. | TBL TPoS
a-fairness 3.00E-07 1.50E-07 | 1.70E-05 1.75E-06 | 8.06E-04 2.23E-05
Cost of Privacy | 1.62E-05 1.41E-05 | 1.33E-03 1.04E-03 | 5.90E-02 3.49E-02

Table 2: Comparison between the two post-processing mechanisms in terms of two fairness metrics for different privacy budgets. This work
takes Laplace mechanism and 200, 000 independent runs for numerical evaluation.

Mechanism mpyg Mechanism 7py,
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Figure 4: Illustration of the empirical biases (y-axis) associated
with the two mechanisms mpos and 7gr, (columns) for different pri-
vacy budgets (rows) versus the portions of education funds (z-axis)
schools districts are guaranteed in the allocation with the true data.
The Laplace mechanism is used for privacy protection and each ex-
periment is repeated for 200,000 times.

entities receive the resources (e.g., amounts of funds) they are
warranted by law.

Definition 5 (Cost of privacy [Tran et al., 20211). Given the
mechanism T, the total budget B to distribute and the true
data x, the cost of privacy is defined as

Bt = > |B(x,P") | B,

J
JjeT~
with the index set J~ = {j | B (77, PF)j < 0}.

The next proposition establishes the equivalence between the
cost of privacy and the #; norm of the bias when the image of
the mechanism 7 is restricted to be the probability simplex.

Proposition 3 (Cost of privacy as a ¢1-norm). Suppose that
T is a post-processing mechanism, which belongs to the class
IIA,, . The cost of privacy is a multiplier of the {1-norm of its
bias, i.e.,
B
5= 2B (),

Since the optimal post-processing is again intractable in its
direct form, i.e., it cannot be solved as an optimization
problem, its objective can be replaced by the proxy B/2 -
Ez [||7(z) — P¥ (2)]|,]- Then, the optimal post-processing
mechanism 7, _, associated with this proxy function is given

by

. . B .
T&op(Z) == arg min 5 H'v - pF (a:)”l .
vEA

n

(Pcor)

The next theorem depicts the connection between Pc,p and
the two post-processing mechanisms proposed in Section 7.

Theorem 3. For any noisy data &, the mechanism Tp,s (&)
generates an optimal solution to program (Pcop). For any
noisy data & such that 33;_ a; - &; > 0, mechanism mgr, ()
generates an optimal solution to program (Pcop) as well.

This theorem demonstrates that mechanism mp,g always pro-
duces an optimal solution to program (FPcop) while the base-
line mechanism achieves optimality with high probability.
Table 2 shows that wp,g may significantly outperform the
baseline mechanism, providing substantial reductions in the
cost of privacy.

9 Discussion and Conclusion

This paper was motivated by the recognition that the disparate
error impacts of post-processing of differentially private out-
puts are poorly understood. Motivated by Census applica-
tions, it took a first step toward understanding how and why
post-processing may produce disparate errors in data release
and downstream allocation tasks. The paper showed that
a popular class of post-processing mechanisms commonly
adopted to restore invariants during the release of population
statistics are inherently unfair. It proposed a tight bound on
the unfairness and discussed an efficient method to evaluate
the disparate impacts. Motivated by these negative results, the
paper studied how post-processed data affects downstream
decisions under a fairness lens and how to contrast such ef-
fects. In this context, the paper proposed to release the noisy,
non-post-processed data, and post-processing the output of
the downstream decisions instead. It focused on an impor-
tant class of resource allocation problems used to allot funds
or benefits and proposed a novel (approximately) optimal
post-processing mechanism that is effective in mitigating un-
fairness under different fairness metrics. The analysis was
complemented with numerical simulation on funds allocation
based on private Census data showing up to an order magni-
tude improvements on different accuracy disparity metrics.

These results may have strong implications with respect to
fairness in downstream decisions and should inform statis-
tical agencies about the advantage of releasing private non-
post-processed data, in favor of designing post-processing
methods directly applicable in the downstream decision tasks
of interest.
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