LineFS: Efficient SmartNIC Offload of a Distributed
File System with Pipeline Parallelism

Jongyul Kim
KAIST

Jaeseong Im
KAIST

Youngjin Kwon
KAIST

ABSTRACT

In multi-tenant systems, the CPU overhead of distributed
file systems (DFSes) is increasingly a burden to application
performance. CPU and memory interference cause degraded
and unstable application and storage performance, in par-
ticular for operation latency. Recent client-local DFSes for
persistent memory (PM) accelerate this trend. DFS offload
to SmartNICs is a promising solution to these problems, but
it is challenging to fit the complex demands of a DFS onto
simple SmartNIC processors located across PCle.

We present LineFS, a SmartNIC-offloaded, high-perfor-
mance DFS with support for client-local PM. To fully leverage
the SmartNIC architecture, we decompose DFS operations
into execution stages that can be offloaded to a parallel data-
path execution pipeline on the SmartNIC. LineFS offloads
CPU-intensive DFS tasks, like replication, compression, data
publication, index and consistency management to a Smart-
NIC. We implement LineFS on the Mellanox BlueField Smart-
NIC and compare it to Assise, a state-of-the-art PM DFS.
LineFS improves latency in LevelDB up to 80% and through-
put in Filebench up to 79%, while providing extended DFS
availability during host system failures.

*Work done while at KAIST.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-
party components of this work must be honored. For all other uses, contact
the owner/author(s).

SOSP °21, October 26—29, 2021, Virtual Event, Germany

© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483565

Insu Jang®
University of Michigan

Marco Canini
KAUST

Simon Peter
The University of Texas at Austin

756

Waleed Reda
KTH Royal Institute of Technology
Université catholique de Louvain

Dejan Kostic¢
KTH Royal Institute of Technology

Emmett Witchel

The University of Texas at Austin
Katana Graph

CCS CONCEPTS

+ Information systems — Distributed storage; Storage
class memory; « Social and professional topics — File sys-
tems management; « Networks — Network adapters; «
Computer systems organization — System on a chip;
Availability.

KEYWORDS
Distributed file system, SmartNIC offload

ACM Reference Format:

Jongyul Kim, Insu Jang, Waleed Reda, Jaeseong Im, Marco Canini,
Dejan Kosti¢, Youngjin Kwon, Simon Peter, and Emmett Witchel.
2021. LineFS: Efficient SmartNIC Offload of a Distributed File Sys-
tem with Pipeline Parallelism. In ACM SIGOPS 28th Symposium on
Operating Systems Principles (SOSP °21), October 26-29, 2021, Vir-
tual Event, Germany. ACM, New York, NY, USA, 16 pages. https:
//dOi.Org/lO.l145/3477132.3483565

1 INTRODUCTION

In multi-tenant systems, the CPU overhead of distributed
storage services sharing the machine with the applications
using them is increasingly a burden to application perfor-
mance [27, 36, 41]. Due to the stagnation of CPU perfor-
mance [49], operators wish to dedicate as many client CPU
cycles to applications as possible. However, as storage ser-
vices incorporate persistent memory (PM) [5], CPU con-
tention has increased. Various recent storage system propos-
als for PM use client-local storage management. For example,
the Assise distributed file system (DFS) conducts parallel
data eviction when per-process caches fill to capacity [18].
Similarly, Orion periodically creates radix trees to index log-
structured file data, performs log garbage collection, and ex-
ecutes client arbitration protocols when data is shared [60].
These processes consume several cores on [O-intensive client
nodes (§2.1).

To reduce CPU overhead, offload of disaggregated storage
stacks is already commonplace [9, 10]. SmartNICs [2, 3, 8]
are popular for this purpose because they can implement the
data path for disaggregated storage operations. SmartNICs
support both block-level remote access protocols, such as
NVMe over fabrics (NVMe-oF) [10], and remote direct mem-
ory access (RDMA) [12]. RDMA allows access to remote PM
at byte-granularity and recent work has extended it to better
support remote file access [61], chain replication [36], and
multi-step data access operations via in-network process-
ing [53]. However, none of the existing solutions consider
the offload needs of a complete DFS.

In this paper, we present LineFS, a SmartNIC-offloaded,
high-performance DFS with support for client-local PM.
LineFS offloads processing-intensive DFS tasks, such as repli-
cation, data publication, and consistency management. Lever-
aging spare SmartNIC processing capacity, LineFS reduces
network utilization by conducting file- and operation-specific
(de)compression. Finally, LineFS reduces file system fail-over
time by providing a fast failure detector and SmartNIC-based
recovery mechanism, leveraging the SmartNIC as an isolated
failure domain.

Offloading a high-performance DFS to a SmartNIC is chal-
lenging. File systems are complex, handling highly structured
data with sophisticated access protocols for consistency and
durability. Wimpy SmartNIC architecture and the PCle in-
terconnect that separates SmartNIC and host PM implies
that a naive offload of DFS operations will be much slower
than using host CPUs. To make offload worthwhile, LineFS
must hide execution and data access latencies by exploiting
opportunities for parallelization, batching, and asynchro-
nous operation. We propose a persist-and-publish model that
separates PM storage operations on the critical-path from
operations that can execute asynchronously. To speed up
asynchronous publishing operations, while providing strong
file system consistency properties, such as linearizability and
prefix crash consistency [24, 57], we introduce a parallel data-
path execution pipeline. We decompose DFS operations into
distinct execution stages that operate in a parallel pipeline.
The pipeline keeps operations in order for consistency. To
avoid pipeline execution stalls, we prefetch data across PCle
and organize host data structures into pipeline chunks that
can be transmitted in bulk and processed in parallel.

We make the following contributions:

e We present the design of LineFS, a SmartNIC-offloaded,
high-performance DFS with support for client-local PM.
We describe the challenges of efficient DFS SmartNIC of-
fload and show how to make it efficient by parallelizing
DFS functionality that was sequential in previous systems.

e To demonstrate the benefits of LineFS, we apply it to As-
sise, a state-of-the-art DFS using client-local PM. Our im-
plementation uses the Mellanox BlueField SmartNIC [2].

757

BlueField allows us full control over data and processing
placement across SmartNIC and host, from any machine.

e We compare LineFS performance to Assise (our baseline,
replicating upon each fsync()), Assise replicating in the
background, as well as Assise+Hyperloop (offloading repli-
cation as in Hyperloop [36]). In the throughput benchmark,
LineFS outperforms all Assise variants by at least 41% and
saturates the network. In addition, we execute application
benchmarks (LevelDB and Filebench). LineFS shows 80%
and 27% better LevelDB latency than Assise for sequen-
tial and random insert, respectively. LineFS exhibits 79%
higher throughput than Assise in Filebench.

o We showcase the ability of LineFS to maintain a high level
of performance even in the presence of an interfering, CPU-
intensive workload (streamcluster), whose performance
is only mildly impacted by LineFS’s presence. In contrast,
streamcluster takes longer to execute in the presence of
Assise by up to 43%, and LineFS performance is 227% better
than that of Assise in this case.

o Inaddition to demonstrating quantitative benefits of LineFS,
we highlight its ability to make qualitative improvements
to a DFS by enabling new functionality. In particular, LineFS
makes it possible to compress data on the fly while running
a sorting benchmark. Doing so results in up to 11% bet-
ter performance than the no-compression case, all while
saving considerable network bandwidth (up to 72%).

o Finally, we demonstrate LineFS’s ability to increase system
availability by conducting a Varmail experiment with host
failure. Even during failure, LineFS enables Varmail to
maintain similar throughput levels across the replication
chain, as seen without failures.

2 BACKGROUND

Like any operating system service, DFSes consume CPU
and memory resources. This consumption was insignificant
when networks and storage devices were slow relative to the
performance offered by CPUs. Currently, the performance of
networks and storage devices is increasing while CPU per-
formance has stagnated in both per-core performance and
number of cores. Thus, CPU cycles and memory bandwidth
have become precious commodities. In particular, modern
PM-optimized DFSes share CPU and memory resources with
applications in an effort to reduce PM access latency. Unfor-
tunately, the low-latency access provided by these systems
comes with the cost of CPU competition with applications.

We provide an overview of the design of PM-optimized
DFSes and the different ways in which they interfere with
host CPU and memory performance (§2.1). We then present
SmartNIC offload of DFS functionality as a solution to the
interference problem, while outlining the unique challenges
of DFS offload to SmartNICs (§2.2).

of Throughput (GB/s) CPU utilization
proc. 25GbE 100GbE 25GbE 100GbE
Assise Ceph | Assise Ceph | Assise Ceph | Assise Ceph
1 0.38 1.23 0.63 1.26 62% 95% | 101% 96%
2 0.74 1.34 1.12 1.51 | 119% 126% | 201% 146%
4 1.30 1.40 1.98 1.56 | 225% 141% | 380% 211%
8 1.32 1.41 2.22 1.60 | 224% 176% | 509% 211%

Table 1: CPU utilization of Assise and Ceph for dif-
ferent numbers of benchmark processes and network
speeds. 100% = 1 core.

2.1 Interference in PM-optimized DFSes

As PM gains popularity, new DFS designs are appearing
that are optimized to leverage PM’s performance. A main
design principle of these DFSes is to utilize PM storage that is
located on the same machine that executes the applications
using it—called client-local PM storage. Client-local storage
can reduce PM file access latency by orders of magnitude.
Assise [18] and Orion [60] are two recent DFSes that use
client-local PM storage.

While client-local PM storage can improve file system
performance versus client-server designs, it also requires
file system management tasks local to the client. These file
system tasks compete for memory and compute resources
with applications. This kind of concurrent execution causes
performance interference and takes away precious resources
from application execution. To identify DFS resource con-
sumption, we measure client CPU utilization of a client-local
DFS, Assise, and compare it with a client-server DFS, Ceph.
Table 1 shows the result. Each client writes a 24 GB file with 4
KB IO size. We can see that both DFSes require a significant
amount of client CPU cycles. However, Assise uses up to
60% and 2.4x more cycles than Ceph on 25GbE and 100GbE
networks. Assise needs more CPU to perform file system
management tasks as the network bandwidth increases. Us-
ing a 25 GbE NIC, Assise occupies 2.24 host cores to support
8 clients while Ceph occupies 1.76 cores. Using a 100 GbE
NIC, Assise uses 5.09 host cores for 8 clients, while Ceph
uses only 2.11.

We identify the following four file system tasks of client-
local DFSes that cause high CPU utilization and performance
interference:

I1. Data movement and indexing. The file system invokes
threads for data movement and organization. For example,
Assise’s SharedFS creates many threads to apply file system
updates to PM and to create indexing structures to optimize
later reads.

I2. Replication. For availability, client-local distributed file
systems replicate data among client nodes, requiring invoca-
tion of DFS services that can accept and persist data per client
replica. Replication consumes memory and CPU resources.

758

I3. Remote storage access requests. Not all file system re-
quests can be served locally, requiring a remote node to
serve these requests with low latency. High-priority file sys-
tem processing interrupts co-running applications, involving
high context switching costs when done frequently.

I4. File system consistency. To allow multiple clients access
to shared file system state with consistency guarantees, dis-
tributed file systems have to coordinate these clients, requir-
ing the invocation of coordination mechanisms on multiple
client nodes, often with low latency requirements.

Each of these tasks may execute concurrently, consuming a
variable amount of shared compute and memory resources.
The interference presents several challenges:

C1. Unpredictable application performance. When CPU
and memory resources are consumed by file system manage-
ment threads, application execution performance is impacted.
For example, application threads need to wait for CPUs to
become available or are slowed down if not enough memory
bandwidth is available.

CPU contention is a particularly grave performance prob-
lem for parallel applications that synchronize frequently,
such as via barriers. Spontaneous unavailability of CPUs due
to file system task execution can create stragglers that dis-
proportionately slow down the entire parallel computation
as the application waits for all threads to pass a barrier.

C2. Unpredictable file system access latency and

tail-latency. Shared resources also impact file system per-
formance. In particular, file system access latency and tail-
latency can increase when latency-critical operations are de-
layed because CPUs are busy executing application threads.

This problem is exacerbated with PM. Due to the low
access latency of PM, critical file system operations often
need to finish within microseconds. Even when the CPU
scheduler gives priority to critical file system tasks, these
latencies can easily be inflated by several orders of magnitude
due to context switching and dispatch overheads.

C3. Reduced throughput. A potential solution is to parti-
tion available CPU and memory resources among file system
services and applications. However, partitions have to be
provisioned for peak utilization to support high throughput.
CPUs in particular are a scarce resource in today’s systems
and under-provisioned partitions reduce throughput for ei-
ther the file system or the applications.

2.2 DFS Offload to SmartNICs

Offload of DFS services to a SmartNIC can be a solution to the
aforementioned problems. SmartNICs are versatile compute
platforms that sit in the network data-path of applications.
Their position makes them well-suited for offload of net-
worked services, including distributed file systems. Indeed,

various SmartNIC platforms [2, 3] provide features that aid in
particular the offload of disaggregated storage protocols, e.g.,
NVMe-oF [10]. However, SmartNIC offload is not a panacea.
Several challenges make the offload of distributed file system
functionality particularly difficult.

Increased latency for host memory access. SmartNICs are

PCle expansion cards. PCle is a high-latency interconnect

relative to the DDR memory interconnect that CPUs enjoy

to access memory. Accessing PM via DDR from a host CPU

incurs a latency on the order of 100 ns while accessing PM

via PCle has a latency of several us—an order of magnitude

difference. Thus, accessing PM and related file system state

stored in host memory from the SmartNIC has high overhead

and such access needs to be minimized or the latency needs

to be hidden.

Wimpy execution environment. A typical SmartNIC power
envelope is 25W. Compared to host CPUs that have an order

of magnitude larger power envelopes, there is no room for

powerful memory or processing features. SmartNICs typ-
ically opt for a wimpy processor architecture, with many

low-frequency cores and a small amount of cache memory.

Mellanox BlueField. We explore DFS offload using a Mel-
lanox BlueField MBF1M332A SmartNIC [2]. This is a 2x25GbE
SmartNIC that contains an ARMv8 Cortex-A72 processor

with 16 cores, running at 800MHz. Each Cortex-A72 core has

a 32KB L1 data cache. Two cores share 1MB of L2 cache and

all cores share 6MB of L3 cache, as well as 16GB of memory,
which may be DRAM or NVDIMM-N PM. BlueField runs

Linux on the Cortex-A72.

BlueField is an off-path SmartNIC [41]. An RDMA switch
on the SmartNIC is capable of directly accessing SmartNIC
and host memory. The switch can be configured to forward
RDMA requests according to various rules. We configure
the switch to treat the Cortex-A72 as a discrete host, with
its own MAC and IP address. This configuration allows the
file system full control, from any machine, over where to
transfer data and whether to interact with the SmartNIC or
the host.

Treating the SmartNIC as a discrete host running Linux
focuses our work on the interconnect and wimpy execu-
tion environment challenges described in this section, rather
than low-level acceleration. This is intentional. File systems
are complex software, handling highly structured data with
sophisticated access protocols for consistency and durabil-
ity. CPU architectures capable of running full OSes, such
as ARMv3, are well-suited for file system execution. Lower-
level, in-path architectures that are optimized to process
individual network packets, such as NPU or FPGA-based
SmartNICs, would have unnecessarily complicated our of-
fload design.

759

App A

RPC RPC

App B
LibFs | [

LibFS Kernel worker
Host PM A read/write) DMA copy
|Log A|Log B| Log area |
G Sty publish TS '
; 00—
Smart : NICFS ==
NIC | . NIC Memory |

¥ replicate

Figure 1: Components and data path of a LineFS node.

3 LINEFS DESIGN

LineFS is a DFS designed for a cluster of nodes that use
PM and RDMA. LineFS minimizes host CPU overheads by
carefully offloading DFS operations to SmartNICs. LineFS
has the following design goals.

e Minimize host performance interference. Performance
and performance predictability of applications and stor-
age systems suffer from competition for shared resources.
CPUs are one of the most constrained resources in modern
cloud servers [27, 40-42, 49, 55]. LineFS must minimize
competition for CPUs among applications and the DFS. To
do so, LineFS offloads DFS functionality to SmartNICs.
Minimize slowdown from offload. LineFS must mini-
mize the performance impact of DFS offload to SmartNICs.
To do so, LineFS rethinks the file system data path to ex-
ploit fine-grained data parallelism. LineFS executes the
data path in the background to allow foreground host com-
putation to continue unaffected.

Leverage data-path processing opportunities. LineFS
shall leverage the SmartNIC’s data-path processing capa-
bility to opportunistically perform semantic-aware data
transformations. We take advantage of spare SmartNIC
processing capacity to perform data compression, saving
network bandwidth for replication.

Improved availability. LineFS shall also leverage the
SmartNIC’s data-path processing capability to improve
DFS availability. While SmartNICs and host CPUs share
host power, SmartNICs provide independent execution
environments and can continue operating, even if the host
operating system has failed.

LineFS architecture. Like Assise [18] and Orion [60], LineFS
adopts a client-local DFS model that executes DFS function-
ality on client machines to avoid client-server communi-
cation latency for PM access. In addition, LineFS carefully
distributes DFS components among host and SmartNICs.
LineFS nodes consist of two components: LibFS and NICFS.
LibFSes are linked to application processes (LineFS clients)

running on host cores. NICFS runs on SmartNICs. Figure 1
shows the overall design of a LineFS node.

Beyond per-node offload, LineFS follows Assise’s design
closely. Ideas, such as user-level PM IO with per-process
LibFSes and update logs, leases [32] as a consistency mech-
anism, and chain-replication via RDMA are inherited from
Assise [18]. LineFS also uses ZooKeeper [1] as a cluster man-
ager to manage DFS node membership, failure detection, and
root lease arbitration (§3.4). We initially attempted SmartNIC
offload of Assise’s per-node SharedFS component but found
that, without the design principles presented in this paper,
throughput dropped by more than 30x versus the host-based
version due to inefficient SmartNIC execution.

3.1 Design Principles

Naive DFS offload to a SmartNIC leads to serious perfor-
mance degradation due to the wimpy SmartNIC architecture
and data movement across PCle. To avoid the overhead for
offloading, LineFS follows two design principles: persist-and-
publish and pipeline parallelism.

Persist-and-publish. LineFS assigns a fraction of PM as a
per-client PM log (cf. Figure 1). LibFSes persist data and meta-
data updates to their private PM logs on the host. The logs
are asynchronously published to a host-local public PM and
replicated to remote PM by NICFS. This persist-and-publish
design, which is inspired by Strata’s logging and digesting
approach [37], enables LineFS to clearly separate PM-latency
critical operations from those that can be deferred. After
LibFS makes data and metadata durable in the host PM log
using fast host cores, NICFS publishes and replicates the
updates in the background with SmartNIC cores, saving the
host cores from performing file system management tasks.

Pipeline parallelism. LineFS exploits pipeline parallelism
to publish and replicate the log. LineFS organizes DFS opera-
tions into distinct execution stages to construct an execution
pipeline. LineFS defines a group of log entries as a LineFS
chunk, processing each chunk in parallel through the pipeline.
LineFS takes advantage of two different types of parallelism:
intra-client and inter-client. Intra-client parallelism leverages
the pipeline to publish and replicate each client-private log
while keeping the log data in order. LineFS processes multiple
client logs concurrently by executing the pipeline for each
client in parallel. LineFS coordinates the pipeline to linearize
shared updates (§3.4).

Pipeline parallelism provides a convenient way to man-
age the degree of parallelism [46]. To execute each pipeline
stage, NICFS assigns a thread for each stage to SmartNIC
cores from a single thread pool created at start time. When
a LibFS log grows to the size of a LineFS chunk (e.g., 4 MB),
LibFS sends an RPC to NICFS to start the pipeline. NICFS
monitors the time taken for each stage. If one stage becomes

760

a bottleneck (e.g., its wait queue grows beyond 5 entries),
NICFS dynamically assigns more threads to process the stage.

Together, these principles not only avoid overhead but also
maintain consistency when offloading. Client logs are a nat-
ural way to persist file system updates in order. When pub-
lishing and replicating, pipeline parallelism allows LineFS to
process data in client log order, providing linearizability and
prefix crash consistency [24, 26, 57].

3.2 Low-latency PM IO via LibFS

To provide low latency PM IO, LibFS persists data to an
operational log in host PM. Operational logging provides a
compact way for persisting (meta-)data in PM [37, 59]. LineFS
assigns a fraction of PM to each LibFS as a persistent write
log. LibFS intercepts the application’s POSIX file system calls
and writes file data and metadata to the PM log. For example,
on a create() system call, LibFS writes updated inodes and
directories to the PM log. A log is efficient for PM because
the sequential performance of PM is high and log appends
are sequential.

Reading is a two-step process: 1) LibFS searches in its
client-private log (the data is not yet published) and 2) if the
data is not found in the log, it searches public PM. The read
path is performed in the host CPU without involving NICFS.
Writing requires only asynchronous communication with
NICEFS to publish and replicate the client-private logs (§3.3).

3.3 Pipelining DFS operations

NICFS runs two different pipelines: the publishing pipeline
and the replication pipeline. The publishing pipeline (§3.3.1)
consists of four stages: fetching, validation, publication, and
acknowledgment. The replication pipeline (§3.3.2) also con-
sists of four stages: fetching, validation, transfer, and acknowl-
edgment. Both pipelines have to fetch log data to NICFS and
validate it. To avoid redundant data movement, the publish-
ing and replication pipelines share the first two stages—i.e.,
they operate on the same data. After the first two, they run
their own pipeline stages.

3.3.1 Publishing Client Logs. NICFS publishes client-private
log entries to public PM in the background. After publishing
log entries, LibFS reclaims them to make room for further
updates. Publishing log entries involves memory-intensive
data movement from the client-private log to public PM.
Rationale. LineFS offloads publication of the log to a Smart-
NIC for four reasons: (1) to reduce occupancy and load on the
host CPU for data movement; (2) to reduce the overhead of
scheduling and context switches due to DFS services; (3) to
reduce head-of-line blocking on log writes when logs are full
and host CPU resources are scarce; (4) to enable ancillary
tasks, such as compression, without CPU contention.

Chk: chunk

0 Fetching [Chki [chk2 [ohks Hostto SmariNic >
- ‘ I
@ Validation chkt [chkz |-[chka] _ T Tea
<> waits for ordering
© Publication ro— Chkd Chk2 chks_ |—>
e ACK SmartNIC to Host hk1 (Clild SilE

Figure 2: Publishing with pipeline parallelism.

Challenges. There are two challenges for efficient offload to
the SmartNIC: (1) High PCle latency; (2) Permission checks
(§3.4) and validation (e.g., prevent directory cycles in the
DFS namespace) consume enough computational bandwidth
to saturate the relatively wimpy SmartNIC processors.

The dual challenges of communication latency and com-
putational load suggests that overlapping these latencies can
help reduce their effect on end-to-end system performance.

Approach. The persist-and-publish model allows NICFS to
publish the client-private log in the background, while ap-
plication execution continues. To amortize PCle transfer
overheads, LineFS batches consecutive updates into LineFS
chunks. As soon as LibFS has accumulated a single LineFS
chunk of updates, it sends an asynchronous RPC request to
NICFS to start publishing the chunk.

As shown in Figure 2, the publishing pipeline consists
of four stages (with the primary resource for the stage in
parentheses): fetching (PCle), validation (computation), pub-
lication (PCle and computation), and acknowledgment (PCle
latency). NICFS fetches a LineFS chunk to the SmartNIC’s
memory and validates it. After passing the validation, NICFS
publishes the LineFS chunk and acknowledges it to LibFS.

Publishing the chunk via PCle causes excessive latency,
stalling the pipeline. Instead, LineFS uses a kernel worker
thread in the host operating system to initiate asynchro-
nous host DMA [38] to publish the LineFS chunk. Instead of
copying PM with host cores, the DMA copy still avoids CPU
utilization.

Data-path processing opportunities. NICFS can add addi-
tional pipeline stages to utilize any spare SmartNIC process-
ing cycles. For example, we add a stage to perform semantic-
aware compression called coalescing [37, 45]. Coalescing re-
duces the amount of published data by skipping unnecessary
log entries, thereby reducing write amplification and improv-
ing the lifetime of PM. The stage scans a fetched chunk to
find a temporarily durable write pattern (e.g., creating and
then deleting the same file). If the stage detects the pattern, it
removes the redundant log entries before building a copy list
for the kernel worker. To find a coalescing opportunity, the
stage scans log entries, which is also needed for validation.
Hence, we can execute the validation and coalescing stages
together in the same core to exploit CPU cache locality.

761

3.3.2 Replication. LineFS chain-replicates [51] the client-
private log to a number of replicas using RDMA, provid-
ing availability and strong consistency among replicas. Like
other DFSes, fsync() guarantees durability and replication
of file data and metadata. Along a replication chain, each
replica persists a primary’s client-private log to its local log.
When the primary receives ACKs from all replicas, fsync()
returns. Thereby, the primary and all replicas have the same
view of updates.

With strong consistency, replication latency directly im-
pacts DFS write performance [36]. In turn, two factors pri-
marily affect replication latency: (1) Delays in network (RDMA)
request processing and (2) CPU contention between DFS
replication operation and co-running applications. Host-
based approaches to providing low replication latency avoid
these factors by pre-posting network operations to RDMA
send-receive queue pairs (QPs) and polling for completion
in a busy loop. To guarantee sustainable throughput and
latency, pre-posting and polling must not be delayed and
thus they must run on isolated CPUs.

Busy polling on the host CPU is not a viable option for
multi-tenant systems because it must reserve many host
CPUs just for replication processing. Unfortunately, block-
ing for replication introduces context switch and dispatch
overheads that delay network request processing, while inter-
ference from co-running applications may cause scheduling
policies and cache effects to further delay replication pro-
cessing. PM-optimized DFSes exhibit less than 10us latency
for small replicated updates [18], intensifying the impact of
any interference.

Rationale. We have to find another way to provide consis-
tent DFS replication performance, even when replica CPUs
are highly utilized by co-tenant applications. At the same
time, DFS replication should not interfere with co-running
applications on these replicas. Offload to a SmartNIC can
provide us with both benefits. We can busy poll for net-
work events and process DFS replication operations on the
SmartNIC with low latency and without interference with co-
running applications on the host. LineFS offloads replication
for these reasons.

Challenges. Naive SmartNIC offload, where every RDMA
connection has an independent polling thread, would over-
load the SmartNIC CPUs. It does not scale to many connec-
tions. At the same time, replication processing needs to be
parallelized and scale to many SmartNIC CPUs to achieve
low latency and high throughput on wimpy SmartNIC archi-
tecture. We describe solutions to each challenge.

Approach (scalable, low latency RDMA request process-
ing). To realize low latency RDMA request processing, yet
scale to many connections, NICFS partitions DFS requests
into two types: low latency and high throughput. They use

Primary Replica 1 Primary Chk: chunk
Host ; 3
Fetchin Chk1|Chk2 [Chk3
[LibFS][Kernel worker] [LibFS][Kernel worker] a 9 -- i
A ~ - N
T 3 PM i PM Validation Chk3 >
[Log A] [.]] | | []] | —| Compression -(Optional)
: Log area Public area Log area Public area

o> s m—— s BRI

SmartNIC . g========cccoo-oo

— to host (Replica 1)1 chk1 | chk2 [Chk3 |!
H NICFS | NICFS . >
9: j 3] Transfer to Replica 2 Chk1 | Chk2 | Chik3 | -

[enkt] Tenka] fenkal | 1S [ch [Tonea] [eria] MWW .. T

NIC Memory (IB) NIC Memory ACK hki hk3

Figure 3: LineFS 10 path and replication pipeline with 3 nodes (2 shown).

different network ports, so LibFS performs separate RPC
requests according to the use. For the low latency connec-
tion, NICFS dedicates a thread for busy polling, pinned to a
SmartNIC core. For the high throughput connections, NICFS
maintains a worker thread pool invoked when an event oc-
curs (e.g., replication acknowledgments). NICFS uses the
low latency connection for latency-sensitive operations (e.g.,
fsync() notification and lease operations) and the high
throughput connection for data-intensive operations, like
replication and publication. NICFS also multiplexes RDMA
operations from multiple LineFS clients to reduce the num-
ber of QPs; for RDMA scalability, having a small number
of QPs is necessary to avoid NIC cache thrashing [23] and
further reduces the busy loop thread count.

Approach (replication). To further reduce replication la-
tency, LineFS uses the SmartNIC to asynchronously and proac-
tively replicate log entries (at the granularity of chunks) be-
fore LibFS calls fsync().On fsync(), LineFS synchronously
replicates any remaining log entries. Like the publish oper-
ation, NICFS uses pipeline parallelism to accelerate asyn-
chronous replication. The replication pipeline consists of
four stages: fetch, validation, transfer, and acknowledgment
(ACK). Recall that the first two stages are identical to the
publishing pipeline and the two pipelines share these stages
for efficiency.

Figure 3 shows LineFS’s replication IO path and pipeline.
At the primary’s NICFS, a pipeline chunk is first fetched
(@) and validated (@)). Then, NICFS transfers the chunk
to the next replica’s NICFS (€)). After receiving the chunk,
the replica asynchronously copies the chunk to its local PM
log (e), and, in parallel, transfers the chunk to the next
replica (). Finally, because the last replica does not have to
conduct any further data replication, the penultimate replica
(replica 1 in Figure 3) can directly transfer the chunk to the
last replica’s host PM log in step @), saving a SmartNIC
memory copy. Each replica sends an ACK to the primary,
after copying the pipeline chunk to the local PM log (€)).
These steps happen proactively in the background and LibFS
does not need to be informed.

762

By design, NICFS parallelizes the replication pipeline; e.g.,
replicating Chk1 (€)), while validating Chk2 (@), and fetch-
ing Chk3 (@) in parallel. Similarly, replica NICFSes transfer
each pipeline chunk to the next SmartNICs’ memory (€9) in
the replication chain (except for the last replica) and, in par-
allel, copy the chunk to their host-local PM log (@9). The cost
of copying is hidden by overlapping it with transferring the
chunk to the next replica (@) and @ happen concurrently
in Figure 3).

On fsync(), the primary’s NICFS fetches any client-private
log entries that are not yet replicated and synchronously
replicates them using the replication pipeline. Unlike asyn-
chronous replication, synchronous replication uses the low
latency RDMA connection to transfer the log entries quickly.
When done, the primary NICFS acknowledges successful
replication to LibFS (@) and fsync() can return.

Data-path processing opportunities. Optionally, NICFS
can configure a compression stage (#J) before transferring
data in the replication pipeline to save network bandwidth.
The compression stage consumes a large amount of Smart-
NIC’s CPU resources, so NICFS monitors the wait queue
length at each stage of the pipeline. If the compression stage
becomes a bottleneck, NICFS opportunistically disables the
stage.

3.4 Shared File Management

LineFS linearizes concurrent accesses to shared state using
leases [32]. Leases provide single-writer, multiple-reader ac-
cess to files and directories. LineFS follows Assise’s lease
management design, but offloads lease arbitration to NICFS.
LibFSes acquire leases from the NICFS lease manager on the
SmartNIC, instead of a host-based SharedFS. Like in Assise,
lease management is initially rooted in the cluster manager
and then delegated to NICFS instances, upon LibFS request.
Once a lease is granted, LibFS can access the file/directory
associated with the lease without further synchronization,
until the lease expires or is revoked. NICFS accepts published
log entries only if LibFS holds the correct leases for file or
directory updates (as checked in the validation stage).

To provide crash consistency, the DFS needs to record
granted leases, requiring persistence and replication. Repli-
cation and persistence have high overhead compared to lease
arbitration and thus increase the latency of lease operations.
To reduce latency on the critical path, LineFS provides filesys-
tem access concurrently with recording leases. When grant-
ing a lease, NICFS updates lease state only in SmartNIC mem-
ory and then carries out host PM persistence and replication
asynchronously in the background, while the application
continues DFS operation using the granted lease. This does
not affect crash consistency, as NICFS waits until all leases
are persisted and replicated when fsync() is called.

3.5 Extended NICFS Availability

Software crashes are among the most common failures of
data center servers [21, 28, 33]. Among these, the most in-
teresting software failure from a NICFS perspective is the
failure of the host OS. In this case, the host, including DFS
clients on the host, ceases operation and cannot function as
a DFS primary anymore. However, if the host is a replica for
other primary nodes, its service can be offloaded entirely to
NICFS and kept available, even if the host has crashed. Iso-
lated NICFS operation allows LineFS to mask host fail-over
time, improving DFS availability.

To detect host failure, NICFS consistently monitors the
host kernel worker. If NICFS detects that the kernel worker is
not responding, it deems the host down and switches to iso-
lated NICFS operation. Isolated NICFS operation continues
to carry out replication and publication services via RDMA
across PCle, keeping the DFS node available while the host
operating system is undergoing maintenance.

Switching in and out of isolated NICFS operation is seam-
less. Client log and public areas in host PM must remain in
place across host OS crashes. This is already a requirement
for DFS recovery after a host crash [18]. Any interrupted ker-
nel worker publication operation is restarted by NICFS. This
is done without any data loss, as publication is idempotent.
When the kernel worker becomes available again, NICFS
can switch out of isolated operation and submit future copy
requests to the worker.

3.6 Discussion

We discuss how LineFS provides access control, fail-over,
and recovery, while offloading to NICFS.

Access control. To open a file, LibFS must send an open re-
quest to NICFS. NICFS checks file permissions and, if access
is granted, sends an RPC request to the kernel worker run-
ning in the host kernel. On receiving the RPC, the kernel
worker allows LibFS to perform mmap () of file, directory, and
file index pages in public PM. LibFS must not directly modify
the pages, so the kernel worker maps the pages read-only.

763

Instead, all updates go to the per-process update log, where
NICEFS can validate them upon publication.

NICEFS fail-over. The cluster manager sends heartbeat mes-
sages to each alive NICFS every second. When the cluster
manager detects a NICFS failure, it immediately expires all
leases assigned to the failed NICFS and ensures a live NICFS
replica takes over the lease management. When a NICFS fails
in our current prototype, the host kernel worker is informed
by the cluster manager. The kernel worker, in turn, informs
all local LibFSes via a signal to return appropriate error codes
on file system access.

NICEFS fail-over on a SmartNIC crash is a possible alter-
native. If the host has a redundant (potentially ordinary)
RDMA NIC, LineFS can perform a fail-over to a replica NICFS.
The replica NICFS becomes the new primary NICFS for the
host and takes over replication and lease management. LibF-
Ses re-acquire leases from the replica NICFS (lease state is
replicated) and continue operation, while the local NICFS
recovers. We leave this for future work.

Recovery. To track file system progress during NICFS down-
time, the cluster manager maintains an epoch number. The
epoch number increments on node failure and recovery. Once
the epoch number is changed, the cluster manager notifies
all alive NICFSes and each NICFS persists the epoch number
to PM. All NICFSes have a replicated history bitmap that
records what inodes have been updated during each epoch.

Once a failed NICFS restarts, it registers with the cluster
manager and starts recovery. Upon recovery, NICFS reads
the persisted epoch number and requests the history bitmap
from an online replica. To synchronize with the current file
system progress, NICFS fetches from the replica all inodes
that have been recorded between its persisted epoch and the
current epoch. Local update logs that touch recovered inodes
are invalidated. As future work, the recovery process could
be optimized to make it more fine-grained.

4 IMPLEMENTATION

We implement LineFS in x86 Linux hosts and ARM-based
Mellanox BlueField SmartNICs. LineFS is written in C with
25,827 lines of code (LoC) for LibFS and 22,538 LoC for NICFS.
LineFS uses Intel Optane DC persistent memory modules
in App-Direct mode, which expose PM as physical memory.
The App-Direct mode allows LineFS to map PM directly, so
LineFS directly persists data and metadata via the PMDK
library [11], without involving the OS.

LibFS is implemented as a shared library, dynamically
linked into each client process’ address space. LineFS does
not require any application modification. LibFS intercepts
filesystem POSIX system calls to persist data and metadata
to the client-private log. Currently, LibFS supports 21 sys-
tem calls. LibFS mmap () s the client-private log in contiguous

virtual memory (by default 512 MB) and registers it as an
RDMA region to communicate with NICFS.

NICES is a process running on the SmartNIC’s Linux OS.

NICEFS includes RDMA communication and the file system
as independent layers. Using the RDMA layer, the file sys-
tem layer communicates with local LibFSes and NICFSes in
other nodes. NICFS uses one-sided RDMA to fetch client
log headers and entries. The file system layer caches inodes,
directory, and file indexes (e.g., extent tree) in SmartNIC’s
DRAM to avoid frequent access to host PM via PCle. The
kernel worker is implemented as a Linux kernel module. The
kernel worker publishes client-private logs to the public PM
area using the Intel /OAT DMA engine [38].
Fast read (LibFS). To efficiently search file data in the up-
date log, LibFS has an in-memory hash table that locates
it. The hash table does not need to be persisted. LibFS ac-
cesses file blocks in public PM after passing a permission
check (§3.6). LibFS searches the file data in public PM via
per-file extent trees [45]. LibFS does not cache extent trees
in DRAM because 1) it has better performance [48], and 2)
it does not require maintaining consistency between public
PM and DRAM cache.

Replication flow control (NICFS). The memory capacity
of our SmartNIC is small (16 GB). When NICFS replicates
multiple update logs simultaneously, the SmartNIC may run
out of memory. To avoid running out of memory, NICFS con-
sistently monitors memory consumption. When SmartNIC
memory consumption is higher than a high watermark (e.g.,
70%), NICFS temporarily stops further update log replica-
tion, draining the current replication pipeline. Once memory
utilization drops below a low watermark (e.g., 30%), NICFS
resumes replication.

Asynchronous DMA (kernel worker). To perform asyn-
chronous DMA, we use the Linux I/OAT DMA kernel driver
from the kernel worker. NICFS batches memory copy re-
quests by building a memory copy list (preserving order) and
then sends an RPC to the kernel worker. The kernel worker
issues DMA requests in the order of the memory copy list
and sleeps until it receives completion notifications from the
kernel I/OAT driver.

5 EVALUATION

We evaluate LineFS to validate our design principles when
offloading DFSes to SmartNICs. We compare LineFS with
Assise [18], a state-of-the-art DFS that supports client-local
PM access. Our evaluation answers the following questions:
e What latency and throughput can LineFS achieve on an
idle and on a busy cluster with co-running applications?
How does it compare to Assise? How do the various par-
allel pipelines contribute to LineFS performance? (§5.2)

764

o How do various levels of DFS offload contribute to perfor-
mance isolation? (§5.2.4, §5.3)

e What data-path processing opportunities exist? (§5.4)

e By how much can LineFS improve DFS availability (§5.5)?

5.1 Experimental Setup

Our evaluation testbed consists of 3% dual-socket Intel Xeon
Gold 5220R servers at 2.2 GHz with 48 cores (no hyperthread-
ing), 96 GB DDR4-2666 DRAM, and 768 GB PM (6x 128 GB
Intel Optane DC persistent memory modules). All nodes run
Ubuntu 18.04 with Linux kernel version 5.3.

SmartNIC. We deploy a Mellanox BlueField MBF1M332A
in each node. The SmartNIC has 16x ARMv8 A72 cores with
6 MB shared L3 cache, 16 GB DRAM, and 25Gbps network
bandwidth with RDMA. The SmartNICs are connected to
a 100 GbE switch and we use RoCE [13] for RDMA. The
measured memory bandwidth of our SmartNIC is 10 GB/s
and network goodput (measured by our file benchmark) is
2.2 GB/s.

System configuration. We choose Assise as a baseline sys-
tem because it is a client-local DFS like LineFS. Orion also
supports the client-local model, but its source code is not
available. We do not compare LineFS with client-server DF-
Ses, such as Ceph, because Assise demonstrated an order of
magnitude faster performance than those DFSes. We config-
ure Assise with three settings: Assise is vanilla Assise in
“pessimistic” [18] mode, guaranteeing persistence on fsync(),
just like LineFS. Assise-BgRepl additionally replicates in
the background, before fsync() is called, akin to LineFS
replication. Assise-BgRepl uses 3 threads for background
replication (which we confirmed maximizes performance)
and the same 4MB chunk size, but does not implement pipeline
parallelism. Assise+hyperloop adapts the replication pro-
tocol from Hyperloop [36], a system that offloads replica-
tion to an RDMA NIC. The source code of Hyperloop is
unavailable, so we implemented the proposed design. Hy-
perloop manipulates RDMA request destination addresses
on the remote NIC via RDMA verbs. Modern RDMA NICs
(ConnectX-4 and later—our BlueField uses a ConnectX-5)
disable this feature for security. To get around this prob-
lem, we run Assiset+Hyperloop with an IO trace gener-
ated in advance, which specifies the modified destination
addresses when replicating data, avoiding remote request
manipulation. Our implementation is validated by the Hy-
perloop authors and we reproduced the results presented
in the Hyperloop paper. Because our Hyperloop evaluation
requires traces, we compare LineFS with Assise+Hyperloop
for microbenchmarks only. To evaluate the effectiveness of
LineFS’s pipeline parallelism, we configure LineFS without
it (LineFS-NotParallel), so it replicates the client-private
log sequentially in the background. We configure the PM log

Bl Assise BN Assise-BgRep| EHEHE Assise+Hyperloop
XX LineFS-NotParallel KN LineFS

Replicas idle Replicas busy

L -
1 I
d 4]
o »
)]
o »
o)
o K

1 2 4 8 1 2 4 8
Number of LibFS processes
Figure 4: Write throughput scalability when replicas

are idle and busy.

size to 512 MB for both Assise and LineFS. Both DFSes use 3
nodes; primary, replica-1, and replica-2.

Multi-tenancy. It is common practice to run IO-intensive
and CPU-intensive jobs together in the cloud [29, 34, 43].
To evaluate the resulting interference with DFS execution,
we use streamcluster from the PARSEC [20] suite v3.0 to
mimic CPU-intensive jobs. To stress the host cores, we set the
number of threads for streamcluster equal to the number
of host cores. When running streamcluster with Assise
or LineFS, we adjust the scheduling priority to evaluate the
impact of resource contention.

Test suite. We test LineFS with xfstests [17] and CrashMon-
key [47]. LineFS successfully passes all 75 general xfstest
cases and all CrashMonkey tests. Also, LineFS passes all 201
LevelDB unit tests and is able to run all Filebench profiles.

5.2 Microbenchmarks

5.2.1 Write Throughput Scalability. Our throughput bench-
mark writes file data to a 12 GB file with 16 KB IO size
sequentially and calls fsync at the end. Figure 4 shows the
scalability of throughput by increasing the number of DFS
clients. Each client has its own file of the same size. We
measure throughput when the replicas’ CPU is idle (no co-
runner) and busy.

Replicas idle. Assise shows the worst throughput with a
single client (645 MB/s). Assise synchronously replicates
updates only upon fsync() and within the thread context
of the caller. Assise throughput is thus heavily dependent
on the number of client contexts. Assise-BgRepl improves
the performance by up to 124% due to replicating in the
background. LineFS performs up to 133% and 4% better than
Assise and Assise-BgRepl, respectively. LineFS’s pipeline
parallelism hides PM persistence and replication latencies,
achieving similar throughput to Assise-BgRepl, even with a
more complex data-path. LineFS-NotParallel performs at
least 60% worse than LineFS, demonstrating the importance
of pipeline parallelism for good offload performance.

765

Sequential read Random read
Assise LineFS Assise LinefS

3,147 3,134 2,960 2,946
Table 2: Read throughput (MB/s) of Assise and LineFS

When increasing the number of clients, both LineFS and
Assise become increasingly resource-bottlenecked. The max-
imum goodput of our microbenchmark is 2.2 GB/s. LineF$
saturates the maximum goodput with only two clients due
to background parallel replication, but Assise needs four
clients. We stop at eight clients because both systems already
saturate network bandwidth.

Replicas busy. In this benchmark, we are interested in how
DFS performance is affected by host resource contention due
to background co-tenant activity. Hence, when co-running
with applications, we give the DFS higher scheduling pri-
ority to eliminate scheduling policy as a source of perfor-
mance degradation. We run streamcluster as co-runner in
the replicas, leaving the primary for the microbenchmark.
With a single client, all DFSes achieve similar performance
to the idle case because they have a higher priority than
streamcluster and the contention is not high. As we in-
crease the number of clients, all DFSes experience increased
host contention and none can saturate the network band-
width. LineFS experiences the least contention due to offload
and outperforms the other DFSes by 33% at scale. Note that
Assise+Hyperloop still requires periodic host participation
for publication and posting of RDMA verbs for replication
offload, reducing its performance. Even LineFS still requires a
kernel worker for publication, causing performance degrada-
tion versus the idle case. We analyze the kernel worker cost
in §5.2.4, showing that skipping kernel worker publication in
replicas allows LineFS to saturate the network bandwidth,
and confirming that resource contention in replicas is a bot-
tleneck, even when DFSes are prioritized.

In all cases, LineFS-NotParallel does not scale because
it does not effectively utilize SmartNIC resources. LineFS-Not
Parallel uses 4.1 ARM cores on average, whereas LineF$S
uses 5.8 cores. This result confirms that pipeline parallelism
is essential when offloading a DFS to SmartNICs.

5.2.2 Read Throughput. Table 2 presents the read through-
put of LineFS and Assise. The microbenchmark runs a sin-
gle client reading a 12 GB file with 16 KB IO size locally.
For reads, LineFS does not offload any operations to Smart-
NICs. The entire read data-path is performed in the host CPU.
Therefore, LineFS and Assise show similar performance in
both sequential and random read cases.

5.2.3 Pipeline Performance Analysis. We break down the
time taken by each pipeline stage when publishing and repli-
cating a 4 MB chunk. Figure 5 shows this result. Publish and

H Fetching Validation Il Publication/Transfer Ack
1,025 65 7

publish 2,599
1,025 65 1,505 7

replication 2,602

Time {us)

Figure 5: Publish and replication pipeline latency
breakdown.

El Streamcluster execution time (primary}
Bl Streamcluster execution time (replica)

1,800 4

40 o
1,600

5

20 1,400 _C;
1,200 3

IS

0 1,000

Streamcluster Solo run Assise Assise-BgRepl LineFS
Figure 6: Performance impact of LineFS and Assise

co-execution on streamcluster execution time (left Y-
axis) and DFS throughput (right Y-axis).

Throughput

Execution time (s)

replication pipelines share the fetching and validation stages,
so their latencies are identical. As expected, fetching and pub-
lication/transfer make up the largest portion of processing
latency due to having to cross high-latency interconnects.
As pipeline stage execution overlaps, this benchmark shows
the per-stage latency that is hidden by pipeline parallelism.

5.24 Performance Interference. To compare the performance
interference of LineFS and Assise, we run streamcluster
in all nodes, including the primary. This configuration repre-
sents aggressive consolidation by running an IO and CPU-
intensive workload together. We run the throughput mi-
crobenchmark (two DFS clients, each running a single thread)
and streamcluster with 48 threads (using all cores on the
node) under the same priority. Figure 6 presents the stream
cluster execution time and the microbenchmark through-
put. When running streamcluster with Assise, Assise
degrades the performance of streamcluster by 72% in the
primary and 66% in replicas due to resource contention. The
primary, where the DFS clients run, uses more host CPU and
memory resources, causing a more severe slowdown than on
the replicas. Assise-BgRepl improves Assise’s throughput
by 18%, limited by contention with streamcluster. LineF$
shows the best throughput, 46% better than Assise, while
incurring minimal slowdown of streamcluster (49% and
19% slowdown compared to the solo run for primary and
replica, respectively). This result confirms that LineFS’s de-
sign minimizes host performance interference while providing
good performance.

Kernel worker interference. As we have seen in §5.2.1, ker-
nel worker publication is a major source of interference with
co-running applications. To understand the contention, we
implement several publication methods and evaluate the

766

B2 Streamcluster execution time LineFS throughput

T a0 0
o4 2,000%
E Z 177 =
p 1,800 5
20 2
é l 1,600
Q e
g o s o . 1,400
oW pat€ \03\ o 0P
o e e o st N
C N\P\QO\ N ﬂ‘eﬁ
o)

Figure 7: Impact of different copying methods on
streamcluster execution time (left Y-axis) and LineFS
throughput (right Y-axis).

Replicas idle Replicas busy
Avg. 99th 999th | Avg. 99th 99.9th
Assise 76 101 126 323 7,115 8,331
Assisethyperloop 60 68 4,716 61 78 4,125
LineFS 149 187 205 149 188 204

Table 3: Latency (is) when idle and busy.

performance of streamcluster (co-running host applica-
tion) and LineFS according to these methods. Figure 7 shows
the execution time of streamcluster while four LineFS
clients run the throughput microbenchmark with the same
scheduling priority as the streamcluster process. With DMA
polling, the kernel worker issues DMA requests to copy
memory and waits for completion in a busy loop, which
is a standard implementation used in Intel SPDK [15]. DMA
polling + batch isan optimization of DMA polling, where
NICFS batches memory copy requests to the kernel worker.
DMA interrupt + batch means the kernel worker blocks
until a DMA completion interrupt arrives, causing less con-
tention than polling-based methods. No copy skips publica-
tion altogether.

As expected, streamcluster performs worse as LineFS
uses heavier-weight host publication methods. streamcluster
performance of No copy is identical to running streamcluster
alone. When the kernel worker uses DMA interrupt +
batch, streamcluster performance decreases by 23% com-
pared to No copy, whereas CPU memcpy makes the per-
formance drop by 61.5%. LineFS throughput shows how
LineFS performs under contention with streamcluster. Un-
der contention, DMA interrupt + batch increases LineFS
throughput by 40.3% and 5.9% compared to CPU memcpy and
DMA polling + batch, respectively. Hence, we use DMA
interrupt + batch in all other benchmarks (including
§5.2.1).

5.2.5 Latency. We measure the latency of a microbench-
mark that writes 16 KB of data followed by fsync() ina 12
GB file, so replication occurs at each write. This scenario is
not ideal for LineFS because, unlike throughput, LineFS can-
not perform replication in the background. Table 3 reports

the statistics of our latency measurements. When replicas are
idle, LineFS’s latency is higher than that of Assise due to
the following reasons. 1) The hardware data-path of LineFS
has multiple high-latency steps (cf. §5.2.3). LineFS fetches IO
data from host PM to SmartNIC memory via RDMA. After
running the pipeline stages, LineFS makes another RDMA
request to ConnectX transport hardware through the SoC-
internal PCle interconnect. 2) Due to low SmartNIC CPU
clock speed, we measured that the SmartNIC’s L3 cache and
DRAM access latency are more than 2X slower than on our
host hardware. In contrast, Assise can make direct RDMA
requests from fast host CPUs.

However, when replicas are busy, LineFS’s latency is simi-
lar to when replicas are idle. In this case, LineFS shows up
to 41X better latency than Assise. This result confirms our
claim that LineFS minimizes interference of DFS operations
with host applications. Assise+Hyperloop also shows good
average and 99" percentile latency for both cases. How-
ever, Hyperloop requires periodic posting of RDMA verbs by
the host CPU. If posting is delayed (e.g., due to contention),
Hyperloop increases latency. Due to this effect, the 99.9%"
percentile latency of Hyperloop is 23X worse than LineFS.

5.3 Application benchmarks

LevelDB. We run a LevelDB performance benchmark us-
ing db_bench, distributed with LevelDB’s source code. The
benchmark includes sequential and random object insert and
read, skewed (1% of frequently accessed objects) read, and
synchronous insert (an insert followed by fsync()). We set
a key size of 16 B and a value size of 1 KB (default testing
configuration of LevelDB). We run the LevelDB performance
benchmark when replicas are busy.

Figure 8a shows the average LevelDB latency (us) results

(y-axis is in log scale). As expected, LineFS and Assise per-
form similarly for read operations. LineFS has 80% better
latency in sequential insert and 27% better latency in random
insert than Assise. The insert performance shows similar
trends to the write microbenchmark. In the case of synchro-
nous insert, LineFS obtains 27% better latency (lower im-
provement than sequential insert) because of the workload’s
frequent fsync() calls.
Filebench. We run the Fileserver and Varmail workloads in
the Filebench suite [54]. Fileserver executes file operations
on files of 128 KB average size. Varmail operates on smaller
files of 16 KB average size (emulating reading small mailbox
files). We set a working set of 10K files for both benchmarks.
The write to read ratio of Fileserver and Varmail is 2:1 and
1:1, respectively. Finally, Varmail frequently calls fsync()
for its persistence semantics (emulating write-ahead logging
when updating mailbox files), whereas Fileserver does not
call fsync() (relaxed crash consistency).

767

% N
BEE Assise X Linefs & 60
<
w102 = 40
=] o
- ey
g g
§ 101 g 20
ks =
O O O @ & @ 0 N
@ P & & & & &
B S & &
Q@ (’)\(_e‘“ < Q2 %) Q@ !
(a) LevelDB (b) Filebench
(lower is better, log scale) (higher is better)

Figure 8: LevelDB latency and Filebench throughput.

Figure 8b shows the average throughput of Filebench
when replicas are busy. In Fileserver, LineFS gets 79% better
throughput than Assise because the Fileserver workload
performs writes frequently. LineFS’s write performance is
better than Assise’s as shown in the microbenchmark re-
sults (§5.2). Also, Fileserver does not call fsync(), so LineF$S
is able to run all pipeline stages in the background. The
Varmail result shows different trends. Mail server IO char-
acteristics do not favor LineFS. The Varmail workload per-
forms small file creation and updates followed by fsync(),
so LineFS cannot efficiently leverage pipeline parallelism. In
addition, each time Varmail opens a file, LibFS requests a per-
mission check to NICFS via PCle, whereas Assise performs
the permission check on the host. We identify that open()
takes up 9.1% of all file system calls during the Varmail ex-
periment, providing a second major reason that LineFS is
21% slower than Assise.

5.4 Data-path Processing

We investigate the opportunity for additional data-path pro-
cessing using spare SmartNIC resources and its impact on
DFS performance. In particular, we evaluate how effectively
LineFS’s data compression saves network bandwidth and its
impact on replication performance. Our use case is batch
processing. Distributed batch processing applications often
write intermediate data to a DFS (cf. Hadoop [52] on HDFS).
The intermediate data is replicated, causing high network
bandwidth utilization. LineFS compresses the data in the
primary to save network bandwidth when replicating data.

To evaluate this scenario, we run a parallel batch process-
ing benchmark, Tencent Sort [35]. Tencent Sort performs par-
allel sorting, consisting of a range partitioning phase and a
merge-sort phase. In the partitioning phase, each worker pro-
cess partitions the input data into non-overlapping ranges,
and stores the partitioned data to temporary files. In the
merge-sort phase, each sort worker process reads the tempo-
rary files assigned to the process, merges data from the files,

Assise LineFS-40% LineFS-60% LineFS-80%
18.72s 18.85s 18.60s 16.92s
5 10
59 6
235
oV 4
S22
= 2
n
o4
o] 5 10 15 20
time (s)

Figure 9: Network bandwidth consumption of Assise
and LineFS while running Tencent Sort. LineFS-x% in-
dicates LineFS with an input data set of x% compres-
sion ratio. The numbers in the legend indicate execu-
tion time of Tencent Sort.

and sorts them. Each sort worker writes its final output to a
file.

We implement Tencent Sort for evaluating Assise and
LineFS. We configure four partitioning and four sorting
processes in the primary node. The data set consists of 80M
records. We use the Quicksort algorithm for the merge and
sort phase and radix-based range partitioning.

We evaluate network bandwidth consumption and bench-
mark performance according to different compression ratios.
To control compression ratios, we modify the benchmark
input generation tool [14] to adjust the ratio of zero values in
input files. We create three input sets to have 40%, 60% and
80% compression ratios respectively. For compression, NICFS
runs the Lempel-Ziv-Welch algorithm [7]. In our evaluation,
the compression throughput of a single SmartNIC core is
around 200 MB/s, which is much lower than the network
bandwidth. NICFS performs parallel compression to avoid
a pipeline bottleneck in the compression stage, running 16
threads to execute the compression stage in our evaluation.
To stress network bandwidth, we also run iperf3 [16] as a
background task that contends for network bandwidth.

Figure 9 shows the network bandwidth consumption of
Assise and LineFS with different input sets. As expected,
LineFS reduces network bandwidth by 29%, 49%, and 72%
compared to Assise in LineFS-4@%, LineFS-6@%, and LineFS
-80%, respectively. We measure the time taken by the merge-
sort phases. When the compression ratio is low, LineFS per-
formance is comparable to Assise. When the compression
ratio is 80%, LineFS (16.69 seconds) performs 10.6% better
than Assise (18.72 seconds), while saving 72% of network
bandwidth.

5.5 Availability

We evaluate LineFS’s extended availability in the face of
replica failures with a failure experiment using 3 nodes (one
primary, two replicas). We run Varmail in the Filebench suite
on the primary node and instrument Varmail to report its

768

12 e p———
% lg ! Replical's
a g ! host is
2 2 ! crashed
(2) ! (8 sec)
0 5 g8 10 1516 20 25
time (s)

Figure 10: Varmail throughput (time series in seconds).
Replica-1’s host (VM) fails at time 8s and recovers at
time 16s.

throughput every second.! While running Varmail, we crash
replica-1 by injecting a failure that reboots the host (running
ina VM).

Figure 10 shows the Varmail throughput over time. At 8
seconds, NICFS in replica-1 detects the failure because the
kernel worker is not responsive to heartbeat messages. NICFS
changes its copy mode to use PCle for publishing replica-
1’s log. Replica-1’s NICFS also continues replicating data
to replica-2 while replica-1’s host system is down. Varmail
replicates data at a few hundred MB/s and we do not observe
a performance drop due to PCle memory copy during the
host failure window. At time 16s, the host system recovers.
The host kernel worker is stateless and can restart copying
without any further recovery. At time 16s, NICFS detects
that the kernel worker has recovered and starts sending RPC
requests to resume host-based publication.

6 RELATED WORK

Distributed file systems. Disk-based client-server file sys-
tems used in large scale clouds and high-performance com-
puting systems, such as Ceph [58], LustreFS [6], GPFS [4],
GFS [30], and HDFS [52], focus on providing scalability and
high availability for thousands of storage nodes. These file
systems are inherently slow with fast PM storage due to their
complex design and client-server architecture, motivating
PM-optimized DFSes leveraging fast RDMA.

Various PM-optimized DFSes follow the client-server model,
but optimize communication primitives and metadata place-
ment. Octopus [44] couples PM with high-performance RDMA,
introducing collect-dispatch transactions to provide lower-
latency access to data and metadata. Clover [56] manages
remote storage via RDMA operations and locates metadata
with applications. While these DFSes optimize communica-
tion overheads, the cost of accessing remote storage via the
network remains high.

Assise [18] and Orion [60] leverage the client-local model.
Orion places data in local PM for “internal clients” to reduce
network accesses, but communicates metadata updates with
remote metadata servers. Assise places data and metadata
in the client node, eliminating network latency to access

!Note that printing Varmail’s throughput every second reduces Varmail
throughput compared to §5.3.

remote storage and metadata servers. Assise uses RDMA to
replicate data and metadata. These DFSes provide superior
performance for PM than the client-server model. However,
the client-local model has to share host resources between
DFS management operations and co-running applications.

SmartNIC offload. Many approaches offload host tasks to
SmartNICs. Floem [50] and ClickNP [39] offload network
functions like rate limiter and firewall to SmartNICs. Accel-
Net [27] offloads processing TCP and SDN stack. For FPGA-
based SmartNICs, Tonic [19] enables programmable trans-
port protocols and hXDP [22] efficiently executes eBPF pro-
grams. iPipe [41] proposes the actor programming model for
offloading applications like KV store, distributed transaction
systems, and real-time analytics to SoC-based SmartNICs.
E3 [42] and A-NIC [25] offload microservices to SoC-based
SmartNICs. FairNIC [31] and PANIC [40] address fairness
and performance isolation problems among competing of-
fload tasks in SmartNICs. These approaches share the same
vision with LineFS of reducing host CPU burden by offload-
ing tasks and leveraging resources in SmartNICs to accelerate
the offloaded tasks, but they do not address unique challenges
of DFS offload, such as handling highly structured data with
sophisticated access protocols for consistency and durability
across multiple SmartNICs.

Hyperloop [36] offloads chain replication to RDMA NICs.
Hyperloop uses the RDMA WAIT verb and remote manipu-
lation of RDMA requests for replication without involving
the host CPU. Hyperloop provides stable tail latency even
when a replica’s host CPU is busy. Hyperloop focuses on
replicated transactions, but offloading a full-fledged DFS has
to address more issues: shared file coordination, metadata
consistency, crash consistency, and scalability by efficiently
utilizing SmartNICs. LineFS proposes general design ideas
when offloading DFS operations to SmartNICs.

7 CONCLUSION

LineFS proposes the persist-and-publish model and pipeline
parallelism to offload a PM-optimized DFS to SmartNICs.
LineFS offloads CPU-intensive DFS tasks, like replication,
compression, data publication, index and consistency man-
agement to a SmartNIC. We implement LineFS on the Mel-
lanox BlueField SmartNIC and compare to Assise, a state-of-
the-art PM DFS. LineFS improves latency in LevelDB up to
80% and throughput in Filebench up to 79%, while providing
extended DFS availability during host system failures.

LineFS is available at https://github.com/casys-kaist/LineFS.

Acknowledgments. We thank the anonymous reviewers
and our shepherd, Manya Ghobadi, for their comments and
feedback. This work is supported by an Institute of Informa-
tion & communications Technology Planning & Evaluation

769

(IITP) grant, funded by the Korean government (MSIT) (No.
2018-0-00503, Research on next generation memory-centric
computing system architecture). This work is also supported
by a fellowship from the Erasmus Mundus Joint Doctorate
in Distributed Computing (EMJD-DC), funded by the Euro-
pean Commission (EACEA) (FPA 2012-0030), and, in part, by
ERC grant 770889, NSF grant CNS-1900457, Huawei, and the
Texas Systems Research Consortium.

REFERENCES

[1] 2021. Apache ZooKeeper. https://zookeeper.apache.org
[2] 2021. BlueField SmartNIC Ethernet. https://www.mellanox.com/
products/BlueField- SmartNIC-Ethernet
[3] 2021. Broadcom Stingray. https://www.broadcom.com/blog/at-a-
glance--the-broadcom-stingray-ps1100r-delivers-breakthrough-
performance-and-efficiency-for-nvme-of-storage-target-
applications
[4] 2021. General Parallel File System. https://www.ibm.com/docs/en/gpfs
[5] 2021. Intel Optane Memory. http://www.intel.com/content/www/us/
en/architecture-and-technology/optane-memory.html
[6] 2021. Lustre File System. http://www.lustre.org
[7] 2021. LZ4 compression algorithm. https://en.wikipedia.org/wiki/LZ4_
(compression_algorithm)
[8] 2021. Marvell’s Data Processing Units.
products/data-processing-units.html
[9] 2021. Network-attached Storage.
Network-attached_storage
[10] 2021. NVM Express over Fabrics 1.1. https://nvmexpress.org/wp-
content/uploads/NVMe-over-Fabrics-1.1-2019.10.22-Ratified.pdf
[11] 2021. pmem.io — Persistent Memory Programming. https://pmem.io
[12] 2021. RDMA Consortium. http://www.rdmaconsortium.org
[13] 2021. RDMA over Converged Ethernet (RoCE). https://www.
roceinitiative.org
[14] 2021. Sort Benchmark Home Page. http://sortbenchmark.org
[15] 2021. Storage Performance Development Kit. http://www.spdk.io
[16] 2021. Tool for active measurements of the maximum achievable band-
width on IP networks. http://software.es.net/iperf
2021. Xfstests. https://git.kernel.org/pub/scm/fs/xfs/xfstests-dev.git
Thomas E. Anderson, Marco Canini, Jongyul Kim, Dejan Kostié,
Youngjin Kwon, Simon Peter, Waleed Reda, Henry N. Schuh, and Em-
mett Witchel. 2020. Assise: Performance and Availability via Client-
local NVM in a Distributed File System. In 14th USENIX Symposium
on Operating Systems Design and Implementation (OSDI 20). USENIX
Association, 1011-1027. https://www.usenix.org/conference/osdi20/
presentation/anderson
Mina Tahmasbi Arashloo, Alexey Lavrov, Manya Ghobadi, Jennifer
Rexford, David Walker, and David Wentzlaff. 2020. Enabling Pro-
grammable Transport Protocols in High-Speed NICs. In 17th USENIX
Symposium on Networked Systems Design and Implementation (NSDI 20).
USENIX Association, Santa Clara, CA, 93-109. https://www.usenix.
org/conference/nsdi20/presentation/arashloo
Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. 2008.
The PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques (Toronto, Ontario,
Canada) (PACT 08). Association for Computing Machinery, New York,
NY, USA, 72-81. https://doi.org/10.1145/1454115.1454128

https://www.marvell.com/

https://en.wikipedia.org/wiki/

[17]
[18]

[19]

[20]

[21] Robert Birke, Ioana Giurgiu, Lydia Y. Chen, Dorothea Wiesmann,

[22

[23

[24

[25

—

=

=

=

and Ton Engbersen. 2014. Failure Analysis of Virtual and Physical
Machines: Patterns, Causes and Characteristics. In Proceedings of the
2014 44th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks (DSN 14). IEEE Computer Society, Washington,
DC, USA, 1-12. https://doi.org/10.1109/DSN.2014.18

Marco Spaziani Brunella, Giacomo Belocchi, Marco Bonola, Salva-
tore Pontarelli, Giuseppe Siracusano, Giuseppe Bianchi, Aniello Cam-
marano, Alessandro Palumbo, Luca Petrucci, and Roberto Bifulco. 2020.
hXDP: Efficient Software Packet Processing on FPGA NICs. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 973-990. https://www.usenix.org/
conference/osdi20/presentation/brunella

Youmin Chen, Youyou Lu, and Jiwu Shu. 2019. Scalable RDMA RPC on
Reliable Connection with Efficient Resource Sharing. In Proceedings of
the Fourteenth EuroSys Conference 2019 (Dresden, Germany) (EuroSys
19). Association for Computing Machinery, New York, NY, USA, Article
19, 14 pages. https://doi.org/10.1145/3302424.3303968

Vijay Chidambaram, Thanumalayan Sankaranarayana Pillai, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. 2013. Optimistic Crash
Consistency. In Proceedings of the Twenty-Fourth ACM Symposium
on Operating Systems Principles (Farminton, Pennsylvania) (SOSP 13).
Association for Computing Machinery, New York, NY, USA, 228-243.
https://doi.org/10.1145/2517349.2522726

Sean Choi, Muhammad Shahbaz, Balaji Prabhakar, and Mendel Rosen-
blum. 2020. lambda-NIC: Interactive Serverless Compute on Pro-
grammable SmartNICs. In 2020 IEEE 40th International Conference on
Distributed Computing Systems (ICDCS 20). 67-77. https://doi.org/10.
1109/ICDCS47774.2020.00029

[26] James Cipar, Greg Ganger, Kimberly Keeton, Charles B. Morrey,

[27

[28

]

=

Craig A.N. Soules, and Alistair Veitch. 2012. LazyBase: Trading Fresh-
ness for Performance in a Scalable Database. In Proceedings of the 7th
ACM European Conference on Computer Systems (Bern, Switzerland)
(EuroSys 12). Association for Computing Machinery, New York, NY,
USA, 169-182. https://doi.org/10.1145/2168836.2168854

Daniel Firestone, Andrew Putnam, Sambhrama Mundkur, Derek Chiou,
Alireza Dabagh, Mike Andrewartha, Hari Angepat, Vivek Bhanu,
Adrian Caulfield, Eric Chung, Harish Kumar Chandrappa, Somesh
Chaturmohta, Matt Humphrey, Jack Lavier, Norman Lam, Fengfen
Liu, Kalin Ovtcharov, Jitu Padhye, Gautham Popuri, Shachar Raindel,
Tejas Sapre, Mark Shaw, Gabriel Silva, Madhan Sivakumar, Nisheeth
Srivastava, Anshuman Verma, Qasim Zuhair, Deepak Bansal, Doug
Burger, Kushagra Vaid, David A. Maltz, and Albert Greenberg. 2018.
Azure Accelerated Networking: SmartNICs in the Public Cloud. In
15th USENIX Symposium on Networked Systems Design and Implemen-
tation (NSDI 18). USENIX Association, Renton, WA, 51-66. https:
/[www.usenix.org/conference/nsdi18/presentation/firestone

Daniel Ford, Francois Labelle, Florentina I. Popovici, Murray Stokely,
Van-Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. 2010.
Availability in Globally Distributed Storage Systems. In 9th USENIX
Symposium on Operating Systems Design and Implementation (OSDI
10). USENIX Association, Vancouver, BC. https://www.usenix.org/
conference/osdil0/availability-globally-distributed-storage-systems

[29] Joshua Fried, Zhenyuan Ruan, Amy Ousterhout, and Adam Belay. 2020.

Caladan: Mitigating Interference at Microsecond Timescales. In 14th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 20). USENIX Association, 281-297. https://www.usenix.org/
conference/osdi20/presentation/fried

770

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. 2003. The
Google File System. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles (Bolton Landing, NY, USA) (SOSP 03).
ACM, New York, NY, USA, 29-43. https://doi.org/10.1145/945445.
945450

Stewart Grant, Anil Yelam, Maxwell Bland, and Alex C. Snoeren.
2020. SmartNIC Performance Isolation with FairNIC: Programmable
Networking for the Cloud. In Proceedings of the Annual Conference
of the ACM Special Interest Group on Data Communication on the
Applications, Technologies, Architectures, and Protocols for Computer
Communication (Virtual Event, USA) (SIGCOMM 20). Association
for Computing Machinery, New York, NY, USA, 681-693. https:
//doi.org/10.1145/3387514.3405895

C. Gray and D. Cheriton. 1989. Leases: An Efficient Fault-tolerant
Mechanism for Distributed File Cache Consistency. In Proceedings of
the Twelfth ACM Symposium on Operating Systems Principles (SOSP 89).
ACM, New York, NY, USA, 202-210. https://doi.org/10.1145/74850.
74870

John L. Hennessy and David A. Patterson. 2017. Computer Architecture,
Sixth Edition: A Quantitative Approach (6th ed.). Morgan Kaufmann
Publishers Inc., San Francisco, CA, USA.

Calin Iorgulescu, Reza Azimi, Youngjin Kwon, Sameh Elnikety, Manoj
Syamala, Vivek Narasayya, Herodotos Herodotou, Paulo Tomita, Alex
Chen, Jack Zhang, and Junhua Wang. 2018. Perflso: Performance
Isolation for Commercial Latency-Sensitive Services. In 2018 USENIX
Annual Technical Conference (USENLX ATC 18). USENIX Association,
Boston, MA, 519-532. https://www.usenix.org/conference/atc18/
presentation/iorgulescu

Jie Jiang, Lixiong Zheng, Junfeng Pu, Xiong Cheng, Chongging Zhao,
Mark R Nutter, and Jeremy D Schaub. 2016. Tencent Sort. Technical Re-
port. Tencent Corporation. http://sortbenchmark.org/TencentSort2016.
pdf.

Daehyeok Kim, Amirsaman Memaripour, Anirudh Badam, Yibo Zhu,
Hongqiang Harry Liu, Jitu Padhye, Shachar Raindel, Steven Swanson,
Vyas Sekar, and Srinivasan Seshan. 2018. Hyperloop: Group-Based
NIC-Offloading to Accelerate Replicated Transactions in Multi-Tenant
Storage Systems. In Proceedings of the 2018 Conference of the ACM
Special Interest Group on Data Communication (Budapest, Hungary)
(SIGCOMM 18). Association for Computing Machinery, New York, NY,
USA, 297-312. https://doi.org/10.1145/3230543.3230572

Youngjin Kwon, Henrique Fingler, Tyler Hunt, Simon Peter, Emmett
Witchel, and Thomas Anderson. 2017. Strata: A Cross Media File
System. In Proceedings of the 26th Symposium on Operating Systems
Principles (Shanghai, China) (SOSP 17). Association for Computing
Machinery, New York, NY, USA, 460-477. https://doi.org/10.1145/
3132747.3132770

Thai Le, Jonathan Stern, and Stephen Briscoe. 2017. Fast memcpy with
SPDK and Intel I/OAT DMA Engine. https://software.intel.com/en-
us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine

Bojie Li, Kun Tan, Layong (Larry) Luo, Yanqing Peng, Rengian Luo,
Ningyi Xu, Yongqiang Xiong, Peng Cheng, and Enhong Chen. 2016.
ClickNP: Highly Flexible and High Performance Network Process-
ing with Reconfigurable Hardware. In Proceedings of the 2016 ACM
SIGCOMM Conference (Florianopolis, Brazil) (SSGCOMM 16). Associ-
ation for Computing Machinery, New York, NY, USA, 1-14. https:
//doi.org/10.1145/2934872.2934897

Jiaxin Lin, Kiran Patel, Brent E. Stephens, Anirudh Sivaraman, and
Aditya Akella. 2020. PANIC: A High-Performance Programmable NIC
for Multi-tenant Networks. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20). USENIX Association,
243-259. https://www.usenix.org/conference/osdi20/presentation/lin

—

=

[l

[’

—

[t

—

[t

—

[41] Ming Liu, Tianyi Cui, Henry Schuh, Arvind Krishnamurthy, Simon

Peter, and Karan Gupta. 2019. Offloading Distributed Applications onto
SmartNICs Using IPipe. In Proceedings of the ACM Special Interest Group
on Data Communication (Beijing, China) (SIGCOMM 19). Association
for Computing Machinery, New York, NY, USA, 318-333. https://doi.
org/10.1145/3341302.3342079

Ming Liu, Simon Peter, Arvind Krishnamurthy, and Phitchaya Mangpo
Phothilimthana. 2019. E3: Energy-Efficient Microservices on SmartNIC-
Accelerated Servers. In 2019 USENIX Annual Technical Conference
(USENILX ATC 19). USENIX Association, Renton, WA, 363-378. https:
/[www.usenix.org/conference/atc19/presentation/liu-ming

David Lo, Liqun Cheng, Rama Govindaraju, Parthasarathy Ran-
ganathan, and Christos Kozyrakis. 2015. Heracles: Improving Resource
Efficiency at Scale. In Proceedings of the 42nd Annual International
Symposium on Computer Architecture (Portland, Oregon) (ISCA 15).
Association for Computing Machinery, New York, NY, USA, 450-462.
https://doi.org/10.1145/2749469.2749475

Youyou Lu, Jiwu Shu, Youmin Chen, and Tao Li. 2017. Octopus: an
RDMA-enabled Distributed Persistent Memory File System. In 2017
USENIX Annual Technical Conference (USENLX ATC 17). USENIX Associ-
ation, Santa Clara, CA, 773-785. https://www.usenix.org/conference/
atc17/technical-sessions/presentation/lu

Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. 2007. The new ext4 filesystem:
current status and future plans. In Proceedings of the Linux Symposium,
Vol. 2. Ottawa, ON, Canada.

Hongyu Miao, Heejin Park, Myeongjae Jeon, Gennady Pekhimenko,
Kathryn S. McKinley, and Felix Xiaozhu Lin. 2017. StreamBox: Mod-
ern Stream Processing on a Multicore Machine. In 2017 USENIX An-
nual Technical Conference (USENLX ATC 17). USENIX Association,
Santa Clara, CA, 617-629. https://www.usenix.org/conference/atc17/
technical-sessions/presentation/miao

Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. 2018. Finding Crash-Consistency Bugs with
Bounded Black-Box Crash Testing. In 13th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 18). USENIX As-
sociation, Carlsbad, CA, 33-50. https://www.usenix.org/conference/
o0sdi18/presentation/mohan

Ian Neal, Gefei Zuo, Eric Shiple, Tanvir Ahmed Khan, Youngjin Kwon,
Simon Peter, and Baris Kasikci. 2021. Rethinking File Mapping for
Persistent Memory. In 19th USENIX Conference on File and Storage
Technologies (FAST 21). USENIX Association, 97-111. https://www.
usenix.org/conference/fast21/presentation/neal

Amy Ousterhout, Joshua Fried, Jonathan Behrens, Adam Belay, and
Hari Balakrishnan. 2019. Shenango: Achieving High CPU Efficiency
for Latency-sensitive Datacenter Workloads. In 16th USENIX Sym-
posium on Networked Systems Design and Implementation (NSDI 19).
USENIX Association, Boston, MA, 361-378. https://www.usenix.org/
conference/nsdil9/presentation/ousterhout

Phitchaya Mangpo Phothilimthana, Ming Liu, Antoine Kaufmann, Si-
mon Peter, Rastislav Bodik, and Thomas Anderson. 2018. Floem: A
Programming System for NIC-Accelerated Network Applications. In
13th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 18). USENIX Association, Carlsbad, CA, 663-679. https:
/[www.usenix.org/conference/osdi18/presentation/phothilimthana
Robbert Van Renesse and Fred B. Schneider. 2004. Chain Replication
for Supporting High Throughput and Availability. In 6th Symposium on
Operating Systems Design & Implementation (OSDI 04). USENIX Asso-
ciation, San Francisco, CA. https://www.usenix.org/conference/osdi-
04/chain-replication-supporting-high-throughput-and-availability

[52] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert

Chansler. 2010. The Hadoop Distributed File System. In 2010 IEEE 26th
Symposium on Mass Storage Systems and Technologies (MSST 10). 1-10.
https://doi.org/10.1109/MSST.2010.5496972

David Sidler, Zeke Wang, Monica Chiosa, Amit Kulkarni, and Gustavo
Alonso. 2020. StRoM: Smart Remote Memory. In Proceedings of the
Fifteenth European Conference on Computer Systems (Heraklion, Greece)
(EuroSys 20). Association for Computing Machinery, New York, NY,
USA, Article 29, 16 pages. https://doi.org/10.1145/3342195.3387519
Vasily Tarasov, Erez Zadok, and Spencer Shepler. 2016. Filebench: A
Flexible Framework for File System Benchmarking. USENIX ;login: 41,
1(2016).

Shelby Thomas, Rob McGuinness, Geoffrey M. Voelker, and George
Porter. 2018. Dark Packets and the End of Network Scaling. In
Proceedings of the 2018 Symposium on Architectures for Networking
and Communications Systems (Ithaca, New York) (ANCS 18). Associ-
ation for Computing Machinery, New York, NY, USA, 1-14. https:
//doi.org/10.1145/3230718.3230727

Shin-Yeh Tsai, Yizhou Shan, and Yiying Zhang. 2020. Disaggregating
Persistent Memory and Controlling Them Remotely: An Exploration
of Passive Disaggregated Key-Value Stores. In 2020 USENIX Annual
Technical Conference (USENIX ATC 20). USENIX Association, 33-48.
https://www.usenix.org/conference/atc20/presentation/tsai

Yang Wang, Manos Kapritsos, Zuocheng Ren, Prince Mahajan, Jeevitha
Kirubanandam, Lorenzo Alvisi, and Mike Dahlin. 2013. Robustness
in the Salus Scalable Block Store. In 10th USENIX Symposium on Net-
worked Systems Design and Implementation (NSDI 13). USENIX Asso-
ciation, Lombard, IL, 357-370. https://www.usenix.org/conference/
nsdil3/technical-sessions/presentation/wang_yang

Sage A. Weil, Scott A. Brandt, Ethan L. Miller, Darrell D. E. Long,
and Carlos Maltzahn. 2006. Ceph: A Scalable, High-Performance Dis-
tributed File System. In 7th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 06). USENIX Association, Seattle,
WA. https://www.usenix.org/conference/osdi-06/ceph-scalable-high-
performance-distributed-file-system

[59] Jian Xu and Steven Swanson. 2016. NOVA: A Log-structured File Sys-

tem for Hybrid Volatile/Non-volatile Main Memories. In 14th USENIX
Conference on File and Storage Technologies (FAST 16). USENIX Associ-
ation, Santa Clara, CA, 323-338. https://www.usenix.org/conference/
fast16/technical-sessions/presentation/xu

[60] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2019. Orion: A

Distributed File System for Non-Volatile Main Memory and RDMA-
Capable Networks. In 17th USENIX Conference on File and Storage
Technologies (FAST 19). USENIX Association, Boston, MA, 221-234.
https://www.usenix.org/conference/fast19/presentation/yang

[61] Jian Yang, Joseph Izraelevitz, and Steven Swanson. 2020. FileMR:

Rethinking RDMA Networking for Scalable Persistent Memory. In 17th
USENIX Symposium on Networked Systems Design and Implementation
(NSDI 20). USENIX Association, Santa Clara, CA, 111-125. https:
//www.usenix.org/conference/nsdi20/presentation/yang

