HeMem: Scalable Tiered Memory Management for
Big Data Applications and Real NVM

Amanda Raybuck

The University of Texas at Austin

Mattan Erez
The University of Texas at Austin

ABSTRACT

High-capacity non-volatile memory (NVM) is a new main
memory tier. Tiered DRAM+NVM servers increase total
memory capacity by up to 8%, but can diminish memory
bandwidth by up to 7x and inflate latency by up to 63% if
not managed well. We study existing hardware and software
tiered memory management systems on the recently avail-
able Intel Optane DC NVM with big data applications and
find that no existing system maximizes application perfor-
mance on real NVM.

Based on our findings, we present HeMem, a tiered main
memory management system designed from scratch for com-
mercially available NVM and the big data applications that
use it. HeMem manages tiered memory asynchronously,
batching and amortizing memory access tracking, migra-
tion, and associated TLB synchronization overheads. HeMem
monitors application memory use by sampling memory ac-
cess via CPU events, rather than page tables. This allows
HeMem to scale to terabytes of memory, keeping small and
ephemeral data structures in fast memory, and allocating
scarce, asymmetric NVM bandwidth according to access pat-
terns. Finally, HeMem is flexible by placing per-application
memory management policy at user-level. On a system with
Intel Optane DC NVM, HeMem outperforms hardware, OS,
and PL-based tiered memory management, providing up
to 50% runtime reduction for the GAP graph processing
benchmark, 13% higher throughput for TPC-C on the Silo
in-memory database, 16% lower tail-latency under perfor-
mance isolation for a key-value store, and up to 10X less
NVM wear than the next best solution, without application
modification.

Ol

This work is licensed under a Creative Commons Attribution International 4.0 License.

SOSP 21, October 26-29, 2021, Virtual Event, Germany
© 2021 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-8709-5/21/10.
https://doi.org/10.1145/3477132.3483550

Tim Stamler
The University of Texas at Austin

Wei Zhang

Microsoft

Simon Peter

The University of Texas at Austin

392

CCS CONCEPTS

« Software and its engineering — Memory management;
« Hardware — Non-volatile memory.

KEYWORDS

Operating system, Tiered memory management, Scalability

ACM Reference Format:

Amanda Raybuck, Tim Stamler, Wei Zhang, Mattan Erez, and Simon
Peter. 2021. HeMem: Scalable Tiered Memory Management for Big
Data Applications and Real NVM. In ACM SIGOPS 28th Symposium
on Operating Systems Principles (SOSP °21), October 26—-29, 2021,
Virtual Event, Germany. ACM, New York, NY, USA, 16 pages. https:
//doi.org/10.1145/3477132.3483550

1 INTRODUCTION

Systems with DRAM and non-volatile memory are now com-
mercially available, such as with Intel’s Optane DC non-
volatile memory (NVM) modules that can share the memory
interconnect with DRAM [3]. While NVM offers up to 8x
higher capacity per module compared to DRAM, it comes
at the cost of up to 7x lower bandwidth and up to twice the
latency (cf. Table 1). Tiered main memory management sys-
tems using DRAM and NVM need to balance these trade-offs
to provide high memory performance to applications.

Lag in OS support for tiered memory (e.g., Linux has no
official tiered memory support beyond swapping) has led
vendors to provide tiered memory in hardware [20]. This
approach has the benefit that it does not require OS sup-
port to manage tiered memories. Hardware mechanisms are
also nimble. For example, Intel’s Optane DC “memory mode”
treats DRAM as a direct-mapped cache. In this configura-
tion, cache misses can be served without copying memory
in software, tracking of page access bits, or shootdowns of
translation lookaside buffers (TLBs) when access bits are
reset or pages remapped.

On the other hand, hardware tiered memory also has short-
comings. It has little visibility into the high-level require-
ments of the applications using the memory or the structure
of their data. It also cannot distinguish between different
processes accessing main memory simultaneously, and it

Memory R/W Latency R/W GB/s Capacity
DDR4 DRAM 82 ns 107 / 80 1X
Optane DC [3] 175/ 94 ns 32/11.2 8%

Table 1: Main memory technology comparison.

must rely on simple memory tracking techniques that can

be efficiently implemented in hardware.

Previous research in OS [22, 39] and language-based [17]
tiered memory management was evaluated with emulated
NVM and, as we show, does not capture the performance
characteristics of commercially available NVM. Specifically,
existing OS-based systems have overheads that prevent them
from scaling to the capacity of commercially available NVM.
Existing systems also do not support asymmetric read/write
memory performance and have limited flexibility to adapt to
the diverse quality of service needs of big data applications.

We present HeMem, an OS memory management sys-
tem that dynamically manages tiered memory without the
CPU overhead of page access bit tracking, associated TLB
shootdowns, and memory copies, but with advanced policy
support for various memory access and allocation patterns,
as well as performance isolation. HeMem is, to our knowl-
edge, the first software-based tiered memory management
system designed from scratch for commercially available
NVM. Based on a performance study of Intel’s Optane DC
persistent memory modules (§2.2), we derive new insights
and design principles that enable software tiered memory
management to scale to the capacity and performance of real
NVM. In particular, HeMem leverages these principles:

e Asynchronous memory access sampling. Memory ac-
cess tracking methods that leverage page table access and
dirty bits have high CPU overhead for scanning page tables
and TLB shootdowns when bits are cleared. They do not
scale to large memory capacities (§2.3). Instead, HeMem
tracks memory access patterns by sampling accessed vir-
tual memory locations that go to DRAM and NVM via
appropriate CPU events. Sampling via CPU events drasti-
cally reduces overhead, by reducing the number of events
processed and by eliminating the need for frequent data-
intensive page table access and associated TLB shoot-
downs. To further offset CPU overhead, we leverage pro-
cessor event-based sampling (PEBS) to asynchronously
process sampled memory events in batches that the CPU
logs into a buffer as applications execute. Our method
minimizes CPU overhead at acceptable memory access
tracking fidelity.

e Asynchronous memory management. OS-based mem-
ory management incurs further CPU overhead due to
memory migration and associated maintenance of address
translation hardware. To minimize the impact of these op-
erations, HeMem not only tracks, but also migrates mem-
ory asynchronously, using DMA [28]. Unlike swapping

393

to block devices, tiered memory is always available to
processor loads and stores, allowing us to batch memory
management tasks as applications continue execution.

e Data scalability awareness. Oblivious management of
all data in tiered memory can decrease memory access
performance due to increased management overhead. Not
all data structures scale unbounded in size. In particular,
many OS kernel structures and many application-level
structures, such as buffers, queues, and stacks are small
and often ephemeral. They best remain in DRAM.

e Focus on asymmetric NVM bandwidth. Table 1 shows
that NVM read/write bandwidth is asymmetric and a frac-
tion of DRAM bandwidth, while NVM access latency dif-
fers only slightly from that of DRAM. HeMem tracks write-
heavy data structures and places them in DRAM if possible.

o Flexibility. HeMem places memory management in a
user-level library, allowing it to monitor application mem-
ory access and allocation patterns with little overhead.
This approach works with unmodified applications. Cloud
operators and users can implement per-application mem-
ory management policies without modifying the OS.

We make the following contributions.

e We analyze the performance of Intel Optane DC when
used as high capacity volatile memory (§2). Our findings
inform the design principles in HeMem.

e We present the design (§3) and implementation (§4) of
HeMem, a tiered main memory management system.

o We evaluate the performance of HeMem (§5) in a system
with Intel Optane DC persistent memory. We compare
HeMem’s performance to the hardware-based tiered main
memory management currently deployed for Optane DC,
as well as to several recent proposals for tiered memory
management that were previously evaluated only in em-
ulation (cf. §6). In particular, we compare to Linux with
nimble tiered memory management extensions [39] and
to X-Mem [17], a language-based tiered memory manage-
ment approach that we emulate.

Our evaluation shows that HeMem outperforms hardware,

language, and OS kernel based tiered memory management.

A deployment of the Silo [36] in-memory database running

TPC-C [1], attains up to 13%, 82%, and 400% higher through-

put with HeMem than with Intel Optane DC memory mode

(MM), Linux nimble memory management (Nimble), and X-

Mem, respectively. A key-value store with 700 GB working

set has 14%, 15%, and 17% higher throughput with HeMem

than MM, Nimble, and X-Mem, and 75% and 28% better me-
dian and 90th percentile (90p) latency than with MM. The

GAP graph processing benchmark performs up to 58% and

36% faster than MM and Nimble, respectively. HeMem pro-

vides up to 16% better tail-latency for a high-priority task

and reduces NVM wear by making up to 10X fewer writes

to NVM than MM.

2 BACKGROUND

Modern applications have an increasing demand for memory.
We characterize this demand and how high-capacity NVM
may fulfill it. In particular, we examine Intel’s Optane DC,
the first commercially available high-capacity NVM. Finally,
we investigate different ways to integrate NVM into a tiered
server memory hierarchy and their challenges.

2.1 Application Memory Demands

Modern applications are increasingly data-intensive. For ex-
ample, web applications access large in-memory key-value
stores to build dynamic web pages [19], in-memory databases
and graph processing systems scour large in-memory datasets
to quickly answer analytical questions [8], and machine
learning systems train on huge in-memory datasets to learn
how to maximize a reward function [29]. All of these ap-
plications have large memory capacity and bandwidth re-
quirements, and often also low memory access tail-latency
requirements. These applications benefit from an increase
in main memory size, but only if it can be offered without
significant performance degradation [35].

The lifetime of memory allocations in these services is
often bimodal and correlated with the size of the alloca-
tion [17]. Large memory ranges are allocated at application
start and pre-filled from disk. These ranges exist throughout
the lifetime of the application and their size tends to grow
over time, as objects are added. In separate memory ranges,
these services also use ephemeral memory objects that are
de-allocated after a short time, such as query state.

Understanding memory range access and allocation pat-
terns increases the tiered memory subsystem’s chances to
maximize memory access performance. For example, we can
keep hot and short-lived data in fast DRAM while migrating
cold and long-lived data to slow NVM. Tight integration
with applications, such as via a library, allows memory man-
agement to leverage insights from application-level memory
organization, such as memory range types, sizes, and life-
times. Per-application memory management also operates at
an adequate granularity, as only a small number of long-lived
big data applications typically share a server [21, 32].

2.2 Intel Optane DC Non-volatile Memory

Intel’s Optane DC NVM [3] attaches to the memory inter-
connect alongside DRAM. Optane NVM offers high capacity,
allowing as much as 3 TB of NVM per server socket [20]. This
high capacity makes Optane DC memory attractive to aug-
ment DRAM in a tiered memory configuration. Applications
running on servers with Optane NVM can take advantage
of a much larger pool of tiered main memory.

However, Optane and DRAM behavior can differ dramat-
ically. Optane has asymmetric read and write bandwidth,

394

50 —}— DRAM Read sequential
-~} - DRAM Write sequential
— NVM Read sequential =
% A0 -+{-- DRAM Write random
) —{-- DRAM Read random
~30 NVM Read random
=)]
=] NVM Write sequential -~ ...
2 NVM Write random =" " e e
20 ey
> I
o g
— .-
£ 10
oF
1 4 8 16 24

Threads

Figure 1: Memory access throughput scalability.

media access granularity that is larger than a cache line, and
it wears out faster than DRAM. Optane’s large capacity also
implies that memory translation cost plays a larger role than
before. All of these factors contribute to Optane performance
being much more sensitive to application memory access
patterns than DRAM. To successfully integrate Optane into
tiered memory, we have to understand its behavior.

Optane DC performance profile. In order to understand
Optane’s performance and compare it to that of DRAM, we
run a microbenchmark that accesses memory in either Op-
tane or DRAM in a sequential and random pattern (testbed
configuration in §5). We configure the benchmark to access
memory in 256-byte blocks with regular, cached loads and
stores (not SIMD or non-temporal access) that are the ma-
jority of memory accesses of our applications [21]. We then
vary the number of threads performing these accesses to
obtain a picture of memory throughput scalability of these
applications. Results are shown in Figure 1.

DRAM bandwidth is plentiful in our test machine. Both
read and write throughput scale well with the number of
threads. Sequential read and write performance is higher
than random due to prefetching and write-combining ef-
fects, as well as a more efficient use of DRAM row buffers.
On the other hand, Optane’s limited write bandwidth limits
thread scalability severely. Optane write bandwidth is sat-
urated with four threads, regardless of access pattern. At
scale, DRAM random and sequential write throughput are
10.7x and 16.5x higher than Optane, respectively. Random
reads from Optane can scale with more threads, but DRAM’s
random read throughput remains 2.7x above that of Optane.
Finally, sequential Optane read throughput is even able to
surpass DRAM random access throughput by 14% at scale.

We run the same microbenchmark again, but fix the num-
ber of threads at 16 and vary the size at which we access
memory. Figure 2 shows the results. Sequential reads from
DRAM and Optane achieve the highest throughput due to
prefetching. While DRAM throughput improves with in-
creasing access granularity, Optane read bandwidth is almost

N DRAM, sequential NVM, sequential

10000

mmm DRAM, sequential NVM, sequential T3
DRAM, random [NVM, random DRAM, random 1 NVM, random 3
50 50 1000 1
240 @ iy 7+—2—
g 540 g 100 o —+
23 5% s 10f :
2 3 E El
520 520 £ 1k 4+
3 3 = E 4o+
£10 z10 0.1F - +t E
: sl P . ot e
0 60 256 1024 4096 0 64 5 1094 405%' 0.01 b puigen ™ it ol vl
Block Size (Bytes) Block Size (Bytes) 0.01 0.1 1 10 100
(a) Read throughput. (b) Write throughput. Mapped memory size [TB]

Figure 2: DRAM and Optane throughput, 16 threads, varying access size.

immediately saturated and access granularity has no effect.

On the other hand, small, random reads from both types of

memory suffer from low throughput. This is due to prefetch-

ing being less effective with smaller read sizes. In addition,

Optane’s media access granularity is 256 bytes and accesses

smaller than this size suffer further overheads [20]. As the

block size increases, the gap closes between sequential and
random performance for both memory types. For DRAM,
write throughput is similarly affected by access size, while
write throughput to NVM is limited by Optane’s low write
bandwidth, which is saturated at 16 threads.

In summary, our microbenchmark results allow us to make
the following observations about Optane performance:

e Writing to Optane is slow when compared to DRAM. Fre-
quent writes to Optane can slow application performance
due to the limited bandwidth.

o Accessing small (< 4KB) objects randomly on Optane is
slow. To mitigate slowdown, small objects should be kept
in DRAM when random access is anticipated.

o It is likely that spare memory bandwidth is available to
migrate data among tiers in the background. We observe
plenty of headroom in our microbenchmark (cf. Table 1). In
§5, our application benchmarks confirm that spare band-
width can indeed be used to migrate memory without
affecting application performance.

2.3 NVM Impact on Memory Management

With the terabytes of memory offered to systems by NVM,
traditional OS techniques for managing memory can quickly
become strained. Traditionally, memory management pol-
icy decisions are made by scanning the page table for page
accessed and dirty bit information. To assess the overhead
of scanning page tables as memory capacity grows, we run
an experiment that tracks how much time it takes to check
page table accessed bits when the memory is backed by base,
huge, and gigabyte-sized pages.

As shown in Figure 3, when memory capacity is small
(up to a few 10s of GB), access bits can be checked quickly
regardless of page size. However, once we reach terabytes
of capacity, the time it takes to scan memory using base
pages increases drastically, taking on the order of seconds

395

Figure 3: Page table scan time.

to scan terabytes of memory. With smaller page sizes, not
only do we have to scan more access bits, but the scan must
also traverse a deeper page table. Finally, when clearing
accessed and dirty bits, we also have to shoot down the TLB,
further negatively impacting memory system performance.
As memory capacity continues to grow, scanning page tables,
even at coarser page granularity, quickly becomes untenable.

2.4 NVM as a Memory Tier

How should NVM be integrated into a tiered memory sys-
tem? Intel Optane DC is exposed to the OS in one of two
ways: memory mode (MM) and app-direct (AP) mode. Based
on these, various memory tiering approaches exist.

Memory mode. In memory mode, DRAM serves as a cache
to NVM. Current implementations use a direct-mapped cache
with an effective block size that matches the processor cache
line size (i.e., 64B). Software sees a single layer of a larger pool
of available memory over which it has no explicit control.
The tiered memory is instead managed entirely in hardware.
Figure 4a shows this approach. We can see that all data is
managed in tiered memory. There is no mechanism to detect
hot or cold data or support for any complex tiering policy.
Any accessed cache line is immediately placed in DRAM and
an existing cache line must be evicted. Eviction may be due
to capacity or conflict misses. While capacity misses simply
occur when the cache is full, conflict misses are unique to
this tiering approach, where multiple physical addresses are
mapped to the same location in the DRAM cache. Conflict
misses increase the number of evictions and reduce cache ef-
ficiency. With higher cache occupancy, the chance of conflict
misses increases. If a cache line is modified, eviction incurs a
write-back, increasing the number of random writes to NVM
and reducing tiered memory performance.

Kernel-managed NUMA memory. In AP mode, NVM is
exposed to the OS as a separate area of physical memory.
The OS can manage this memory explicitly. A natural way
to present it to applications is as kernel-managed anony-
mous memory. Indeed, existing work has proposed to simply
integrate NVM into kernel non-uniform memory (NUMA)
management [22, 39], by exposing it as a NUMA node that

i ! Policy ,«S’x:mma"(m’{
Processl 1, Kernel 1 Process2 Node O Thread Node 1 Application +") memset(x, ,..),\\

1 1 T T a0 SoTTT T
load(VA,) 1 \store(VA,, b).SIoad(VAa)Sstore(VAa, d) Kernel ~ Processlf / — Process2 libhemem -~ Free Hot Cold
S ~o J) 1 \\ - . Store(\fﬁg;_b) Sload(VA)“ lSjtore(VA ,‘1’_5..'.9?95"”‘3’ hemem_mman] DRAM NVM DRAM“ NVM DRAM.NVM

DRAM :Fg J I~ DRAMT T [T FTT] DRAM_ LI TTFTT] mmap(.); : ; DMACoy |
= = i ; — Y NM)
b s - = R W e
nvm [[B] [c] [o] d] e Jhreadn,) hread -

‘Node NVM
NVM[g]

:

NVM

T
7 perf t .S\ ioctl(..) batch ~*
Kernel+ userfaultfd’ perf_event_open(..]'s ioctl(..) aclasvnc

Node NVM 1 |

Hardware Memory Management

(a) Intel Optane DC memory mode.

(b) Kernel-managed NUMA memory.

mmap(...) EI f“EH%I
unter
Faule =

(c) HeMem.

Figure 4: Tiered main memory management system designs.

is at a further distance from all processors. This has the ben-
efit of simplicity—the existing NUMA memory management
system can be used and no new code needs to be written.

Figure 4b shows this approach. We can see that NUMA
memory management executes asynchronously, on its own
policy thread. Data is moved periodically, rather than on
every access. This is necessary. Migration granularity is on
the order of pages, rather than cache lines. Synchronous
movement of entire memory pages would slow down ex-
ecution (cf. swapping, where synchronous movement into
DRAM from disk is required). The memory management
policy may be complex and make use of various statistics,
such as how often far memory is accessed, before making a
migration decision. While it is possible to focus the NUMA
policy on a subset of memory ranges, this requires explicit
configuration. Finally, the NUMA topology is viewed as ex-
clusive, where data is in one location only. This is in contrast
to memory mode, where data may be in multiple locations.
This is the approach Nimble [39] takes. All management
tasks are executed sequentially on a single kernel thread.
Hence, long-running migrations may delay scanning and
statistics gathering (cf. §5). Additionally, long-running page
table scans over large memory may hinder gathering accu-
rate statistics.

File system. Finally, we can expose NVM as a file system
or as a single byte or block addressable device file to ap-
plications. Applications can then map the files to memory
to access them via processor loads and stores. File system
or device file access has primarily been used for persistent
data [2]. However, like dedicated huge page file systems
(hugetlbfs [18]), this approach can be used to give applica-
tions explicit control over their NVM allocations, avoiding
any transparent memory management in the OS. It allows
programmers and application-specific memory managers full
flexibility to decide how to divide available memory in tiers
across different memory objects. Specialized systems and
libraries such as PMDK [2], libmemkind [11], X-Mem [17],
and others [37, 38] follow this approach. HeMem also follows
this approach and we describe its design in §3.

396

3 HEMEM DESIGN

HeMem is a user-space manager for tiered main memory
that is dynamically and transparently linked into memory-
intensive applications. A high-level view of HeMem is shown
in Figure 4c. HeMem intercepts memory management sys-
tem calls, such as mmap and madvise, handling calls referring
to anonymous memory. To handle page faults, the virtual
address range of new memory maps are registered with user-
faultfd [6], causing the Linux kernel to forward page faults
within these ranges to a dedicated page fault thread within
the HeMem process. Once a memory region is mapped,
HeMem can manage it purely at user level.

HeMem’s policy is informed by memory allocation pat-
terns based on library and system calls (§3.2) and, uniquely,
by access patterns gleaned from memory access sampling
(§3.1). Memory migration is conducted via DMA [28] or, if
not available, on a separate set of migration threads [39]. Mi-
gration is triggered in batches, by decisions of the memory
management policy thread (§3.3), which runs once every 10
ms. HeMem uses three FIFO queues to track hot, cold, and
free pages of each memory type (DRAM and NVM). We now
describe each HeMem component in more detail, after which
we discuss HeMem’s unique design tradeoffs (§3.4).

3.1 Memory Access Measurement

To effectively place data in DRAM and NVM, HeMem needs
an efficient mechanism to observe what memory is being
accessed and how frequently. As described in §2.3, traditional
page table scanning methods struggle with high-capacity
main memory. Long scanning times cause the hot set to be
over-estimated, as the scan will find most access bits set.

Asynchronous memory access sampling. To identify mem-
ory access patterns in a way that scales with memory size,
HeMem uses a sampling based approach instead of scan-
ning page tables. In particular, HeMem uses processor event
based sampling (PEBS). With PEBS, the processor writes
a record to a preallocated memory buffer after a perfor-
mance counter overflows. We find a set of performance
counters that allow us to identify fast and slow memory

accesses and to distinguish reads from writes. We configure
PEBS to sample from all loads that are served from NVM
(MEM_LOAD_RETIRED.LOCAL_PMM) and from DRAM

(MEM_LOAD_L3_MISS_RETIRED.LOCAL_DRAM), as well as all
stores (MEM_INST_RETIRED.ALL_STORES), recording the vir-
tual memory address target for the sampled instructions.
Sampling frequency is a trade-off between fidelity and over-
head. Taking more frequent samples gives a more accurate
view of the current application access patterns. However,
sampling too frequently requires a larger PEBS buffer to
avoid losing samples. We find that a sample period of approx-
imately 5,000 memory accesses is sufficient to distinguish
between hot and cold data in the applications we tested. We
show a sensitivity study of the PEBS sample period in §5.1.

HeMem samples memory access via a separate PEBS thread
that continuously reads the PEBS buffer and updates page
statistics when appropriate. Using a separate thread mini-
mizes interference from other long-running tasks such as
page fault handling and memory migration. This is in con-
trast to Linux’s Nimble tiered memory management [39]. In
Nimble, the scanning of page tables and migration of mem-
ory occur on the same thread. Not only does scanning take
a long time due to the number of page table entries to be
scanned, it is further delayed by long-running migration op-
erations, preventing Nimble from accurately distinguishing
hot and cold data for large working sets (§5).

A trade-off exists between tracking granularity and fi-
delity. Finer granularities increase the likelihood that we
underestimate the hot set of applications, while coarser gran-
ularities may cause us to overestimate. HeMem uses the
PEBS recorded addresses to determine which regions of mem-
ory are being accessed frequently. When a sample is ready,
HeMem examines the virtual address target of the sampled
instruction. This allows us to track memory access at any
granularity. Convenient granularities are page based and
our prototype tracks accesses at huge page granularity. In
contrast, the fidelity of page table based approaches is con-
strained by hardware page sizes and the application’s chosen
page size to map memory.

Data classification. The PEBS thread classifies data as hot
or cold by organizing tracked pages into separate hot and
cold lists for each memory type (DRAM and NVM) based
on the PEBS samples. If the sample is part of a managed
memory region, HeMem increments an access count for the
corresponding memory page. HeMem uses separate counters
for reads and writes, as identified by the sample. A page is
considered hot and placed in HeMem’s hot list for its mem-
ory type once a threshold number of load or store accesses
are recorded to it. In our prototype, this threshold is 8 load
accesses or 4 store accesses, which we determined experi-
mentally. We show a sensitivity study of these parameters in
§5.1. Lower thresholds overestimate the hot set and keep cold

397

data in DRAM. Higher thresholds result in longer latencies
to identify the hot set. A page that exceeds the store access
threshold is considered a write-heavy page.

To ensure the freshness of HeMem’s estimation of the hot
set, HeMem regularly cools the pages it is tracking. Once
any page accumulates a threshold of sampled accesses (18
in our prototype—determined experimentally), the access
counts of each page are halved. If after this operation a page’s
access count is below the threshold to be considered hot, it
is marked as cold and placed in HeMem’s cold list for the
memory type. To avoid having to traverse the FIFO queues
of all tracked memory each time the threshold is reached,
we perform cooling using a clock. Once any page meets the
cooling threshold, we increment the clock. The next time a
page is sampled, if the last time the page was cooled does
not match the current clock, then the page is cooled before
its access count is incremented.

3.2 HeMem Library Mechanisms

HeMem manages tiered memory in a userspace library. To
do so effectively, HeMem needs to handle memory allocation,
placement, migration, and page faults.

Allocation. Placing tiered memory management decisions
in a library allows HeMem to efficiently obtain runtime-level
information about memory use from the application with
minimal overhead. For example, HeMem intercepts the mmap
call to learn about heap memory range sizes, at the over-
head of a function call. The hardware-implemented memory
mode cannot monitor this kind of runtime information. Inter-
cepting system calls and C standard library functions allows
HeMem to focus tiered memory management on application
memory ranges (in particular, heap ranges) that have the
highest tendency to grow large and live long.

HeMem allocates both DRAM and NVM via DAX (direct-
access) files [7]. HeMem maps per-process DAX files into
virtual memory upon process startup for asynchronous mi-
gration. Upon mmap, HeMem allocates memory regions ac-
cording to its policy (§3.3). HeMem then tracks the mapping
from virtual address to file offset for each page it manages.

Memory migration. HeMem’s memory migration policy
executes periodically on a separate background policy thread,
with a 10ms period. When HeMem decides to migrate a page,
it first uses userfaultfd to mark the page as write-protected.
This allows reads to proceed to the page while under migra-
tion, but any writes to the page must wait until the migration
is complete. Once the migration completes, page access rights
are restored. In practice, we find write pauses due to migra-
tion to be exceedingly rare, occurring on less than 0.00013%
of write operations on our most write-heavy benchmark
(§5.1). We set a maximum migration rate (10 GB/s) to ensure
that the application is not disturbed by migration activity.

If available, HeMem offloads the data migration to an
I/OAT DMA engine [28], freeing the CPU of this task. To
multiplex DMA resources safely across multiple processes,
we extend the Linux kernel ioatdma driver to expose a DMA
data copy API via ioctl calls. A copy request consists of a
source and target virtual address in user space, a size, and
a set of DMA channel identifiers to use for the copy. DMA
channels are (de-)allocated via additional ioctl calls. To
minimize system call overhead, the copy ioctl can accept
multiple copy requests in batches of up to 32. To maximize
DMA performance, HeMem can use multiple available DMA
channels to copy in parallel. Experimentally, we determine
that a batch size of 4, using 2 DMA channels concurrently,
achieves the highest DMA performance on our system. This
is the configuration we use. If a DMA engine is not available,
HeMem can use additional threads to copy a page in parallel,
akin to Nimble [39]. We find that 4 threads maximize copy
performance using this method.

Page fault handling. HeMem handles page faults using
userfaultfd [6]. HeMem creates a userfaultfd file descriptor
and issues ioctls on it to register managed memory with
userfaultfd. When HeMem intercepts memory allocation
calls, it registers the virtual address range with userfaultfd,
allowing it to receive page and write-protection faults on
this range. Fault events are forwarded to HeMem’s page
fault handling thread from the kernel. This thread reads the
userfaultfd file descriptor for page fault events. In the event
of a page missing fault, HeMem needs to provide a page to
the application. HeMem will map a zero-filled page from
either DRAM or NVM depending on its policy at the faulting
address and then wake the faulting application thread. If the
page fault is due to write-protection and the page is currently
undergoing migration (cf. §3.3), HeMem simply waits until
the migration is complete before waking the faulting thread.

3.3 HeMem Policies

HeMem’s policy determines memory allocation and migra-
tion. It leverages data scalability and read/write asymmetry.

Memory allocation and placement. HeMem allocates DRAM
if available by removing a page from the free list. This allows
ephemeral data to remain in fast memory. Ephemeral data
is hot for brief periods of time and is quickly deallocated.
When running out of DRAM, HeMem simply allocates from
NVM and relies on its PEBS thread to identify when pages
in NVM become hot and should be migrated to DRAM. To
ensure that most allocations are served from DRAM, HeMem
keeps a set amount of DRAM free (we found that 1 GB is
enough). When the periodic policy thread notices that this
threshold is reached, it forces data migration. If no data in
DRAM is cold, HeMem migrates random data to NVM until
the threshold amount of DRAM is free.

398

HeMem keeps smaller memory allocations in DRAM (cf. X-
Mem [17]). HeMem determines the size of memory ranges
from intercepted memory allocation calls. If the allocation
is for a small amount of memory, HeMem forwards the call
to the Linux kernel to handle. Otherwise, if the allocation is
for a large range of memory, HeMem decides to manage this
memory itself. HeMem also tracks the growth of memory
regions. If HeMem observes a region growing via small al-
locations, it will start to manage it once a size threshold is
crossed (1 GB in our current implementation). A corollary
of this policy is that small memory objects automatically
remain in DRAM. NVM is accessed more efficiently at larger
granularities, so keeping small ranges in DRAM yields better
performance. This is in contrast to systems like X-Mem [17]
and HeteroOS [22] that manage all memory by default.

Memory migration. HeMem’s migration policy scans the
DRAM cold list and the NVM hot list provided by the PEBS
thread and migrates pages among them. The policy thread
runs periodically (§3.2). Write-heavy pages are given higher
priority for migration to DRAM than read-heavy pages, due
to NVM having lower write than read performance.

Once a page is classified as a write-heavy page by the
PEBS thread, HeMem moves it to the front of the hot list for
its current memory type (DRAM or NVM). This ensures that
write-heavy pages in NVM are migrated to DRAM before
read-heavy pages. During cooling, if a write-heavy page is
no longer considered to be write-heavy, it is moved to the
hot list for its memory type. This allows it a second chance
to remain in DRAM. In the event that the hot set size exceeds
the DRAM capacity, HeMem does not migrate any pages, as
there are no cold DRAM pages to swap for hot NVM pages.

3.4 Discussion

HeMem is intended for applications that access memory in a
pattern where a hot set exists. Applications that access mem-
ory uniformly see little benefit from HeMem when their
working set exceeds DRAM capacity. HeMem focuses on
managing just a subset of main memory as tiered memory.
We argue this is the right choice for the use case but the ap-
proach forgoes a number of features of a kernel-level memory
manager. None of these features are used in the applications
we evaluate. Nevertheless, we discuss these features and how
we might support them.

Kernel objects in tiered memory. The user-level approach
explicitly does not support kernel objects in tiered memory.
This support is not necessary. Kernel objects are small and
often ephemeral and should be kept in fast memory. The
page cache is one possible exception. However, we believe
that it warrants a separate mechanism for tiering if desired.
For example, big data applications often implement their
own page cache.

Program text in tiered memory. While possible, we are
not interested in managing program text in tiered memory.
Hence, this feature is unsupported in HeMem. Program text
is static and does not grow after loading. We also have not
encountered a program with a text segment large enough to
benefit from tiered memory management.

Swapping. Swapping to a block device can provide an addi-
tional, slowest, memory tier. While not useful to the applica-
tions that we target, swapping of tiered memory is possible.
Both fast and slow memory are backed by files and the file
system can be configured with a logical volume manager to
swap files in memory to disk.

Dynamic tiered memory allocation. While our prototype
allocates a fixed amount of memory for tiered memory man-
agement via DAX files at system boot, it is possible to dynam-
ically allocate memory tiers and to share their capacity with
kernel anonymous memory management. It is yet unclear
how Linux will integrate NVM into anonymous memory
management. One possibility is via the NUMA memory sub-
system [39]. HeMem can then use the appropriate NUMA
calls to dynamically allocate from DRAM and NVM anony-
mous memory, instead of using preallocated DAX files.

Shared tiered memory. Shared tiered memory can be sup-
ported. The user links HeMem into only one process to man-
age the tiered memory. Any other processes that share the
tiered memory automatically see the same mappings, even
if they are changed by HeMem. For OSes that do not re-
flect updated mappings across all processes sharing memory,
another library can be linked to synchronize the updated
mappings cooperatively. Since processes sharing memory
already cooperate, this procedure has no effect on security.

Global tiered memory management. HeMem manages per-
process pools of tiered memory. This is adequate for big data
applications, where few processes operate on large, private
working sets. If global dynamic memory management is
desired, a userspace HeMem daemon can coordinate per-
process HeMem instances. Processes would request memory
from the HeMem daemon, which manages the global pool,
attaches to each processes’ userfaultfd and PEBS buffers, and
migrates memory on behalf of these processes.

4 IMPLEMENTATION

We implement HeMem as a user-level library on top of Linux
version 5.1.0, with two userfaultfd patches applied. Firstly, we
make use of an existing kernel patch to userfaultfd [6] that
implements support for write-protection faults in addition to
page missing faults [4]. Write-protection faults are already
part of the userfaultfd system call interface, but support is
not in the mainline kernel as of yet. Furthermore, we develop
and apply our own patch to userfaultfd to support user-space

399

page fault handling on memory backed by DAX files. This
involves modifications to the DAX device page fault handling
path to forward page fault and write protection events for
userfaultfd-registered address ranges via userfaultfd rather
than handling them in the kernel. Overall, we add 1,337 lines
of code to the Linux kernel userfaultfd module, memory
management code, and DAX handling code.

We use NVM in App-Direct mode and expose it via a DAX
file to user-space. Our prototype also manages DRAM via a
DAX file, which we reserve via the kernel memmap command-
line argument. Dynamically sharing DRAM with the exist-
ing kernel memory manager is possible (§3.4), for example
via pinned anonymous mappings, but requires additional
userfaultfd support for these mappings. Userfaultfd is un-
der active development in the Linux kernel to support an
increasing number of memory mapping types.

We implement libHeMem in 4,177 lines of C code. It is
linked into applications via the LD_PRELOAD dynamic link
mechanism to transparently enable tiered memory manage-
ment. Memory allocation calls from the application are in-
tercepted by libHeMem using libsyscall_intercept [5].

5 EVALUATION

We first break down HeMem’s performance with a number of
evaluations based on the GUPS [9] microbenchmark. We then
evaluate how HeMem affects application-level performance
using a number of big data applications, such as the Silo in-
memory database, a key-value store, and a graph processing
system. We compare HeMem’s behavior and performance
to that of Intel Optane DC memory mode (hardware tiered
memory management), as well as the Linux Nimble tiered
memory management system [39] (Nimble). Where appro-
priate, we also compare to X-Mem [17], which we emulate.
Nimble and HeMem use background threads for memory
access measurement and policy. In addition, Nimble uses
threads for memory migration and we configure 4 threads,
which is most efficient.
Our evaluation answers the following questions:

o How do each of HeMem’s design principles (§1) contribute
to HeMem’s performance and how does performance com-
pare to the other tiered memory management implementa-
tions (§2.4)? We evaluate various hot set sizes for the GUPS
microbenchmark, and various dataset sizes for GUPS with
a uniformly random access pattern. We also evaluate how
well hot sets are tracked, and break down tracking over-
heads and parameters. Finally, we break down the benefits
of each of HeMem’s policy decisions (§5.1).

e How can various big data applications benefit from HeMem
compared to other approaches, in terms of runtime, opera-
tion and transaction throughput, and latency (§5.2)? How
well is application performance isolated (§5.2.2)?

e What is the impact of each tiered memory management
system on NVM device wear (§5.2.3)?

Evaluation platform. We run our evaluation on a single
socket of a dual-socket Intel Cascade Lake-SP system running
at 2.2GHz with 24 cores per socket and a 100 GbE ConnectX-
5 Mellanox NIC. Each socket has 192 GB of DDR4 DRAM and
768 GB of Intel Optane DC NVM. To leverage all 6 memory
channels, there are 6 DIMMs of DRAM and NVM per socket.
The machine runs Debian 10.9 with Linux kernel version
5.1.0rc4. NUMA effects of tiered memory are beyond the
scope of this paper. Hence, we run each benchmark pinned
to a single NUMA node. All evaluated tiered memory man-
agement systems support this mode of operation.

Overhead of userfaultfd. We evaluate the overhead of us-
ing userfaultfd for tiered memory management. We found
that, while userfaultfd can slow down applications with fre-
quent page faults, this is not a factor in our benchmarks.
Memory-intensive applications opt for large-capacity memo-
ries precisely to avoid page faults during runtime due to their
high overhead. HeMem’s system and library call interception
incurs negligible overhead.

5.1 Microbenchmarks

We use GUPS [9] as a microbenchmark to evaluate the be-
havior of the different tiered memory management systems.
GUPS executes parallel read-modify-write operations to fixed
size objects in a uniform or skewed random pattern in its
working set and measures the giga update operations per
second (GUPS) it performs. After a warm-up round, we run
each benchmark 3 times and report the average GUPS. GUPS
uses a configurable number of threads, working set and ob-
ject sizes, and memory access skew. Each thread has its own
exclusive working set partition that it accesses without syn-
chronization. Unless otherwise noted, we run GUPS with 16
threads, each performing 1 billion updates (16 billion updates
in aggregate) to 8-byte objects. Using 16 threads allows us
to compare systems without overloading the 24-core socket.
Nimble, in particular, uses several memory migration threads
and suffers with more GUPS threads. We compare HeMem
and MM explicitly with more threads.

Uniform random access (system overhead). We first inves-
tigate the overhead of the tiered memory management sys-
tems when no memory migration is required. To do so, we
run GUPS using uniform random memory access over dif-
ferent working set sizes, up to 256 GB. In this case, tiered
memory management should provide performance close to
DRAM when the working set fits in DRAM, and close to
NVM otherwise. To run GUPS in NVM, we modify mmap to
map memory from the NVM DAX file. This configuration em-
ulates X-Mem [17], which places large heap data structures
with random memory access into NVM.

400

T T T
DRAM 24 Threads —&—
MM 24 Threads —@&—
HeMem 24 Threads ~
HeMem
DRAM ——

MM B
Nimble
NVM —¥—

GUPS
=3
-

100 150 DRAM 200
Working Set Size (GB)

250

Figure 5: Uniform GUPS (higher is better).

0.16 T T T T T T
MM 24 Threads —+—
HeMem 24 Threads
0.12 MM B
HeMem
NVM =—tt—

0.08 - Nimble i

GUPS

0.04 -

100 150

Hot set size (GB)

DRAM 200 250

Figure 6: GUPS with different hot set sizes (512 GB
working set; higher is better).

Figure 5 shows that tiered memory system performance
varies. When the working set is small (< 32 GB), HeMem and
memory mode (MM) perform nearly identically to DRAM.
In this case, both systems are able to keep the dataset in
DRAM and incur no NVM access. As the working set size ap-
proaches the size of DRAM (vertical line), MM performance
degrades due to increased conflict misses to the DRAM cache,
which do not exist for HeMem. We verified this behavior
by observing NVM access performance counters for both
systems. With a working set size of 128 GB, HeMem provides
3.2x higher GUPS than MM. Nimble provides a maximum
of 78% of the GUPS of MM and HeMem and degrades as the
working set size becomes larger. This shows Nimble’s scan-
ning and migration mechanism overhead. Once the working
set exceeds DRAM capacity, all systems provide performance
equivalent to GUPS in NVM. Finally, running with 24 threads
improves performance for MM and HeMem, but the addi-
tional GUPS threads now contend with HeMem for limited
cores. For small working sets (< 32 GB), HeMem sees 10%
lower throughput than MM. On larger working set sizes, we
see a similar trend as with the 16 thread case. As the working
set size approaches the size of DRAM, HeMem can provide
up to 3.7x the performance of MM.

Hot set. We now make a random set of each thread’s ob-
jects hot (frequently accessed): 90% of the operations of each
thread uniformly access its hot objects, while the remaining
10% of operations uniformly access the thread’s entire work-
ing set partition. This benchmark measures how well each
memory management system identifies the hot set to keep it

0.16 T

0.12 -

0.08 |-

GUPS

MM
HeMem - DMA Engine
HgMem - Copy Th‘reads —_——

0.04

15
Threads

20 25

Figure 7: GUPS scalability (512 GB working set, 16 GB
hot; higher is better).

in DRAM. We fix the aggregate GUPS working set to 512 GB
and vary the size of the aggregate hot set from 1 to 256 GB.
In this scenario, approximately 10% of accesses must go to
slow NVM and therefore overall performance is 27% lower
than uniform random GUPS (Figure 5), when the working
set fits in DRAM.

Beyond this, our results in Figure 6 show a similar pattern.
As long as the hot set fits into DRAM, HeMem identifies
it and ensures that it remains in DRAM. HeMem occasion-
ally migrates cold data between DRAM and NVM, incurring
minimal overhead. MM performance suffers as the GUPS
hot set size approaches the capacity of DRAM. As the hot
set grows, MM’s direct-mapped caching approach exhibits
more misses and more of the hot data is being pushed to
NVM. HeMem performs up to 2X better with increasing hot
set size. As before, running with 24 threads improves GUPS
performance, but contends with HeMem for limited CPU
resources. In this case, for hot set sizes of less than 8GB, MM
performs up to 24% better than HeMem. However, the same
pattern emerges as the hot set size grows, and HeMem per-
forms up to 2x better than MM for hot sets larger than 8GB.
Nimble suffers from high overhead due to sequential scan
and migration. Even when the hot set fits in DRAM, Nimble
achieves only 25% of the GUPS of MM. When the hot set
does not fit in DRAM, the performance of all configurations
converges. HeMem identifies this case and stops migration.

Dynamic hot set. How quickly can memory management
react to changes in the hot set? We configure GUPS to run
with 16 threads, a 512 GB working set, and a 16 GB non-
consecutive hot set. After warm-up, we allow each thread
to run for 150 seconds. We then change the hot set so that
4 GB of the original hot set becomes cold and 4 GB of the
original cold set becomes hot.

We plot the instantaneous GUPS over time in Figure 9. For
all systems but HeMem-PT-Async, which is HeMem config-
ured to do asynchronous page table scans rather than PEBS
scans, GUPS are initially high as the hot set is entirely in
DRAM after warm-up. Due to scanning overhead, HeMem-
PT-Async is unable to track the hot set. Once the hot set
shifts, there is a noticeable drop in GUPS for all systems, as

401

System GUPS X
Nimble 0.020 0.36
MM 0.048 0.86
HeMem 0.056 1

Table 2: GUPS write skew.

newly hot data is initially accessed from NVM. All systems
now migrate data among tiers. Both HeMem and MM iden-
tify and move the newly hot data into DRAM and recover
GUPS within 20 seconds. MM’s cache-line sized migrations
are lighter-weight than HeMem’s and maintain higher per-
formance during migration. HeMem-PT-Async takes longer
to recognize the new hot set and does not recover GUPS,
remaining at 54% the throughput of HeMem and MM. This
demonstrates that page table scanning indeed has high over-
head for large memory sizes.

Scalability. HeMem uses threads to handle page faults,
read PEBS buffers, and make migration policy decisions. To
understand how HeMem affects application performance at
high thread counts, we run the dynamic hot set experiment
with different thread counts and report the average GUPS.

Results are shown in Figure 7. At low thread counts, both
HeMem and MM scale well. At 21 threads, however, per-
formance of HeMem and MM diverge. MM is a pure hard-
ware approach and consumes no cores for background work.
HeMem’s background threads contend with GUPS threads,
lowering GUPS by 10% compared to MM. To show HeMem
performance without a DMA engine, we configure HeMem
to run with 4 migration threads to copy pages. This configu-
ration lowers GUPS throughput by 23% and 14% versus MM
and HeMem with DMA copies, respectively.

Asymmetric access pattern. To measure how well each
tiered memory management system performs with an asym-
metric read/write access pattern, we configure GUPS with a
skewed read/write pattern—of a 256 GB hot set out of a 512
GB working set, 128 GB are write-only, while the remainder
of the working set is read-only. As before, 90% of accesses
go to the hot set. Table 2 shows the results (X column shows
performance normalized to HeMem). HeMem is able to rec-
ognize the write-only portion of the memory and ensure it
remains in DRAM, avoiding the limited write bandwidth of
NVM. MM and Nimble, which are blind to the read/write
skew, perform 14% and 64% worse than HeMem, respectively.

HeMem overheads. To understand the overheads of our
design, we run GUPS with 16 threads, a 512 GB working set
and a 16 GB hot set and selectively enable design contribu-
tions. Results are shown in Figure 8. Opt manually places the
hot set into DRAM and keeps it there during the entire GUPS
duration without scanning or migrations. PEBS enables the
PEBS scanning thread, but keeps migrations disabled, show-
ing negligible overhead versus Opt. PT Scan uses page table

HeMem - PEBS

MM HeMem - PT AsynC ==

GUPS
GUPS

Coo0o0 O

K

B 20 e e

i

cocoofr
ONEO®RN

o

Opt

PEBS PT Scan PEBS+ PT Scan+ PT Scan+

Migrate M. Sync M. Async

Figure 8: HeMem overheads.

35
30
25
20
15
10

GUPS —+— | 5
Dropped sad'mple % —¥—

0.05 |

GUPS

Dropped sample %

%
10 100
Sampling period (thousands of samples)

0
0.5 1 500

Figure 10: PEBS sampling period sensitivity (512 GB
working set, 16 GB hot; higher is better; log x axis).

accessed/dirty bit scanning/clearing instead of PEBS. Due
to TLB shootdowns, PT Scan reduces throughput by 18%
versus PEBS. PEBS + Migrate enables the policy and cooling
threads and does not manually place the hot set into DRAM,
so migrations do occur. The GUPS throughput under this
configuration is within 5.9% of Opt, showing that HeMem is
able to identify and migrate the hot set with low overhead.

To show the fidelity difference between PEBS scanning and
page table based scanning, we again replace HeMem’s PEBS
scanning with page table based scanning. We investigate
both a synchronous (PT Scan + M. Sync) and asynchronous
scanning method (PT Scan + M. Async). In M. Sync, a single
migration policy thread performs the page table scan and
migrations sequentially (cf. Figure 4b). In M. Async, we intro-
duce a separate page table scanning thread. M. Sync achieves
only 18% of the throughput of Opt, as page table scanning is
delayed by long-running migrations, increasing the chance
of hot set overestimation. Indeed, M. Sync considers nearly
all of the 512 GB working set to be hot. M. Async increases
GUPS by over 2x compared to M. Sync, but still only achieves
43% of Opt. The overheads of scanning the page tables for 512
GB of memory and the necessary TLB synchronization mean
that even the asynchronous configuration overestimates the
hot set, considering up to 300 GB hot, causing extraneous
NVM accesses and migrations.

HeMem parameters. To understand how sensitive HeMem
is to its various parameters, we perform a sensitivity study.
We run the GUPS microbenchmark with 16 threads, a 512
GB working set, and a 16 GB hot set and vary the PEBS
sampling period. Figure 10 shows these results. The error

402

50 100 150 200 250

Time (s)

Figure 9: Instantaneous GUPS (higher is better).

0.1

0.05 |- q

GUPS

0 I I I I I
10 15 20

Hot read threshold (# samples)

30

Figure 11: Hot memory read threshold sensitivity (512
GB working set, 16 GB hot; higher is better).

bars show the maximum and minimum measured GUPS over
three runs. At low sample periods, variance in performance
is high. This is due to the PEBS thread being unable to keep
up with the samples generated. Up to 30% of samples are
dropped because they are generated faster than the PEBS
thread can read them. As the sampling period increases,
the performance variance decreases and fewer samples are
dropped. Sampling periods between 5k and 100k provide
good performance while dropping fewer than 0.02% of sam-
ples. Sampling periods above 100k show low performance
because samples are not collected frequently enough.

Next, we fix the sampling period at 5k and vary the hot
memory read threshold. Figure 11 shows these results. The
hot write threshold is kept at half the hot read threshold. At
low thresholds, the hot set is overestimated and performance
suffers. Thresholds between 6 and 20 accesses result in high
GUPS as these values are sensitive enough to distinguish
between hot and cold pages. Thresholds higher than 20 result
in lower GUPS as the hot set is underestimated due to hot
pages requiring more accesses to be considered hot.

Finally, we study the sensitivity of HeMem’s memory cool-
ing threshold. To do so, we measure instantaneous GUPS
after a warm-up period. After 150 seconds, we shift the hot
set so that 4 GB of the original hot set become cold and 4
GB of the original cold set become hot. We vary the mem-
ory cooling threshold and observe the results in Figure 12.
When the cooling threshold is equal to the hot threshold (8),
HeMem underestimates the hot set because it is cooling too
aggressively, resulting in low GUPS. Higher cooling thresh-
olds result in less aggressive cooling and quicker adaptation

0.1

— 16GB 128GB 700GB | 50p 90p 99p 99.9p
o 008F \ "J&/_/\’/ —] MM 1.09 1.03 093 | 35 44 53 63
3 006l #:fgj A, i HeMem 114 111 106 | 20 26 34 49
0.04 V') 8 U —18 —22 30 Nimble 1.07 1.05 0.92 - - - -
140 150 160 170 180 190 NVM 0.91 0.91 0.90 - - - -
Time (s) Table 3: FlexKVS throughput (Mops/s) & latency (us).
Figure 12: Memory cooling threshold sensitivity. Priority Regular
us 50p 99p 99.9p | 50p 99p 99.9p
Ky DRAM =—4— HeMem MM NVM —3¢— Nimble HeMem 86 239 341 | 146 318 409
§ 12 = \ w MM 127 278 342 | 156 310 380
- 1 o T—— = -
2 08 % 47 16 0 6 -2 -8
é_ 8:2 . 4 Table 4: FlexKVS latency with priority.
o 0.2 %* 3
3 o0 ‘Q x ‘QQ ‘QQ result matches the GUPS microbenchmark analysis with a
= N > L Ny uniform random memory access pattern. We see similar be-
Warehouses

Figure 13: Silo TPC-C warehouse scalability (higher is
better).

to hot set changes, as newly hot pages can meet the hot
threshold before being cooled. Cooling thresholds that are
too high (30) result in too many pages being considered hot.
These pages compete for DRAM space, reducing GUPS.

5.2 Application Benchmarks

We now evaluate how various big data applications perform
using each tiered memory system. We evaluate transactional
throughput and latency of the TPC-C benchmark in the Silo
in-memory database (§5.2.1) with various dataset sizes. We
also evaluate operational throughput and latency of an in-
memory key-value store with a skewed access distribution
and with priorities (§5.2.2). Finally, we evaluate the runtime
of the GAP graph processing benchmark (§5.2.3).

5.2.1 Silo. We measure the performance of Silo [36], an
in-memory transactional database, under the various tiered
memory systems. We run TPC-C [1], which models a retail
outfit, simulating customers making orders from a number
of warehouses. Most orders are fulfilled from local ware-
houses, but a small number of transactions involve remote
warehouses. The resulting access pattern is random with
little read and write reuse [16].

To scale working set size, we run Silo with 16 threads
and vary the number of warehouses from 16-1,728 and mea-
sure the average throughput; 864 is the maximum number
of warehouses that fit in DRAM. Results are shown in Fig-
ure 13. When the working set fits in DRAM, HeMem is able to
achieve up to 13% and 82% higher throughput than MM and
Nimble, respectively. Conversely, when the number of ware-
houses no longer fits in DRAM, MM outperforms HeMem by
17%. When placing Silo’s working set in NVM (cf. X-Mem),
performance degrades to 32% that of HeMem and MM. This

403

havior when investigating transaction latency.

5.2.2 Key-value store. We evaluate the FlexKVS [24] scal-
able key-value store with tiered memory. FlexKVS is Mem-
cached [10] compatible, but uses a segmented log [33] for
items to reduce synchronization overheads, as well as a block
chain hash table [30] to minimize cache coherence overhead
on item lookup. We evaluate the throughput of FlexKVS with
a server running 8 threads and 1 client machine running 48
threads. We use 4 KB value sizes and a varying number of
key-value pairs to achieve different working set sizes. Each
client performs 90% GET requests and 10% SET requests [13],
while 20% of the keys are in a hot set. The hot keys are
accessed 90% of the time.

The results can be seen in Table 3. All systems perform
similarly when the working set fits in DRAM (< 128 GB).
HeMem and Nimble provide 7% and 2% higher throughput
than MM, respectively. When the working set size exceeds
DRAM capacity (700 GB), HeMem outperforms MM and
Nimble by 14% and 15%, respectively. In this case, the hot set
(140 GB) still fits in DRAM. Placing key-value pairs into NVM
(X-Mem) results in 18% lower throughput than HeMem. We
also evaluated a uniform random workload, which performs
similar to GUPS uniform random (§5.1).

Latency. We evaluate FlexKVS latency in the 700 GB case,
by running the server at 30% load using the TAS [25] low-
latency network stack on server and clients. HeMem provides
up to 16% lower median and up to 69% lower tail latency
than MM. Nimble crashes TAS, so we omit this result.

Priority. Using the Linux TCP stack on the clients and the
server, we run two FlexKVS instances, one with a higher
priority. The non-prioritized instance serves 2 clients with
48 threads each, with a working set of 500GB, accessed uni-
formly at random. The prioritized instance serves a single
client, also with 48 threads, with a working set of 16GB
(the priority set). For HeMem, we configure the priority in-
stance to keep all key-value pairs in DRAM, while the non-
prioritized instance leverages both memory tiers. Table 4

30 T T T T T
25 |- B
20 '+ B
15 - X b
10

Time (s)

16
Iteration

Figure 14: BC on 228 vertices (lower is better).

shows that HeMem provides up to 47% better latency than
MM from the priority instance, without tangible negative
impact on the non-priority instance. This is expected, as MM
does not support prioritization.

5.2.3 Graph processing. We measure the graph processing
performance of HeMem with an application of the GAP
benchmark suite [15]. GAP generates a Kronecker power-
law graph (average degree 16). Power-law graphs have local-
ity, as vertex traversal frequency increases with degree [14].
We run 15 iterations of the betweenness centrality (BC) al-
gorithm on graphs with 22 (fits in DRAM) and 2 vertices
(exceeds DRAM). BC determines the number of shortest
paths between any pair of vertices through a given vertex,
which we choose randomly on each iteration.

When the graph fits in DRAM (Figure 14), HeMem out-
performs MM by an average of 93%. HeMem keeps all data
structures in DRAM, while MM suffers conflict misses, in-
curring expensive NVM access. The BC algorithm accesses
the graph using small accesses, which incur extra overhead
on NVM due to NVM’s larger media access granularity and
the BC data structures are write intensive, so NVM access
is very costly. When the entire graph is stored in NVM, per-
formance is 16X worse than any system and we omit this
result from the graph. HeMem has very low overhead when
compared to DRAM-only performance due to its sampling
mechanism. Nimble’s high scanning and migration overhead
causes up to 47% higher runtime than HeMem, but it is able
to outperform MM by 32%. Neighbors to vertices are likely
located on the same memory page. Page-based migration
approaches, such as HeMem and Nimble are able to exploit
this locality, outperforming MM.

When the graph exceeds DRAM (Figure 15), HeMem is
able to identify hot and written data and migrate it to DRAM.
Using lightweight PEBS sampling, HeMem quickly identifies
the hottest portions of the graph compared to HeMem with
page table scanning (HeMem - PT Async). Page table scan-
ning overestimates the hot parts of the graph and, as a result,
takes more time to migrate them to DRAM. Extra migrations
from the page table scanning approach slow down the first
few iterations of the BC algorithm by up to 3X compared

404

120 T T T
X MM
100 HeMem - PT Async —%— _|
HeMem - PEBS
80 Nimble
@
Q -
g 60
=
40 - .
20 - \:—:\ T NG e = |
0 1 1 1 1 1 1 1
0 2 4 6 8 10 12 14 16
Iteration
Figure 15: BC on 22° vertices (lower is better).
1000 T T T
HeMem - PT Async —+—
MM
100 ¢ HeMem - PEBS 4
g ol]
n
S
‘;— 1¢ . il
i '_\;_‘ . e e o 3
0.01 L L L L L L L
0 2 4 6 8 10 12 14 16

Iteration

Figure 16: NVM writes, BC on 2%° vertices. Log scale.

to PEBS-based scanning. Once the page table scanning ap-
proach has migrated the hot parts of the graph to DRAM,
it has identical performance to the PEBS-based scanning
configuration. Nimble’s sequential scanning and migration
approach degrades performance by an average of 36% versus
that of HeMem. Both HeMem and Nimble outperform MM
by 58% and 16%, respectively, because they exploit locality.
When the entire graph structure is stored in NVM, perfor-
mance is 17X worse than any system and we omit this result
from the graph.

NVM device wear. To evaluate the effect of tiered memory
management on NVM device wear, we measure the number
of writes to NVM while running BC on a graph of 2%° ver-
tices. Results can be seen in Figure 16. MM makes a constant
number of writes to NVM throughout each iteration of the
BC algorithm. Only a few vertices are write-hot and HeMem-
PEBS identifies them quickly and migrates them to DRAM,
making 10X fewer NVM writes than MM on each iteration.
HeMem in page table scanning configuration makes three
orders of magnitude more NVM writes than with PEBS dur-
ing early iterations, while it is in the process of identifying
and migrating the write-hot set of the graph data structures
to DRAM. Once this has occurred, HeMem-PT Async and
PEBS make the same number of NVM writes.

6 RELATED WORK

Tiered NVM systems. HeteroOS [22] is an OS/VMM-level
heterogeneous memory manager. HeteroOS coordinates mem-
ory placement and migration with guest OSes. Nimble [39]
focuses on fast kernel huge page migration, extending Linux’
NUMA migration mechanisms. Thermostat [12] identifies
hot memory by page table sampling. These systems evalu-
ate emulated NVM. Unfortunately, emulation is unable to
capture the real characteristics of NVM performance [20]. In
contrast, HeMem is an application-level memory manager
that does not rely on virtualization techniques, programmer
hints, or page table sampling. HeMem is built for real NVM.

Libraries, like libmemkind [11] and PMDK [2], expose
NVM directly to applications. Programmers must determine
for themselves which data structures are best served from
DRAM or NVM and use specialized memory allocation in-
terfaces from these DRAM and NVM pools. Unimem [38],
X-Mem [17], and 2PP [37] are runtime systems that can auto-
matically determine the best data placement using a special
memory allocation API to identify important memory ob-
jects and an extra profiling step to collect various statistics,
such as memory access frequencies, access patterns, and
read/write ratios. In contrast, HeMem uses traditional mem-
ory allocation interfaces, like mmap, to automatically place
application data in DRAM and NVM without an extra profil-
ing step and requires no code changes to work with existing
applications.

KLOCs [23] allow kernel objects to be tiered along with
application objects. HeMem focuses on application memory
only and does not tier kernel objects. Kernel objects are
often small and ephemeral, so HeMem leaves them in DRAM.
OSim [31] discusses the problems that arise with memory
management algorithms that rely on periodic scanning of
the entire address space, such as access bit scanning for page
replacement or huge page compaction as memory capacity
increases. Ingens [26] improves upon Linux’s transparent
huge page management and attempts to preserve memory
contiguity in a fair and efficient manner. To reduce memory
access latency, Ingens operates in the background. HeMem
builds on this work and also operates asynchronously in the
background.

Remote memory systems. Disaggregated memory can be
used to provide additional main memory capacity. Similar to
NVM, disaggregated memory systems require that the most
frequently accessed application data remains in local mem-
ory. Software-defined far memory [27] considers warehouse-
scale computers, where remote memory constitutes a "far
memory" tier. Memory pages that have not been accessed
within a period of time are considered cold and are com-
pressed and swapped to remote memory. A learning-based
auto-tuner adapts the system parameters to more accurately

405

classify the cold memory pages based on application behav-
ior across the entire datacenter. HeMem also classifies hot
and cold memory pages based on access frequencies, but con-
siders the slow memory tier to be NVM rather than remote
memory. Additionally, the authors target servers that run a
large variety of smaller workloads whereas HeMem targets
systems where only a few applications that all require a large
amount of memory are running at a time.

AIFM [34] allows swapping of application-level memory
objects to far memory at object granularity, using a special-
ized API and runtime. HeMem migrates memory to and from
NVM at page rather than at object granularity.

7 CONCLUSION

HeMem is, to our knowledge, the first software-based tiered
memory management system designed from scratch for com-
mercially available NVM. HeMem dynamically manages
tiered memory without the CPU overhead of page access bit
tracking, associated TLB shootdowns, and memory copies,
but with advanced policy support for various memory access
and allocation patterns and priorities. On a system with Intel
Optane DC, HeMem outperforms hardware, Linux Nimble,
and X-Mem tiered memory management, providing up to
13% higher throughput, 16% lower latency, 16% lower tail-
latency under performance isolation, and up to 10X less NVM
wear when processing large datasets using a key-value store,
the Silo database, and the GAP graph processing benchmark.

Acknowledgments. For their insights and valuable com-
ments, we thank the anonymous reviewers and our shepherd,
Steven Hand. We acknowledge funding from NSF grants
CNS-2008884 and CNS-1719061, as well as from Huaweli.

REFERENCES

[1] 2010. TPC-C benchmark (Revision 5.11). http://www.tpc.org/tpcc/.

[2] 2017. Persistent Memory Programming. http://pmem.io/.

[3] 2019. Intel Optane DC Persistent Memory. http://www.intel.com/
optanedcpersistentmemory.

[4] 2019. userfaultfd: write protection
//patchwork.kernel.org/cover/11005675/.

[5] 2020. syscall_intercept. https://github.com/pmem/syscall_intercept.

[6] 2020. userfaultfd(2). http://man7.org/linux/man-pages/man2/
userfaultfd.2.html.

[7] 2021. Direct Access for files.
Documentation/filesystems/dax.txt.

[8] 2021. The Graph500 Benchmark. http://www.graph500.org/.

[9] 2021. GUPS (Giga Updates Per Second). http://icl.cs.utk.edu/
projectsfiles/hpcc/RandomAccess/.

[10] 2021. Memcached. http://www.memcached.org/.

[11] 2021. Memkind. https://memkind.github.io/memkind/.

[12] Neha Agarwal and Thomas F. Wenisch. 2017. Thermostat: Application-
Transparent Page Management for Two-Tiered Main Memory. In Pro-
ceedings of the Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’17). Association for Computing Machinery. https://doi.org/10.1145/
3037697.3037706

support. https:

https://www.kernel.org/doc/

=

—

—

[

—

[t

[l

[13] Berk Atikoglu, Yuehai Xu, Eitan Frachtenberg, Song Jiang, and Mike

Paleczny. 2012. Workload analysis of a large-scale key-value store.
In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE joint
international conference on Measurement and Modeling of Computer
Systems (SIGMETRICS ’12). Association for Computing Machinery.
http://doi.acm.org/10.1145/2254756.2254766

Scott Beamer, Krste Asanovic, and David Patterson. 2015. Locality
Exists in Graph Processing: Workload Characterization on an Ivy
Bridge Server. In Proceedings of the 2015 IEEE International Symposium
on Workload Characterization (IISWC ’15). IEEE Computer Society.
https://doi.org/10.1109/IISWC.2015.12

Scott Beamer, Krste Asanovic, and David A. Patterson. 2015. The
GAP Benchmark Suite. CoRR abs/1508.03619 (2015). arXiv:1508.03619
http://arxiv.org/abs/1508.03619

Shimin Chen, Anastasia Ailamaki, Manos Athanassoulis, Phillip B.
Gibbons, Ryan Johnson, Ippokratis Pandis, and Radu Stoica. 2011.
TPC-E vs. TPC-C: Characterizing the New TPC-E Benchmark via an
I/O Comparison Study. SIGMOD Rec. 39, 3 (Feb. 2011), 5-10. https:
//doi.org/10.1145/1942776.1942778

Subramanya R. Dulloor, Amitabha Roy, Zheguang Zhao, Narayanan
Sundaram, Nadathur Satish, Rajesh Sankaran, Jeff Jackson, and Karsten
Schwan. 2016. Data Tiering in Heterogeneous Memory Systems. In
Proceedings of the Eleventh European Conference on Computer Systems
(EuroSys ’16). Association for Computing Machinery. https://doi.org/
10.1145/2901318.2901344

Mel Gorman. 2010. Huge pages part 2: Interfaces. https://lwn.net/
Articles/375096/.

Qi Huang, Ken Birman, Robbert van Renesse, Wyatt Lloyd, Sanjeev
Kumar, and Harry C. Li. 2013. An Analysis of Facebook Photo Caching.
In Proceedings of the Twenty-Fourth ACM Symposium on Operating
Systems Principles (SOSP ’13). Association for Computing Machinery.
https://doi.org/10.1145/2517349.2522722

[20] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amir-

saman Memaripour, Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R.
Dulloor, Jishen Zhao, and Steven Swanson. 2019. Basic Performance
Measurements of the Intel Optane DC Persistent Memory Module.
https://arxiv.org/abs/1903.05714v2.

Svilen Kanev, Juan Pablo Darago, Kim Hazelwood, Parthasarathy
Ranganathan, Tipp Moseley, Gu-Yeon Wei, and David Brooks. 2015.
Profiling a Warehouse-Scale Computer. In Proceedings of the 42nd
Annual International Symposium on Computer Architecture (ISCA
’15). Association for Computing Machinery. https://doi.org/10.1145/
2749469.2750392

Sudarsun Kannan, Ada Gavrilovska, Vishal Gupta, and Karsten Schwan.
2017. HeteroOS: OS Design for Heterogeneous Memory Management
in Datacenter. In Proceedings of the 44th Annual International Sympo-
sium on Computer Architecture (ISCA °17). Association for Computing
Machinery. https://doi.org/10.1145/3079856.3080245

Sudarsun Kannan, Yujie Ren, and Abhishek Bhattacharjee. 2021.
KLOCs: Kernel-Level Object Contexts for Heterogeneous Memory
Systems. In Proceedings of the 26th ACM International Conference
on Architectural Support for Programming Languages and Operat-
ing Systems (ASPLOS ’21). Association for Computing Machinery.
https://doi.org/10.1145/3445814.3446745

Antoine Kaufmann, Simon Peter, Naveen Kr. Sharma, Thomas An-
derson, and Arvind Krishnamurthy. 2016. High Performance Packet
Processing with FlexNIC. In Proceedings of the Twenty-First Interna-
tional Conference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS ’16). Association for Computing Ma-
chinery. https://doi.org/10.1145/2872362.2872367

[25] Antoine Kaufmann, Tim Stamler, Simon Peter, Naveen Kr. Sharma,

Arvind Krishnamurthy, and Thomas Anderson. 2019. TAS: TCP Ac-
celeration as an OS Service. In Proceedings of the Fourteenth EuroSys
Conference 2019 (EuroSys ’19). Association for Computing Machinery.
https://doi.org/10.1145/3302424.3303985

Youngjin Kwon, Hangchen Yu, Simon Peter, Christopher J. Rossbach,
and Emmett Witchel. 2016. Coordinated and Efficient Huge Page
Management with Ingens. In Proceedings of the 12th USENLX Conference
on Operating Systems Design and Implementation (OSDI ’16). USENIX
Association. http://dl.acm.org/citation.cfm?id=3026877.3026931
Andres Lagar-Cavilla, Junwhan Ahn, Suleiman Souhlal, Neha Agarwal,
Radoslaw Burny, Shakeel Butt, Jichuan Chang, Ashwin Chaugule, Nan
Deng, Junaid Shahid, Greg Thelen, Kamil Adam Yurtsever, Yu Zhao,
and Parthasarathy Ranganathan. 2019. Software-Defined Far Memory
in Warehouse-Scale Computers. In Proceedings of the Twenty-Fourth
International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS ’19). Association for Computing
Machinery. https://doi.org/10.1145/3297858.3304053

Thai Le, Jonathan Stern, and Stephen Briscoe. 2017. Fast memcpy with
SPDK and Intel I/OAT DMA Engine. https://software.intel.com/en-
us/articles/fast-memcpy-using-spdk-and-ioat-dma-engine.

Mu Li, David G. Andersen, Jun Woo Park, Alexander J. Smola, Amr
Ahmed, Vanja Josifovski, James Long, Eugene J. Shekita, and Bor-
Yiing Su. 2014. Scaling Distributed Machine Learning with the Pa-
rameter Server. In Proceedings of the 11th USENIX Conference on
Operating Systems Design and Implementation (OSDI ’14). USENIX
Association. https://www.usenix.org/conference/osdil4/technical-
sessions/presentation/li_mu

Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael Kamin-
sky. 2014. MICA: A Holistic Approach to Fast in-Memory Key-
Value Storage. In Proceedings of the 11th USENIX Conference on Net-
worked Systems Design and Implementation (NSDI ’14). USENIX Associ-
ation. https://www.usenix.org/conference/nsdil4/technical-sessions/
presentation/lim

Mark Mansi and Michael M. Swift. 2020. OSim: Preparing System Soft-
ware for a World with Terabyte-Scale Memories. In Proceedings of the
Twenty-Fifth International Conference on Architectural Support for Pro-
gramming Languages and Operating Systems (ASPLOS °20). Association
for Computing Machinery. https://doi.org/10.1145/3373376.3378451
Jason Mars and Lingjia Tang. 2013. Whare-Map: Heterogeneity in
“Homogeneous” Warehouse-Scale Computers. In Proceedings of the
40th Annual International Symposium on Computer Architecture (ISCA
’13). Association for Computing Machinery. https://doi.org/10.1145/
2485922.2485975

Mendel Rosenblum and John K. Ousterhout. 1991. The Design and
Implementation of a Log-Structured File System. In Proceedings of the
Thirteenth ACM Symposium on Operating Systems Principles (SOSP
’91). Association for Computing Machinery. https://doi.org/10.1145/
121132.121137

Zhenyuan Ruan, Malte Schwarzkopf, Marcos K. Aguilera, and Adam
Belay. 2020. AIFM: High-Performance, Application-Integrated Far
Memory. In 14th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 20) (OSDI °20). USENIX Association. https:
/lwww .usenix.org/conference/osdi20/presentation/ruan

Yizhou Shan, Yutong Huang, Yilun Chen, and Yiying Zhang. 2018.
LegoOS: A Disseminated, Distributed OS for Hardware Resource Dis-
aggregation. In Proceedings of the 13th USENLX Conference on Operating
Systems Design and Implementation (OSDI ’18). USENIX Association.
https://www.usenix.org/conference/osdi18/presentation/shan

(36]

(37]

Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. 2013. Speedy Transactions in Multicore In-Memory
Databases. In Proceedings of the Twenty-Fourth ACM Symposium on
Operating Systems Principles (SOSP ’13). Association for Computing
Machinery. https://doi.org/10.1145/2517349.2522713

Wei Wei, Dejun Jiang, Sally A. McKee, Jin Xiong, and Mingyu Chen.
2015. Exploiting Program Semantics to Place Data in Hybrid Memory.
In Proceedings of the 2015 International Conference on Parallel Archi-
tecture and Compilation (PACT) (PACT ’15). IEEE Computer Society.
https://doi.org/10.1109/PACT.2015.10

407

[38] Kai Wu, Yingchao Huang, and Dong Li. 2017. Unimem: Runtime

Data Managementon Non-Volatile Memory-Based Heterogeneous
Main Memory. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis (SC
’17). Association for Computing Machinery. https://doi.org/10.1145/
3126908.3126923

[39] Zi Yan, Daniel Lustig, David Nellans, and Abhishek Bhattacharjee.

2019. Nimble Page Management for Tiered Memory Systems. In Pro-
ceedings of the Twenty-Fourth International Conference on Architectural
Support for Programming Languages and Operating Systems (ASPLOS
’19). Association for Computing Machinery. https://doi.org/10.1145/
3297858.3304024

