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Abstract

Volcanic eruptions impact climate, subtly and profoundly. The size of an eruption is only
loosely correlated with the severity of its climate effects, which can include changes in
surface temperature, ozone levels, stratospheric dynamics, precipitation, and ocean
circulation. We review the processes—in magma chambers, eruption columns, and the
oceans, biosphere and atmosphere—that mediate the climate response to an eruption. A
complex relationship between eruption size, style, duration, and the subsequent severity
of the climate response emerges. We advocate for a new, consistent metric, the Volcano-
Climate Index (VCI), to categorise climate effects of eruptions independent of eruption
properties and spanning the full range of volcanic activity, from brief explosive eruptions
to long-lasting flood basalts. A consistent metric for categorising the climate effects of
eruptions that differ in size, style, and duration is critical for establishing the relationship
between the severity and the frequency of volcanic climate effects, aiding hazard
assessments, and furthering understanding of volcanic impacts on climate on timescales
of years to millions of years.
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1. Introduction

Volcanic eruptions are a major driver of climate variability (e.g., Hegerl et al 2003,
Humphreys 1913, Schurer et al 2013) and volcanism has played an important role in the
short and long-term evolution of the atmosphere, climate, and habitability through
outgassing of sulfur, carbon dioxide and water from Earth’s interior (e.g., Kasting &
Catling 2003). Volcanic eruptions differ in size, duration, and style, which results in
differences in the severity of the climate response. Records of the size-frequency
distribution of explosive eruptions enable estimation of the likelihood of a given eruption
during a time period of interest, and are thus a powerful tool for planning for volcanic
hazards (e.g., Papale and Marzocchi, 2019). Similarly, records of the frequency
distribution of different levels of volcanically-driven climate disruption would lay the
foundation for understanding the risks related to volcanic effects on climate, and even
how these are expected to change in a warming world (Aubry et al., 2021). Establishing
such a volcano-climate severity-frequency distribution cannot simply be based on
eruption scale (i.e. size and duration) because other factors including eruption style,
injection height, magma composition, eruption magnitude, and emission flux, as well as
atmospheric processes and atmospheric background conditions affect the resulting
climate response in a complex manner.

There are established metrics that characterise the size or magnitude of an
eruption such as the Volcanic Explosivity Index (VEI; Newhall & Self 1982) or the
magnitude scale (Pyle 2015). In addition there are ice core-based indices that
characterise the atmospheric sulfur loading (e.g., Gao et al 2008). These metrics were
not intended to characterize the climate response to a volcanic eruption but rather the
VEI is a geological index of explosiveness, and the ice core-based indices characterise
the volcanic forcing (or initial perturbation) of the climate system. Surface temperature
observations following historic eruptions clearly show that there often is no systematic
correlation between eruption size as represented by the VEI or eruption magnitude and
the severity of the climate response (e.g., Newhall & Self 1982, Rampino & Self 1982,
Rampino & Self 1984a, Self et al 1981, Self et al 1993). Indeed, as Figure 1 illustrates,
eruption size does not necessarily correlate with either the amount of SO. emitted by
individual eruptions (Figure 1a) or the severity of the climate response (Figures 1b and
1c). For example, despite being highly explosive, the VEI 5 Mt. St. Helens eruption in
1980 released a relatively small mass of sulfur and caused negligible effects on global
climate (Gerlach & McGee 1994). In addition, successively larger SO2 emissions do not
result in proportionally larger surface temperature changes (Figure 1c), mainly as a result
of atmospheric processes limiting climate response in a non-linear manner with respect
to the mass of SOz emitted (Pinto et al., 1989) as has been demonstrated, for example,
for the 1257 Samalas eruption with a VEI of 7 (Timmreck et al 2009, Wade et al 2020).
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In this review we synthesize understanding of processes—in magma chambers,
eruption columns, and the oceans, biosphere and atmosphere—that mediate the climate
response to an eruption. Motivated by increasing recognition of the diversity of volcanic
activity, and the complex interactions between the style and scale of volcanic eruptions
and climate consequences, we look beyond the paradigm of relatively large explosive
eruptions such as 1991 Mt. Pinatubo (as reviewed in Robock 2000). While the climate
consequences of sulfate aerosols are commonly considered, different types of volcanic
activity can release different mixtures of gases, and gases can interact, for example
through heterogeneous chemistry on aerosol or ash particle surfaces. We discuss
halogen emissions and implications for ozone. We show how volcanic CO: is irrelevant
for climate on short (days to months) timescales and for explosive eruptions but becomes
highly climate-relevant for Large Igneous Province (LIP) eruptions — emphasizing the
need to adapt expectations for the climate consequences of volcanic eruptions in the
context of eruption style and duration. We advocate for expanded inclusion of data
tracking geochemistry, degassing, and climatic changes alongside data tracking of
eruption size and style in databases of volcanic eruptions (e.g., Global Volcanism
Program). Although the size of eruptions bears a strong relationship to their frequency
(Figure 2), databases tracking eruption magnitude or VEI cannot be straightforwardly
used to quantify the frequency of specific levels of climate effects from volcanic eruptions
(Newhall & Self 1982) (see also Figure 1). We illustrate a path toward classifying the
climate effects of volcanic eruptions by formulating a Volcanic Climate Index (VCI) to
categorise the climate consequences of volcanic eruptions. The VCI is determined after
an eruption and without dependence on eruption parameters, and is thus complementary
to existing metrics of eruption size, explosivity, or sulfur emissions. It can be applied to
categorize the climate response to eruptions spanning scales and styles, from explosive
eruptions to basaltic fissure eruptions to LIP episodes. Categorising the climate effects of
volcanic eruptions creates a basis for establishing a volcano-climate severity-frequency
distribution, analogous to the severity-frequency distribution of other geological hazards
such as earthquakes. Such information, which is currently non-existent for volcanic
effects on climate, can aid planning for and mitigation of societal impacts of volcanic
eruptions.

2. Eruption styles, magnitudes and recurrence rates

2.1 Beyond the paradigm of 1991 Mt. Pinatubo

Observational understanding of volcanism is biased towards eruptions that are sufficiently
large to leave a mark in contemporary records but sufficiently small (and therefore

frequent) that they have occurred within the recent past. The 1982 El Chichén and 1991
Mt. Pinatubo eruptions resulted in a wealth of direct measurements (e.g., Rampino & Self
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1984a, Self et al 1993) and subsequent research efforts focused mainly on the radiative,
dynamical and chemical effects of sulfate aerosol particles formed after these and other
large magnitude explosive eruptions (for a review see Robock 2000). For instance,
following the 1991 Mt. Pinatubo eruption, stratospheric sulfate aerosol particle mass and
number concentrations increased above stratospheric background levels lasting until
around 1999. Measurements following the eruption suggest a peak global mean near-
surface temperature reduction of ~0.4-0.5 K in mid-1992 (e.g., McCormick et al 1995,
Soden et al 2002, Thompson et al 2009) and a warming of up to 3.5 K in the tropical
stratosphere (Labitzke 1994, Labitzke & McCormick 1992) although the surface
temperature response was likely influenced by the strong El Nifio event in 1991-1994
(e.g., Lehner et al 2016) and other dynamical feedbacks (Soden et al 2002).

Volcanic activity on Earth is highly diverse, differing in size, magma composition,
crystal contents, storage depth, volatile budget, the type of wall-rock, ascent rate,
explosivity, and duration of activity. Understanding these differences among volcanic
eruptions is central to understanding how the potential climate effects vary from eruption
to eruption, and for eruptions that differ strongly from the style exemplified by the 1991
eruption of Mt. Pinatubo.

The style of volcanic eruptions ranges from effusive lava-producing and weakly
explosive Strombolian-style eruptions to high-discharge basaltic fire fountaining and
explosive sub-Plinian to Plinian eruptions. Eruption style depends broadly on mass
eruption rate, degassing regime, and viscosity (e.g., Cassidy et al 2018, Gonnermann &
Manga 2013), and is thus related to eruption size, magma composition, volatile contents,
and crystallinity. Magma ascent rate is thought to play a key role in explosivity (e.g.,
Gonnermann & Manga, 2007; Cassidy et al., 2018). Rapid magma ascent—especially for
viscous silicic magmas—favors closed system degassing, in which gases are unable to
efficiently decouple and escape from the magma, driving explosive fragmentation
(Cassidy et al., 2018). Basaltic fissure eruptions—which can span months to years with
multiple phases of eruptive activity—resist classification with the VEI scale, but can cause
substantial climate impacts. The 1783-1784 eruption of Laki in Iceland produced >1 km
high basaltic fire fountains with ~10 distinct episodes of stratospheric sulfur injection
totaling ~100 Tg (1 Tg = 10"? g) SOz (Thordarson & Self 2003), causing up to ~1 K cooling
of surface temperatures in the northern hemisphere (Zambri et al 2019) despite its
classification as a VEI 4 eruption.

The role of small-magnitude explosive eruptions in increasing the opacity of the
stratosphere and thus affecting climate is widely recognized (e.g., Miles et al 2004, Pyle
et al 1996, Rampino & Self 1984b, Santer et al 2015, Schmidt et al 2018, Solomon et al
2011, Vernier et al 2011). Based on contemporary measurements and climate model
simulations, it is thought that global-scale surface temperature effects from a single
explosive eruption are detectable for SO: injections of at least 5 Tg of SO: into the
stratosphere. Analysis of satellite data for the period 1979-2014 suggest that injections
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as low as ~0.1 Tg of SO2 stemming from small-magnitude explosive eruptions result in
detectable changes in stratospheric aerosol levels (e.g., Ridley et al 2014, Solomon et al
2011, Vernier et al 2011). Eruptions emitting in excess of ~1 Tg SO are discernable in
measurements of tropospheric (Santer et al 2014) and stratospheric temperatures
(Stocker et al 2019) amongst other metrics of climate change (Santer et al 2015).

Weakly explosive, continuously degassing or effusive eruptions, emitting gas
and volatile species mainly into the lowermost troposphere, have for a long time received
very limited attention in the climate science community because of the short lifetime (i.e.
days to weeks) of sulfur species and aerosols in the troposphere. There is now, however,
a clear recognition of the role of these eruptions in cooling Earth’s climate via the
modification of cloud microphysical properties in low-level liquid water clouds (i.e.
aerosol-cloud interactions or aerosol indirect effects) as well as direct interactions of
particles with radiation (i.e. aerosol-radiation interactions or aerosol direct effects)
(Ebmeier et al 2014, Gassé 2008, Gettelman et al 2015, Graf et al 1997, Malavelle et al
2017, Schmidt et al 2012, Schmidt et al 2010, Toll et al 2017, Yuan et al 2011).

Phreatomagmatic eruptions involve explosivity driven by interactions between
magma and external water. The abundant water present in phreatomagmatic plumes may
play an important role on both column stability (Van Eaton et al 2012) and scavenging of
sulfur and halogens (Textor et al 2003).

Earth’s deep past has witnessed volcanism on scales far beyond that
encompassed by the historical record. The largest explosive eruptions (greater than ~500
km?3 magma), known as supereruptions (e.g., Self 2006, Sparks et al 2005), can engulf
the planet with sulfate aerosols. While sulfur emissions from the 74 ka Toba eruption
(~5300 km?® dense rock equivalent volume) are highly uncertain (Costa et al 2014, Crick
et al 2021, Oppenheimer 2002), climate model simulations predict maximum global mean
cooling of up to 4 K (Black et al 2021, Timmreck et al 2010, Timmreck et al 2012).

By contrast with explosive eruptions lasting days to weeks, large igneous
province magmatism emplaces enormous volumes of ‘flood basalt’ lavas across
multiple eruptive episodes, cumulatively spanning 105-108 years (e.g., Burgess & Bowring
2015, Kasbohm & Schoene 2018, Sprain et al 2019) with total volumes encompassing
millions of km® of magma erupted and intruded into the lithosphere. Through Earth’s
history, multiple instances of LIP magmatism have temporally coincided with periods of
profound environmental changes including mass extinctions (e.g., Bond & Wignall 2014,
Clapham & Renne 2019, Jones et al 2016b, Wignall 2001). Prominent examples include
the ~252 Ma Siberian Traps, which coincided with the end-Permian mass extinction
(Burgess and Bowring, 2015) and the ~201 Ma Central Atlantic Magmatic Province, which
coincided with the end-Triassic mass extinction (Blackburn et al., 2013), and the 66 Ma
Deccan Traps, which overlapped in time with both the Chicxulub impact and the end-
Cretaceous mass extinction (Sprain et al 2019) but is increasingly thought to have played
a subordinate role to the Chixculub event in driving end-Cretaceous climate shifts (Hull et
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al 2020). Understanding and quantifying the mechanisms by which LIPs could have
triggered mass extinctions is a major, multi-disciplinary challenge for the geoscience
community (e.g., ERUPT 2017).

2.2 Characterizing the size-distribution of volcanic activity

The distribution of eruption sizes in time is known as the size-frequency
distribution. In general, smaller eruptions occur more frequently (Figure 2). Explosive
eruptions involve violent ejection of gas, molten fragments, and at times external water
into the atmosphere. The mass eruption rate (also known as eruption intensity, Carey &
Sigurdsson 1989) during climactic phases determines energy available for transfer to
eruption columns via explosive activity. In turn, this determines the altitude that eruption
columns can reach (e.g., Glaze et al 2017, Mastin 2014, Woods 1988). Depending on
latitude and season, the injection altitude influences the removal rate of volcanic species
and their climate effects (see Section 4).

VEI (Newhall & Self 1982) is a semi-quantitative ordinal metric that combines
information about ejecta mass, plume height, and style of eruption to assign a numerical
value between 0 (non-explosive) and 8 (cataclysmic) to each eruption. The size of
volcanic eruptions can also be quantified as a magnitude, defined as M= logso(erupted
mass in kg) -7 (Pyle 2015). While in principle a measure such as magnitude enables
quantification of a broader range of eruptions, including effusive eruptions, for historical
reasons and because mass can be challenging to determine for pre-historic eruptions,
more data are available classifying recent explosive eruptions by VEI (e.g., Global
Volcanism Program).

Metrics of size and explosivity break down in the context of Large Igneous
Provinces, which recur at intervals of ~10” years on average and include extremely
voluminous outpourings of lava known as flood basalts that can have individual eruption
volumes of 103-10* km?3 (e.g., Chenet et al 2008, Thordarson & Self 1998).

Both small and large eruptions suffer from preservation biases—small eruptions
because they are easier to miss and also easier to efface through erosion, and large
eruptions because of their rarity through geologic time. LIPs have been identified from the
Archean through the Cenozoic (Ernst et al 2021), but reconstructing original volume is
challenging for older LIPs. Understanding the size-frequency distribution of volcanic
activity across scales—in particular for small and very large eruptions—thus remains a
major hurdle for assessing their relative contributions to emissions and climate forcing.

3. Magmatic controls on volcanic emissions
Although current metrics for eruption size focus on the mass of magma and the

explosivity of the eruption, the critical scale for volcanic forcing of climate is the emission
budget. Gas emissions are proportional to magma mass, but also depend on the volatile
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content of the bulk magma, solubility (which depends on magma chemistry), the mass of
exsolved vapor, and the extent of degassing. Consequently, the largest eruptions do not
necessarily deliver the highest emissions (Crick et al., 2021); rather, gas emission rates
display a complex relationship with eruption magnitude. The scale of the forcing further
depends on where in the atmosphere the gas species are injected: this is less important
for COo, but is optimized by injection into the upper troposphere or stratosphere for SO-
and halogens. In this section we focus on processes within the magmatic system that
modulate gas emissions.

3.1. Scale of magmatic systems and initial volatile budgets

The volatiles carried by magmas depend on initial mantle melting and the
subsequent history of crystallization—which concentrates volatiles in the melt—and
assimilation of any surrounding magmas or rocks (with particular sensitivity to volatile-
rich rocks such as carbonates). These factors depend on tectonic setting. They also
determine the major element chemical composition of the magma, which determines
whether a magma is classified as basaltic or rhyolitic, for example. In turn, volatiles,
crystals, and the chemical composition of the magma, along with the magma
decompression rate and the nature of the subvolcanic plumbing system, influence the
explosivity of eruptions. Thus, volatiles, magma type, eruptive style, and tectonic setting
are all linked. Intensive effort has been devoted to the study of volatiles in magmas
because of their importance for magma rheology, crystallization, ascent, and eruptive
style in addition to climate effects (e.g., Gonnermann & Manga 2007, Wallace et al 2021).

Information about volatiles comes from petrology (experiments, modeling, and
melt inclusions, Wallace et al 2021), measurements of gas plumes at volcanoes (e.g.,
Aiuppa et al 2007, Allard et al 2000, Edmonds et al 2018, llyinskaya et al 2017, Liu et al
2020), ice core records (Zielinski et al., 1996; Crick et al., 2021), and satellite retrievals
(Carn 2016, Carn et al 2016). These approaches show that the gases released by
volcanoes of different types and in different locations can vary by orders of magnitude, as
exemplified by the CO2/SO: ratio measured in eruptive or quiescent plumes (Aiuppa et al
2021) and the HCI/SOz ratios in melt inclusions (Table 1; Figure 3). We see a major need
to expand datasets that combine ground- and satellite-based and petrologic constraints
to understand gas emissions across the range of volcanic activity.

3.2 Volatile exsolution and the ‘excess’ degassing problem

Degassing is the exsolution of volatile species from the melt to form vapor or fluid
bubbles. If volatiles do not degas, they will not reach the atmosphere. The degassing
process depends on whether volatiles are saturated in a melt, the rate of decompression
and the sensitivity of solubility to changes in pressure, and kinetic effects on nucleation
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and diffusion-driven bubble growth (e.g., Mangan & Sisson 2000). The principal volatile
species listed in order of decreasing solubility and therefore typical degassing efficiency
include CO2, H20, SO2, HCI, and HF. The solubilities of CO2 and H20 are strongly
pressure-dependent. The volatility of sulfur species, in particular, depends on the valence
state of sulfur (either 6+ or 2-) and therefore on the redox state of the magma (Gaillard et
al 2015, Scaillet et al 1998, Wallace & Edmonds 2011). Arc magmas tend to be more
oxidizing than mid-ocean ridge basalts, and as a consequence can dissolve up to an order
of magnitude more sulfur (Jugo 2009). Chlorine solubility in magmas depends strongly
on magma composition, with lower chlorine solubility in silicic magmas (Webster et al
1999). Submarine basalts degas most of their CO2, some H-20, and limited SO- (Dixon et
al 1991). Gases released by magmas intruded or stored in the middle to lower crust are
typically very CO2-rich (lacovino 2015).

Once exsolved, volatiles are mobile and can decouple from the magma from which
they originated and partition into a co-existing vapor phase. Excess volatiles released
from a co-existing vapor phase need not correlate with erupted magma volume, and
therefore represent a major complication for relating the scale of volcanism to emissions
and the expected climate response. Comparison of satellite-based measurements of
volcanic sulfur emissions with estimates of dissolved sulfur from melt inclusions reveals
that volcanoes frequently release more sulfur than expected from dissolved melt
concentrations (e.g., Shinohara 2008, Wallace 2001, Wallace & Edmonds 2011). This
excess sulfur is thought to result from recharging mafic magmas at depth that transfer
sulfur and other species into a co-existing fluid or vapor phase that can contribute to
eruptive gas release even if the majority of the mafic magma itself does not erupt
(Christopher et al 2015, Wallace & Edmonds 2011). Crystallization in the magma
reservoir can also drive volatile exsolution, prompting sulfur to partition strongly into the
exsolved volatile phase (Scaillet et al., 1998; Vidal et al., 2016). Excess sulfur can in many
cases form the dominant proportion of total volcanic sulfur release-- corresponding to a
sulfur-rich exsolved phase that comprises 1-5 wt% of the total mass of the magma
reservoir (Edmonds and Woods, 2018)—but is difficult to quantify with traditional
petrologic methods. As an example, petrologic estimates of sulfur yield from the Younger
Toba Tuff span two orders of magnitude (Oppenheimer 2002), because dissolved sulfur
in the rhyolitic melt is very low (Chesner & Luhr 2010) and the presence and extent of
exsolved volatiles are highly uncertain (Scaillet et al 1998).

In parallel with the excess sulfur problem, excess carbon is likely a near-universal
feature of volcanic activity, because CO> saturation can occur relatively deep in the crust
owing to strong decreases in CO: solubility with decreasing pressure, enabling
decoupling and transfer of CO2 from magmas that do not erupt. Indeed, high CO:>
concentrations can drive melt volatile saturation and development of a co-existing fluid
into which sulfur also partitions (Pistone et al 2021), implying potential coupling of excess
volatiles. The question of excess carbon has received less attention than that of excess
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sulfur because CO: is challenging to detect by satellite (Burton et al 2013), much of the
exsolved CO2 may be released via diffuse degassing during quiescent intervals (Werner
et al 2019), and CO: from individual explosive eruptions carries negligible climate
consequences. For LIP-scale eruptions, quantifying the contribution of carbon exsolved
and transferred from deeper intrusive magmas represents a critical question for
understanding observed carbon cycle perturbations (Armstrong-McKay et al 2014,
Hernandez Nava et al 2021).

Table 1 lists degassing efficiencies (the proportion of the initially dissolved amount
of a given volatile that exsolves) for a range of magmatic systems and volatiles. These
data suggest that although degassing efficiency is related to magma composition and
eruption style, it does not vary systematically based on the size of the volcanic eruption.
In other words, the fraction of initially dissolved sulfur released during the VEI 3 eruption
of Anatahan is similar to the fraction of initial sulfur released during the VEI 4 eruption of
Nabro (Carn et al 2016, Donovan et al 2017), although the latter released three times
more sulfur. Because these melt inclusion data do not account for volatile release from
an exsolved phase, they represent a lower bound on potential sulfur release. Volatiles
pass through multiple stages—from dissolution in the melt, to exsolution, to gases in an
eruptive plume—en route to the atmosphere. Datasets tracking volatiles through these
stages could shed light on both the role of excess volatiles and the proportion of volatiles
that pass through each stage of the eruptive gauntlet to reach the atmosphere.

4. Processes that modulate the climate response to volcanic emissions

In this section we discuss the processes—from those within the eruption column
to atmospheric chemistry to dynamic interactions within the atmosphere, ocean,
biosphere, and with background climate—that modulate the climate response to volcanic
emissions. Processes in the eruption column in particular depend on eruption style as
discussed in Section 3. The interdependencies of magmatic volatiles, eruption style,
efficiency and altitude of gas delivery to the atmosphere, and atmospheric processes
across multiple timescales (Figures 3 to 5) combine to explain the eventual break-down
of the relationship between eruption size and the severity of the climate response.

4.1. Eruption column processes and scavenging of climate-relevant gases

Eruption columns are buoyant mixtures of hot gases and particles that provide
express pathways capable of transporting volcanic emissions to the troposphere or
stratosphere (Sparks et al 1997). Chemical and physical processes as well as thermal
conditions within eruption columns influence which species reach the stratosphere, and
therefore constitute a key area of research for understanding the consequences of

10
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volcanic halogen (Cl, Br, and I) and sulfur release on climate and stratospheric ozone
chemistry.

Owing to its low solubility in liquid water, scavenging of sulfur gas species in eruption
columns is insignificant (Tabazadeh & Turco 1993) unless, as discussed in Section 4.3,
volcanic ash is co-emitted (Ayris et al 2013, Delmelle et al 2018, Rose 1977, Zhu et al
2020), or ice particles are formed within the eruption column (Textor et al 2003). Work by
Textor et al (2003) suggests that growing ice particles could remove up to 30% of the SOz
mass, however, uncertainties are large.

Halogen solubility is about four orders of magnitude greater than that of SO., and
therefore halogens such as HCI are effectively scavenged when enough liquid water is
present in the eruption column, which in turn depends on eruption and atmospheric
background conditions. While early work by Tabazadeh and Turco (1993) suggested that
less than 1% of volcanic HCI reaches the stratosphere, Textor et al (2003) estimated a
somewhat lower scavenging efficiency of ~50-90%, with HCI removal dominated by
incorporation into ice particles. Textor et al (2003) concluded that >25% of initially
degassed volcanic HCI could reach the stratosphere in a sufficiently high eruption plume,
along with ~80% of SO, emissions. Climate modeling studies show that if eruptions such
as the Minoan eruption of Santorini or the eruption of Samalas in 1257—both large VEI
~7 but not super-sized eruptions—delivered even ~1-2% of their total halogen emissions
to the stratosphere, strong halogen-catalyzed ozone depletion would be expected
(Cadoux et al 2015, Wade et al 2020).

Observed ozone decreases after the 1991 Pinatubo eruption were primarily attributed
to heterogeneous reactions on aerosol surfaces involving anthropogenic rather than
volcanic halogens (e.g, Mankin et al 1992, McCormick et al 1995, Solomon 1999, Wilka
et al 2018). A 40% increase in column HCI in the region of the El Chichén eruption cloud
(Mankin & Coffey 1984) was linked with the unusual circumstance of evaporite
assimilation into the magma. More recently, the microwave limb sounder instrument on
the Aura satellite has demonstrated the capacity to track volcanic HCI exceeding 0.2-0.4
ppbv above 100 hPa (Carn et al 2016), revealing significant stratospheric injection of HCI
(Table 1). A review of melt inclusion, ground-based, and satellite-based volcanic HCI/SO2
ratios (Figure 4, Table 1) shows a reduction in plume HCI/SO: of one to several orders of
magnitude relative to melt inclusions and ground-based measurements, suggesting that
HCI scavenging efficiency remains an open question. Ground-based and satellite
detections of BrO in volcanic plumes (Bobrowski et al 2003, Oppenheimer et al 2006, Rix
et al 2012, Theys et al 2009) further underscore the need to better understand halogen
chemistry within plumes as well as consequences of trace halogens for stratospheric
ozone chemistry. Bromine is ~2 orders of magnitude less abundant in magmas than HCI
(Bureau et al 2000), but BrO is less vulnerable to scavenging from volcanic plumes than
HCI and is ~60x more effective at destroying stratospheric ozone. A sparse but growing
body of work provides data on bromine budgets in magmas (e.g., Cadoux et al 2015,

11
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Kutterolf et al 2013, Vidal et al 2016). Using an aerosol-climate model, Staunton-Sykes
et al (2021) show that co-emission of volcanic halogens and sulfur from large explosive
volcanic eruptions leads to an increase in the magnitude and duration of the volcanic
forcing when compared to just sulfur emissions in the contemporary atmosphere.

In the case of LIPs, some LIP magmas pass through sedimentary basins that
contain hydrocarbon and evaporite deposits, creating the potential for large-scale
generation of halogen-bearing gases such as CH3ClI (Svensen et al 2009) that can bypass
eruption columns entirely. The lifetime of CH3Cl released in the troposphere (2-3 years)
is sufficiently long that CH3Cl mixes into the stratosphere, with the potential for strong
ozone depletion from thermogenic degassing even without high-altitude volcanic eruption
columns (Black et al 2014). Ozone depletion due to magmatic and thermogenic halogens
from the Siberian Traps LIP is one proposed mechanism to contribute to the end-Permian
mass extinction (Beerling et al 2007, Benca et al 2018, Black et al 2014).

Results from modeling studies of past events and advances in ground-based and
satellite detection suggest the consequences of volcanic halogen degassing for
stratospheric ozone merit further investigation, especially for large or unusually halogen-
rich eruptions. How HCI and BrO injection efficiency into the stratosphere vary with
eruption size and style remains an open and important question.

4.2 Chemical and microphysical processes impacting sulfate aerosols

Here we focus on the chemical and microphysical processes that shape the
climate effects of volcanic sulfate aerosols for eruptions of different sizes and styles in the
absence of co-emitted water and ash. In Section 4.3 we discuss the interplay with volcanic
ash and H20 emissions.

In the relatively dry and cloud-free stratosphere, gas-phase volcanic SO: is
oxidized by reaction with hydroxyl radicals (OH-) and water (H20) to form sulfuric acid
vapour (H2S0g4) via reactions R1 to R3 on a timescale of weeks (Read et al 1993):

SO +OH+M — HSO; + M (R1)
HSO3 + O2 —» SO3 + HO> (R2)
SOz + H O+ M — H2SO4 + M (R3)

In the humid and cloudy troposphere, partitioning of volcanic SO: into the aqueous phase
can dominate over the gas-phase oxidation pathway via OH in particular for emissions
into the boundary layer and lowermost free troposphere. Aqueous phase oxidation of SO2
with dissolved hydrogen peroxide (H202) or ozone (Os) leads to the formation of
tropospheric sulfate aerosols on a timescale of days to weeks (Stevenson et al 2003).
Oxidation chemistry contributes to a non-linear relationship between the amount
of SO2 emitted and the resulting surface temperature change (Figure 1). In model
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simulations, OH can become depleted when SOz concentrations are high (Bekki 1995),
which lengthens the time it takes to convert SO to sulfate aerosol, affecting aerosol
growth and thus the severity and duration of the climate response. Pinto et al (1989)
suggested OH depletion becomes relevant for SO2 emissions in excess of 10 Tg of SO,
but further work is needed to test the role of this mechanism for a range of emissions
rates and durations. As discussed in Sections 4.2.1 and 4.3 changes in stratospheric
water vapour concentrations could in theory replenish OH concentrations (LeGrande et
al 2016).

Once formed, H>SO4 rapidly condenses even at low partial pressures in the
stratosphere, leading to changes in particle size and increases in particle number
concentrations after volcanic eruptions (Figure 5) via the following processes: 1)
nucleation (or new particle formation), 2) condensation and evaporation, 3)
coagulation, 4) removal, and 5) transport. Stratospheric volcanic sulfate aerosols are
commonly assumed to be composed of around 75% H2SO04 and 25% H>O with radii
between 0.05 ym and 1.0 ym (Kremser et al 2016 for reviews, Thomason et al 2006)
although to date there are relatively few composition measurements after volcanic
eruptions and the exact composition will depend on the background composition of the
atmosphere and the age of the aerosol cloud (e.g., Andersson et al 2013).

Volcanic sulfate aerosol is extremely efficient at scattering incoming solar
(shortwave) radiation (i.e. via aerosol-radiation interactions) because of the small particle
size, which is similar to the wavelength of visible light. Vivid twilight colours, milky skies
or, on occasion, the appearance of a green or blue moon and sun (Wullenweber et al
2021) are all evidence for interaction of volcanic aerosol with solar radiation. Post-
volcanic surface cooling is a result of the enhanced scattering of solar radiation and on
land typically lasts for as long as the aerosol resides in the atmosphere but it takes
decades to centuries for the oceans to reach equilibrium (Section 4.3). Sulfate aerosols
also absorb solar radiation in the near-infrared and outgoing terrestrial (longwave)
radiation, which causes stratospheric warming. Aerosol-cloud interactions are much more
significant for eruptions that emit SO- into the troposphere than for purely stratospheric
eruptions for which aerosol-radiation interactions dominate (e.g., Schmidt et al 2016).
Sedimentation and transport of stratospheric aerosol into the troposphere likely result in
some aerosol-cloud interactions (Schmidt et al 2018).

Aside from the mass of SOz emitted, it is the sulfate aerosol size and altitude that
have a critical bearing on both the efficiency at which volcanic aerosols scatter incoming
solar (shortwave) radiation and aerosol removal timescales (e.g., Marshall et al 2019).
Enhanced coagulation of numerous small particles (formed via nucleation) after an
eruption results in rapid shifts in the particle size distribution towards very large sizes.
Large sulfate aerosol particles limit the climate response in a non-linear way because 1)
they are removed rapidly because particle fall speed is approximately proportional to
particle radius squared, and 2) they have a reduced light-scattering efficiency because in
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the visible spectrum the solar radiative forcing per unit mass is greatest for effective radii
of around 0.20 ym with a marked drop in scattering efficiency for smaller and larger sizes.
For example, Timmreck et al (2009) used a climate model to simulate an explosive
eruption the size of 1257 Mt. Samalas and demonstrated that for the same sulfate aerosol
burden the global-mean surface temperature response differed by 1.4 °C for variations in
effective aerosol radius between 0.2 ym and 1.3 pm.

The complex dependencies of the chemical and microphysical processes affecting
sulfate aerosol formation, growth and removal underscore how two eruptions with
essentially the same eruption parameters could affect climate very differently (Figure 5
and also discussed further in Section 6). Background atmospheric conditions, eruption
season, latitude, injection height and eruption style further complicate the picture (e.g.,
Aubry et al 2016, Marshall et al 2019, Toohey et al 2011). Eruption season is particularly
important for high-latitude eruptions because of varying insolation and its effects on
oxidation chemistry. For example, Schmidt et al (2010) showed that a hypothetical Laki-
type eruption occurring during northern hemisphere winter produces around 20% less
volcanic sulfate aerosol than a summertime eruption of the same magnitude (mainly as a
result of slower photochemistry and subsequent changes to microphysical processing of
the sulfate aerosol during the wintertime eruption). Larger sulfur emissions during brief
explosive eruptions can favor growth of larger aerosol particles (Figure 5), limiting the
climate effects of successively larger SO2 emissions (Pinto et al 1989). Figures 1b and
1c illustrate this point by applying SO2 emissions estimates shown in Figure 1a and as
derived from ice-core sulfate deposition records (Toohey & Sigl 2017) and satellite
retrievals (Carn et al 2016) in an aerosol forcing emulator (Aubry et al 2020) and a simple
climate model (Smith et al 2018) assuming brief equatorial injections into 25 km altitude.
Under these assumptions a decrease in the peak global-mean cooling per Tg of SOz
emitted becomes evident for eruptions emitting more than 40 Tg of SO (Figure 1c). While
illustrative for tropical eruptions with SOz injection altitudes of 25 km and calculated using
relatively simple models, the cooling efficiency for eruptions emitting up to 40 Tg of SO2
from Figure 1c is in close agreement with that reported in Toohey et al (2019) for historic
tropical eruptions (that had different injection altitudes and latitudes).

Figure 5 illustrates that the self-limiting chemical and physical processes may
operate differently and less effectively in the case of protracted basaltic fissure eruptions
such as the ~66 Ma Deccan Traps that may only have straddled the troposphere and
likely had SO2 emissions rates that are one or two orders of magnitude greater than
typical VEI 6 explosive eruptions. Schmidt et al (2016) used a model to show that the
sustained release of large amounts of SOz into the upper troposphere/lower stratosphere
during episodes of continental flood basalt (CFB) volcanism thought to be
representative of volcanic activity that formed the Deccan Traps (~66 Ma) and the
Columbia River Flood Basalt Province (~16.5 Ma to 14.5 Ma) leads to a sustained
depletion of OH, which limits the conversion of SO: to sulfate aerosol to a degree that
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any unoxidized SO: offsets some of the aerosol-induced cooling by causing a warming
(given SO2 is a greenhouse gas). In addition, the relatively fast removal of sulfate aerosols
stemming from Deccan-style CFB eruptions limits their growth, which in turn can lead to
more efficient scattering of aerosol stemming from CFB eruptions than from typical VEI
6-7 explosive eruptions per unit of SO2> mass emitted. Background climate conditions,
eruption column heights, duration of eruption episodes, and the details of the emission
budget for LIP volcanism all affect the magnitude of the climate response and are highly
uncertain.

4.3 Role of co-emissions of volcanic ash and water vapour

Co-emissions of species such as volcanic ash or water vapour can affect the chemical
and microphysical processes discussed in Section 4.2 and thus amplify or dampen the
climate effects induced by volcanic SO2, along with possible additional impacts discussed
below. Co-emitted halogens are discussed in Section 4.1.

The role of volcanic ash as a forcing agent has been recognized in the past (e.g.,
Jones et al 2007, Jones 2015, Niemeier et al 2020, Niemeier et al 2009, Turco et al 1983)
and more recent observations suggest that fine ash (<30 ym) remains in the atmosphere
for several months (Vernier et al 2016). Climate models, however, only begin to account
for the effects of co-emissions of volcanic ash. Zhu et al (2020) demonstrated that fine
ash emitted by the small-magnitude eruption of Kelut in 2014 can affect sulfur oxidation
chemistry by changing photolysis rates, which could affect OH, and by removing SO via
heterogeneous reactions on ash surfaces (Ayris et al 2013, Delmelle et al 2018, Maters
et al 2017) as summarized in Figure 5. Laboratory studies also suggest that ash can act
as a sink for other species such as halogens and ozone (Delmelle et al 2018, Gutiérrez
et al 2016, Maters et al 2017). In addition, ash has been suggested to have the potential
to influence eruption column dynamics and aerosol properties of the dispersing cloud by
acting as a site for ice nucleation (Durant et al 2008, Isono et al 1959, Seifert et al 2011).
Ash can also cause radiative heating that leads to changes in vertical velocity and thus
the altitude of other volcanic species (Muser et al 2020). Volcanic ash deposition to
oceans can supply micronutrients, particularly iron (Fe), to marine phytoplankton and
affect the carbon cycle (e.g., Browning et al 2015, Jones 2015, Langmann 2014).
Terrestrial continental-scale ash blankets can (depending on the underlying surface type)
increase surface albedo and reflectance of solar radiation, which in turn can induce large-
scale changes to atmospheric dynamics and the hydrological cycle (Jones et al 2007,
Jones 2015). However, the ramifications of continental-scale ash deposits remain
understudied, in particular for supereruptions such as the 2.1, 1.3, and 0.64 Ma
Yellowstone eruptions and the 74 ka Toba eruption.

Water vapour is a strong greenhouse gas and is often the most abundant volcanic
species (e.g., Textor et al 2003), thus any increases in its concentrations in the otherwise
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relatively dry stratosphere would act to reduce the net cooling induced by sulfate aerosols.
For volcanic eruptions there are three mechanisms that are relevant: 1) heating of the
tropical tropopause due to volcanic sulfate aerosols, which can lead to increases in
stratospheric water vapour concentrations as was observed after the 1991 Mt Pinatubo
eruption (e.g., Joshi & Shine 2003); 2) direct injections of water vapour into the
stratosphere (e.g., Glaze et al 1997, Joshi & Jones 2009, Kroll et al 2021), and 3) global
warming that leads to increases in stratospheric water vapour concentrations (e.g.,
Dessler et al 2013). Some observational evidence of direct water vapour injections into
the stratosphere exists (Burnett & Burnett 1984, Murcray et al 1981) but there is large
uncertainty and the water vapour enhancements are likely short-lived (Sioris et al 2016a,
Sioris et al 2016b). In addition, there are complex chemical and microphysical feedbacks
at play that require further quantification to understand how direct water vapour injections
or changes in background stratospheric water vapour might modulate OH concentrations
(Figure 5), nucleation rates and the net effects on climate (LeGrande et al 2016).

4.4 Dynamical responses in the atmosphere, the ocean and the biosphere

Measurements and climate models show that radiative heating of the lowermost
tropical stratosphere following tropical explosive eruptions leads to an increased
meridional temperature gradient and enhanced upwelling in the tropics (Robock 2000 and
references therein). These volcanically-induced changes to stratospheric dynamics lead
to complex chemical and radiative feedbacks and indirect effects on large-scale
circulation patterns, surface temperature changes and ozone levels across a range of
timescales (Figure 3). For example, the increased meridional temperature gradient can
lead to a strengthening of the Northern Hemisphere polar vortex during winter and a shift
of the North Atlantic Oscillation to a positive phase, which in turn has been suggested to
explain the observed winter warming pattern over the continents in the Northern
Hemisphere. However, consensus is lacking on the physical mechanism behind the
response (e.g., Bittner et al 2016, DallaSanta et al 2019, Driscoll et al 2012, Polvani et al
2019, Toohey et al 2014, Zambri et al 2017). In addition, heating of the tropical lower
stratosphere leads to lifting of ozone-poor air to higher altitudes (Kinne et al 1992) and
enhanced transport of ozone from the tropical stratosphere towards higher latitudes,
which enhances polar ozone loss (Robock 2000 and references therein, Solomon 1999).
Generally, dynamical, chemical and microphysical processes are deeply intertwined,
which can lead to disproportional effects on ozone and surface temperatures. For
example, measurements in 2015 that reveal that the Antarctic ozone hole was particularly
large and long-lasting, which in models and observations has been attributed to a
combination of a very cold and undistributed stratospheric polar vortex and the 2015 VEI
4 eruption of Calbuco in Chile (Stone et al 2017, Wilka et al 2018, Zhu et al 2020).
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Observations and climate models also reveal that explosive eruptions can cause
reductions in global precipitation with complex regional precipitation responses (e.g.,
Haywood et al 2013, lles et al 2013) including a weakening of the Asian and African
summer monsoon circulations following high-latitude eruptions such as 1783-1784 Laki
(e.g., Oman et al 2006b, Zambri et al 2019).

The thermal inertia of the oceans leads to delays in the full-scale climate response
after volcanic eruptions, which is evident from decade to century-long negative anomalies
in ocean heat content after explosive volcanic eruptions with implications for sea level
(via thermal contraction) (e.g., Gleckler et al 2006, Gregory 2010). Coupled ocean-
atmosphere dynamics such as El Nifio-Southern Oscillation (ENSQO) after an eruption also
affect the duration and magnitude of post-eruption cooling. Based on available sea-
surface temperature observations it has been suggested that the likelihood of El Nifio
within two years following an eruption is increased, but there is no consensus on the
physical mechanism driving such a response (e.g., Khodri et al 2017 and references
therein). The ENSO state prior to an eruption can partially obscure volcanic surface
temperature changes (e.g., Lehner et al 2016, Nicholls 1988, Robock & Mao 1995).

There are substantial uncertainties in dynamical responses of atmosphere and
oceans and subsequent modulation of the climate effects of LIPs, originating in part from
the lack of suitable proxies in deep time. What is known is that for LIP-scale eruptions,
CO- emissions can exceed 10* Pg C (Black & Gibson 2019), reaching levels sufficient to
disrupt the carbon cycle and cause global warming on 105-10° year timescales (e.g., Chen
et al 2015, Schaller et al 2011). Sulfur emission during intense LIP episodes spanning
decades to centuries can drive 10'-102 year intervals of cooling punctuating longer-term
warming (Black et al 2018, Schmidt et al 2016). Modeling studies predict that surface
temperature changes driven by LIP CO2 and SOz emissions could cause striking shifts in
hydrology and ocean circulation (Black et al 2018, Landwehrs et al 2020).

Dynamical responses of the land biosphere to volcanic emissions include
temperature-induced changes to the growth rate of crops and vegetation (Lucht et al
2002), enhanced photosynthesis due to changes in the diffuse fraction of solar radiation
(Mercado et al 2009), soil moisture changes that may lead to decreased plant and
heterotrophic respiration (Jones & Cox 2001), and damage to vegetation due to depletion
of stratospheric ozone levels and acid rain (Black et al 2014). Collectively these
biophysical responses can have significant effects on the carbon cycle with models and
observations suggesting a decrease in the global land carbon sink by about 1.5 PgC in
the third year after the 1991 Mt. Pinatubo eruption (Jones & Cox 2001, Lucht et al 2002,
Mercado et al 2009). Dynamical responses in the marine biosphere include the role of
volcanic ash in supplying Fe--an important micronutrient—to the surface ocean,
influencing marine primary productivity and biogeochemical cycling (Duggen et al 2010).

4.5 Role of background atmospheric and climate state
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The background atmospheric and climate state can affect the magnitude and
duration of the climate response to eruptions of all styles and magnitudes.

Apart from size-dependent removal of aerosol particles, large-scale atmospheric
dynamics exerts a key control on the dispersion range (and lifetimes) of volcanic species.
In the troposphere, sulfate dispersion is typically restricted to regional or hemispheric
scales. In the stratosphere volcanic sulfate aerosol can disperse globally with preferential
transport towards the winter hemisphere (e.g., Hitchman et al 1994) for tropical eruptions.
For high-latitude eruptions the majority of the aerosol tends to remain in the hemisphere
of origin but some cross-hemispheric transport can take place (Marshall et al 2021,
Schmidt et al 2010, Toohey et al 2016a). Local meteorological conditions, eruption
latitude, SO: injection height and season further influence the lifetime and dispersion of
volcanic species (e.g., Jones et al 2016a, Marshall et al 2019, Toohey et al 2011).

Aubry et al (2021b) used model simulations to show that the radiative forcing from
large-magnitude tropical explosive eruptions of Pinatubo size will be amplified in a warmer
climate, mainly as a result of a faster Brewer-Dobson circulation and a decrease in
volcanic sulfate aerosol size. In contrast, the climate forcing of moderate-magnitude
explosive eruptions in the tropics the size of the 2011 Nabro eruption will be reduced
because of a rise in tropopause height in a warmer climate, leading to a lower
stratospheric aerosol burden for these eruptions. Independently of the change in the
magnitude of the volcanic forcing, Fasullo et al (2017) showed that the greater
stratification of the global oceans in a warmer climate will lead to a reduction in the surface
cooling induced by volcanic eruptions.

Schmidt et al (2012) have shown tropospheric volcanic aerosol stemming from the
SO, emission of continuously degassing volcanoes exert a global mean radiative effect
of -1.06 W m2 under pre-industrial atmospheric conditions via aerosol-cloud interactions.
The radiative effect is halved under present-day atmospheric conditions due to higher
tropospheric background aerosol levels stemming from anthropogenic emissions.
Hopcroft et al (2018) suggest a similar effect of anthropogenic background aerosol levels
in the troposphere on the radiative forcing of explosive volcanic eruptions.

The duration of eruptions influences their sensitivity to background climate. For
example, flood basalt eruptions, which are thought to last decades to centuries, are likely
less sensitive to short-term variations in background climate such as seasonal variations
in the Brewer Dobson circulation. However, even flood basalt eruptions are influenced by
background climate factors such as the climate sensitivity to CO2, which may have varied
substantially through Earth history (Farnsworth et al 2019), controlling the extent of
warming. For a given climate sensitivity, periods of low background CO: will also yield a
stronger climate response to a given mass of CO2 emissions as a result of the absorption
capacity becoming saturated at high atmospheric background CO: levels. Finally, if LIPs
release sufficient cumulative CO; to cause global warming on 10%-10° year timescales,
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they can effectively alter the background climate. Global warming is expected to cause
increases in tropopause heights and changes in volcanic plume rise heights (Aubry et al
2016), which implies that through the course of LIP emplacement, CO.-induced warming
could cause a diminishing proportion of sulfur and halogens to reach the stratosphere.

5. Towards a Volcano-Climate Index to establish the severity-frequency
distribution of volcanic climate effects

Previous efforts to systematically quantify volcanic effects on climate (see Robock
2000 for a review) include metrics such as the Ice Core Volcanic Index, focused on ice
core sulfate levels (Gao et al 2008, Robock & Free 1995), Lamb’s Dust Veil Index, which
integrates information about eruption properties as well as the surface temperature and
wind response (Lamb 1970), the volcanic sulfur dioxide index (VSI) (Schnetzler et al
1997), and an index of the stratospheric aerosol loading following explosive volcanic
eruptions (Bluth et al 1997). These prior efforts have generally focused on the forcing or
initial perturbation to the climate system by estimating sulfur emissions and sulfate
aerosol loadings from explosive eruptions as opposed to the climate response. For
eruptions that differ substantially from the paradigm of large explosive eruptions such as
Mt. Pinatubo in 1991, we suggest that a broader metric—encompassing local effects of
volcanic plumes on climate to long-lasting global climatic consequences of LIP
magmatism—is desirable. As discussed in the preceding sections, processes in the
magmatic system, the eruption column, background climate state, and the atmosphere
can modulate the climate response to subsurface magma input (Figures 3 and 5). Primary
criteria that encompass solely the climate response, rather than properties of the eruption
(such as the explosivity or amount of SO> emitted), are therefore more appropriate to
capture the recurrence intervals of different levels of volcanic climate impact.

We formulate an index to categorize the severity of the climate impacts of volcanic
eruptions across scales and eruption styles (Table 2), which we refer to as the Volcano-
Climate Index (VCI). While the full climate response to volcanic eruptions can encompass
atmospheric chemistry and coupled atmosphere-ocean-biosphere dynamics (Figure 3),
we focus on changes in surface temperature as the clearest criteria for categorizing the
climate response with the VCI. We deliberately exclude eruption properties and measures
of volcanic forcing such as optical depth from these criteria as the VCI is based soley on
the climate response to an eruption. The VCI scale ranges from negligible climate effects
from individual eruptions (VCI 0) to the long-lasting or even catastrophic global disruption
(VCI 6+) that coincides with some LIP events. The main criteria for assignment of a VCI
value (from O to 6+) are decreases in surface temperatures after an eruption (criteria 1
and 2 in Table 2). An additional criterion (for VCI 6+) is global-mean surface warming
induced by volcanic CO2 emissions. For all but LIP-scale volcanism, CO2 emissions from
individual events (1991 Mt. Pinatubo released around 0.01 Pg C, Gerlach 2011, and
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1783-1784 Laki released a total of 0.1-0.3 Pg C, Hartley et al 2014) are miniscule relative
to the ocean-atmosphere reservoir (~40,000 Pg of C) or the effects of anthropogenic
emissions (~10 Pg/year of C; Gingerich 2019), and thus CO2-induced surface warming is
negligible.

5.1 Assignment of a VCI value

The purpose of the VCI is to categorise volcanic climate effects as opposed to
predicting these in near real-time. Assigning a VCI value to a contemporary eruption
should therefore take place after the event once instrumental records of the temperature
changes are available as this will enable the most accurate assignment of a VCI value. It
is also possible to use near real-time information on SO flux, injection height, and the
resulting stratospheric aerosol optical depth during or shortly after an eruption in synergy
with climate models in order to predict the resulting surface temperature changes and
thus assign a predictive VCI. We recommend that such a near real-time assignment is
always confirmed with instrumental temperature measurements once they become
available.

To merit a specific VCI value, an eruption should satisfy at least one main criteria
(surface cooling or surface warming) listed in Table 2. The flow chart shown in Figure 6
illustrates the iterative process of assigning a VCI value. A web-based tool to determine
a best-estimate VCI for an eruption given available constraints is also available [link to be
provided]. The main criterion for assignment is the change in global monthly-mean peak
surface cooling, which should be estimated as the temperature anomaly with respect to
the five years prior to an eruption. For the vast majority of eruptions, the peak in global-
mean surface temperature change will occur during the first 6 to 24 months after an
eruption, but as discussed in the previous sections, eruption style, slow recovery of the
volcanic cooling signal in the oceans and sea-ice feedbacks as well as eruptions
occurring in short succession may prolong the surface cooling beyond these timescales.
With the exception of LIP volcanism (VCI = 6+), a VCI should be assigned for individual
eruptions even if two eruptions occur in close succession. Sulfate aerosol-induced
heating of the tropical stratosphere and changes in ocean heat content (discussed in
Section 4.3) are considered further effects; while not the main criteria for assigning a VCI
value to an eruption, they can guide assignment of an appropriate VCI value.

For eruptions prior to the instrumental record, proxy records of temperature
changes (e.g., Anchukaitis et al 2017, Sigl et al 2015, Wilson et al 2016) or climate
modeling studies using either complex climate models (e.g., Black et al 2021, Marshall et
al 2021, Wade et al 2020) or idealized models (Aubry et al 2020, Toohey et al 2016b)
provide constraints on the VCI value. Indices such as the ice core volcanic forcing index
(Gao et al 2008) or estimates of sulfur emissions to the stratosphere (Bluth et al 1997)
can be used as inputs for modeling studies, as can near real-time information on SO flux
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and/or the perturbation to stratospheric aerosol optical depth. Tree-ring based estimates
of hemispheric summertime surface temperature changes are available for eruptions that
occurred during the past 2000 years. To assign a VCI value based on tree-ring
temperature proxy data, the hemispheric summertime temperature changes should be
calculated by averaging across different tree-ring proxy datasets (instead of using only
one type of proxy as there is large variability) and with respect to the 5 years prior to an
eruption.

For eruptions in deep time (i.e., millions of years old, predating the oldest ice core
records), available paleoclimate proxy records such as oxygen isotopes in marine
sediments (e.g., Westerhold et al 2020) generally have fairly coarse temporal resolution.
This limited resolution prevents detection of volcanic sulfate aerosol-driven cooling on
annual to decadal timescales, but in some cases oxygen isotope variations are thought
to record warming on longer timescales driven by COa release from LIPs (e.g., Chen et
al 2015, Hernandez Nava et al 2021). Absent higher-resolution proxy records,
assessments of the severity and distribution of sulfate aerosol surface cooling to assign
a VCI will likely depend on climate modeling studies (Figure 6).

In general, uncertainties on the VCI value will be greater for eruptions prior to the
instrumental record than for contemporary eruptions, and different climate models or
proxies may differ in their estimates of the climate response, therefore assigning a range
in estimated VCI is encouraged as appropriate (e.g., VCI 3-4). Eruptions that follow the
1991 Mt. Pinatubo paradigm will likely dominate the VCI record and have the least
uncertainty attached to the VCI assignment. Eruption style also affects the certainty by
which a VCI value can be assigned. LIP events provide clear examples of the difficulties
in correctly characterizing climate consequences, mainly because of the multiple
timescales (decades to millennia for individual eruptions or eruption series; hundreds of
thousands of years for the main phase of LIP activity comprising tens to hundreds of
individual eruptions) involved in both volcanic activity and the climate response, and the
varying style of volcanic activity across these timescales. Furthermore, deeper in the past,
determining short-timescale climate changes in response to specific eruptions becomes
increasingly challenging. Sulfate aerosol cooling predicted during LIP volcanism (Black
et al 2018, Landwehrs et al 2020, Schmidt et al 2016) cannot currently be resolved in
available proxy records. In such cases, estimates of the climate response and therefore
the VCI must rely on modeling, at least until appropriate paleoclimate records become
available. Because of these challenges in assessing the climate response, within the VCI
6+ category, there is a large range in the apparent severity of climate and environmental
disruption. The Siberian Traps and Central Atlantic Magmatic Province LIPs coincided
with major mass extinction events (e.g., Bond & Wignall 2014), whereas other LIPs
coincided with still-major disruptions such as ocean anoxic events (Courtillot & Renne
2003) but did not lead to mass extinctions. Ideally these levels of disruption could be
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distinguished in a system such as the VCI, however, the environmental changes
responsible for these distinct evolutionary outcomes remain debated.

5.2 Potential applications of the VCI scale

Despite the hurdles described above, and indeed driven by the complexity of the
relationship between the scale and style of eruptions and the climate response, we argue
that a consistent metric such as the VCI would represent a valuable tool for categorising
the climate effects of volcanic eruptions and for establishing a volcano-climate severity-
frequency distribution similar to what is done for other geological hazards such as
earthquakes. Establishing a volcano-climate severity-frequency distribution will enable
assessment of the scale and recurrence frequency of volcano-climate disruption. Such
information is currently not available but is essential for planning purposes and ultimately
for mitigation of societal impacts. The color-coding in Table 2 refers to the expected
severity and extent of the climate effects with green referring to negligible effects for VCI
category 0, yellow to minor effects on local to hemispheric scales for VCI categories 1 to
2, orange to substantial global-scale effects for VCI categories 3 to 4, red to strong global-
scale effects lasting several decades for VCI category 5, and dark red to major and
potentially catastrophic global-scale climate effects on a range of timescales for VCI
category 6+. As discussed in Section 4, specific volcanic climate effects such as changes
to precipitation patterns do not manifest themselves evenly across the globe, thus the
VCI should be seen as a guide to the scale of disruption but regionally varying impacts
need to be assessed separately. Over time it will be possible to build up a picture of the
expected regional impacts for each VCI category. Other potential applications of the VCI
scale include assessing the cumulative VCI over certain time periods, e.g. decades since
the year 1850 in order to assess correlation between volcanic activity with decadal-scale
climate variability.

6. Summary and outlook

The largest explosive eruptions occur once every million years, on average (Mason
et al 2004). Subplinian explosive eruptions occur on a yearly basis. Understanding the
relationship between the scale and type of volcanism and climate consequences forms
the starting point for estimating the likelihood of different types and severities of climate
impacts from eruptions in the past and in the future, and thus ultimately for understanding
risks related to volcanic impacts on climate, and follow-on consequences for economic
activity and human health. Challenges originate from the magmatic system, from
atmospheric injection, and from the complex interplay of chemical and physical processes
in the atmosphere with dependencies on eruption style and background climate state
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(Figures 3 and 5). These complexities underscore the point that the size of an eruption
cannot be considered in isolation.

Indeed, the geologic and historical records show that is not necessarily the
eruptions with the biggest VEI values that have the strongest climate consequences.
Examples include 2015 Calbuco (unexpectedly strong ozone depletion), 74 ka Toba
(unexpectedly weak cooling in southern hemisphere), and LIPs (which fall outside the VEI
scale altogether, and can cause very different climatic and ecological outcomes and
comprise individual eruptions with different fluxes and durations despite similar total
province volumes). Because of the complicated relationship between the scale of
volcanism and the severity of the climate response, we argue that the climate effects of
volcanic eruptions should be categorised systematically based on the climate response
alone and thus independently from VEI, magnitude, and other eruption properties. We
explore a path toward doing so with the Volcano-Climate Index (Table 2). The length of
the instrumental temperature record paired with more than four decades of satellite data
on eruption occurences and climate responses make a metric such as the VCI more
feasible than in the past. Clearly, uncertainties and challenges remain, in particular for
accurately quantifying climate effects of prehistoric eruptions.

In a list of Future Issues, we highlight key directions for future research that we
see as critical to quantifying the climate effects of volcanism across scales and styles.
The size and duration of volcanic eruptions on Earth each span more than 10 orders of
magnitude (e.g., ERUPT, 2017). In this context, the eruptions of Agung in 1963, El
Chichon in 1982, and Mt. Pinatubo in 1991—despite their historic significance in
unlocking the climatic importance of volcanic eruptions—represent just a small corner of
the full range of volcanic activity. Understanding the climate consequences of eruptions
that differ strongly from the paradigm of explosive eruptions such as 1991 Mt. Pinatubo—
from small eruptions to flood basalts, and everything in between—represents an essential
frontier for quantifying the impacts of volcanism in the past and future.
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Future issues list
We highlight key directions for future research that we see as critical to quantifying the
climate effects of volcanic eruptions across scales and styles.

Integrating datasets from the magmatic system to emissions to climate
response. New initiatives (e.g., Subduction Zone 4D) to instrument multiple
volcanoes to capture in-progress eruptions offer an opportunity to relate
observations of eruption precursors, gas release eruption, plume dynamics, and
climate response.

Including volatiles in databases of volcanism. Existing databases of volcanic
activity (e.g., the Global Volcanism Program or the Independent Eruption Source
Parameter Archive (Aubry et al 2021a)) are beginning to incorporate information
about SO2 emission rates. Expanded efforts to consistently include melt inclusion,
ground-based, and satellite-based emission datasets alongside other parameters in
new and established databases will fill a major gap.

Excess degassing. Excess degassing is a major unknown for eruptions predating
the satellite era, and in particular for eruptions predating reliable ice core records.
New petrologic techniques, perhaps utilizing correlations between volatiles and trace
elements (lacovino et al 2016), are needed to quantify the magnitude of volatile
degassing from a co-existing vapor phase fed by deeper mafic magmas that may not
themselves erupt.

Scavenging efficiency of halogens and sulfur in the volcanic eruption column.
Measurements and modeling are needed to quantify halogen and sulfur scavenging
rates and how these vary for different eruption sizes and styles.

Detailed measurements of chemical processes and aerosol properties. Sulfate
aerosol growth and its size distribution strongly determine the severity of the climate
response, yet measurements are limited to mainly explosive eruptions the size of
1991 Mt. Pinatubo (e.g., Deshler et al 1992) and some persistently degassing
volcanoes (e.g., Mather et al 2003). More measurements of the chemical conversion,
as well as nucleation and aerosol growth rates are needed for eruptions of different
styles and sizes similar to what has been done for the 2010 eruption of Eyjafjallajokull
(Boulon et al 2011).

Co-emissions. Measurements and modeling are needed to better understand the
emerging importance of heterogeneous chemistry on ash and sulfate aerosol
surfaces, as well as the role of water vapour, which can both affect sulfur oxidation
and ozone chemistry (LeGrande et al 2016, Maters et al 2017, Zhu et al 2020).
Oceans. Oceans prolong the climate response to explosive volcanic eruptions of
different magnitudes (e.g., Gleckler et al 2006, Santer et al 2015) but the interplay of
volcanic emissions, radiative changes, and shifts in ocean heat content and
circulation for super-eruptions and LIP eruptions is largely unknown.

Biosphere. A better quantification of the biosphere response and implications for the
carbon cycle—both in the oceans and on land--after volcanic eruptions is needed, as
uncertainties on the magnitude and nature of the biophysical effects at play remain
large.

Volcanoes and climate change. Background climate conditions affect stratospheric
dynamics and the aerosol lifecycle. A better understanding of volcano-climate
interactions is needed for eruptions of different styles and scales.
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Terms and Definitions

Aerosol-cloud interactions are the indirect effects of a perturbation to cloud microphysical
properties due to aerosols acting as cloud condensation nuclei or ice nuclei, which can affect
radiative balance, cloud lifetime, and precipitation.

Aerosol-radiation interactions are direct interactions of aerosol with radiation (in the absence
of clouds). These radiative effects can lead to rapid adjustments in form of, for instance, changes
to clouds due dynamical effects induced by radiative heating for example.

Assimilation is the incorporation of wall rock into the magma, which can change magma
composition.

Basaltic fissure eruptions combine effusive lava flows with fire fountains--jets of molten rock--
and this type of eruption can last months to decades or more. Sufficiently intense fire fountaining
can produce eruption columns that reach the stratosphere. Examples include Laki 1783-1784 in
Iceland and flood basalt eruptions.

Climate response refers to the ways the climate system changes in response to volcanic forcing.

Condensation and coagulation of H>SO, are key processes leading to growth of the aerosol to
sizes relevant for aerosol interactions with radiation. Condensation is dependent on H>SO4
concentrations and is inversely proportional to particle radius up to particle radii of 20 um and
thus plays a key role throughout the lifetime of a volcanic aerosol cloud. Coagulation refers to the
coalescence of two colliding particles into one particle, thus the particle mass is preserved but the
particle number is reduce, resulting in an increase in particle volume and size. Coagulation is
most efficient when particle number concentrations are high, which is the case shortly after an
eruption when H>SO4 vapour concentrations are high as result of the gas-phase oxidation of SO,
by OH.

Continental flood basalts (CFBs) are flood basalt lavas emplaced in intraplate continental
settings, in contrast with oceanic plateau lavas emplaced in oceanic settings.

Continuously degassing refers to volcanic activity in which gases are continuously emitted into
the lowermost atmosphere. Examples include activity at Kilauea volcano between 1983 and 2018.

Crystallization is the formation of a solid phase mineral from a melt, which occurs at a range of
temperatures depending on mineral composition.

Degassing efficiency is the proportion of volatiles initially dissolved in the magma that exsolves
and escapes to the atmosphere.

Effusive eruptions produce dominantly lava flows that flow from the vent without major explosive
activity.
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Eruption column refers to the ascending, vertical part of the mass of erupting debris and gases
that rises directly above a volcanic vent.

Eruption or aerosol cloud refers to the mass of erupted ash, gases and aerosols that is
dispersed away from the volcanic vent.

Evaporation occurs at altitudes above around 30 km where sulfuric acid droplets become
thermodynamically unstable and thus evaporate.

Excess sulfur is the mass of sulfur released to the atmosphere beyond the mass expected from
dissolved sulfur concentrations (as recorded by melt inclusions, for example). Excess sulfur is
thought to originate from a combination of crystallization-driven exsolution and recharging mafic
magmas at depth that transfer sulfur to a co-existing vapor phase that is released during an
eruption, even if some or most of the source mafic magmas themselves do not erupt.

Forcing refers to the volcanic drivers of climate shifts, including sulfate aerosols and their effects
on Earth’s energy budget.

Large Igneous Provinces (LIPs) are extremely voluminous intraplate magmatic provinces that
form through processes distinct from typical plate boundary melting, that comprise 10°-10° km?®
magma emplaced as flood basalt lavas at the surface and intrusions in the lithosphere (Ernst et
al., 2021).

Magnitude (M) and intensity are important volcanological measures of the size of an eruption.
Magnitude is the total mass of an eruption. Intensity is the mass eruption rate of an eruption

(mass per time).

Mantle melting occurs when the mantle temperature, at a given pressure, exceeds its solidus
temperature.

Nucleation or new particle formation leads to a large number of small molecular clusters of
particles that are too small to lead to significant interactions with radiation.

Plinian eruptions are powerful explosive eruptions that produce stratospheric eruption columns.

Small-magnitude explosive eruptions are explosive eruptions with a VEI 3-5. Examples include
2011 Nabro, 2007 Sarychev, and 2015 Calbuco.

Strombolian eruptions are moderately explosive eruptions that produce tropospheric eruption
columns.

Sub-Plinian eruptions are similar to Plinian eruptions, but slightly less intense, with the
possibility of more intermittent explosivity.
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945

946  Supereruptions are the largest explosive eruptions, loosely defined to erupt >300 km® magma
947  (around 750 km?® ash). Eruptions of this size have a recurrence interval of around 100,000 years
948  (Sparks et al., 2005).

949

950 Volatiles are elements or compounds that form a gas at relatively low pressure and magmatic
951  temperatures. Examples include H>O and COs,.
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Figures and Captions
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Figure 1. The breakdown of the relationship between eruption size and SO. emissions
(panel a) and the global-mean surface temperature (GMST) response (panels b and c).
Figure 1a shows a compilation of sulfur dioxide (SO2) emission estimates (in Tg of SO2)
from mostly explosive eruptions based on ice-core sulfate deposition records (500 BCE
to 1900 CE; Toohey & Sigl 2017; green symbols) and satellite retrievals (1979 to 2015;
Carn et al 2016; blue symbols). Data are shown as boxplots; mean SO2 mass for each
VEI category indicated with orange triangles. Figure 1b shows peak GMST changes (in
K) when applying these SO, emissions estimates in an aerosol forcing emulator (Aubry
et al 2020) and a simple climate model (Smith et al 2018) assuming equatorial injections
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to 25 km altitude. Figure 1c shows peak GMST changes as a function of emitted SO-
mass (grey circles, which represent the minimum, mean and maximum SO> emissions
for each VEI category as shown in panel a) including linear fits for SO2> masses less and
greater than 40 Tg of SOz in light blue and purple colours, respectively. The linear fits are
for illustrative purposes because there is added complexity and uncertainty on the cooling
efficiencies (in K per Tg of SO2) depending on eruption style, latitude and injection height,
which is not accounted for in Figures 1b and 1c as we assume a single explosive injection
of SO2 to the tropical stratosphere. The red, yellow, and green bars show peak GMST
changes estimated for 1991 Mt. Pinatubo, 1815 Mt. Tambora, and 1257 Mt. Samalas
using a range of models, instrumental and proxy data.
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Figure 2. The size distribution of explosive volcanic eruptions depends on magma
composition, as shown in the size distribution of large-magnitude explosive volcanic
eruptions from the LaMEVE database (Crosweller et al 2012), which does not include
small explosive eruptions, Laki-style basaltic fissure eruptions, or LIP events. Gas release
varies depending on magma composition, complicating the relationship between eruption
scale and gas emissions. Basaltic curve includes basalts and andesites; silicic curve
includes dacites and rhyolites; alkaline curve includes tephrites, trachytes, and
phonolites. Magnitude is calculated as M=logio(mass of magma in kg)-7 (Pyle 2015).
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Figure 3. The magnitude, style, and composition of eruptions interact with microphysics,
atmospheric chemistry, and large-scale climate dynamics across multiple timescales to
determine the climate response to eruptions recorded in proxies. Within each panel,
processes are listed in order of their operative timescales from shortest to longest.

31



993
994

995
996
997
998
999
1000

I

ﬁ] altitude

A
injection altitude emes
tropopause satellite measurements

* zScavenging
« yfromplume

<—
preferential
HCl removal

o 00 D@ ©® [}
i vent measurements

| diffuse
\ emissions

oexisting
volatile
phase

) ® 0000 o Y
melt inclusions
depth

magma supply

102107 10° 10
HCI/SO, ratio

Figure 4. Degassing and scavenging of gases from the eruption plume modify the mixture
of gases delivered to the atmosphere relative to proportions in the magma. In particular,
HCI is thought to be more efficiently scavenged from the eruption plume than SO: (see
text for details). In the right panel, melt inclusion and vent HCI/SO2 molar ratios from
(Aiuppa 2009) and satellite measurements from Carn et al (2016) provide supporting
evidence.
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Figure 5. Schematic illustration of the formation of sulfate aerosols for different eruption
styles and durations. In contrast to brief explosive eruptions such as Mt. Pinatubo in 1991,
some eruptions (such as flood basalt eruptions) can last for years to centuries, leading to
strongly differing chemical and microphysical processes affecting sulfate aerosols. After
Schmidt et al (2016) and Zhu et al (2020). GHG stands for greenhouse gas.
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1012  oldest ice core records.
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Eruption Date [Magma VEISO: HCI Molar Molar  [Sources for melt
composition degassingdegassingHCI/SO2 |HCI/SO: |inclusion data
efficiency efficiency |[degassing|(satellite)
(MI) (MI) (MI)
Pallister et al
Apr Basaltic o o (2005) -- from the
Anatahan 2005 | andesite 3 8% 22% 15 0.026 2003 eruption of
Anatahan
. May | Basaltic o Humphreys et al
Soufriere 2006 | andesite 3 55% 0.015 (2009)

" May : o o Castro and
Chaitén 2008 Rhyolite | 4 94% 74% 101 0.057 Dingwell (2009)
Sarychey | Jun | Basaltic ), 41% 0.017 |Rybin et al (2011)

2009 | andesite )

: Nov Basaltic o Borisova et al
Merapi  15010| andesite | 39% 0.041 (2013)
Cordén 2"8‘1”1 Rhyolite | 5| 8% 11% 474 | 0.038 |Castroetal (2013)

Jun o Donovan et al
Nabro 2011 Basalt 4 86% — 0.029 (2017)
Feb Basaltic o o Cassidy et al
Kelut 2014 | andesite 4 57% 42% 8.5 0.018 (2016)
Mean (+1-0) 65 (£34) %M1 (x21) %| 17 (x20) | 003
- - - - (£0.014)

Table 1. Degassing efficiency (defined as the proportional difference between initially
dissolved melt inclusion volatile contents and residual volatile contents in matrix glasses)
and atmospheric delivery for selected recent eruptions based on melt inclusion (MI) and
satellite measurements. Satellite HCI/SO2> molar mixing ratios from Carn (2016) use
upper-bound estimates for HCI. These data, which show that the HCI/SO2 observed in
volcanic clouds is much lower than that predicted from melt inclusion geochemistry (see
also Figure 4), suggest removal of HCI from the eruption column is several orders of
magnitude more efficient than that of SO.. Excess sulfur degassing not reflected in melt
inclusion data (e.g., Wallace and Edmonds, 2011) could also contribute to a reduction in
the HCI/SO: ratios measured by satelites.
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Criteria for estimation of a semi-quantitative Volcano-Climate Index (VCI)

diffuse gases?

climate response.

such as halogens or water vapour
can affect climate response.

VCI 0 1 2 3 | 4 5 6+
Recurrence (yrs) 10-2-10" 10-'-10° 10° 10'-10° 10%-108 107-108
. Strong g|0be.‘| Maijor to catastrophic
. : climate effects incl. .
Local to Regional to Substantial global climate effects chanaes to global effects incl.
Severity and extent of Negligible regional climate| hemis %eric climate incl. changes to precipitation reci %tation changes to precipitation
climate effects climate effects| 9 P patterns and ocean heat content precip patterns and ocean heat
effects effects . patterns and ocean ;
lasting several years to decades . content spanning decades
heat content, lasting . .
to millennia
several decades
Main criteria: climate effects (must satisfy at least one)
1. Peak monthly global-mean P Y. 5o 2-10°C spanning decades
surface temperature anomaly Negligible —0.01°C <x e <°X USAS o< X Zus o< X x < =2.0°C to centuries, possibly
o < —0.01°C < —0.1°C < —0.5°C
(denoted as x, in °C) repeated
2. Summer hemispheric-mean o 5@
surface temperature anomaly Negligible | Not detectable —0.25°C <x _Of0C25fCX* = 2.80C8°<_C)i = Not available
(proxies) (denoted as x, in °C) ) )
3. Global mean surface o ; 5
warming from volcanic CO- Negligible 2 I0G Spstunlig) 1
°C) years or more
Further criteria: effects on stratospheric temperatures and ocean heat content
. . e Unquantified but possibly
Tropical-mean stratospheric | \oaiigible | Negligible <0.5°C 0.5t0 <3.5°C >3.5°C Unquantified but | ° 5o tor stratospheric
warming (°C) likely >5°C L
injections
Decrease in ocean heat Nedgligible Nedgligible detelz\f:ltgaT)tI:?or a Detectable with possible Strong and lasting modification of ocean heat
content 919 919 ; . modification of ocean circulation content and ocean circulation
series of eruptions
Ra"ﬁ’g&g%? @) | Agung 1963 (5) Samalas 1257 Siberian Traps 252 Ma
Ongoing mid- | Hekla 2000 (3) El Chichoén CAMP 201 Ma
ocean ridge | Kilauea 2018 Calbuco 2015 (4) 1982 (5) (7) Toba 74 ka (8) ? (no VEI estimates
Example eruptions (VEI) . Holuhraun 2014- . Tambora 1815 | Fish Canyon Tuff h o
volcanism (3) Laki 1783 (4) ? multiple eruption
2015 (0) Mt Pinatubo (7) 28.2Ma (8+)? episodes)
Eyjafjallajokull 2010 1991 (6) Laki 1783 (4) ? P
) |
. . Relatively small number of The mpst severe 'cllmate
How to Series of eruptions eruptions in this category took disruptions result in mass
classif? Difficult to can have additive Iace%urin instrument%l rgra thus |[Lack of temperature extinction events, but not
Major uncertainties for VCI volcanoesythat classify even | climate effects. Co- P reliance cg)]n temperature rc’)x rox recorzs thus all LIPs reach this level.
clajssification are strong with emitted species such records and cI?mate mc?del Y l[r)elia?;ce on cliimate Decadal-scale effects
instrumental |as halogens or water ; . . . cannot currently be
sources of estimates. Co-emitted species model estimates. ) :
records. vapour can affect resolved in available

temperature proxy
records.

Table 2. A proposed Volcano-Climate Index (VCI) to quantify the climate impacts of eruptions across scales and styles of volcanic
activity. Intrusive activity may play an important role in driving CO2 release from Large Igneous Provinces (LIPs), and is implicitly
included within magma volumes associated with VCI 6+ activity. Recurrence intervals are uncertain due to a small number of
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historic eruptions and need to be tested against ever-increasing knowledge of past and future event distributions. VEI refers to
the Volcanic Explosivity Index as defined in Newhall and Self (1982). The color-coding refers to the severity and extent of the
expected climate effects with green referring to negligible effects, yellow to minor effects on local to hemispheric scales, orange
to substantial global-scale effects, red to strong global-scale effects lasting several decades, and dark red to major and potentially
catastrophic global-scale climate effects. The flow chart shown in Figure 6 illustrates the iterative process of assigning a VCI
value or VCI range whereby the assignment is based on solely on the climate response as specified by the main criteria. The
main criteria 1. and 2. refer to negative surface temperature anomalies, and 3. to positive surface temperature anomalies induced
by volcanic CO2 emissions (which is only relevant for VCI 6+ eruptions). Effects on stratospheric temperatures and ocean heat
content are considered further criteria, which, if available, can be used to refine the VCI estimate. *Summer hemispheric-mean
temperature anomaly ranges are subject to refinement as additional tie points provide calibration for the precise ranges
corresponding to peak global-mean surface temperature anomalies and specific VCI values.
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