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ABSTRACT

Bid Shading has become increasingly important in Online Advertis-
ing, with a large amount of commercial [3, 13, 14, 31] and research
work [12, 22, 30] recently published.

Most approaches for solving the bid shading problem involve
estimating the probability of win distribution, and then maximizing
surplus [30]. These generally use parametric assumptions for the
distribution, and there has been some discussion as to whether
Log-Normal, Gamma, Beta, or other distributions are most effective
[7, 36, 43, 44].

In this paper, we show evidence that online auctions generally
diverge in interesting ways from classic distributions. In particular,
real auctions generally exhibit significant structure, due to the way
that humans set up campaigns and inventory floor prices [8, 17].

Using these insights, we present a Non-Parametric method for
Bid Shading which enables the exploitation of this deep structure.
The algorithm has low time and space complexity, and is designed
to operate within the challenging millisecond Service Level Agree-
ments of Real-Time Bid Servers. We deploy it in one of the largest
Demand Side Platforms in the United States, and show that it reli-
ably out-performs best in class Parametric benchmarks. We con-
clude by suggesting some ways that the best aspects of Parametric
and Non-Parametric approaches could be combined.
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1 INTRODUCTION

Between 2017 and 2019, the Online Advertising industry underwent
a massive transformation. Prior to 2017, Display ads were sold
almost exclusively on Second Price Auctions. However, by 2018,
First Price Auctions had increased from 5% to 43% of all auctions
[11, 25]. After Google’s decision to shift in 2019, 85% of display
impressions were sold via First Price.

First Price Auctions present a formidable challenge to advertisers,
as they require the bidder to engage in a practice called bid shading.
Bid shading occurs when the bidder takes the private value that
they would have submitted in a second price auction, and then tries
to lower their bid so that it is just above the highest competing bid
- this in order to minimize their price paid whilst still winning the
auction [18]. This process is beset with risk, since the other bids
on the auction are unknown. If the bidder shades too little, they
will overpay; If they shade too much, they will lose and gain no
value. Identifying the optimum bid shade, therefore, requires the
bidder to predict competing bidder prices, yet without being able
to see bidder prices. This is an enormously difficult data mining
prediction problem.

With its sudden financial impact in the Online Advertising in-
dustry, Bid Shading has become a major area of new research and
commercial activity. Several companies announced new bid shad-
ing services to help advertisers effectively bid, including Google
[13, 14], AppNexus [3] and Rubicon [31]. Researchers and indus-
try practitioners have also published details of new bid shading
algorithms [12, 22, 30].

Most approaches for solving the problem involve predicting the
probability of winning at different bid prices, the surplus given this
probability of win, and then returning the shaded bid price with
the maximum surplus [30]. This has generally been accomplished
with parametric assumptions on the shape of the landscape.

We show new evidence in this paper that online auctions di-
verge significantly from well-known distributions, and exhibit us-
able structure due to the way that humans set up campaigns and
inventory floor prices [8, 17]. Parametric distributions often fail to
capture this structure.

The current paper presents a new Non-Parametric method for
Bid Shading which enables the exploitation of this deep structure.
The paper is organized as follows: Section 1 introduces the Bid
Shading Problem and describes prior work including several para-
metric approaches that have been recently published. Section 2
introduces real auction data, and shows that it exhibits significant
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"spike" structure that not unlike the Left Digit Anchoring Effect
observed in Psychology [17]. Section 4 introduces the MEOW algo-
rithm, and proves its time and space complexity. Section 6 shows
Offline and Live Bid Server experiments using the new algorithm.

1.1 The Bid Shading Problem

At time t, given a valuation V;, if we won the impression, which
represents how much the advertiser expects to capture from the
impression, how much should the advertiser discount their valua-
tion? Assuming that the valuation V; is an accurate representation
of the dollar value that the advertiser expects to obtain, and the bid
b; is also in real dollars, the advertiser’s financial gain, or surplus
over a horizon T, is equal to:

T
St &ef Z(Vt = b)) I(by > my), (1)
=

where b; is the shaded bid, m; is the minimum bid price to win,
and I(b; > m;) = 1if the impression is won, and 0 otherwise. The
task is to adaptively find shaded bids {bf}tT=1 that maximizes the
surplus St to the advertiser.

1.2 Related Work

Bid shading is a common tactic in repeated First Price Auctions,
and is expected by auction theory. [46] found robust evidence of
shading in Austrian livestock auctions, [6] reported shading in a
Texas cattle market, and [18] found the practice in auctions for
US Treasury notes. Bid Shading shares characteristics with the
Seller’s (Reserve) Price Optimization Problem [5, 24, 26, 27, 32, 33],
although the Bid Shading Problem is a buyer side problem, and the
buyer has access to distinct forms of feedback.

A variety of approaches have been proposed to solve the Bid
Shading problem:

Winning price predictors There have been some published re-
search on the problem of winning price prediction on auctions.
[21, 41, 42] both develop methods for this purpose. Whilst these
methods are useful, Bid shading involves predicting and maximiz-
ing expected surplus, however, which involves another unknown
and optimization step.

Point Estimators use a machine learning algorithm to predict the
exact optimal shading factor, by estimating the ratio of the minimum
bid to win over the advertiser’s private value. For instance, [12]
used a Factorization Machine to predict a shading factor by training
against known cases of optimum shading factor (0.1).

Unfortunately, this technique is only feasible on Seller auctions
in which the Seller provides the exact winning price back to the
Buyer (an "Open Bid Auction"). The optimal price can then be used
as a training signal for the Buyer. However, most Online Advertising
Auction Sellers (including Index Exchange, Pubmatic and others)
do not disclose this information, instead just providing whether the
bid was accepted or not ("Sealed Bid Auctions"). The "optimum" bid
is therefore unknown.

Distribution estimators improve upon these earlier approaches,
by training on the 0-1 win/loss signal, and predicting the proba-
bility of win across all possible bid prices; effectively creating a
probability distribution of winning prices. Once the cdf is predicted,
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it is possible to calculate the expected surplus at each bid price, and
the optimum bid price can be identified.

The recent WinRate model from [30] takes this approach, esti-
mating the win probability for each bid price using a 0-1 logistic
distribution, and then maximizing the resulting surplus function.
Because of the known parametric form, the authors are able to
bound the optimum and use a guaranteed O(log(K)) bisection
search to find the surplus maximum - the logarithmic time search
being highly desirable for Bidding Servers which need to minimize
computational operations.

Other authors have taken a similar approach to distribution
estimation. [36] extend the Winrate idea to support a range of
parametric distribution, and use a Deep Neural Network to estimate
the distribution’s shape parameters. Their implementation was
shown to work for Gamma, Gaussian and Log-Normal distributions.
They used a distribution-agnostic, Golden Section Search, to find
the surplus maximum bid price.

Although these methods have proven effective, we show in this
paper that the actual auction distributions are generally quite diver-
gent from the parametric assumptions, and that more surplus can
be captured by modeling the auction data more closely, possibly in
a nonparametric way. The usage of nonparametric methods also
has a long history in the study of auction theory and first-price auc-
tions. For example, kernel-based methods have been proposed for
the nonparametric estimation of bidders’ bid distribution [15], or
the value distribution [35], sometimes with an unknown number of
bidders [2], in first-price auctions. However, this thread of research
typically assumes strong assumptions on the bid distribution such
as a smooth density, which usually does not hold in real bidding
data. These works are in sharp contrast with the recent work [16],
which relies on few modeling assumptions and is the building block
of the MEOW algorithm proposed in this paper.

2 AUCTION LANDSCAPES

In auction literature and past work, Auction State bids are often
assumed to be normally distributed [43, 44]; although others have
noted that their auction data was fit well by Log-Normal [7]. We
tested a variety of distributions on our auction data. None of the
distributions fit well enough to be significant under a test for fit,
but similar to [44] we found that Log-Normal has the lowest error
and highest linear correlation to the actual data, out of Normal,
Log-Normal and Gamma distributions tested. Log-Normal is seen
in other auctions such as contract bidding [34].

In addition to the overall shape, Auction State also has some
unusual characteristics. One that stands out is that there are some
prices where there are large spikes in impressions. For example,
Figure 1 is typical.

Some previous authors address the spikes by smoothing over
them. [23] fit smoothing splines to the bid-volume cumulative dis-
tribution. [45] use a Mixture of Gaussians. If the spikes are noise,
then avoiding transient spikes should result in better out-of-sample
prediction. But what if the spikes are not actually noise?

Spikes appear in other domains: Marathon running times are
approximately Log-normal. However, finishing times also have
spikes on the left-side of hours and half hours. This is due to a
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Pennies Online Auc- Internet Retail prices
tion Bids prices [2] [3]
00..09 27% 28% 8%
10..19 9% 3% 0%
20..29 8% 4% 0%
30..39 8% 4% 1%
40..49 7% 4% 0%
50..59 18% 4% 29%
60..69 6% 3% 0%
70..79 6% 4% 0%
80..89 6% 6% 1%
90..99 6% 41% 61%

Table 1: End Digit distributions. "Online Auction Bids" are
from observed Verizon SSP ad prices

Psychological effect where humans favor finishing before whole
hours and half hours [10, 39].

Spikes also occur in pricing. A histogram of retail prices usually
shows spikes at price ending in 9 and 5. This effect is known as the
“Left Digit Anchoring Effect”, a Psychological phenomenon where
consumers seem to ignore the least significant right-hand-side digits
when doing value comparisons [17]. A range of theories have been
offered to explain the practice, including cognitive workload from
rounding up, precision being taken as an indicator of truthfulness,
and others. These unusual price-points are a robust part of retail
price optimization data.

In the field of online advertising, website owners set floor prices
for inventory, which, in turn, impact the auction prices we observe.
We encounter something unusual: The floors primarily use round
numbered prices, including 5, 9.50, 10, 15, 20, 25, 30, 35, 40, 45. This
can be seen clearly in Figure 2. It looks like Supply managers are
susceptible to an “End Digit Effect” also!

Table 1 shows a comparison of End Digit Effects in other domains.
It therefore matters whether a price of $10 or $9.99 is submitted
to the auction — there really are “cliffs” in terms of impressions at
different round price thresholds.

In order to capture these human-engineered artifacts, we need
more freedom to model the data. Jacob Wolfowitz introduced the
term Non-parametric, in 1942, as a way of describing methods that
did not rely on data belonging to any particular parametric family
of probability distributions [40]. Estimating the auction surplus
cdf by discretizing and estimating regions separately - is certainly
a Non-parametric approach [1, 28, 37] and might offer a way of
modeling the unusual structure in auctions.

3 PROBLEMS WITH NON-PARAMETRIC
ALGORITHMS

Non-parametric methods present a range of challenges which need
to be resolved before they can be used.

One challenge is high storage cost. A parametric model of an
auction surplus cdf will only require O(p) parameters, where p is
the number of features being used. A discrete approximation of
the same cdf, will require O(p X K x M) where K is the number of
possible bids and M is the number of private valuations. If K and
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Figure 1: Online auctions exhibit unusual distributions of
bid prices. In the above example, spikes occur at certain bid
prices. This results in Normal, Log-Normal and Gamma dis-
tributions providing poor fits to this data. Furthermore at-
tempts to smooth the spikes actually decreases predictive
power. The spikes appear to be real phenomena due to hu-
man pricing effects
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Figure 2: Marginal distribution (bottom) versus cumulative
distribution (top) spikes in price can be clearly seen at 5, 9.5,
10, 15, 20, 25, 30, 35, 40, 45. These price spikes seem to be
related to the Psychology of price setting on fixed price con-
tracts.

M are in units of CPM with the smallest unit of bid a penny, and
span all 2 place numeric values greater than 0; for bids between $0
and $10, and valuations between $0 and $100; that means 1,000 X
10,000 = 10 million bins.

A second challenge is generalization. Figure 3 shows perfor-
mance of a Fixed-width Non-parametric algorithm, versus the av-
erage historical winning price. The Non-Parametric algorithm, in
this example, works best when there are more than 80,000 auction
observations. However, below this threshold, the Non-Parametric
approach actually performs worse than the simple strategy of pre-
dicting the mean. The reason for this loss of performance, is because
the Non-parametric algorithm’s binning is too fine-grained, result-
ing in sparse data which doesn’t carry statistical significance. Thus,
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Figure 3: Fixed width non-parametric predictors can per-
form worse than the mean if their resolution is too high for
the data.

valuation
bid o1 vy -+ 0 - oy
by S1,j
by stj
b; Sij
bk SK,j

Table 2: A reward table used in the SEW algorithm.

the Non-parametric algorithm needs the ability to dynamically ad-
just its bin sizes, so that it maintains usable resolution. The MEOW
algorithm, described below, uses dynamic binning.

4 MEOW ALGORITHM

To mitigate the issues of storage cost and generalization, we in-
troduce a nonparametric algorithm called the Multi-resolutional
Exponential Weighting (ME(O)W) algorithm. This algorithm in-
herits the nice theoretical properties of the Exponential Weighting
based algorithm [16] through the lens of online learning, and uses a
dynamic and data-driven binning to significantly reduce the mem-
ory requirement and adapt to different natures of data.

4.1 Algorithm Overview

The MEOW algorithm is motivated by the general idea of exponen-
tial weighting in nonparametric bid shading, where both the private
values and bidding prices are quantized into discrete levels, and we
maintain a table of historic rewards with each entry corresponding
to a given pair of private value and bidding price. At each time, the
private value is computed, and the bidder’s bid is determined by
running an exponential weighting algorithm on the rewards of all
candidate prices given this private value. An example of the reward
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table is illustrated in Table 2, where S; ; denotes the cumulative
historic surplus of bidding b; under the private valuation v;. Under
the private value v}, the exponential weighting algorithm selects a
random bid b; with probability

. exp(nSi,;)
= K >

2oy €Xp(nSk, ;)

where 1 > 0 is a properly chosen learning rate.

However, maintaining such a static table is typically very memory-
consuming, leaving lots of bins seldom visited, and a large portion
of candidate prices probably too bad for the bidder to bid. Also, the
non-data-driven nature of the table leads to a poor generalization
performance. The MEOW algorithm improves over the static table
by choosing its rows and columns in a dynamic and data-driven
way, and specifically greatly reduces the quantization levels for
both the private value (horizontally) and bidding prices (vertically).

Horizontal: private value bins. The high-level idea of horizontal
binning is to adapt the bin design to the real data distribution, where
each bin has comparatively similar amounts of data. Specifically, if
some bin of private values consists of too much data, we further
split it into smaller bins to reduce the quantization error. On the
other hand, if some bin has too little data, we merge it into another
bin so that there is enough data in this bin for learning. In the
MEOW algorithm, we first fix a static binning, and then perform
the splitting and merging operations of bins based on incoming
data. To reduce the computational cost, in the algorithm these steps
are only performed every T; rounds of auctions, where T; > 0 is a
hyperparameter which is moderately large (e.g. T; = 1, 000).

Vertical: bidding price levels. The redundancy in the price levels
comes from the fact that, the optimal bidding price given a private
value in a small bin also lies in a small range. Therefore, we could
roughly estimates the optimal price (possibly with a low precision)
and then keep only a few candidate prices around it. Specifically,
for each bin of private values, we use the historic data to compute
the empirically optimal bidding price p* in this bin, and the set of
candidate bidding prices is chosen to be a suitable quantization of
[p* — A, p* + A] for some small A > 0. The final quantization level
could be as small as 5 ~ 20, which greatly reduces the storage cost.
In the MEOW algorithm, the process of updating candidate bidding
prices is implemented every T, rounds, where To > 0 is a relatively
long time (e.g. 1 day).

Discount factor. The final MEOW algorithm also involves a dis-
count factor o € (0, 1) for two purposes. First, practical data are
typically non-stationary over time, and gradually forgetting old
data enables a better adaptation to the new data. Second, as the
amount of data increases, without the discount factor it is possible
to have infinite bins of private values, which increases both the
computational and the storage cost. In contrast, with a discount
factor, the number of bins is always bounded from above (cf. Theo-
rem 1). In the MEOW algorithm, we will apply this discount factor
to both the data counts of each bin, and also the cumulative reward
of each candidate bidding price.
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Algorithm 1: Multi-resolutional Exponential Weighting
(MEOW)

Inputs: Initial number of bins My; Initial ranges V, P;
Number of prices K; Discount factor o € (0, 1); Learning
rate n > 0; Update periods Ty, T; Thresholds Nj, N.

Initialization: Build M bins equally for v; € [0, V], and
set bin.price[j] = jP/K foreach j=1,--- ,K.

fort=12,...do

% Search for current bin

Observe private value vy;

if v; > V then
| Create a new bin [floor(v;), floor(vs) + 1);

end

Search for the bin* s.t. vy € [bin® o4y, bin*.opien);

% Exponential weighting

for j=1,2,...K do
| prob[j] « exp(n - bin* history[])

end

Sample b; ~ prob/Zﬁi1 prob[jl;

% Bin update

Observe the minimum-bid-to-win my;

for j=1,2,...K do

bin* history[j] « bin*.history[j] +
instantreward(bin* .price[j]; vz, my);

end

bin*.count < bin*.count + 1;

% Split or merge bins after every Ty steps

if t%T; == 0 then

for all bins do

% Split a large bin into two smaller bins

if bin.count > Np then

bin.history « bin.history/2;

bin.count « bin.count/2;

Create new bins biny, bin, « bin;

bing.opigh « (bin.vjey + bin.vpigh)/2;

bin,.vjgw «— binl.vhigh;

Replace bin by bin; and bin,;

end

% Merge two smaller bins into a large bin

if bin.count < N, then

Find the neighbor bin’ with a smaller count;

Create a new bin* with private value range
[bin.ojgy, bin.opigh) U [bin’ 016y, bin”.vpigh);

bin*.count < bin.count + bin’.count;

bin*.price and bin*.history inherit from the
bin with a larger count;

Remove bin and bin’, and add bin*;

end

end
% Discount
Multiply all counts and histories by the factor o;
end
% Update price levels after every Ty steps
if t%T, == 0 then
| Requantization();
end

end

Algorithm 2: Requantization

Global inputs: private value bins, number of price levels K
for all possible bin do

J* « argmax(bin.history);

for j=1,2,...K do

bin.price[j] « bin.price[j* — 7] + j -
(bin.price[j* + 7] — bin.price[j* — 7])/K;

end

bin.history « 0;
end

4.2 Algorithm Details

The complete description of the MEOW algorithm is summarized
in Algorithm 1, which also takes Algorithm 2 as a subroutine which
updates the candidate bidding price every T, time steps. Specifi-
cally, the MEOW algorithm maintains an array of private value
bins, where each bin is a data structure consisting of the following
variables:

® [0low, Unigh): range of the private value in the bin;

e count: cumulative (discounted) amount of past data falling
into this bin;

e price[K]: an array of K candidate bidding prices under this
bin, sorted in an increasing order;

e history[K]: an array of K cumulative (discounted) historic
rewards associated with the above K bidding prices.

Here K > 0 is a fixed parameter in the algorithm and denotes the
number of vertical quantization levels.

In the initialization of the algorithm, we uniformly partition the
interval [0, V] into My bins, where V > 0 is an upper bound for
most private values (e.g. the 1% quantile). For each bin, we initialize
K price levels to be a uniform quantization of [0, P], where P > 0 is
the maximum bidding price. All the counts and the reward histories
are initialized to be zero.

Next we describe the dynamic updates of the private values and
candidate prices, respectively. For the private value bins, if some
private value above V occurs (which is unlikely), we create a new
bin for this value. After every T; time steps, we check the size of
each bin: if the bin count is larger than a threshold Nj, we split
it evenly into two bins, with both the count and history halved;
if the bin count is smaller than another threshold N, we merge
it with one of its neighboring bin which a smaller size, combine
their counts, and inherit the prive levels and history from the larger
bin. We repeat this process until the count of each bin is between
[Nz, N1], and then apply the discount factor o € (0, 1) to both the
counts and the historic rewards.

As for the updates of candidate prices, we call the subroutine in
Algorithm 2 every T, time steps. In Algorithm 2, for each bin we
pick the best price p* giving the largest historic reward, and update
the new prices to a uniform K-level quantization of [p* — A, p* + A]
for some A. The specific choice of the interval is based on the past
price level: the algorithm finds the best bidding price bid.price[j*],
and chooses the interval to be [bid.price[j* — 7], bid.price[j* + 7]].
Finally, since the prive levels have changed, we also reset all historic
rewards to zero.
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Finally we provide an example choice of the hyperparameters
used in our experiments: My = 40,V = 100,P = 10,K = 20,0 =
0.99,7 = 1, (T, Tz) = (1000, 1 day), (N1, N2) = (2500, 10000). Note
that we will ignore the first few Tj steps to ensure enough data for
splitting/merging when we restart the algorithm.

4.3 Time and Space Complexity

In this section we provide the analysis on the space and tiem com-
plexities of the MEOW algorithm, and show that it could indeed
be efficiently implemented in practice. We start by showing that
thanks to the discount factor, the number of bins is always finite.

THEOREM 1. Even for an infinite amount of data, the total number
of bins is upper bounded by a constant number

T
! ,Mo}~

M = max{m

Proor. First we show that due to the discount, the total count
is bounded by a constant value:

T;
2+...)< 1

(bin.count) < Ty - (1+o0+0 N .
all possible bins -
Since after each horizontal bin update, the count of each bin is at
least Ny. In view of the above inequality, the number of bins after
update is at most T; /(N2 (1 — 0)). Moreover, before all bin updates

the number of bins is initialized to be My, and the result follows. O

Under the choice of parameters T; = 1000, N2 = 2000, ¢ = 0.99,
and My = 40, we compute that M = 40 in Theorem 1. Consequently,
our storage cost is at most O(MK), corresponding to the storage of
the matrix consisting of all historic rewards.

As for the computational complexity, note that whenever there
is no horizontal or vertical update, the running time of the bin
search and the exponential weighted prediction in Algorithm 1 is at
most O(log M + K). When there is either a horizontal or a vertical
update, we may need to change the history table for all bins, which
takes O(MK) time. Therefore, the overall time complexity during
T rounds of auctions is

MK MK
O(T- (logM+K+—+—)),
T T

which is linear in T with the coefficient smaller than 30 under our
parameter configuration.

5 IMPLEMENTATION

The bid shading system was deployed on Verizon Demand Side
Platform (VZDSP) [29], the fourth largest in the United States after
Google, Amazon, and the Trade Desk [9]. The performance require-
ments for VZDSP are extreme. At run-time, the Bid Shader needs
to respond to 5.5 million requests per second peak load. For each of
these bid requests, a bid needs to be calculated within 100 milisec-
onds. Approximately 1000 bid servers are used to serve ads, which
means that each server has to handle 5,000 requests per second.
Overall, less than 10 miliseconds are budgeted for bid calculations.
The time complexity of Section 4.3 shows that the algorithm only
adds about 30 additional operations per request.

Space requirements are also highly restrictive. Bid servers carry
about 28 Gigabytes of RAM. There are over 200,000 sub-domains
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and mobile applications requesting bids. Therefore assuming M=40
and K=20, there are 200,000 X M X K = 160,000,000 = 160 million
double types are needed, which equals about 1.28 Gigabytes RAM
per bid-server. The analysis to follow shows results for the most
frequent 100 domains, the memory consumption for which was
negligable at 0.64 Megabytes.

6 EXPERIMENTS

In order to measure the performance of the bid shading system, two
forms of testing were performed: (i) Leveraging knowledge of the
highest competing bids provided by an ad exchange, auctions were
replayed using the MEOW algorithm to calculate bid prices. (ii) the
MEOW algorithm was also used in production in an A/B test vs
the production algorithm. The production algorithm benchmark in
both cases was an implementation of log-normal distribution-based

shading [30].

6.1 Offline Auction Replay

The Non-parametric algorithm was first tested on saved auction
data captured from the Verizon Demand Side Platform where for
each auction/bid request, private valuations and highest competing
bids were known. Bid requests from the top 100 top-level domains
were used (cnn.com, espn.com, buzzfeed.com and other sites), and
all auctions from December 22 to January 12 2021 in which the Pro-
duction algorithm responded with a bid, were used. This comprised
approximately 6.2 billion requests.

The data spanned an interesting period of time, since it ranged
from the 2020 Christmas shopping season with high advertising
prices around $0.97 CPM, to January 2021 in which advertising
prices dropped to just $0.77 CPM.

Figure 4 shows the behavior across this period; after good per-
formance from December 22 to 29, there’s a big drop centered
on January 1, 2021. Surplus yield worsens by 15% due to the new
auctions no longer matching historical data. On January 2nd, the
surplus recovers. Quantitatively, MEOW appears to have responded
better to the change in distribution over the dataset. The R? be-
tween algorithm bid and optimal bid for Distribution was 0.903
where-as for MEOW it was 0.953. The mean absolute difference
in CPM was $0.88 and $0.64; and surplus as a percent of optimal
surplus was 47.9% and 53.4% for Distribution vs MEOW (Table 3).
Thus MEOW submitted bids that were closer to optimum and had a
better correlation in matching the in-time changes to the optimum
bid distribution.

Table 4 summarizes the performance on replay data. The increase
in surplus ranged between 5.7% (100th percentile) to 10.1% (90th
percentile), and all increases were statistically significant (p<0.01;
paired t-test; MEOW vs Distribution surplus scores compared daily).
The table reports on several surplus percentiles because we have
found it to be common for a tiny percentage of advertiser ads
to have unrealistic goals and be "chronically wound up" by the
control system, resulting in spuriously high surpluses. Therefore
we presented a range of percentiles from 90% to 100% to help verify
that the results were robust.
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Metric Distr. EwW
surplus % of opt  47.91% 53.42%
imps % of opt  48.01% 61.21%
spend % of opt  43.03% 62.28%

Table 3: Optimality

as%
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Figure 4: Surplus captured by Non-parametric algorithm, as
a percent of optimal surplus from December 22 to January

12, 2021
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Figure 5: Predicted Optimal Shading Factor by Private Value
average over all domains

6.2 Online Production Performance

The algorithm was also deployed in the Verizon DSP bid server
[29], and was set to run on a randomly selected 1 percent of traffic,
and the top 100 domains. The period of data analyzed spans from
January 21 to January 29 2021.

The results are shown in Table 5. The surplus increased between
3.3% to 6% (90th..100th percentile; all except the 100th percentile
were significant at p<0.01; paired t-test).

6.3 Observations

Some examples of MEOW behavior on real Online Advertising
auction data (Offline and Online experiments) are shown in Figures
5,6,7.

Figure 7 shows the performance MEOW approximating the ac-
tual win cumulative probability distribution for ebay.com in its of-
fline experiment. For each bid price, the MEOW algorithm submits

KDD ’20, August 2020, San Diego, California, USA

Shading Factor Private Value

Figure 6: Predicted Surplus given Private Value and Shading
Factor for one domain

Probability of win

Bid price

Figure 7: Comparison of probability of win for (A) Point Esti-
mator [12], (B) Distribution [30], (C) MEOW with K=30 bins,
and (D) MEOW with K=7 bins.

percentile 90 95 98 99 100
mean 10.1%  11.5%  10.4% 8.7% 5.7%
stdev 4.4% 4.1% 3.6% 3.3% 1.8%
stderr 1.0% 0.9% 0.8% 0.7% 0.4%
ttest <0.001 <0.001 <0.001 <0.001 <0.001

Table 4: Surplus Offline Results

its predicted optimal bid. We have aggregated those bid submissions
into a cumulative probability distribution. We then compared this
against the actual win probability distribution in the data.

The Distribution based approach [30] does a good job of ap-
proximating the optimal bid price distribution. However there are
clear imperfections in high bids; indeed we sometimes find that the
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percentile 90 95 98 99 100
mean 3.3% 6.1% 4.5% 3.5% 6.0%
stdev 2.7% 3.3% 4.8% 3.9% 22.0%

stderr 0.72%  0.89% 1.28% 1.03% 5.87%
ttest <0.001 <0.001 0.004 0.003 0.22

Table 5: Surplus Online Results

Figure 8: Offline MEOW versus Distribution Bid Shading al-
gorithms Dec 22 - Jan 12 2021. Bid prices decrease signifi-
cantly starting January 1

Distribution estimates are biased systematically due to the shape
that they are required to fit. We also observe that the Distribution
approach has difficulty setting the win probability to zero for the
"floor" price of the auction - instead of an immediate drop to zero,
it is a gentle slope.

For illustration purposes, we show a "low resolution” MEOW
algorithm that only has K=7 bins; the algorithm approximation is
relatively poor. In contrast, the MEOW algorithm with K=30 bins
approximates the distribution extremely well - and better than the
Distribution approach. In particular, the Non-parametric approach
approximates the floor (bid prices below $2.00) and the ceiling.

Figure 5 shows the importance of private value quantization.
This is the average of shading factors which associated with the
maximum surplus, for each private value bin. As private value
increases, the algorithm finds that a deeper shading factor is optimal,
a result also observed in the auction literature [4].

Figure 6 shows the relationship between private value, shading
factor, and surplus, for one domain (spotify.com). It can be seen
that there is a bid price region where the system reliably has zero
probability of winning. This is likely the auction floor which the
system has inferred.

7 DISCUSSION

The higher yield from Non-parametric algorithms isn’t free. Where-
as the Distribution algorithm might typically have two numeric pa-
rameters for its distribution shape (variance and mean for example),
MEOW has M X K parameters; which for the default parameters
of M=40 and K=20 results in 800 doubles. Thus, the algorithm is
about 400 times more expensive in space. We’ve argued, and the
experimental results also support, the argument that this additional
space is needed to capture the various spike patterns. However, the
same level of resourcing might not be necessary for every auction.

Wei Zhangl’*, Brendan Kitts?, Yanjun Han®, Zhengyuan Zhou?, Tingyu Mao?,
Hao He?, Shengjun Pan?, Aaron Flores?, San Gultekin?, Tsachy Weissman®

We believe it might be possible to combine both parametric and
nonparametric approaches, and use the higher precision of non-
parametric where needed, and preserve storage when parametric
approximates well enough. One approach that seems promising
is the online learning with hints framework from [38], where the
parametric fit forms a hint which is used or discarded based on
performance. We believe future work in this area may be fruitful.

8 CONCLUSION

The shift to First Price has been traumatic for the advertising indus-
try. Several researchers reported that traffic prices for First Price
Auctions increased between 5% and 50% higher compared to Second
Price Auctions [3, 19, 25, 31], meaning significantly lower advertiser
profitability for the same impressions. [25] reported that after their
SSP switched to First Price, 10% of advertisers actually discontinued
bidding.

As a result of these problems, there has been an explosion of
research and commercial implementations in Machine Learning for
Bid Shading.

It seems certain that the financial imperative to shade better
than competing Demand Side companies, will lead bidders to be-
gin to exploit the deep pricing structure in online auctions. There
appears to be plenty of performance available, for researchers and
companies who are willing to "listen to what their data is telling
them".

As Thomas Huxley, the great biologist and supporter of Charles
Darwin suggested, we should endeavor to “.sit down before fact as
a little child, be prepared to give up every preconceived notion, follow
humbly wherever and to whatever abysses nature leads, or you shall
learn nothing." - Thomas Huxley (1860), [20]
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