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ABSTRACT

Bid Shading has become increasingly important in Online Advertis-

ing, with a large amount of commercial [3, 13, 14, 31] and research

work [12, 22, 30] recently published.

Most approaches for solving the bid shading problem involve

estimating the probability of win distribution, and then maximizing

surplus [30]. These generally use parametric assumptions for the

distribution, and there has been some discussion as to whether

Log-Normal, Gamma, Beta, or other distributions are most effective

[7, 36, 43, 44].

In this paper, we show evidence that online auctions generally

diverge in interesting ways from classic distributions. In particular,

real auctions generally exhibit significant structure, due to the way

that humans set up campaigns and inventory floor prices [8, 17].

Using these insights, we present a Non-Parametric method for

Bid Shading which enables the exploitation of this deep structure.

The algorithm has low time and space complexity, and is designed

to operate within the challenging millisecond Service Level Agree-

ments of Real-Time Bid Servers. We deploy it in one of the largest

Demand Side Platforms in the United States, and show that it reli-

ably out-performs best in class Parametric benchmarks. We con-

clude by suggesting some ways that the best aspects of Parametric

and Non-Parametric approaches could be combined.
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· Applied computing → Online auctions; · Information

systems→Display advertising; ·Computingmethodologies

→ Machine learning algorithms.
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1 INTRODUCTION

Between 2017 and 2019, the Online Advertising industry underwent

a massive transformation. Prior to 2017, Display ads were sold

almost exclusively on Second Price Auctions. However, by 2018,

First Price Auctions had increased from 5% to 43% of all auctions

[11, 25]. After Google’s decision to shift in 2019, 85% of display

impressions were sold via First Price.

First Price Auctions present a formidable challenge to advertisers,

as they require the bidder to engage in a practice called bid shading.

Bid shading occurs when the bidder takes the private value that

they would have submitted in a second price auction, and then tries

to lower their bid so that it is just above the highest competing bid

- this in order to minimize their price paid whilst still winning the

auction [18]. This process is beset with risk, since the other bids

on the auction are unknown. If the bidder shades too little, they

will overpay; If they shade too much, they will lose and gain no

value. Identifying the optimum bid shade, therefore, requires the

bidder to predict competing bidder prices, yet without being able

to see bidder prices. This is an enormously difficult data mining

prediction problem.

With its sudden financial impact in the Online Advertising in-

dustry, Bid Shading has become a major area of new research and

commercial activity. Several companies announced new bid shad-

ing services to help advertisers effectively bid, including Google

[13, 14], AppNexus [3] and Rubicon [31]. Researchers and indus-

try practitioners have also published details of new bid shading

algorithms [12, 22, 30].

Most approaches for solving the problem involve predicting the

probability of winning at different bid prices, the surplus given this

probability of win, and then returning the shaded bid price with

the maximum surplus [30]. This has generally been accomplished

with parametric assumptions on the shape of the landscape.

We show new evidence in this paper that online auctions di-

verge significantly from well-known distributions, and exhibit us-

able structure due to the way that humans set up campaigns and

inventory floor prices [8, 17]. Parametric distributions often fail to

capture this structure.

The current paper presents a new Non-Parametric method for

Bid Shading which enables the exploitation of this deep structure.

The paper is organized as follows: Section 1 introduces the Bid

Shading Problem and describes prior work including several para-

metric approaches that have been recently published. Section 2

introduces real auction data, and shows that it exhibits significant
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"spike" structure that not unlike the Left Digit Anchoring Effect

observed in Psychology [17]. Section 4 introduces the MEOW algo-

rithm, and proves its time and space complexity. Section 6 shows

Offline and Live Bid Server experiments using the new algorithm.

1.1 The Bid Shading Problem

At time 𝑡 , given a valuation 𝑉𝑡 , if we won the impression, which

represents how much the advertiser expects to capture from the

impression, how much should the advertiser discount their valua-

tion? Assuming that the valuation 𝑉𝑡 is an accurate representation

of the dollar value that the advertiser expects to obtain, and the bid

𝑏𝑡 is also in real dollars, the advertiser’s financial gain, or surplus

over a horizon 𝑇 , is equal to:

𝑆𝑇
def
=

𝑇
∑

𝑡=1

(𝑉𝑡 − 𝑏𝑡 ) I(𝑏𝑡 > 𝑚𝑡 ), (1)

where 𝑏𝑡 is the shaded bid,𝑚𝑡 is the minimum bid price to win,

and I(𝑏𝑡 > 𝑚𝑡 ) = 1 if the impression is won, and 0 otherwise. The

task is to adaptively find shaded bids {𝑏𝑡 }
𝑇
𝑡=1 that maximizes the

surplus 𝑆𝑇 to the advertiser.

1.2 Related Work

Bid shading is a common tactic in repeated First Price Auctions,

and is expected by auction theory. [46] found robust evidence of

shading in Austrian livestock auctions, [6] reported shading in a

Texas cattle market, and [18] found the practice in auctions for

US Treasury notes. Bid Shading shares characteristics with the

Seller’s (Reserve) Price Optimization Problem [5, 24, 26, 27, 32, 33],

although the Bid Shading Problem is a buyer side problem, and the

buyer has access to distinct forms of feedback.

A variety of approaches have been proposed to solve the Bid

Shading problem:

Winning price predictors There have been some published re-

search on the problem of winning price prediction on auctions.

[21, 41, 42] both develop methods for this purpose. Whilst these

methods are useful, Bid shading involves predicting and maximiz-

ing expected surplus, however, which involves another unknown

and optimization step.

Point Estimators use a machine learning algorithm to predict the

exact optimal shading factor, by estimating the ratio of theminimum

bid to win over the advertiser’s private value. For instance, [12]

used a Factorization Machine to predict a shading factor by training

against known cases of optimum shading factor (0.1).

Unfortunately, this technique is only feasible on Seller auctions

in which the Seller provides the exact winning price back to the

Buyer (an "Open Bid Auction"). The optimal price can then be used

as a training signal for the Buyer. However, most Online Advertising

Auction Sellers (including Index Exchange, Pubmatic and others)

do not disclose this information, instead just providing whether the

bid was accepted or not ("Sealed Bid Auctions"). The "optimum" bid

is therefore unknown.

Distribution estimators improve upon these earlier approaches,

by training on the 0-1 win/loss signal, and predicting the proba-

bility of win across all possible bid prices; effectively creating a

probability distribution of winning prices. Once the cdf is predicted,

it is possible to calculate the expected surplus at each bid price, and

the optimum bid price can be identified.

The recent WinRate model from [30] takes this approach, esti-

mating the win probability for each bid price using a 0-1 logistic

distribution, and then maximizing the resulting surplus function.

Because of the known parametric form, the authors are able to

bound the optimum and use a guaranteed 𝑂 (𝑙𝑜𝑔(𝐾)) bisection

search to find the surplus maximum - the logarithmic time search

being highly desirable for Bidding Servers which need to minimize

computational operations.

Other authors have taken a similar approach to distribution

estimation. [36] extend the Winrate idea to support a range of

parametric distribution, and use a Deep Neural Network to estimate

the distribution’s shape parameters. Their implementation was

shown to work for Gamma, Gaussian and Log-Normal distributions.

They used a distribution-agnostic, Golden Section Search, to find

the surplus maximum bid price.

Although these methods have proven effective, we show in this

paper that the actual auction distributions are generally quite diver-

gent from the parametric assumptions, and that more surplus can

be captured by modeling the auction data more closely, possibly in

a nonparametric way. The usage of nonparametric methods also

has a long history in the study of auction theory and first-price auc-

tions. For example, kernel-based methods have been proposed for

the nonparametric estimation of bidders’ bid distribution [15], or

the value distribution [35], sometimes with an unknown number of

bidders [2], in first-price auctions. However, this thread of research

typically assumes strong assumptions on the bid distribution such

as a smooth density, which usually does not hold in real bidding

data. These works are in sharp contrast with the recent work [16],

which relies on few modeling assumptions and is the building block

of the MEOW algorithm proposed in this paper.

2 AUCTION LANDSCAPES

In auction literature and past work, Auction State bids are often

assumed to be normally distributed [43, 44]; although others have

noted that their auction data was fit well by Log-Normal [7]. We

tested a variety of distributions on our auction data. None of the

distributions fit well enough to be significant under a test for fit,

but similar to [44] we found that Log-Normal has the lowest error

and highest linear correlation to the actual data, out of Normal,

Log-Normal and Gamma distributions tested. Log-Normal is seen

in other auctions such as contract bidding [34].

In addition to the overall shape, Auction State also has some

unusual characteristics. One that stands out is that there are some

prices where there are large spikes in impressions. For example,

Figure 1 is typical.

Some previous authors address the spikes by smoothing over

them. [23] fit smoothing splines to the bid-volume cumulative dis-

tribution. [45] use a Mixture of Gaussians. If the spikes are noise,

then avoiding transient spikes should result in better out-of-sample

prediction. But what if the spikes are not actually noise?

Spikes appear in other domains: Marathon running times are

approximately Log-normal. However, finishing times also have

spikes on the left-side of hours and half hours. This is due to a
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Figure 3: Fixed width non-parametric predictors can per-

form worse than the mean if their resolution is too high for

the data.
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𝑏𝐾 𝑆𝐾,𝑗
Table 2: A reward table used in the SEW algorithm.

the Non-parametric algorithm needs the ability to dynamically ad-

just its bin sizes, so that it maintains usable resolution. The MEOW

algorithm, described below, uses dynamic binning.

4 MEOW ALGORITHM

To mitigate the issues of storage cost and generalization, we in-

troduce a nonparametric algorithm called the Multi-resolutional

Exponential Weighting (ME(O)W) algorithm. This algorithm in-

herits the nice theoretical properties of the Exponential Weighting

based algorithm [16] through the lens of online learning, and uses a

dynamic and data-driven binning to significantly reduce the mem-

ory requirement and adapt to different natures of data.

4.1 Algorithm Overview

The MEOW algorithm is motivated by the general idea of exponen-

tial weighting in nonparametric bid shading, where both the private

values and bidding prices are quantized into discrete levels, and we

maintain a table of historic rewards with each entry corresponding

to a given pair of private value and bidding price. At each time, the

private value is computed, and the bidder’s bid is determined by

running an exponential weighting algorithm on the rewards of all

candidate prices given this private value. An example of the reward

table is illustrated in Table 2, where 𝑆𝑖, 𝑗 denotes the cumulative

historic surplus of bidding 𝑏𝑖 under the private valuation 𝑣 𝑗 . Under

the private value 𝑣 𝑗 , the exponential weighting algorithm selects a

random bid 𝑏𝑖 with probability

𝑝𝑖 =
exp(𝜂𝑆𝑖, 𝑗 )

∑𝐾
𝑘=1

exp(𝜂𝑆𝑘,𝑗 )
,

where 𝜂 > 0 is a properly chosen learning rate.

However, maintaining such a static table is typically verymemory-

consuming, leaving lots of bins seldom visited, and a large portion

of candidate prices probably too bad for the bidder to bid. Also, the

non-data-driven nature of the table leads to a poor generalization

performance. The MEOW algorithm improves over the static table

by choosing its rows and columns in a dynamic and data-driven

way, and specifically greatly reduces the quantization levels for

both the private value (horizontally) and bidding prices (vertically).

Horizontal: private value bins. The high-level idea of horizontal

binning is to adapt the bin design to the real data distribution, where

each bin has comparatively similar amounts of data. Specifically, if

some bin of private values consists of too much data, we further

split it into smaller bins to reduce the quantization error. On the

other hand, if some bin has too little data, we merge it into another

bin so that there is enough data in this bin for learning. In the

MEOW algorithm, we first fix a static binning, and then perform

the splitting and merging operations of bins based on incoming

data. To reduce the computational cost, in the algorithm these steps

are only performed every 𝑇1 rounds of auctions, where 𝑇1 > 0 is a

hyperparameter which is moderately large (e.g. 𝑇1 = 1, 000).

Vertical: bidding price levels. The redundancy in the price levels

comes from the fact that, the optimal bidding price given a private

value in a small bin also lies in a small range. Therefore, we could

roughly estimates the optimal price (possibly with a low precision)

and then keep only a few candidate prices around it. Specifically,

for each bin of private values, we use the historic data to compute

the empirically optimal bidding price 𝑝∗ in this bin, and the set of

candidate bidding prices is chosen to be a suitable quantization of

[𝑝∗ − Δ, 𝑝∗ + Δ] for some small Δ > 0. The final quantization level

could be as small as 5 ∼ 20, which greatly reduces the storage cost.

In the MEOW algorithm, the process of updating candidate bidding

prices is implemented every 𝑇2 rounds, where 𝑇2 > 0 is a relatively

long time (e.g. 1 day).

Discount factor. The final MEOW algorithm also involves a dis-

count factor 𝜎 ∈ (0, 1) for two purposes. First, practical data are

typically non-stationary over time, and gradually forgetting old

data enables a better adaptation to the new data. Second, as the

amount of data increases, without the discount factor it is possible

to have infinite bins of private values, which increases both the

computational and the storage cost. In contrast, with a discount

factor, the number of bins is always bounded from above (cf. Theo-

rem 1). In the MEOW algorithm, we will apply this discount factor

to both the data counts of each bin, and also the cumulative reward

of each candidate bidding price.



MEOW: A Space-Efficient Non-Parametric Bid Shading Algorithm KDD ’20, August 2020, San Diego, California, USA

Algorithm 1: Multi-resolutional Exponential Weighting

(MEOW)

Inputs: Initial number of bins𝑀0; Initial ranges 𝑉 , 𝑃 ;

Number of prices 𝐾 ; Discount factor 𝜎 ∈ (0, 1); Learning

rate 𝜂 > 0; Update periods 𝑇1,𝑇2; Thresholds 𝑁1, 𝑁2.

Initialization: Build𝑀0 bins equally for 𝑣𝑡 ∈ [0,𝑉 ], and

set bin.price[ 𝑗] = 𝑗𝑃/𝐾 for each 𝑗 = 1, · · · , 𝐾 .

for 𝑡 = 1, 2, . . . do
% Search for current bin

Observe private value 𝑣𝑡 ;

if 𝑣𝑡 > 𝑉 then
Create a new bin [floor(𝑣𝑡 ), floor(𝑣𝑡 ) + 1);

end

Search for the bin∗ s.t. 𝑣𝑡 ∈ [bin
∗ .𝑣low, bin

∗ .𝑣high);

% Exponential weighting

for 𝑗 = 1, 2, . . . 𝐾 do
prob[ 𝑗] ← exp(𝜂 · bin∗ .history[ 𝑗])

end

Sample 𝑏𝑡 ∼ prob/
∑𝐾
𝑗=1 prob[ 𝑗];

% Bin update

Observe the minimum-bid-to-win𝑚𝑡 ;

for 𝑗 = 1, 2, . . . 𝐾 do
bin∗ .history[ 𝑗] ← bin∗ .history[ 𝑗] +

instantreward(bin∗ .price[ 𝑗]; 𝑣𝑡 ,𝑚𝑡 );

end

bin∗ .count← bin∗ .count + 1;

% Split or merge bins after every 𝑇1 steps

if 𝑡%𝑇1 == 0 then

for all bins do
% Split a large bin into two smaller bins

if bin.count ≥ 𝑁1 then
bin.history← bin.history/2;

bin.count← bin.count/2;

Create new bins bin𝑙 , bin𝑟 ← bin;

bin𝑙 .𝑣high ← (bin.𝑣low + bin.𝑣high)/2;

bin𝑟 .𝑣low ← bin𝑙 .𝑣high;

Replace bin by bin𝑙 and bin𝑟 ;

end

% Merge two smaller bins into a large bin

if bin.count ≤ 𝑁2 then
Find the neighbor bin′ with a smaller count;

Create a new bin∗ with private value range

[bin.𝑣low, bin.𝑣high)∪[bin
′.𝑣low, bin

′.𝑣high);

bin∗ .count← bin.count + bin′.count;

bin∗ .price and bin∗ .history inherit from the

bin with a larger count;

Remove bin and bin′, and add bin∗;
end

end

% Discount

Multiply all counts and histories by the factor 𝜎 ;

end

% Update price levels after every 𝑇2 steps

if 𝑡%𝑇2 == 0 then
Requantization();

end

end

Algorithm 2: Requantization

Global inputs: private value bins, number of price levels 𝐾

for all possible bin do
𝑗∗ ← argmax(bin.history);

for 𝑗 = 1, 2, . . . 𝐾 do
bin.price[ 𝑗] ← bin.price[ 𝑗∗ − 7] + 𝑗 ·

(bin.price[ 𝑗∗ + 7] − bin.price[ 𝑗∗ − 7])/𝐾 ;

end

bin.history← 0;

end

4.2 Algorithm Details

The complete description of the MEOW algorithm is summarized

in Algorithm 1, which also takes Algorithm 2 as a subroutine which

updates the candidate bidding price every 𝑇2 time steps. Specifi-

cally, the MEOW algorithm maintains an array of private value

bins, where each bin is a data structure consisting of the following

variables:

• [𝑣low, 𝑣high): range of the private value in the bin;

• count: cumulative (discounted) amount of past data falling

into this bin;

• price[𝐾]: an array of 𝐾 candidate bidding prices under this

bin, sorted in an increasing order;

• history[𝐾]: an array of 𝐾 cumulative (discounted) historic

rewards associated with the above 𝐾 bidding prices.

Here 𝐾 > 0 is a fixed parameter in the algorithm and denotes the

number of vertical quantization levels.

In the initialization of the algorithm, we uniformly partition the

interval [0,𝑉 ] into 𝑀0 bins, where 𝑉 > 0 is an upper bound for

most private values (e.g. the 1% quantile). For each bin, we initialize

𝐾 price levels to be a uniform quantization of [0, 𝑃], where 𝑃 > 0 is

the maximum bidding price. All the counts and the reward histories

are initialized to be zero.

Next we describe the dynamic updates of the private values and

candidate prices, respectively. For the private value bins, if some

private value above 𝑉 occurs (which is unlikely), we create a new

bin for this value. After every 𝑇1 time steps, we check the size of

each bin: if the bin count is larger than a threshold 𝑁1, we split

it evenly into two bins, with both the count and history halved;

if the bin count is smaller than another threshold 𝑁2, we merge

it with one of its neighboring bin which a smaller size, combine

their counts, and inherit the prive levels and history from the larger

bin. We repeat this process until the count of each bin is between

[𝑁2, 𝑁1], and then apply the discount factor 𝜎 ∈ (0, 1) to both the

counts and the historic rewards.

As for the updates of candidate prices, we call the subroutine in

Algorithm 2 every 𝑇2 time steps. In Algorithm 2, for each bin we

pick the best price 𝑝∗ giving the largest historic reward, and update

the new prices to a uniform 𝐾-level quantization of [𝑝∗ −Δ, 𝑝∗ +Δ]

for some Δ. The specific choice of the interval is based on the past

price level: the algorithm finds the best bidding price bid.price[ 𝑗∗],

and chooses the interval to be [bid.price[ 𝑗∗ − 7], bid.price[ 𝑗∗ + 7]].

Finally, since the prive levels have changed, we also reset all historic

rewards to zero.
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Finally we provide an example choice of the hyperparameters

used in our experiments: 𝑀0 = 40,𝑉 = 100, 𝑃 = 10, 𝐾 = 20, 𝜎 =

0.99, 𝜂 = 1, (𝑇1,𝑇2) = (1000, 1 day), (𝑁1, 𝑁2) = (2500, 10000). Note

that we will ignore the first few 𝑇1 steps to ensure enough data for

splitting/merging when we restart the algorithm.

4.3 Time and Space Complexity

In this section we provide the analysis on the space and tiem com-

plexities of the MEOW algorithm, and show that it could indeed

be efficiently implemented in practice. We start by showing that

thanks to the discount factor, the number of bins is always finite.

Theorem 1. Even for an infinite amount of data, the total number

of bins is upper bounded by a constant number

𝑀 := max

{

𝑇1

𝑁2 · (1 − 𝜎)
, 𝑀0

}

.

Proof. First we show that due to the discount, the total count

is bounded by a constant value:
∑

all possible bins

(bin.count) ≤ 𝑇1 · (1 + 𝜎 + 𝜎
2 + · · · ) <

𝑇1

1 − 𝜎
.

Since after each horizontal bin update, the count of each bin is at

least 𝑁2. In view of the above inequality, the number of bins after

update is at most 𝑇1/(𝑁2 (1 − 𝜎)). Moreover, before all bin updates

the number of bins is initialized to be𝑀0, and the result follows. □

Under the choice of parameters 𝑇1 = 1000, 𝑁2 = 2000, 𝜎 = 0.99,

and𝑀0 = 40, we compute that𝑀 = 40 in Theorem 1. Consequently,

our storage cost is at most𝑂 (𝑀𝐾), corresponding to the storage of

the matrix consisting of all historic rewards.

As for the computational complexity, note that whenever there

is no horizontal or vertical update, the running time of the bin

search and the exponential weighted prediction in Algorithm 1 is at

most 𝑂 (log𝑀 + 𝐾). When there is either a horizontal or a vertical

update, we may need to change the history table for all bins, which

takes 𝑂 (𝑀𝐾) time. Therefore, the overall time complexity during

𝑇 rounds of auctions is

𝑂

(

𝑇 ·

(

log𝑀 + 𝐾 +
𝑀𝐾

𝑇1
+
𝑀𝐾

𝑇2

))

,

which is linear in 𝑇 with the coefficient smaller than 30 under our

parameter configuration.

5 IMPLEMENTATION

The bid shading system was deployed on Verizon Demand Side

Platform (VZDSP) [29], the fourth largest in the United States after

Google, Amazon, and the Trade Desk [9]. The performance require-

ments for VZDSP are extreme. At run-time, the Bid Shader needs

to respond to 5.5 million requests per second peak load. For each of

these bid requests, a bid needs to be calculated within 100 milisec-

onds. Approximately 1000 bid servers are used to serve ads, which

means that each server has to handle 5,000 requests per second.

Overall, less than 10 miliseconds are budgeted for bid calculations.

The time complexity of Section 4.3 shows that the algorithm only

adds about 30 additional operations per request.

Space requirements are also highly restrictive. Bid servers carry

about 28 Gigabytes of RAM. There are over 200,000 sub-domains

and mobile applications requesting bids. Therefore assuming𝑀=40

and 𝐾=20, there are 200,000 ×𝑀 × 𝐾 = 160,000,000 = 160 million

double types are needed, which equals about 1.28 Gigabytes RAM

per bid-server. The analysis to follow shows results for the most

frequent 100 domains, the memory consumption for which was

negligable at 0.64 Megabytes.

6 EXPERIMENTS

In order to measure the performance of the bid shading system, two

forms of testing were performed: (i) Leveraging knowledge of the

highest competing bids provided by an ad exchange, auctions were

replayed using the MEOW algorithm to calculate bid prices. (ii) the

MEOW algorithm was also used in production in an A/B test vs

the production algorithm. The production algorithm benchmark in

both cases was an implementation of log-normal distribution-based

shading [30].

6.1 Offline Auction Replay

The Non-parametric algorithm was first tested on saved auction

data captured from the Verizon Demand Side Platform where for

each auction/bid request, private valuations and highest competing

bids were known. Bid requests from the top 100 top-level domains

were used (cnn.com, espn.com, buzzfeed.com and other sites), and

all auctions from December 22 to January 12 2021 in which the Pro-

duction algorithm responded with a bid, were used. This comprised

approximately 6.2 billion requests.

The data spanned an interesting period of time, since it ranged

from the 2020 Christmas shopping season with high advertising

prices around $0.97 CPM, to January 2021 in which advertising

prices dropped to just $0.77 CPM.

Figure 4 shows the behavior across this period; after good per-

formance from December 22 to 29, there’s a big drop centered

on January 1, 2021. Surplus yield worsens by 15% due to the new

auctions no longer matching historical data. On January 2nd, the

surplus recovers. Quantitatively, MEOW appears to have responded

better to the change in distribution over the dataset. The R2 be-

tween algorithm bid and optimal bid for Distribution was 0.903

where-as for MEOW it was 0.953. The mean absolute difference

in CPM was $0.88 and $0.64; and surplus as a percent of optimal

surplus was 47.9% and 53.4% for Distribution vs MEOW (Table 3).

Thus MEOW submitted bids that were closer to optimum and had a

better correlation in matching the in-time changes to the optimum

bid distribution.

Table 4 summarizes the performance on replay data. The increase

in surplus ranged between 5.7% (100th percentile) to 10.1% (90th

percentile), and all increases were statistically significant (p<0.01;

paired t-test; MEOW vs Distribution surplus scores compared daily).

The table reports on several surplus percentiles because we have

found it to be common for a tiny percentage of advertiser ads

to have unrealistic goals and be "chronically wound up" by the

control system, resulting in spuriously high surpluses. Therefore

we presented a range of percentiles from 90% to 100% to help verify

that the results were robust.
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percentile 90 95 98 99 100

mean 3.3% 6.1% 4.5% 3.5% 6.0%

stdev 2.7% 3.3% 4.8% 3.9% 22.0%

stderr 0.72% 0.89% 1.28% 1.03% 5.87%

ttest <0.001 <0.001 0.004 0.003 0.22

Table 5: Surplus Online Results
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Figure 8: Offline MEOW versus Distribution Bid Shading al-

gorithms Dec 22 - Jan 12 2021. Bid prices decrease signifi-

cantly starting January 1

Distribution estimates are biased systematically due to the shape

that they are required to fit. We also observe that the Distribution

approach has difficulty setting the win probability to zero for the

"floor" price of the auction - instead of an immediate drop to zero,

it is a gentle slope.

For illustration purposes, we show a "low resolution" MEOW

algorithm that only has 𝐾=7 bins; the algorithm approximation is

relatively poor. In contrast, the MEOW algorithm with 𝐾=30 bins

approximates the distribution extremely well - and better than the

Distribution approach. In particular, the Non-parametric approach

approximates the floor (bid prices below $2.00) and the ceiling.

Figure 5 shows the importance of private value quantization.

This is the average of shading factors which associated with the

maximum surplus, for each private value bin. As private value

increases, the algorithm finds that a deeper shading factor is optimal,

a result also observed in the auction literature [4].

Figure 6 shows the relationship between private value, shading

factor, and surplus, for one domain (spotify.com). It can be seen

that there is a bid price region where the system reliably has zero

probability of winning. This is likely the auction floor which the

system has inferred.

7 DISCUSSION

The higher yield from Non-parametric algorithms isn’t free. Where-

as the Distribution algorithm might typically have two numeric pa-

rameters for its distribution shape (variance and mean for example),

MEOW has𝑀 × 𝐾 parameters; which for the default parameters

of 𝑀=40 and 𝐾=20 results in 800 doubles. Thus, the algorithm is

about 400 times more expensive in space. We’ve argued, and the

experimental results also support, the argument that this additional

space is needed to capture the various spike patterns. However, the

same level of resourcing might not be necessary for every auction.

We believe it might be possible to combine both parametric and

nonparametric approaches, and use the higher precision of non-

parametric where needed, and preserve storage when parametric

approximates well enough. One approach that seems promising

is the online learning with hints framework from [38], where the

parametric fit forms a hint which is used or discarded based on

performance. We believe future work in this area may be fruitful.

8 CONCLUSION

The shift to First Price has been traumatic for the advertising indus-

try. Several researchers reported that traffic prices for First Price

Auctions increased between 5% and 50% higher compared to Second

Price Auctions [3, 19, 25, 31], meaning significantly lower advertiser

profitability for the same impressions. [25] reported that after their

SSP switched to First Price, 10% of advertisers actually discontinued

bidding.

As a result of these problems, there has been an explosion of

research and commercial implementations in Machine Learning for

Bid Shading.

It seems certain that the financial imperative to shade better

than competing Demand Side companies, will lead bidders to be-

gin to exploit the deep pricing structure in online auctions. There

appears to be plenty of performance available, for researchers and

companies who are willing to "listen to what their data is telling

them".

As Thomas Huxley, the great biologist and supporter of Charles

Darwin suggested, we should endeavor to ł..sit down before fact as

a little child, be prepared to give up every preconceived notion, follow

humbly wherever and to whatever abysses nature leads, or you shall

learn nothing." - Thomas Huxley (1860), [20]

9 ACKNOWLEDGEMENTS

This work is generously supported by the National Science Foun-

dation under Grants CCF-2106508 and CCF-2106467.

REFERENCES
[1] 2021. Nonparametric statistics. Wikipedia website (2021). https://en.wikipedia.

org/wiki/Nonparametric_statistics
[2] Yonghong An, Yingyao Hu, and Matthew Shum. 2010. Estimating first-price

auctions with an unknown number of bidders: A misclassification approach.
Journal of Econometrics 157, 2 (2010), 328ś341.

[3] AppNexus. 2018. Demystifying Auction Dynamics for Digital Buyers and Sell-
ers. https://www.appnexus.com/sites/default/files/whitepapers/49344-CM-
Auction-Type-Whitepaper-V9.pdf

[4] Pierpaolo Battigalli and Marciano Siniscalchi. 2003. Rationalizable bidding in
first-price auctions. Games and Economic Behavior 45, 1 (2003), 38ś72.

[5] A. Blum and J. D. Hartline. 2005. Near-optimal online auctions. Proceedings of the
sixteenth annual ACM-SIAM symposium on Discrete algorithms (January 2005),
1156ś1163.

[6] John M Crespi and Richard J Sexton. 2005. A Multinomial logit framework to
estimate bid shading in procurement auctions: Application to cattle sales in the
Texas Panhandle. Review of industrial organization 27, 3 (2005), 253ś278.

[7] Zhang-R. Li W. Mao J. Cui, Y. [n.d.]. Bid Landscape Forecasting in Online Ad
Exchange Marketplace. (21 August [n. d.]).

[8] Haipeng (Allan) Chen Robert J. Kauffman Daniel Levy, Dongwon Lee and Mark
Bergen. 2011. Price Points and Price Rigidity. Review of Economics and Statistics
93. Issue 4. https://www.biu.ac.il/soc/ec/d_levy/wp/pricepointsaug2008.pdf

[9] emarketer. 2020. Top 6 DSPs in the past 12 months.
[10] Devin G. Pope George Wu Eric J. Allen, Patricia M. Dechow. 2014. Reference-

Dependent Preferences: Evidence from Marathon Runner, Management Sci-
ence. (2014). http://faculty.chicagobooth.edu/devin.pope/research/pdf/website_
marathons.pdf

[11] Getintent. 2018. Digital Ad Impression Share Among US Supply-Side Platforms
(SSPs), byAuction Type, Dec 2017 andMarch 2018: % of total impressions analyzed



MEOW: A Space-Efficient Non-Parametric Bid Shading Algorithm KDD ’20, August 2020, San Diego, California, USA

by GetIntent, April 30, 2018. https://www.emarketer.com/content/five-charts-
the-state-of-programmatic-bidding

[12] Djordje Gligorijevic, Tian Zhou, Bharatbhushan Shetty, Brendan Kitts, Shengjun
Pan, Junwei Pan, and Aaron Flores. 2020. Bid Shading in The Brave New World
of First-Price Auctions. In The 29th ACM International Conference on Information
and Knowledge Management. CIKM’20.

[13] Google. 2019. Real Time Bidding Protocol Protocol Buffer v.167.
https://developers.google.com/authorized-buyers/rtb/downloads/realtime-
bidding-proto

[14] Google. 2019. Real Time Bidding Protocol, Release Notes. https://developers.
google.com/authorized-buyers/rtb/relnotes#updates-2019-03-13

[15] Emmanuel Guerre, Isabelle Perrigne, and Quang Vuong. 2000. Optimal nonpara-
metric estimation of first-price auctions. Econometrica 68, 3 (2000), 525ś574.

[16] Yanjun Han, Zhengyuan Zhou, Aaron Flores, Erik Ordentlich, and Tsachy Weiss-
man. 2020. Learning to Bid Optimally and Efficiently in Adversarial First-price
Auctions. arXiv preprint arXiv:2007.04568 (2020).

[17] Gendall P. Garland R. Holdershaw, J. 1997. The Widespread Use Of Odd Pricing
In The Retail Sector. Marketing Bulletin 8. http://marketing-bulletin.massey.ac.
nz/V8/MB_V8_N1_Holdershaw.pdf

[18] Ali Hortaçsu, Jakub Kastl, and Allen Zhang. 2018. Bid shading and bidder surplus
in the us treasury auction system. American Economic Review 108, 1 (2018),
147ś69.

[19] B. Hovaness. 2018. Sold for more than you should have paid. https://www.hearts-
science.com/sold-for-more-than-you-should-have-paid/

[20] Thomas Henry Huxley and Leonard Huxley. 1900. The Life and Letters of Thomas
Henry Huxley. Vol. 1. Macmillan.

[21] Verizon Media internal report. 2019. Predicting Optimal Bid Shading Factor Using
Logistic Regression.

[22] Niklas Karlsson and Qian Sang. 2020. Adaptive bid shading optimization of first
price ad inventory. In submitted to the 59th IEEE Conf. on Decision and Control.
IEEE CDC’20.

[23] N. Karlsson and Zhang. 2017. A Forecasting-Based Novel Feedback Campaign
Control System. (2017).

[24] N. B. Keskin and A. Zeevi. 2014. Dynamic pricing with an unknown demand
model: Asymptotically optimal semi-myopic policies. Operations Research 62, 5
(2014), 1142ś1167.

[25] Brendan Kitts. 2019. Bidder Behavior after Shifting from Second to First Price
Auctions in Online Advertising. http://www.appliedaisystems.com/papers/FPA_
Effects33.pdf

[26] B. Kitts and K. Hetherington-Young. 2005. Price Optimization in Grocery Stores
with Cannibalistic Product Interactions. Proceedings of the First Workshop on
Data Mining Case Studies, Fifth IEEE International Conference on Data Mining
(ICDM 2005) (November 2005), 74ś91. http://dataminingcasestudies.com/DMCS_
WorkshopProceedings25.pdf

[27] R. Kleinberg and T. Leighton. 2003. The value of knowing a demand curve:
Bounds on regret for online posted-price auctions. 44th Annual IEEE Symposium
on Foundations of Computer Science (2003), 594ś605.

[28] Paul Kvam and Brani Vidakovic. 2007. Nonparametric Statistics with Applications
in Science and Engineering. John Wiley & Sons, Inc. http://zoe.bme.gatech.edu/
~bv20/isye6404/Bank/npmarginal.pdf

[29] Christina MacDonald. 2020. Verizon Media brings native marketplace, premium
inventory into expanded DSP. https://www.verizonmedia.com/press/2020/05/
01/verizon-media-expanded-dsp

[30] Shengjun Pan, Brendan Kitts, Tian Zhou, Hao He, Bharatbhushan Shetty, Aaron
Flores, DjordjeGligorijevic, Junwei Pan, Tingyu Mao, San Gultekin, and Jianlong
Zhang. 2020. Bid Shading by Win-Rate Estimation and Surplus Maximization.
In The 26th ACM SIGKDD Conference on Knowledge Discovery and Data Mining.
AdKDD’20, San Diego, California, USA.

[31] Rubicon. 2018. Bridging the Gap to First-Price Auctions: A Buyer’s
Guide. http://go.rubiconproject.com/rs/958-XBX-033/images/Buyers_Guide_
to_First_Price_Rubicon_Project.pdf

[32] Ilya Segal. 2003. Optimal Pricing Mechanisms with Unknown Demand. American
Economic Review 93, 3 (June 2003), 509ś529. https://papers.ssrn.com/sol3/papers.
cfm?abstract_id=297674

[33] Hermann Simon. 1989. Price Management. (August 1989).
[34] Pablo Ballesteros-Pérez & Martin Skitmore. 2017. On the distribution of bids for

construction contract auctions. Construction Management and Economics 35, 3
(2017), 106ś121.

[35] Unjy Song. 2004. Nonparametric estimation of an eBay auction model with an
unknown number of bidders. Citeseer.

[36] Shengjun Pan Niklas Karlsson Bharatbhushan Shetty Brendan Kitts DjordjeG-
ligorijevic Junwei Pan San Gultekin Tingyu Mao Jianlong Zhang Tian Zhou,
Hao He and Aaron Flores. 2021. Efficient Deep Distribution Network for Bid
Shading in First Price Auctions. unpublished, in review (2021).

[37] L. Wasserman. 2006. All Things Nonparametric. Springer Verlag.
[38] Chen-Yu Wei, Haipeng Luo, and Alekh Agarwal. 2020. Taking a hint: How to

leverage loss predictors in contextual bandits?. In Conference on Learning Theory.
PMLR, 3583ś3634.

[39] J. Wolfers. 2014. What Good Marathons and Bad Investments Have in Common.
New York Times (22 April 2014). https://www.nytimes.com/2014/04/23/upshot/
what-good-marathons-and-bad-investments-have-in-common.html

[40] J. Wolfowitz. 1942. Additive Partition Functions and a Class of Statistical Hy-
potheses. Annals of Statistics (1942), 247ś279.

[41] WushWu, Mi-Yen Yeh, and Ming-Syan Chen. 2018. Deep censored learning of the
winning price in the real time bidding. In Proceedings of the 24th ACM SIGKDD
International Conference on Knowledge Discovery &DataMining. KDD ’18, London,
United Kingdom, 2526ś2535.

[42] Wush Chi-Hsuan Wu, Mi-Yen Yeh, and Ming-Syan Chen. 2015. Predicting win-
ning price in real time bidding with censored data. In Proceedings of the 21th
ACM SIGKDD International Conference on Knowledge Discovery and Data Mining.
KDD ’15, Sydney, 1305ś1314.

[43] Yeh-M.Y. Chen M.S. Wu, W.C.H. 2015. Predicting winning price in real time
bidding with censored data. (2015).

[44] Lee-K. Wang L. Xie, Z. 2017. Optimal Reserve Price for Online Ads Trading Based
on Inventory Identification. (13 August 2017).

[45] Guo-J. Karlsson N. Zhou, T. 2018. A KPIs Forecasting Scheme for Online Adver-
tising Systems. (2018).

[46] Christine Zulehner. 2009. Bidding behavior in sequential cattle auctions. Interna-
tional Journal of Industrial Organization 27, 1 (2009), 33ś42.


	Abstract
	1 Introduction
	1.1 The Bid Shading Problem
	1.2 Related Work

	2 Auction Landscapes
	3 Problems with Non-Parametric Algorithms
	4 MEOW Algorithm
	4.1 Algorithm Overview
	4.2 Algorithm Details
	4.3 Time and Space Complexity

	5 Implementation
	6 Experiments
	6.1 Offline Auction Replay
	6.2 Online Production Performance
	6.3 Observations

	7 Discussion
	8 Conclusion
	9 Acknowledgements
	References

