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Abstract—Learning mappings between system loading and
optimal dispatch solutions has been a recent topic of interest in
the power systems and machine learning communities. However,
previous works have ignored practical power system constraints
such as generator ramp limits and other intertemporal require-
ments. Additionally, optimal power flow runs are not performed
independently of previous timesteps - in most cases, an OPF
solution representing the current state of the system is heavily
related to the OPF solution from previous timesteps. In this paper,
we train a recurrent neural network, which embeds natural
relationships between timesteps, to predict the optimal solution of
convex power systems optimization problems with intertemporal
constraints. In contrast to traditional forecasting methods, the
computational benefits from this technique can allow operators to
rapidly simulate forecasts of system operation and corresponding
optimal solutions to provide a more comprehensive view of future
system states.

Index Terms—Recurrent neural networks, learning optimal
solutions, power systems forecasting

I. INTRODUCTION

As the capacity of installed intermittent generation in the
electric power grid rises, our ability to match supply and
demand on faster timescales must subsequently follow suit.
Optimal power flow (OPF) problems are typically solved by
grid operators to economically match supply and demand, but
as fluctuations in the power supply increase, solving these
problems becomes more challenging. Harnessing the benefit of
historical data and moving most of the computational burden to
an off-line setting, some recent work has focused on using ma-
chine learning (ML) to train models that map system loading
conditions onto OPF solutions [1]-[5]. Efforts to assist, rather
than replace, existing grid optimization procedures have also
been developed, such as techniques to help warm-start OPF
[6]-[8] to help expedite convergence.

While these works provide promising results for replacing or
augmenting traditional OPF procedures with trained black-box
models, they suffer from a couple flaws: First, practical power
systems operations are not “snapshot” OPFs that consider a
single loading scenario in isolation - intertemporal constraints,
such as generator ramp limits, also can highly constrain the set
of feasible system operating points [9], and future generation
dispatch is highly related to the current generator dispatch.
Second, ML-based tools are unfortunately a far cry away
from replacing current operator practice and expertise; ML can
presently, more realistically, be a supplementary tool that can
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help and assist operation. Thus, in this paper, we recognize
the benefit of ML-based tools to expedite grid operations
and turn towards 1) incorporating intertemporal constraints
into these models; and 2) utilizing these models for assisting
(through rapid forecasting of possible system states), rather
than replacing, current optimal power flow procedures.

In contrast to previous works which focus on (deep) neural
networks (DNNs) [1]-[4], here, we leverage recurrent neural
networks (RNNs), which better capture temporal relationships
and dependencies. RNNs were previously used in power
systems applications for emulating nonlinear solvers to solve
OPF problems [5] and for forecasting of demand [10], [11] and
renewable energy [12]. However, these works only forecast
inputs to the OPF problem - if an operator desired to obtain
forecasts of how the system would behave (e.g., forecasting
solutions to the OPF problem), they would have to input
these forecasts into a traditional solver. Here, we combine the
benefits of previous work in predicting snapshot OPF solutions
with the benefits of using deep learning for forecasting future
system states. In this paper, we use RNNs to forecast intertem-
poral (time-linked) OPF solutions, which allows operators to
not only obtain estimates of resource availability and demand,
but also estimates of the state of system operation.

Rather than using traditional forecasting techniques like
ARIMA and ARMA, we can use ML to simultaneously
approximate forecasts and optimal solutions while consider-
ing physical constraint violations during training. We show
our results on the IEEE 14-bus and 57-bus networks and
demonstrate the computational benefits and accuracy of using
a constrained RNN-based approach for predicting the solutions
of intertemporally constrained DC-OPF problems versus tra-
ditional forecasting techniques. Due to the speed of inference,
this can be used to generate forecasts rapidly under a variety
of possible system conditions.

II. RECURRENT NEURAL NETWORKS

Recurrent neural networks, also known as RNNs, are a class
of neural networks (ML models) that allow previous outputs
to be used as inputs while having hidden states. Fig. 1 shows
the architecture of a sample RNN. For each timestep ¢, the
hidden layer h; and the output vector y, € R™ are expressed



as follows:

hy =1 (Whnhi—1 + Wapa, + by) (1a)
Yy = WQ(Whyht + by) (1b)

where € R” is the input vector, Win, W e, Wiy, by, by
are the weight matrices and bias vectors, respectively, which
are shared across time. The 7 (+) is the activate function which
is typically non-linear (e.g., a rectified linear unit (ReLU)).

Long Short-Term Memory (LSTM) networks are a type
of recurrent neural network designed for and capable of
learning order dependence in sequence prediction problems.
This capability suggests that the promise of recurrent neural
networks is to learn the temporal context of input sequences
(past time-steps) in order to make better predictions. An LSTM
layer consists of a set of recurrently connected blocks, known
as memory blocks (cells) that keeps the information about
past inputs for an amount of time that is not fixed a priori.
This feature differentiates them from regular multilayer neural
networks, like feed-forward neural networks, that does not
have memory and can only learn a mapping between input
and output patterns. Although standard RNNs fail to learn in
the presence of time lags greater than 5 — 10 discrete time
steps between relevant input events and target signals (due
to vanishing gradients or exploding gradients), LSTMs are
impressive at capturing over long-term temporal dependencies
without suffering from the optimization hurdles that plague
the standard RNNGs.

Given the rise of smart electricity meters and the broad
adoption of electricity generation technology (mostly pen-
etration of renewable sources like solar panels), there is
a abundance of electricity usage data available. This data
represents a multivariate time series of power-related variables,
e.g. aggregated load at each node of the system or power
generations at each bus and so on, that in turn could be used
to model and even forecast future electricity consumption and
generation. Also, the future state of the power system networks
is heavily related to the previous state and timesteps due to the
intertemporal constraints that link the states together. There-
fore, running optimal power flow independently of previous
timesteps for obtaining the current state of the system would
not lead to a feasible and optimal solution. Indeed, recurrent
neural networks have attained good results in a variety of
applications because they can model the dynamics of the data.
In the power system application, the LSTM networks can
model the temporal changes in output power of generators
or load profiles because of their recurrent architecture and
memory units. Moreover, unlike the traditional recurrent neural
networks, LSTMs were designed to avoid the long-term de-
pendency problem. Therefore, this feature and computational
benefit from this technique allow operators to rapidly simulate
a wide variety of future system states dependent on how many
previous ones which the system is linked to.

III. RNNS FOR INTERTEMPORAL DC-OPF

In this section we provide the necessary background of an
intertemporal DC optimal power flow (OPF) problem with
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Fig. 1: A common structure of recurrent neural networks.

generator ramping constraints and discuss how it is made
amenable for use with an RNN.

A. DC Optimal Power Flow

In the DC-OPF problem, we aim to determine the least-
cost generator dispatch that meets the load (demand) in a
power network subject to power flow limits on the network
lines and power generator constraint. First, consider a power
network with N buses collected in set A/, and ! transmission
lines collected in the set of edges £. The horizon that it is
considered for solving the problem is divided into 7" equal
time slots. The set of time steps is denoted by 7 = {1,...,T}.
The power generated and the load demand in bus ¢ € A/ and
time ¢t € T are denoted by pf,t and pf’t, respectively. UR;
and DR, represents the ramp-up and ramp-down rate limit of
unit 4. p{j,t describes the active power flows associated with
each transmission line. Finally, 8; € R"™ collects the phase
angles at each of ¢ buses, with y; denoting the angle at the
reference bus associated with each time. Therefore, the DC-
OPF problem can be formulated as:
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where p? and p? represent the the minimum and maximum ac-
tive power injection from the generator. The objective function
(2) representing the cost of the generator dispatch, is assumed
to be a quadratic function. Constraint (3) shows the power
balance equation in bus 7 € A at time step ¢ € T. Constraints
(4) - (9) are the operation constraints. The generators output
powers, the increase or reduction in the generators output
powers per time-step, and the power flowing through the
transmission lines pifj’t are bounded.



B. DC-OPF Learning Goals and Modeling the Constraints

Given the inputs, the goal is to predict the current or
future time-steps states of the power system. The resulting
model (predictor) learns a DC-OPF mapping O : R" —
R™, where n is the number of load buses and generators
of lag timesteps gathered as input (demand at each bus
and active power injection from the generators), and m is
number of the same variables in the prediction timesteps
ahead horizon. The inputs given to the problem is a se-
ries of points collected in a set D = {(zx,y;)} i,
whdere :gk = (pgtfm),pgtin)...,p‘(itfl),pftilt)h) and y, =
(p(’t),p(t) . 71)(’t+7y),p(ﬂ_7y)) represents the k' samples in
the dataset that satisfy y;, = O(xy). The output is a function
O that ideally would be the result of the following optimization

problem
K

minimize: Z Lo(yy, O())

k=1

(10)

where in the case of a recurrent neural network, the loss
function £ of all time steps is specified based on the loss
at every time step as follows:

‘Co(ya :IA/) = Z ||pé]t+7,y) - ﬁ?t+7,y) || + Hp?t-&-‘ry) - f)?t-&-'ry) ||
Ty=0

The hat notation is adopted to denote the predictions of the

model, and variables without a hat denote the corresponding

true values.

A baseline RNN model can be obtained by ignoring the
problem (DC-OPF) constraints and minimizing the loss func-
tion. It will yield an approximation O which will typically not
satisfy the DC-OPF constraints, as minimizing prediction error
does not necessarily ensure constraint satisfaction. Therefore,
a major challenge of the learning task is to design an RNN
model that incorporates hard constraints, including inequality
and equality constraints within and across timesteps. To cap-
ture these constraints, this paper uses the method introduced in
[3]. This technique utilizes a Lagrangian relaxation approach
based on constraint violations used in a generalized augmented
Lagrangian relaxation. The violation-based Lagrangian relax-
ation formulation is then given by

minimize: f(x) 4+ Aplh(x)| + Ay max(0, g(x))

where A\, and Ay > 0 are the Lagrangian multipliers. Unlike
the traditional Lagrangian relaxation which exploits the satis-
fiability degrees of constraints, the violation-based Lagrangian
relaxation is expressed in terms of violation degrees.

The violation degree is always non-negative and indicates
how much the constraint is violated. The violation degree of
a constraint ¢ can be defined as a function v, : R® — Rt
such that ¢(x) holds whenever v.(x) = 0. Based on this
definition, the violation degrees for inequality (denoted by the
> superscript) and equality (denoted by the = superscript)
constraints are determined by:

ve () = |0c()]
vZ(x) = max(0, 5.(x))

c

(1)
(12)

Although the resulting expressions are not differentiable ev-
erywhere, computational experiments in [3] demonstrated that
violation degrees are more appropriate for predicting OPFs
than satisfiability degrees. It is worth mentioning that an
augmented Lagrangian method also uses both the satisfiability
and violations degrees in its objective.

To define the violation degrees of the DC-OPF constraints,
the baseline model in (10) needs to be developed. Given the
predicted values for active power generation and load, the
constraints can be captured naturally in terms of satisfiability
and violation degrees. For instance, the satisfiability degree of
a constraint in (3) can be obtained as:

~g  ad - ad
53(pf,t,pi,t) = pf,t —Pit— Z p{j,t
(ij)e€

for all 5 € A, the violation degree becomes

va(p®,p%) = Y v (ds(pY,,0%0))
(ieN)

The loss function used to train DC-OPF RNN (10) can
now be derived systematically, which include violation degrees
of the physical and engineering constraints. Here, intertem-
poral generator ramp constraints and intratemporal balance
constraint of the DC-OPF problem are considered in the loss
function. Therefore, for the set C of DC-OPF constraints, the
model loss is captured by the expression

L(x,y,9) = Lo(y, 9) + Y Aeve(x, §)
ceC

13)

where v.(x,4) is the violation degree of constraint ¢ for input
x and prediction g.

IV. SIMULATION RESULTS

Here, two networks were considered: The IEEE 14-bus
and IEEE 57-bus. Data for these two systems were obtained
via the Power Grid Library (PGLib) repository [13]. Net-
work properties were obtained directly from this repository.
Although these networks did not have the ramping capacity
values to begin with, ramp limit constraints are added as these
are physical engineering constraints typical of thermoelectric
power generation. The dataset is split into training and testing
datasets. A total of 70% of the samples of these benchmarks
are used to train the model for forcasting the power generation
and demand, while the remaining samples are used for testing
the model. The experiments report results on the test set.

We used the root-mean-square error (RMSE) to evaluate
the performance of the forecasting models. The models based
on the RNN were implemented and trained using Keras
package in Python 3.7 on a personal computer (Apple Laptop
with M1 chip), the Adam optimizer [14] with the default
learning rate /7 = 10~2 and a maximum of 250 epochs. The
model architecture consist of 5 hidden layers, 3 LSTM blocks
operating on inputs followed by 2 dense prediction layers with
three-headed linear outputs. The LSTM layers have 128, 64,
and 32 cell units and the number of nodes in the dense layers
are 64 and 32, respectively. All dense layers except the linear



output layer used rectified linear unit (ReLU) activations. 12
lag timesteps of the active power generation and demand of
the system have been used as input to the model for all the test
cases. The forecasting is done for different two intervals (one-
step and 12-steps ahead) of future generation and demand.
Note that although the size of the considered networks is small
in the number of buses (14 and 57 buses) for a snapshot OPF,
when considering optimization across multiple timesteps, the
number of required predictions (and thus size of the RNN)
grows significantly. For example, in the 12-timestep ahead
prediction for the 14-bus, over 200 variables are needed as
inputs and as outputs to the RNN; over 1000 RNN inputs and
outputs exist for the 57-bus network in this scenario.

A. Dataset Generation and Training

In a physical grid, historical runs would be used as the
training set for the RNN, yielding an abundance of data
representing a wide variety of system states; however, for
simulation and testing the model, we must generate the dataset.
The load profiles given from the PGLib repository is given
for one instance (snapshot) of the network. Therefore, in
order to create a time series dataset, a set of normalized time
series coefficients are generated based on the real-world actual
demand of the CAISO data which is publicly available online
[15]. Therefore, the characteristics of the resulting dataset for
each network represent realistic load profiles. The trials for
obtaining the coefficients took place during 29*” March 2021
and 12" April 2021 with over 4000 snapshots of the network
at a 5-minute temporal resolution.

p{ = p{i x (CAISO-coefficient),

where p! € RWI represent the vector collecting the load
demand at all load buses at time ¢ € 7 and p{ is a a
base load profile. Then, due to consideration of the ramp
rate constraint (5)-(6) which are intertemporal constraints, the
DC-OPF detailed in (2)-(9) was run for the whole specified
horizon with respect to the generated load profile. Therefore,
each training point at time ¢ € 7 consists of a load time
and its DC-OPF solution. The datasets were generated by
solving DC-OPFs using the CVXPY package in Python with
the Embedded Conic Solver (ECOS).

Figure 2 displays, for the IEEE 14-bus topology, the conver-
gence of the training procedure for predicted variables includ-
ing active power generations, and demand values (p?, ﬁd). Fig.
2a shows the total loss over the training epochs for both the
train (solid line) and test (dashed line) sets. We can see that the
proposed model converged reasonably quickly over a period of
50 epochs and both training and testing performance remained
equivalent. The performance and convergence behavior of the
model suggest that the considered loss functions (including
the constraints violation) are a good match for the network
learning this problem. Moreover, Figs. 2b and 2c illustrate
the loss values for each of the train and test sets separately,
showing how much each component of the loss function has
contributed to the total loss. Using this, we can evaluate and
diagnose how well the model is learning including all of the
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Fig. 2: Convergence analysis for train and test phases for IEEE
14-bus network in one-ahead prediction horizon.

considerations of the optimization process, such as overfitting,
underfitting, and convergence.

B. Prediction Accuracy

Table I shows the root mean square error (RMSE) for the
two networks using the RNN with and without constraint
violations included in the loss function. As the values indicate,
the inclusion of violation degrees in the loss function not only
lowers constraint violations but also helps lower the overall
RMSE of predictions. In addition to comparing RNNs trained
with different loss functions, we also compared different
traditional forecasting techniques with the RNN: a simple
moving average (SMA), weighted moving average (WMA),
and an AutoRegressive Integrated Moving Average (ARIMA)
model (for more information on these techniques, see [16]).
The ARIMA model is only capable of predicting one value
per model, and thus, due to the complexity of creating over
1000 different ARIMA models for the 57-bus case, the results
are only reported for the 14-bus case here. Similarly to the
WMA case, the ARIMA model performs well in terms of
predicting demand, but worse than the RNN with constraints
in terms of predicting generation values. The RNNs also have
computational benefits, which will be discussed in more detail.

In general, the RNNs outperform the traditional techniques,
with a small exception of the weighted moving average for
predicting demand for the 14-bus. Table II shows the pre-
diction error for a variety of timesteps into the future with



TABLE I: RMSE (demand and active power generation) for
DC OPF across the test set for one step ahead prediction.

Test Case Demand (MW) Active Power

Generation (MW)
RNN: 14-bus with constraint inclusion 0.887 0.870
RNN: 14-bus without constraint inclusion 1.610 1.494
Simple Moving Average: 14-bus 7.787 4.372
Weighted Moving Average: 14-bus 0.871 3.822
ARIMA: 14-bus 0.780 0.901
RNN: 57-bus with constraint inclusion 3912 3.965
RNN: 57-bus without constraint inclusion 4211 4.719
Simple Moving Average: 57-bus 8.079 26.995
Weighted Moving Average: 57-bus 9.782 39.684

TABLE II: RMSE (demand and active power generation) for
DC OPF across the entire test set for 12 step ahead predictions.

Test Case \ Timestep Ahead Demand (MW)  Active Power Generation (MW)

1 1.43 1.53
2 1.46 1.45
3 1.37 1.28
4 1.29 1.3
5 1.40 1.37
6 1.58 1.57

RNN: IEEE 14-bus 7 1.85 183
8 2.12 2.19
9 2.70 2.60
10 3.08 3.08
11 3.68 3.65
12 4.12 4.17
1 4.06 4.11
2 5.60 5.64
3 7.35 7.41
4 8.60 8.62
5 9.60 9.64
6 10.34 10.38

RNN: IEEE 57-bus 7 10.86 10.86
8 11.31 11.24
9 11.61 11.53
10 11.90 11.70
11 11.81 11.57
12 11.44 11.44

the proposed RNN and the WMA model. The WMA does a
solid job of predicting demand for the 14-bus network, but has
high power generation prediction errors. Comparing the 57-bus
network, we see that the RNN captures the network complexity
much better and results in significantly lower prediction errors,
in particular for the generation values.

C. Constraint Violation

The objective of the RNN is to predict generation and
demand values that not only have a low RMSE, but that are
also physically representative. Towards this, we analyze the
level of power balance and ramping constraint violation that
is incurred by the predictions. Figures 3 and 4 demonstrate the
ramp rates A Pg; for i = {1, 2,3} in the IEEE 14-bus network.
Fig. 3 shows the ramp between consecutive timesteps from
generation values predicted using an RNN which considers
constraint violations. Fig. 4 shows the ramp between con-
secutive timesteps from generation values predicted using an
RNN which only considers mean squared errors. Comparing
the figures, it is clear that including constraint violations
during training significantly impacts the trained RNN’s ability
to predict generation values which satisfy these constraints.
For the case with the RNN trained using constraint violation
terms, Fig. 5 shows the percent error in the supply demand
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Fig. 3: Resulting ramp rates from predicted generation values
for each of the generators in the IEEE 14-bus when constraint
violations are included during training.
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Fig. 4: Resulting ramp rates from predicted generation values
for each of the generators in the IEEE 14-bus when constraint
violations are not included during training.

TABLE III: Constraint violation results from the RNN with
and without including constraint violations during training.

Test Case With Without
Constraints  Constraints
14-bus power balance (% mismatch) 0.3110% 0.3789%
14-bus ramp violations ( of instances) 0 71
57-bus power balance (% mismatch) 0.9079% 1.5782%
57-bus ramp violations ( of instances) 0 1

balance in the network across all testing samples. Generally,
the mismatch is far under +1%. Table III tabulates these
values in numerical form, with the average % mismatch
between generation and demand in each considered case and
the number of instances throughout the test set in which the
ramp limits were violated.
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Fig. 5: Power balance mismatch from predicted generation
values for the IEEE 14-bus network.

TABLE IV: Training and inference (mean and + one standard
deviation) computational costs.

Test Case \ Train time (min)  Predict time (sec)
(one-steI;l:: Egeallg_glsdiction) 3.229 0.241 4 0.00552
(12—ste;E51F;ald4i)t$fiiction) 3247 0.247 + 0.00368
(one—stgll)a EaEe:Z_glesdiction) 6.072 0.296 + 0.00791
(12—ste;Efl'ia5d7;;Zfiiction) 6.664 0.303 + 0.00191

ARIMA: 14-bus 9.083 0.951

D. Computation Time

Finally, Table IV reports the average computation times for
the model to be trained from the RNN and the ARIMA models.
Note that training can be done offline, but the short training
time indicates that the model could be re-trained to reflect
more recent system conditions if necessary. Additionally, the
average time needed to produce a prediction across the entire
test dataset (not just a given instant) is shown in the table plus
or minus one standard deviation as indicated in the case of
the RNN. It is seen that there is no significant change in the
training phase of one-step and multi-step ahead prediction of
each test case. However, the RNN offers over three times the
speed of the ARIMA model, which is the most sophisticated
traditional model considered. Considering the ARIMA, SMA,
and WMA methods do not consider constraint satisfaction, a
grid operator may have to run a DC-OPF in order to predict
actual generator behavior. These predictions, used in an online
mode, are much faster than solving DC-OPFs that deal with
only one snapshot of the network state. Therefore, we have to
bear in mind that our proposed model provides an appealing
trade-off between accuracy and efficiency.

V. CONCLUSION AND FUTURE WORK

In this paper, we presented a framework for predicting the
solution of DC optimal power flow problems with intertem-

poral constraints. Unlike traditional forecasting methods, the
proposed RNN-based method includes physical network con-
straints and is capable of simultaneously predicting an en-
tire DC-OPF solution in one pass through the model. The
framework can allow for grid operators to rapidly produce
forecasts of optimal solutions rather than forecasts of problem
inputs such as renewable availability and demand. The results
shown for the 14-bus and 57-bus IEEE test networks show
effective tradeoffs between computational speed, accuracy,
and constraint satisfaction - proving promising for future
developments on larger test networks.

Future work includes extending the formulation to AC OPF
problems and including different types of intertemporal con-
straints such as constraints on energy storage and dynamic line
ratings. Another interesting direction of future work could be
to quantify the impact of input uncertainty (e.g. from existing
forecasting models for renewable availability and demand) on
the forecasted optimal generation values and voltages.
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