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Abstract

Network pruning is a widely-used compression technique that is able to significantly
scale down overparameterized models with minimal loss of accuracy. This paper
shows that pruning may create or exacerbate disparate impacts. The paper sheds
light on the factors to cause such disparities, suggesting di↵erences in gradient
norms and distance to decision boundary across groups to be responsible for this
critical issue. It analyzes these factors in detail, providing both theoretical and
empirical support, and proposes a simple, yet e↵ective, solution that mitigates the
disparate impacts caused by pruning.

1 Introduction

As deep learning models evolve and become more powerful, they also become larger and more
costly to store and execute. The trend hinders their deployment in resource-constrained platforms,
such as embedded systems or edge devices, which require e�cient models in time and space.
To address this challenge, studies have developed a variety of techniques to prune the relatively
insignificant or insensitive parameters from a neural network while ensuring competitive accuracy
[1, 5, 7, 29, 30, 31, 40]. When a model needs to be developed to fit given and certain requirements in
size and resource consumption, a pruned model which is derived from a large, rigorously-trained,
and (often) over-parameterized model, is regarded as a de-facto standard. That is because it performs
incomparably better than a same-size dense model which is trained from scratch, when the same
amount of e↵ort and resources are invested.

In spite of its strengths, pruning has been showed to induce or exacerbate disparate e↵ects in the
accuracy of the resulting reduced models [19, 18]. Intuitively, the removal of model weights a↵ects
the process in which the network separates di↵erent classes, which can have contrasting consequences
for di↵erent groups of individuals. This paper further shows that the accuracy of the pruned models
tends to increase (decrease) more in classes that had already high (low) accuracy in the original model,
leading to a “the rich get richer” and “the poor get poorer” e↵ect. This Matthew e↵ect is illustrated in
Figure 1. The figure shows the accuracy of a facial recognition task on di↵erent demographic groups
for several pruning rates (indicating the percentage of parameters removed from the original models).
Notice how the accuracy of the majority group (White) tends to increase while that of the minority
groups tends to decrease as the pruning ratio increases.

Following these observations, the paper sheds light on the factors to cause such disparities. The
theoretical findings suggest the presence of two key factors responsible for why accuracy disparities
arise in pruned models: (1) disparity in gradient norms across groups, and (2) disparity in Hessian
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Figure 1: Accuracy of each demographic group in the UTK-Face dataset using Resnet18 [17], at the
increasing of the pruning rate.

matrices associated with the loss function computed using a group’s data. Informally, the former
carries information about the groups’ local optimality, while the latter relates to model separability.
The paper analyzes these factors in detail, providing both theoretical and empirical support on a
variety of settings, networks, and datasets.

By recognizing these factors, the paper also develops a simple yet e↵ective training technique that
largely mitigates the disparate impacts caused by pruning. The method is based on an alteration of
the loss function to include components that penalize disparity of the average gradient norms and
distance to decision boundary across groups.

These findings are significant: Pruning is a key enabler for neural network models in embedded
systems with deployments in security cameras and sensors for autonomous devices for applications
where fairness is an essential need. (e.g., face recognition), Without careful consideration of the
fairness impact of these techniques, the resulting models can have profound e↵ects on our society
and economy.

Related work

Fairness and network pruning have been long studied in isolation. The reader is referred to the related
papers and surveys on fairness [4, 8, 11, 16, 23] and pruning [1, 5, 7, 29, 30, 31, 32, 40] for a review
on these areas.

The recent interest in assessing societal values of machine learning models has seen an increase of
studies at the intersection of di↵erent properties of a learning model and their e↵ects on fairness. For
example, Xu et al. [38] studies the setting of adversarial robustness and show that adversarial training
introduces unfair outcomes in term of accuracy parity [41]. Zhu et al. [43] show that semisupervised
settings can introduce unfair outcomes in the resulting accuracy of the learned models. Finally,
several authors have also shown that private training can have unintended disparate impacts to the
resulting models’ outputs [3, 13, 33, 35, 42] and downstream decisions [28, 34].

Network compression has also been shown to have a profound impact towards the model fairness.
For example, several works observed empirically that network compression may amplify unfairness
in di↵erent learning tasks [26, 18, 19, 21]. Most of the focus has been on vision tasks and in
identifying the set of Pruning Identified Exemplars (PIEs), the samples that are impacted most under
the compression scheme and conclude that PIEs belongs to low frequency groups (those observed at
the tail of the data distribution). Blakeney et al. [6] further investigate how bias could be evaluated
and mitigated in pruned neural networks using knowledge distillation while Hosseini et al. [20]
observed empirically that knowledge distillation processes may produce unfair student models. The
impact of network compression towards fairness has also been assessed in natural language tasks.
For example, Du et al. [10] and Xu et al. [36] empirically measure the robustness of compressed
large language models, while Ahia et al. [2] look into how compression schemes a↵ects data-limited
regimes. Finally, Xu and Hu [37] investigate ways to improve fairness in generative language models
by compressing them.

This paper builds on this body of work and their important empirical observations and provides a
step towards a deeper theoretical understanding of the fairness issues arising as a result of pruning.
It derives conditions and studies the causes of unfairness in the context of pruning as well as it
introduces mitigating guidelines.
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2 Problem settings and goals

The paper considers datasets D consisting of n datapoints (xi, ai, yi), with i 2 [n], drawn i.i.d. from
an unknown distribution ⇧. Therein, xi 2 X is a feature vector, ai 2 A withA = [m] (for some finite
m) is a demographic group attribute, and yi 2 Y is a class label. For example, consider the case of a
face recognition task. The training example feature xi may describe a headshot of an individual, the
protected attribute ai may describe the individual’s gender or ethnicity, and yi represents the identity
of the individual. The goal is to learn a predictor f✓ : X! Y, where ✓ is a k-dimensional real-valued
vector of parameters that minimizes the empirical risk function:

?

✓= argmin
✓

J(✓; D) =
1
n

nX

i=1

`( f✓(xi), yi), (1)

where ` : Y ⇥Y ! R+ is a non-negative loss function that measures the model quality.

The paper focuses on analyzing properties arising when extracting a small model f✓̄ with ✓̄ ⇢
?

✓ of
size |✓̄| = k̄ ⌧ k. Model f✓̄ is constructed by pruning the least important values or filters from vector
?

✓ (i.e., those with smaller values in magnitude) according to a prescribed criterion, such as an `p
norm [24, 30]. The paper focuses on understanding the fairness impacts (as defined next) arising
when pruning general classifiers, such as neural networks.

Fairness The fairness analysis focuses on the notion of excessive loss, defined as the di↵erence
between the original and the pruned risk functions over some group a 2 A:

R(a) = J(✓̄; Da) � J(
?

✓; Da), (2)
where Da denotes the subset of the dataset D containing samples (xi, ai, yi) whose group membership
ai = a. Intuitively, the excessive loss represents the change in loss (and thus, in accuracy) that a given
group experiences as a result of pruning. Fairness is measured in terms of the maximal excessive loss
di↵erence, also referred to as fairness violation:

⇠(D) = max
a,a02A

|R(a) � R(a0)|, (3)

defining the largest excessive loss di↵erence across all protected groups. (Pure) fairness is achieved
when ⇠(D) = 0, and thus a fair pruning method aims at minimizing the excessive loss di↵erence.

The goal of this paper is to shed light on why fairness issues arise (i.e., R(a) > 0) as a result of
pruning, why some groups su↵er more than others (i.e., R(a) > R(a0)), and what mitigation measures
could be taken to minimize unfairness due to pruning.

The paper uses the following notation: variables are denoted by calligraph symbols, vectors or
matrices by bold symbols, and sets by uppercase symbols. Finally, k · k denotes the Euclidean norm
and the paper uses f✓(x) to refer to the model’ soft outputs. All proofs are reported in Appendix A.

3 Fairness analysis in pruning: Roadmap

To gain insights on how pruning may introduce unfairness, the paper starts with providing a useful
upper bound for a group’s excessive loss. Its goal is to isolate key aspects of model pruning that are
responsible for the observed unfairness. The following discussion assumes the loss function `(·) to be
at least twice di↵erentiable, which is the case for common ML loss functions, such as mean squared
error or cross entropy loss.
Theorem 1. The excessive loss of a group a 2 A is upper bounded by1:

R(a) 
���g`a
��� ⇥
���✓̄�

?

✓

��� +
1
2
�
⇣
H
`
a

⌘
⇥

���✓̄�
?

✓

���2 + O
✓���✓̄�

?

✓

���3
◆
, (4)

where g
`
a = r✓J(

?

✓; Da) is the vector of gradients associated with the loss function ` evaluated at
?

✓

and computed using group data Da, H`
a = r

2
✓J(

?

✓; Da) is the Hessian matrix of the loss function `, at
the optimal parameters vector

?

✓, computed using the group data Da (henceforth simply referred to as
group hessian), and �(⌃) is the maximum eigenvalue of a matrix ⌃.

1With a slight abuse of notation, the results refer to ✓̄ as the homonymous vector which is extended with
k � k̄ zeros.
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The bound above follows from a second order Taylor expansion of the loss function, Cauchy-Schwarz
inequality, and properties of the Rayleigh quotient.

Notice that, in addition to the di↵erence in the original and pruned parameters vectors, two key
terms appear in Equation (9): (1) The norms of the gradients g`a and (2) the maximum eigenvalue
of the Hessian matrix H

`
a for a group a. Informally, the former is associated with the groups’ local

optimality while the latter relates to the ability of the model to separate the groups data. As we will
show next these components represent the main sources of unfairness due to model pruning.

The following is an important corollary of Theorem 1. It shows that the larger the pruning, the larger
will be the excessive loss for a given group.
Corollary 1. Let k̄ and k̄0 be the size of parameter vectors ✓̄ and ✓̄

0, respectively, resulting from
pruning model f?✓ , where k̄ < k̄0 (i.e., the former model prunes more weight than the latter one). Then,
for any group a 2 A,

R̃(a, ✓̄) � R̃(a, ✓̄0), (5)

where R̃(a,!) is the excessive loss upper bound computed using pruned model parameters ! (Eq. (9)).

A consequence of the corollary above is that as the pruning regime increases, the unfairness in
accuracy across groups may also become more significant, which the paper shows next.

The next sections analyze the e↵ect of gradient norms and the Hessian to unfairness in the pruned
models. The theoretical claims are supported and complemented by analytical results. These results
use the UTKFace dataset [39] for a vision task whose goal is to classify ethnicity. The experiments
use a ResNet-18 architecture and the pruning counterparts remove the P% parameters with the
smallest absolute values for various P. All reported metrics are normalized and an average of 10
repetitions. While the theoretical analysis focuses on the notion of disparate impacts under the lens
of excessive loss, the empirical results report di↵erences in accuracy of the resulting models. The
empirical results thus reflect the setting commonly adopted when measuring accuracy parity [41].

The paper reports a glimpse of the empirical results, with the purpose of supporting the theoretical
claims, and extended experiments, as well as additional descriptions of the datasets and settings, are
reported in Appendix C and C.

4 Why disparity in groups’ gradients causes unfairness?

This section analyzes the e↵ect of gradients norms on the unfairness observed in the pruned models.
In more detail, it shows that unbalanced datasets result in a model with large di↵erences in gradient
norms between groups (Proposition 1), it connects gradients norms for a group with the resulting
model errors in such a group (Proposition 2), and connects these concepts with the excessive loss
(Theorem 1) to show that unfairness in model pruning is largely controlled by the di↵erence in
gradient norms among groups.

Figure 2: Group size vs. gradient norms.

Gradient norms and group sizes. The section first shows
that imbalanced datasets lead a model to have imbalanced
gradient norms across groups. The following result assumes
that the training converges to a local minima.
Proposition 1. Consider two groups a and b inA with |Da| �
|Db|. Then

���g`a
��� 
���g`b
��� .

That is, groups with more data samples will result in smaller
gradients norms than groups with fewer data samples and
vice-versa. Figure 2 illustrates Proposition 1. The plot shows
the relation between groups sizes |Da| and their associated gradient norms kg`ak on the UTK dataset
and settings described above. Notice the strong trend between decreasing group sizes and increasing
gradient norms for such groups.

Gradient norms and accuracy. Next, the section shows a strong connection between the gradient
norms of a group and its associated accuracy. The following assumes the models adopt a cross
entropy loss (or mean squared error for regression tasks, as shown Appendix A).
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(a) Accuracy (b) Gradient Norm: kg`ak (c) Group Hessian: �(H`
a)

Figure 4: Accuracy, gradient norm, and group Hessian max eigenvalues of each ethnicity group,
before and after increasing pruning ratios for UTK-Face dataset. The percentage of data samples
across groups White, Black, Asian, Indian, and Others is ⇠ 0.42, 0.19, 0.15, 0.15, 0.07, respectively.

Proposition 2. For a given group a 2 A, gradient norms can be upper bounded as:

kg
`
ak 2 O

0
BBBBBBBBBB@

X

(x,y)2Da

k f?✓(x) � yk
|        {z        }

Accuracy

⇥

���r✓ f?✓(x)
���

1
CCCCCCCCCCA
.

The above relates gradient norms with an error measure of the classifier to a target label multiplied
by the gradient of the predictions. For example, in a classification task with cross entropy loss,
`( f✓(x), y) = �

P
z2Y f z

✓(x)yz, where f z
✓(x) represents the z-th element of the output associated with

the soft-max layer of model f✓ , and y is a one-hot encoding of the true label y, with y
z representing

its z-th element, then,

kgak = kr✓J(✓; Da, )k =

��������
1/|Da |

X

(x,y)2Da

r f `( f✓(x), y) ⇥ r✓ f✓(x)

��������

=

��������
1/|Da |

X

(x,y)2Da

( f✓(x) � y) ⇥ r✓ f✓(x)

��������

 1/|Da |

X

(x,y)2Da

k f✓(x) � yk ⇥ kr✓ f✓(x)k .

Figure 3: Accuracy vs. gradient norms.

A similar observation holds for mean square error loss, as
illustrated in Appendix A. The observation above sheds light
on the correlation between the prediction error of a group and
its model gradients. This relation is emphasized in Figure 3,
which illustrates that the gradient norm for a given group increases as its prediction accuracy decreases.

Proposition 2 allows us to link the gradient norms with the group accuracy of the resulting model,
which, together with the result above will be useful to reason about the impact of gradient norms on
the disparities in the group excessive losses.

The role of gradient norms in pruning. Having highlighted the connection between gradients
norms of a group with the accuracy of the pruned model on such a group, this section provides
theoretical intuitions on the role of gradient norms in the disparate group losses during pruning.

From Theorem 1, notice that the excessive loss is controlled by term kg`ak ⇥ k✓̄�
?

✓ k. As already
noted in Corollary 1, the term k✓̄�

?

✓ k regulates the impact of pruning on the excessive loss, as the
di↵erence between the pruned and non-pruned parameters vectors directly depends on the pruning
rate. For a fixed pruning rate, however, notice that groups with di↵erent gradient norms will have a
disparate e↵ect on the resulting term. In particular, groups with very small gradients norms (those
generally associated with highly accurate predictions) will be less sensitive to the e↵ects of the
pruning rate. Conversely, groups with large gradient norms will be a↵ected by the pruning rate to a
greater extent, with larger pruning rates, typically reflecting in larger excessive losses.

These observations of the factors of disparity, accuracy, and group size, can also be appreciated
empirically in Figures 4a and 4b. The plots report accuracy (a) and gradient norms (b) on the
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UTKFace datasets for a variety of pruning rates. Consider group White (containing 42% of the total
samples) and Others (containing 7% of the total samples). The unpruned model has high accuracy
on the former group and small gradient norms. The accuracy of this group is insensitive to various
pruning rates and even increases at large pruning regimes. In contrast, group Others has much
lower accuracy and larger gradient norms in the unpruned model. As the pruning rate increase, their
accuracies drastically drop. As a result, in high pruning regimes, this minority group exhibits poor
accuracy and very high gradient norms.

Notice that the empirical results apply to much more complex settings than those which can be
analyzed formally, thus they complement the theoretical observations.

5 Why disparity in groups’ Hessians causes unfairness?

Having examined the properties of the groups gradients and their relation to unfairness in pruning,
this section turns on analyzing how the Hessian associated with the loss function for a group is linked
to the unfairness observed during pruning. In more detail, it connects the groups’ Hessian to the
distance to the decision boundary for the samples in that group and their resulting model errors
(Theorem 2), it illustrates a strong positive correlation between groups’ Hessian and gradient norms,
and links these concepts with the excessive loss (Theorem 1) to show that unfairness in model pruning
is controlled by the di↵erence in maximum eigenvalues of the Hessians among groups.

Group Hessians and accuracy. The section first shows that groups presenting large Hessian values
may su↵er larger disparate impacts due to pruning, when compared with groups that have smaller
Hessians. It does so by connecting the maximum eigenvalues of the groups Hessians with their
distance to decision boundary and the group accuracy. The following result sheds light on these
observations. It restricts its attention to models trained under binary cross entropy losses, for clarity
of explanation, although an extension to a multi-class case is directly attainable.
Theorem 2. Let f✓ be a binary classifier trained using a binary cross entropy loss. For any group
a 2 A, the maximum eigenvalue of the group Hessian �(H`

a) can be upper bounded by:

�(H`
a) 

1
|Da|

X

(x,y)2Da

⇣
f?✓(x)

⌘ ⇣
1 � f?✓(x)

⌘

|                  {z                  }
Distance to decision boundary

⇥

���r✓ f?✓(x)
���2 +
��� f?✓(x) � y

���
|      {z      }

Accuracy

⇥�
⇣
r

2
✓ f?✓(x)

⌘
. (6)

The proof relies on derivations of the Hessian associated with model loss function and Weyl inequality.
In other words, Theorem 2 highlights a direct connection between the maximum eigenvalue of the
group Hessian and (1) the closeness to the decision boundary of the group samples, and (2) the
accuracy of the group. The distance to the decision boundary is derived from [9]. Intuitively this
term is maximized when the classifier is highly uncertain about the prediction: f?✓(x) ! 0.5, and
minimized when it is highly certain f?✓(x)! 0 or 1, as showed in the following proposition.
Proposition 3. Consider a binary classifier f✓(x). For a given sample x 2 D, the term f?✓(x)(1 �
f?✓(x)) is maximized when f?✓(x) = 0.5 and minimized when f?✓(x) 2 {0, 1}.

Figure 5: Group Hessians, distance to
decision boundary, and accuracy.

Observe that a group consisting of samples that are far from
the decision boundary will have smaller Hessians and, thus, be
less subject to a drop in accuracy due to model pruning. These
results can be appreciated in Figure 5. Notice the inverse
relationship between maximum eigenvalues of the groups’
Hessians and their average distance to the decision boundary.
The same relation also holds for accuracy: the higher the
Hessians maximum eigenvalues, the smaller the accuracy. This
is intuitive as samples which are close to the decision boundary
will be more prone to errors due to small changes in the model
due to pruning, when compared with samples lying far from the decision boundary.

Correlation between group Hessians and gradient norms. This section observes a positive
correlation between maximum eigenvalues of the Hessian of a group and their gradient norms. This
relation can be appreciated in Figure 6. While mainly empirical, this observation is important as it
illustrates that both the Hessian �(H`

a) and the gradient kg`ak terms appearing in the upper bound of
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the excessive loss R(a) reported in Theorem 1 are in agreement. This relation was observed in all
our experiments and settings. Such observation allows us to infer that it is the combined e↵ect of
gradient norms and group Hessians that is responsible for the excessive loss of a group and, in turn,
for the exacerbation of unfairness in the pruned models.

Figure 6: Group Hessians and gra-
dient norms.

The role of the group Hessian in pruning. Having highlighted
the connection between Hessian for a group with the resulting
accuracy of the model on such a group, this section provides
theoretical intuitions on the role of the Hessians in the disparate
group losses during pruning.

In Theorem 1, notice that the excessive loss is controlled by term
kH

`
ak ⇥ k✓̄�

?

✓ k
2. As also noted in the previous section, the term

k✓̄�
?

✓ k regulates the impact of pruning on the excessive loss
as the di↵erence between the pruned and non-pruned parameters
vectors directly depends on the pruning rate. Similar to the obser-
vation for gradient norms, with a fixed pruning rate, groups with
di↵erent Hessians will have a disparate e↵ect on the resulting term. In particular, groups with small
Hessians eigenvalues (those generally distant from the decision boundary and highly accurate) will
be less sensitive to the e↵ects of the pruning rate. Conversely, groups with large Hessians eigenvalues
will be a↵ected by the pruning rate to a greater extent, typically resulting in larger excessive losses.
These observations can further be appreciated empirically in Figures 4a (for accuracy) and 4c (for
maximum group Hessian eigenvalues) on the UTKFace datasets for a variety of pruning rates.

6 Mitigation solution and evaluation

The previous sections highlighted the presence of two key factors playing a role in the observed
model accuracy disparities due to pruning: the di↵erence in gradient norms, and the di↵erence in
Hessians losses across groups. This section first shows how to leverage these findings to provide a
simple, yet e↵ective solution to reduce the disparate impacts of pruning. Then, the section illustrates
the benefits of this mitigating solution on a variety of tasks, datasets, and network architectures.

6.1 Mitigation solution

To achieve fairness, the aforementioned findings suggest to equalize the disparity associated with
gradient norms kg`ak and Hessians �(H`

a) across di↵erent groups a 2 A. For this goal, the paper
adopts a constrained empirical risk minimization approach:

minimize
✓

J(✓; D) such that: kg`ak = kg
`
k, �(H`

a) = �(H`) 8a 2 A, (7)

where g
` = r✓J(✓; D) and H

` = r2
✓J(✓; D) refer to the gradients and Hessian associated with loss

function `, respectively, and are computed using the whole dataset D. The approach (7) is a common
strategy adopted in fair learning tasks, and the paper uses the Lagrangian Dual method of Fioretto
et al. [12] which exploits Lagrangian duality to extend the loss function with trainable and weighted
regularization terms that encapsulate constraints violations (see Appendix C for additional details).

A shortcoming of this approach is, however, that requires computing the gradient norms and Hessian
matrices of the group losses in each and every training iteration, rendering the process computationally
unviable, especially for deep, overparametrized networks.

To overcome this computational burden, we will use two observations made earlier in the paper.
First, recall the strong relation between gradient norms for a group and their associated losses. This
aspect was noted in Proposition 2. That is, when the losses across the groups are similar, the gradient
norms across such groups will also tend to be similar. Next, Theorem 2 noted a positive correlation
between model errors (and thus loss values) for a group and its associated Hessian eigenvalues. Thus,
when the losses across the groups are similar, the group Hessians will also tend to be similar. This
intuition is also complemented by the strong correlation between group Hessians and gradient norms
reported in Section 5. Based on the above observations, the paper proposes a simpler version of the
constrained minimizer (7) defined as

minimize
✓

J(✓; D) such that: J(✓; Da) = J(✓; D) 8a 2 A, (8)
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Figure 8: Accuracy and Fairness violations attained by all models on ResNet50, UTK-Face dataset
with ethnicity (5 classes) as group attribute (and labels) [left] and age (9 classes) [right].

Figure 9: Accuracy and Fairness violations attained by all models on VGG-19, CIFAR-10 dataset
(left) and SVHN (right) with 10 class labels also used as group attribute.

that substitutes the gradient norms and max eigenvalues of group Hessians equality constraints with
proxy terms capturing the group J(✓; Da) and population J(✓; D) losses.

Figure 7: E↵ects of fairness constraints in balanc-
ing not only group accuracy (left) but also gradient
norms (middle) and group average distance to the
decision boundary (right).

The impact of such proxy terms in the fairness
constrained program above can be appreciated,
empirically, in Figure 7. The plots, that use the
UTK-Face dataset, with Ethnicity as protected
group, show an original unfair model (top) and
a fair counterpart obtained through Program (8)
(bottom). Notice how enforcing balance in the
group losses also helps reducing and balancing
the gradient norms and group’s average distance
to the decision boundary. As a consequence,
the resulting model fairness is dramatically en-
hanced (bottom-left subplot).

6.2 Assessment of the mitigation solution

Datasets, models, and settings. This section
analyzes the results obtained using the proposed mitigation solution with ResNet50 and VGG19 on
the UTKFace dataset [39], CIFAR-10 [22], and SVHN [25] for various protected attributes. The
experiments compare the following four models:

• No Mitigation: it refers to the standard pruning approach which uses no fairness mitigation strategy.
• Fair Bf Pruning: it applies the fairness mitigation process (Problem (8)) exclusively to the original
large network, thus before pruning.
• Fair Aft Pruning: it applies the mitigation exclusively to the pruned network, thus after pruning.
• Fair Both: it applies the mitigation both to the original large network and to the pruned network.

The experiments report the overall accuracy of resulting models as well as their fairness violations,
defined here as the di↵erence between the maximal and minimal group accuracy. The reported metrics
are the average of 10 repetitions. Additional details on datasets, architectures, hyper-parameters
adopted, as well as additional and extended results are reported in Appendix C and C.

E↵ects on accuracy. The section first focuses on analyzing the e↵ects of accuracy drop due to
applying the proposed mitigation solution for fair pruning. Figure 8 compares the four models on the
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UTK-Face dataset using a ResNet50 architecture. The left subplots use ethnicity as protected group
and class label, with |Y| = 5, while the right subplots use age as protected group and class label, with
|Y| = 9. Notice that, as expected, all compared models present some drop in accuracy as the pruning
rates increase. However, notably, the accuracy drops of the models that apply the fair mitigation steps
are comparable to (or even improved) those of the "No mitigation" model, which applies standard
pruning.

A similar trend can be seen in Figure 9 that reports results on CIFAR (left) and SVHN (right). Both
use the ten class labels as protected attributes. These results clearly illustrate the ability of the
mitigating solution to preserve highly accurate models.

E↵ects on fairness. The section next illustrates the ability of the proposed solution to achieve fair
pruned models. The second and fourth subplots presented in Figures 8 and 9 illustrate the fairness
violations obtained by the four models analyzed on di↵erent datasets and settings. The paper makes
the following observations: First, all the plots exhibit a consistent trend in that the mitigation solution
produces models which improve the fairness of the baseline, "No mitigation" model. Observe that, as
already illustrated in Figure 7, the fair models tend to equalize the gradient norms and group Hessians
components (and thus the distance to the decision boundary across groups). Thus, the resulting
pruned models also attain better fairness, when compared to their standard counterparts.

Next, notice that "Fair Aft Pruning" often achieves better fairness violations than "Fair Bf Pruning",
especially at high pruning regimes. This is because the former has the advantage to apply the
mitigation solution directly to the pruned model to ensure that the resulting model has low di↵erences
in gradient norms and group Hessians. The presentation also illustrates the application of the
mitigation strategies both before and after pruning (Fair Both) which shows once again the significance
of applying the mitigation solution over the pruned network.

Finally, it is notable that "Fair Aft Pruning" achieves good reductions in fairness violation. Indeed,
pre-trained large (non-pruned) fair models may not be available and the ability to retrain these large
models prior to pruning may be hindered by their size and complexity.

7 Discussion and limitations

This section discusses three key messages found in this study. First, we notice that pruning a↵ecting
model separability and distance to the decision boundary is related to concepts also explored in robust
machine learning [14, 27]. Not surprisingly, some recent literature in network pruning has empirically
observed that pruning may have a negative impact on adversarial robustness [15]. These observations
raise questions about the connection between pruning, robustness, and fairness, which we believe is
an important direction to further investigate.

Next, although the solution proposed in Problem (8) allows it to be adopted in large models, the size
of modern ML models (together with the amount of hyperparameters searches) may hinder retraining
such original massive models from incorporating fairness constraints. Notably, however, the proposed
mitigation solution can be used as a post-processing step to be applied during the pruning operation
directly. The previous section shows that the proposed method delivers desirable performance in
terms of both accuracy and fairness.

Finally, we notice that the results analyzed in this paper pertain to losses that are twice di↵erentiable.
Lifting such an assumption will be an interesting and challenging future research avenue.

8 Conclusion

This work observed that pruning, while e↵ective in compressing large models with minimal loss of
accuracy, can result in substantial disparate accuracy impacts. The paper examined the factors causing
such disparities both theoretically and empirically showing that: (1) disparity in gradient norms
across groups and (2) disparity in Hessian matrices associated with the loss functions computed using
a groups’ data are two key factors responsible for such disparities to arise. By recognizing these
factors, the paper also developed a simple yet e↵ective retraining technique that largely mitigates the
disparate impacts caused by pruning.
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As reduced versions of large, overparametrized models become increasingly adopted in embedded
systems to facilitate autonomous decisions, we believe that this work makes an important step toward
understanding and mitigating the sources of disparate impacts observed in compressed learning
models.
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A Missing Proofs

Theorem 1. The excessive loss of a group a 2 A is upper bounded by2:
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?

✓, the excessive loss R(a) for a group a 2 A
can be stated as:

R(a) = J(✓̄; Da) � J(
?

✓; Da)

=

"
J
⇣ ?
✓; Da

⌘
+
⇣
✓̄�

?

✓

⌘>
r✓J
⇣ ?
✓; Da

⌘
+

1
2

⇣
✓̄�

?

✓

⌘>
H
`
a

⇣
✓̄�

?

✓

⌘
+ O
✓��� ?✓ �✓̄

���3
◆#
� J
⇣ ?
✓; Da

⌘

=
⇣
✓̄�

?

✓

⌘>
g
`
a +

1
2

⇣
✓̄�

?

✓

⌘>
H
`
a

⇣
✓̄�

?

✓

⌘
+ O
⇣
k
?

✓ �✓̄k
3
⌘

The above, follows from the loss `(·) being at least twice di↵erentiable, by assumption.

By Cauchy-Schwarz inequality, it follows that
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In addition, due to the property of Rayleigh quotient we have:

1
2

⇣
✓̄�

?

✓

⌘>
H
`
a

⇣
✓̄�

?

✓

⌘


1
2
�
⇣
H
`
a

⌘
⇥

���✓̄�
?

✓

���2 .

The upper bound for the excessive loss R(a) is thus obtained by combining these two inequalities. ⇤

Proposition 1. Consider two groups a and b inA with |Da| � |Db|. Then
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Proof. By the assumption that the model converges to a local minima, it follows that:
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Proposition 2. For a given group a 2 A, gradient norms can be upper bounded as:
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The above proposition is presented in the context of cross entropy loss or mean squared error loss
functions. These two cases are reviewed as follows

2With a slight abuse of notation, the results refer to ✓̄ as the homonymous vector which is extended with
k � k̄ zeros.
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Cross Entropy Loss. Consider a classification task with cross entropy loss: `( f?✓(x), y) =
�
P

z2Y f z
?
✓

(x)yz, where f z
?
✓

(x) represents the z-th element of the output associated with the soft-
max layer of model f?✓, and y is a one-hot encoding of the true label y, with y

z representing its z-th
element, then,
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where the third equality is due to that the gradient of the cross entropy loss reduces to f?✓(x) � y.

Mean Squared Error. Next, consider a regression task with mean squared error loss `( f?✓(x), y) =
( f?✓(x) � y)2. Using the same notation as that made above, if follows:
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where the third equality is due to that the gradient of the mean squared error loss w.r.t. f?✓(·) reduces
to 2( f?✓(x) � y).
Theorem 2. Let f✓ be a binary classifier trained using a binary cross entropy loss. For any group
a 2 A, the maximum eigenvalue of the group Hessian �(H`

a) can be upper bounded by:
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Proof. First notice that an upper bound for the Hessian loss computed on a group a 2 A can be
derived as:
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where H
`
x represents the Hessian loss associated with a sample x 2 Da from group a. The above

follows Weily’s inequality which states that for any two symmetric matrices A and B, �(A + B) 
�(A) + �(B).

Next, we will derive an upper bound on the Hessian loss associated to a sample x. First, based on the
chain rule a closed form expression for the Hessian loss associated to a sample x can be written as
follows:
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Applying the Weily inequality again on the R.H.S. of Equation 12, we obtain:
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The statement of Theorem 2 is obtained combining Equations 13 with 11. ⇤

Proposition 3. Consider a binary classifier f✓(x). For a given sample x 2 D, the term f?✓(x)(1 �
f?✓(x)) is maximized when f?✓(x) = 0.5 and minimized when f?✓(x) 2 {0, 1}.

Proof. First, notice that f?✓(x) 2 [0, 1], as it represents the soft prediction (that returned by the last
layer of the network), thus f?✓(x) � f 2

?
✓

(x). It follows that:

f?✓(x)
⇣
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⌘
= f?✓(x) � f 2

?
✓

(x) � 0. (14)

In the above, it is easy to observe that the equality holds when either f?✓(x) = 0 or f?✓(x) = 1.

Next, by the Jensen inequality, it follows that:
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The above holds when f?✓(x) = 1 � f?✓(x), in other words, when f?✓(x) = 0.5. Notice that, in the case
of binary classifier, this refers to the case when the sample x lies on the decision boundary. ⇤

B Dataset and Experimental Settings

B.1 Datasets

The paper uses the following datasets to validate the findings discussed in the main paper:

• UTK-Face [39]. A large-scale face dataset with a long age span (range from 0 to 116
years old). The dataset consists of over 20,000 face images with annotations of age, gender,
and ethnicity. The images cover large variations in pose, facial expression, illumination,
occlusion, resolution, etc. The experiments adopt the following attributes for classification
(e.g., Y) and as protected group (A): ethnicity, age bins, gender.
• CIFAR-10 [22]. This dataset consists of 60,000 32⇥32 RGB images in 10 classes, with

6,000 images per class. The 10 di↵erent classes represent airplanes, cars, birds, cats, deer,
dogs, frogs, horses, ships, and trucks.
• SVHN [25] Street View House Numbers (SVHN) is a digit classification dataset that

contains 600,000 32⇥32 RGB images of printed digits (from 0 to 9) cropped from pictures
of house number plates.

B.2 Architectures, Hyper-parameters, and Settings

The study adopts the following architectures to validate the results of the main paper:

• ResNet18: An 18-layer architecture, with 8 residual blocks. Each residual block consists of
two convolution layers. The model has ⇠ 11 million trainable parameters.
• ResNet50 This model contains 48 convolution layers, 1 MaxPool layer and a AvgPool layer.

ResNet50 has ⇠ 25 million trainable parameters.
• VGG-19 This model consists of 19 layers (16 convolution layers, 3 fully connected layers,

5 MaxPool layers and 1 SoftMax layer). The model has ⇠ 143 million parameters.

Hyperparameters for each of the above models was performed over a grid search (for di↵erent
learning rates = [0.0001, 0.001, 0.01, 0.1, 0.5, 0.05, 0.005, 0.0005]) over a cluster of NVIDIA RTX
A6000 with the above networks using the UTKFace dataset. The models with the highest accuracy
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Figure 10: Accuracy of each demographic group in the UTK-Face dataset with ethnicity (5 classes)
as group attribute using VGG19 over increasing pruning rates.

Figure 11: Accuracy of each demographic group in the UTK-Face dataset with gender (2 classes) as
group attribute using VGG19 over increasing pruning rates.

were chosen and employed for the assessment of the mitigation solution in Sec. 6.2. The running
time required for all sets of experiments which include mitigation solutions was about ~3 days.

The training uses the SGD optimizer with a momentum of 0.9 and weight_decay of 1e�4. Finally, the
Lagrangian step size adopted in the Lagrangian dual learning framework [12] is set to 0.001.

All the models developed were implemented using Pytorch 3.0. The training was performed using
NVidia Tesla P100-PCIE-16GB GPUs and 2GHz Intel Cores. The model was run for 100 epochs
for the CIFAR-10 and SVHN and 40 epochs for UTK-Face dataset. Each reported experiment is an
average of 10 repetitions. In all experiments, the protected group set coincides with the target label
set: i.e.,A = Y.

C Additional Experimental Results

C.1 Impact of pruning on fairness

This section shows and a�rms the impact of pruning towards accuracy disparity through VGG-19
network. The same training procedures as employed with ResNet18 in Fig 1 were followed. Each
demographic group’s accuracy is shown before and after pruning on the UTK-Face dataset in two
cases: when ethnicity is a group attribute as in Figure 10, and when gender is a group attribute as
in Figure 11. A consistent message is that under a higher pruning rate, the accuracies are more
imbalanced across di↵erent groups, emphasizing the negative impact of pruning on fairness.

C.2 Correlation of gradient/hessian norm and average distance to the decision boundary

This subsection elaborates the impact of gradient norms and group Hessians towards the fairness
issues shown in Figures 10 and 11. In Section 4, it has been shown that the group with a larger
gradient norm before pruning will be penalized more than the groups with a smaller gradient norm.
Figures 13 and 12 show the gradient norm of each demographic group for UTK-Face dataset under
two choices of protected attributes for VGG 19 networks. The results indicate that a group penalized
less will have a smaller gradient norm with respect to those of the other groups.

In addition, Section 5 supports that Hessian norm is another factor. More precisely, the groups with a
larger Hessian norm will be penalized more (drop much more in accuracy) than groups with a smaller
Hessian norm. Evidence is provided for the claim on VGG19 in Figures 12 and 13. These results on
VGG19 again confirm the theoretical findings.

Finally, in Section 5, a positive correlation between gradient norms and Hessian groups is shown in
Theorem 2, and a negative correlation between Hessian groups and distance to the decision boundary
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Figure 12: Gradient/Hessian norm and average distance to the decision boundary of each demographic
group in the UTK-Face dataset with gender (2 classes) as group attribute using VGG19 with no
pruning.

Figure 13: Gradient/Hessian norm and average distance to the decision boundary of each demographic
group in the UTK-Face dataset with ethnicity (5 classes) as group attribute using VGG19 with no
pruning.

is shown in Proposition 3. These important results again are supported by the results in Figures 12
and 13.

C.3 Impact of group sizes to gradient norm

This section presents additional empirical results to support Theorem 1, stating that the group with
more samples will tend to have a smaller gradient norm. In these experiments, run on a ResNet50
network, one group is chosen and upsampled 1⇥, 5⇥, 10⇥, and 20⇥ times. Note that by increasingly
upsampling it, the group becomes the majority group in that dataset. A group with more samples is
expected to end up with a smaller gradient norm when the training convergences.

UTK-Face with gender Since the UTK-Face is balanced with regard to gender (Female/Male), the
number of samples in Female, and Male groups is upsampled in turn. Figure 14 reports the respective
gradient norms at the last training iteration when upsampling Females (left) and Males (right.) Note
how the Male group, initially with no upsampling, has a larger gradient norm than the Female group
(right sub-plot). However, if the number of Male samples is increased enough, its gradient norm
becomes smaller than that of the Female group.

UTK-Face with age bins Similar experiments are performed with UTK-Face on nine age bin
groups. Three age bins are randomly chosen, 0, 2, 4, and the number of samples for each group is
upsampled in turn. The gradient norms of nine age bin groups are shown in Figure 15, where the
upsampled groups are highlighted with dotted thick lines. The results echo that if a group’s number
of samples is increased enough, its gradient norm at convergence will be smaller than the other 8 age
bin groups.
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Figure 14: Impact of group sizes to the gradient norm per group in UTK-Face datase where groups
are Male and Female.

Figure 15: Impact of group sizes to the gradient norm per group in UTK-Face dataset where groups
are nine age bins. The group with dotted thick line is a majority group in each chart.
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