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ABSTRACT. We show that if I' is a finitely generated finitely presented sofic
group with zero first L?-Betti number, then the von Neumann algebra L(T")
is strongly 1-bounded in the sense of Jung. In particular, L(I') 2 L(A) if Ais
any group with free entropy dimension > 1, for example a free group. The key
technical result is a short proof of an estimate of Jung using non-microstates
entropy techniques.
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INTRODUCTION

In a series of papers [17], [18], Voiculescu introduced the notion of free
entropy dimension, as an analog of Minkowski content in free probability the-
ory. If Xy,...,X, € (M,7) are a self-adjoint n-tuple of elements in a tracial
von Neumann algebra, (X3, ..., X,) is a measure of “how free they are”. If
M = W*(Xy,..., X,) satisfies the Connes embedding conjecture and is diffuse,
then 1 < 9p(Xy,...,Xn) < n. The value 1 is achieved e.g. when M is diffuse
hyperfinite [9] while a free semicircular n-tuple generating the free group factor
L(F,) has free entropy dimension n [18].

The number éy(Xy, . .., X») is an invariant of the (non-closed) x-algebra gen-
erated by Xy, ..., X;,. In particular, if I' is a finitely-generated discrete group, free
entropy dimension of any generating set of the group algebra gives us a group in-
variant, 6o(CI') [20]. As it turns out, 6y (CI") has a close relationship with the first
L2-Betti number of I" (we refer the reader to [13] for background on L2-Betti num-
bers). Indeed, 6y(CI") < ﬁgz) (I') 4+ 1 for any finitely generated infinite group I" [6];
and if éy is replaced by its “non-microstates analog” 6*, then equality holds [14].
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Free entropy dimension has found a large variety of applications in
von Neumann algebra theory; for example, it was used by Voiculescu to prove
that free group factors L(IF,,) have no Cartan subalgebras [18]. By now, there is a
long list of various properties that imply that any generators of a von Neumann
algebra M have free entropy dimension 1; we refer the reader to Voiculescu’s
survey [21] and to [8], [10].

In [10] Jung discovered a technical strengthening of the requirement that
0o(X1, ..., Xn) = 1, called strong 1-boundedness, which we will now briefly review.

The free entropy dimension Jy is defined by the formula [18]:

/26, .. X 1/26.5, ....8
50(X1, .., Xy) = 1 — limsup XKL T €701 X+ €S 251, S0)
e—0 loge/

where x stands for free entropy and Sy, ..., Sy is a free semicircular n-tuple, free
from X3,...,Xy,. The statement that dy(Xy,..., X,) < 1 then translates into the
estimate x(X; +€'/2Sy,..., Xy + €728, : S1,...,S,) < (n—1)loge/? + f(e)
with limsup |f(€)/loge| = 0. Strong 1-boundedness of the set X3,..., X, is a

€
strengthening of this inequality: it requires that
x(Xq + €'/25y,..., X, + €V28, S1,...,5,) < (n—1) logel/2 + const

for small €.

Jung proved the following amazing result: if X = (X3,..., X} is a strongly
1-bounded set and x(X;) > —oo for at least one j, then any other finite set Y =
(Y1,...,Ym) € W*(X) satisfying W*(Y) = W*(X) is also strongly 1-bounded;
thus in particular, 6o(Yy, ..., Ynm) < 1.

In his follow-up to Jung’s work, Hayes [8] improved this statement: if X =
(X1,...,Xy) is strongly 1-bounded and either W*(X) is amenable or X is a non-
amenability set, then any Y = (Y1,...,Ys) with W*(Y) = W*(X) must also be
strongly 1-bounded.

We will say that a von Neumann algebra M is strongly 1-bounded if M =
W*(X) for some finite strongly 1-bounded set X which satisfies either of the con-
ditions: (a) x(X;j) > —oo for some j, (b) W*(X) is amenable, or (c) X is a non-
amenability set. Thus if M is strongly 1-bounded and M = W*(Y) for a finite set
Y, then Y is strongly 1-bounded and in particular dp(Y) < 1.

Jung’s result means that strong 1-boundedness of a von Neumann algebra
can be checked on a set of its generators. With few exceptions such as property (T)
[12] all known implications stating that some property (presence of a Cartan sub-
algebra, tensor product decomposition, property I', etc.) entails o = 1 for any
generating set can be upgraded to state that the von Neumann algebra is actually
strongly 1-bounded. We refer the reader to [8], [10] and references therein.

The main theorem of this paper states that if a finitely generated finitely

presented sofic group I satisfies [3%2) (I') = 0, then the associated von Neumann
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algebra is strongly 1-bounded. In particular, any generating set of the von Neu-
mann algebra L(I') has free entropy dimension 1. This implies a number of free
indecomposability properties of L(I'). For example, L(I') 2 M * N with M, N
diffuse von Neumann algebras; in particular, L(I") 2 L(F,) for any n € [2, +oo0].

To obtain our result, we first give a new proof to a result of Jung [11] which
allows one to deduce a-boundedness results for free entropy dimension under the
assumption of existence of algebraic relations. Jung’s estimate can be considered
an improved version of the free entropy dimension estimates from [4], [6] that
were previously obtained using non-microstates free entropy methods, but his
proof relies on a number of highly technical microstates estimates. Our proof
is considerably shorter than Jung’s, avoiding much of the difficulty of dealing
with matricial microstates. Indeed, we instead produce estimates for the non-
microstates Fisher information and non-microstates free entropy and then use
results of [2] to deduce the corresponding microstates free entropy inequality and
strong boundedness of free entropy dimension. Finally, we apply our estimate to
the case of sofic groups.

1. ESTIMATES ON FISHER INFORMATION AND FREE ENTROPY

1.1. PRELIMINARIES AND NOTATION. Throughout this section we write X =
(X1, ..., Xn) for an n-tuple of self-adjoint variables in a tracial von Neumann al-
gebra (M, 7). Thus we write W*(X) for W*(Xq,...,X,), etc. If S = (Sq,...,Sy) is
another n-tuple we write X + /€S for the n-tuple (X; + /€51, ..., Xu + V€Sn).
We also write || X||2 = (X \|X]~||%)1/2.

We write F = (Fy,..., F) for a vector-valued non-commutative polyno-
mial function of »n variables. Here each Fj € C[ty, ..., ts] is a non-commutative
polynomial. We write dF for the k x n matrix (9;F;);j € Myx,u(Clty, ..., ta] ®
Clty, ..., tn]), where aj are the non-commutative difference quotient derivations
determined by the Leibniz rule and 9;t; = ¢;—;1 ® 1. We write F(X), dF (X)), etc.
when we evaluate these functions by substituting X = (X3, ..., X;,) for (¢, ..., ts).

We also view 0F(X) as a linear operator in My ,(W*(X)@W*(X)°?). It
lies in the commutant of the von Neumann algebra W*(X)@W*(X)° acting on
L2(W*(X) @ WH(X)°) by (a®D) - (®7n) = ¢a® by. The rank of 9F(X) is the
Murray-von Neumann dimension (over the algebra W*(X)@W*(X)°) of the clo-
sure of the image of 0F (X).

Finally, for a tensor Q = 4 ® b and an element x we write Q#x for axb.
We use the same notation for the multiplication in the von Neumann algebra
W*(X)@W*(X)°. We also use the same notation for n-tuples and matrices: if
Q = (Qyj) isan I x k matrix and Y = (Y7,...,Y}) is a k-tuple, we write Q#Y for
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the [-tuple (2}‘:1 Qi]'#Yj)le. With this notation we have the following perturba-

tive formula: F(X + 1/€S) = F(X) + /edF#S + O(e); it is sufficient to check its
validity for monomial F, which is straightforward.

1.2. THE MAIN ESTIMATE ON FISHER INFORMATION @*. In this paper we will
denote by log, (t) the function given by log, () = t for t > 0 and log, (0) = 0.

LEMMA 1.1. Suppose that F = (Fy,...,F) € Clt1, ..., ta)* is a vector-valued
polynomial non-commutative function of n variables, and suppose that for some X =
(X1,...,Xn) € (M, 1), F(X) = 0. Assume that log_ [0F(X)*9F(X)] € L'(W*(X) ®
WH(X)°),

Let S = (S1,...,Sn) be a free semicircular family, free from X; assume that
©(Sj) = 0, T(S?) = 1 for all j. Then there exist €9 > 0 and f € L'[0, o] so that
the free Fisher information satisfies the inequality

. rank oF (X)
> TR

Proof. Denote by E, the conditional expectation from W*(X,S) to W*(X +
\/€S), and denote by the same letter the extension of E. to L2. Then (see [19])

" (X +V/eS) = [|gell3

+ f(e), 0<e<ep.

where
e = € 2EL(S).
Since F(X) = 0, using Taylor expansion we have that
F(X + /€S) = V/edF#S + {1 (¢)
with [|Z1(€)[l2 = O(e). Thus, using contractivity of E. in L?, we deduce:
Ee(VeOF(X)#S) = Ec(F(X + VeS)) + Ec({1(€)) = F(X + VeS) + {a(e)
(1.1) = VedF(X)#S + {3(¢)
with [|Zj(€)|l2 = O(e), j = 2,3. Setting Xe = X + /€S, we also have:
Ec(VeOF (X)#S) = v/€Ec(OF (Xe)#S) + Lu(€) = VeIF(Xe)#Ee(S) + La(e)
= V€IF(X)#Ee(S) + {5(€)
where once again [|(;(€)[|2 = O(¢), j = 4,5. Combining this with gives
VEIF(XWEC(S) = v/eIF(X)#S + Lo (e)
where ||Z¢(€)||2 = O(e). Since & = e ~1/2E.(S), it follows that
OF(X)#Z. = e V29F(X)#S + 7.,

where ||CL|l2 = O(1).
Let E be the orthogonal projection onto the L2-closure of

H = span(W*(X)SW*(X)) C L3(W*(X,S)).
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The map Q — Q#S is an isometric isomorphism of L?(W*(X) ® W*(X)°) with H
(as is easily verified by direct computation based on the freeness condition).

Since H is invariant under left and right multiplication by variables from X,
E’ commutes with oF (X)#- and thus

OF (XHE'(Zc) = e V2OF(X)#S 4+ "
with |||l = O(1) and ¢! € H. Applying (9F)*# to both sides and denoting
(OF)*#(0F) by Q finally gives us that there exists an 0 < ¢y < 1 and a constant K
for which
QH#E! () = e V2Q#S 4+ 0., 0<e<e

with {e € H, ||Z|l2 < K/2n/2.

Let P\ = X[1 400)(Q) and denote by R) the operator f,(Q) where f(x) =
x“1forx > Aand f(x) =0for 0 < x < A. Then R,Q = P;.

Since projections are contractive on L?, it follows that for any A > 0,

IPA#S]2 < [IS]l2 = n'/

and furthermore

1Gell3 = IPAE (Ze) |13 = | RA#QHE (Ge)[13 = lle™ /2 RA#QH#S + Ra#Ge 3
> e 1r(P)) — 26V 2|(Py#S, Ry#e)| = e tt(Py) —e V/2A7K.
Let r be the rank of 0F (X) (i.e., r:}\irrb T(P, ), where T denotes the non-normalized
%

trace on My, (W*(X)@W*(X)?)), and set A = 61/4. Let p(A) =r — 7(Py). Then

IGell3 = 7t (r = ¢(A)) — e V2ATIK = - — (el ) —eTEK
= L) + file)
for some f; € L'[0,€e]. Thus to conclude the proof, it is enough to show that
~1¢(el/4) is integrable on [0, o).
Let du(t ) be the composition of the trace T with the spectral measure of

Q, so that ¢(A f du(t). Let us substitute u = €'/* (so du = (1/4)e~3/*de,
uy = e(l)/ ) into the mtegral expression for the L'-norm of e "1¢(e!/4):
0 1 Ug Mo
(€/4)d B
/e 4/ 4//dﬂ t)du = // —dudpu(t)
0+ 0+ 0+

_ }1 / (log(uo) — log(#))du(t)
0+

= }Ly((O, up)) log(up) — }L /10g+(t)dﬂ(f)
0+
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ug
1 1
<5 [ 11og,. tdu(t) + 7¢(u0)| log uol.
o+

Since by assumption || log, Q|1 < oo, the intergral }0| log, t|dpu(t) is finite. Thus
e lp(e/*) € L10,e0]. W '
REMARK 1.2. If one drops the assumption that
log, [0F(X)*9F(X)] € L'(W*(X) ® W*(X)),
the proof of Lemmall.1]yields the estimate
O* (X +/€S) = e 11(Py) —e /217K,

where A is arbitrary. This readily implies that *(X) < n — t(P,) for all A, which
shows that 6*(X) < n —rank dF(X). This estimate can be easily obtained from
[6] by noting that for any finite-rank operator T € FR,

0=[F(X),T] = ;[%Fj(x)#ﬂ Xk

showing that the dimension of the L2-closure of the space

{(Tl,...,Tn) € FR": Y [Ty, X;] = o}
]

is at least the rank of oF (compare [4]).

REMARK 1.3. Let 9c : L2(W*(X + /€S)) — L2(W*(X,S)®L?>(W*(X,S)))
be the free difference quotient derivations. The proof of Lemma suggests
the following precise expression for the short-time asymptotics of the conjugate
variable ¢ = 95 (1®1):

Ce =€ Y2F#S +EL + O(e'?)

where F = (Fi]-)l”].:l is the projection onto the L?-closure of {(Tl, ..., T,) € FR":

YT, X;] = 0} and ¢; = 97(6;j1 ® 1 — F). Indeed, the intuition is that F is the
i
projection onto the space of L2-cycles, which is perpendicular to the space of L?-
derivations (= ker F). The kernel of F is a kind of “maximal domain of definition”
of 97_, ; then & = E¢(97_y((6;j1 ® 1);; — F)) is the “bounded part” of & while
e~ 1/2F#S is the “unbounded part” (compare [15]). However, we were unable to

prove this exact formula.
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1.3. ESTIMATES ON FREE ENTROPY.

LEMMA 1.4. Under the hypothesis of Lemma[1.1] there exists K < oo, €9 > 0, s0
that for all 0 < € < €q, the non-microstates free entropy satisfies:

X" (X + /€S) < (loge!'/?)(rank 9F (X)) + K.
In particular, the microstates entropy also satisfies
X(X + €S :S) < x(X+1eS) < (loge!/?)(rank dF (X)) + K.

Proof. Let €o, f be as in Lemma|1.1} set K = || f[|11/g¢,)- By definition [19],
up to a universal constant depending only on 7,

1

X (X ++eS) = 5

/ (X +Ve+ S)+—dt

0

Arguing as in the proof of Proposition 7.2 in [19], we see that up to a finite uni-
versal constant (depending only on €y and n),

X' (X +\/eS) = 2/ — (X + VES)d 2/—Mdtﬂ<’

— (loge'/?)(rank 9F (X)) — 5 logeo + K,

where we used the inequality of Lemma|l.1|to pass from the first to the second
line.

The inequality for the microstates entropy is due to the general inequalities
X(Z:Y) < x(Z) < x*(Z); the first is trivial and the second is a deep result of
Biane, Capitaine and Guionnet [2].

1.4. r-BOUNDEDNESS. The main consequence of our estimates is the following
theorem, originally due to Jung ([11], Theorem 6.9). We give a short alternative
proof based on our estimates for non-microstates entropy.

THEOREM 1.5. Suppose that F = (Fy, ..., F;) is a vector-valued polynomial non-
commutative function of n variables, and suppose that for some X = (Xy,...,Xn) €
(M, T), F(X) = 0. Assume that log_ [0F(X)*0F(X)] € LY(W*(X) ® W*(X)). Then
X is n — rank(0F (X)) bounded.

Proof. By LemmalT.4]
lim sup x (X + /€S : S) + rank(dF(X))|loge!/?| < K < co.

e—0

By the last bullet point in Corollary 1.4 of [10], X is n — rank(0F (X))-bounded. 1

REMARK 1.6. Motivated by Corollary 1.4 of [10] one can make the following
definition: X is r-bounded for §* (respectively ¢*) if for some Kand all 0 < € < €,

X (X +/€S) < (n—r)loge'/? + K
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(respectively, ®* (X + \/eS) = e 1(n—r) + ¢(€),0 < € < €9 with ¢ € L]0, &g]).
Then under the hypothesis of Theorem([L.5 X is n — rank(9F(X))-bounded for 6*
and J*.

2. APPLICATIONS

LEMMA 2.1. Let I' be a finitely generated finitely presented group. Then there
exists an n-tuple X = (X, ..., Xn) of self-adjoint elements of QI' C LI and a vector-
valued polynomial function F = (Fy,..., F) with F; € Q[ty, ..., t,] so that F(X) = 0
and moreover

rankdF(X) = n — (B2 (1) + B (1) = 1),

where ﬁ](.z) (I') are the L?-Betti numbers of I'.

Proof. Let g1,...,9m be generators of I' and let n = 2m. Consider the fol-
lowing generators Xj, ..., Xy for the group algebra CI': X; = g¢; + gj—ll Xinyj =
i(g; —gj_l),j =1,...,m.

Denote by hy, ..., hy the generators of the free group Fy,;, and let Yj = h]- +
hj_l, Yoy = i(h]- - hj_l),j =1,...,m be generators of CFFy,. Let Ry,..., R, € Fy,
be the relations satisfied by the generators g1,...,gm of I

Denote by f1, ..., t, the generators of the algebra &/ = Clty, ..., t2,] of non-
commutative polynomials in 2n variables. Then there is a canonical map from
o — CFy given by t; — Y;. The algebra CFy, is then the quotient of & by
the ideal Jp generated by the relations corresponding to the relations h].*lhj =

h]'hj_l = 1 that hold in CF,; written in terms of the generators t these relations
take the form Fj’ = (tj + tugj) (t — tnyj) + 4, Fj” = (tj — tya) (b + tgj) + 4,
j=1,...,m

The relations R; can be interpreted as polynomials (with rational coeffi-
cients) in t1,...,t, by substituting (1/2)(t; + t,, ;) for h;j and (1/2i)(t; — t;)
for h].’1. Let F].’” =R;—1,j=1,...,p. Let ] be the ideal in & generated by Jo and
F",j=1,...,p. Then CT is precisely the quotient of &/ by J, the quotient map

sending t; to X;. Let F = (Fj’”);g:1 L (Fj”);?:l U (F].’);?:l, where L refers to union of
ordered tuples.
Let ¢’ : @/ — L?>(CI'® CI°) be a derivation. If forall j = 1,...,p + 2n,

¢'(F;) = 0 then for any x = aF;b € ],

&'(x) = &'(a)(Fj)b + a(F;)d' (b) + ad' (F;)b = 0
since F; acts by zero on both the right and the left of L?(CI' ® CI'"®) and &' (F;) = 0
by assumption; thus ¢'(J) = 0. Conversely, if 6'(J) = 0 then §(F;) = 0 for all j.

It follows that ¢’ descends to a derivation ¢ : CI' — L?(CI' ® CI°) if and only if
O'(F)=0forallj=1,...,p+2n.
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Letnow Q; € L2(CT ® CI°),I =1,...,n. Then there exists a unique deriva-
tion ¢’ : o7 — L?>(CI ® CI®) so that §’(t;) = Q for all [. This derivation descends
to a derivation ¢ on CI (satisfying 6(X;) = Q) if and only if for all j,

0= 8'(F) = 9F(X)#Q,

ie, Q € kerdF(X). It follows that the space of derivations Z!(CI, L?(CI' ®
CI°)) is isomorphic to ker 9F (X) C (L?(CI' @ CI°))®".

Let & denote the action of L(I" x I'°) on L?(CI' ® CI®) given by (g x h) -
(C®n) =p(g)¢ ®p(h)y, where p is the right regular representation. If § : CI' —
L?(CT ® CI°), then ay o ¢ is again a derivation, for any x € L(I" x I'°). It follows
that L(I" x I'°) acts on the space of these L?-derivations; moreover, the isomor-
phism Z!(CI', L?(CTI’ ® CI'®)) = ker 9F (X) is a-equivariant.

It is easily seen that

dimy (1 oy Z!(CT, L*(CT © CI°)) = p2(I) — p57(I') +1

(see e.g. [6], [14]; note that ﬁgz) (I') is the dimension of the space of derivations

which are not inner, while 1 — [382)(1" ) is the dimension of the space of inner
derivations).
Putting things together, we obtain that

BEN(r) — B (I') + 1 = dimy -, o) ker dF(X) = n — rank 9F(X)
as claimed. Note that by construction F € Q[ty,...,t,]. I

THEOREM 2.2. Let I" be a finitely generated, finitely presented sofic group, and
let r = ﬁgz)(F ) — ﬁéz)(F ) + 1. Then there exists a set of generators for CI" which
is r-bounded. In particular, if |I'| = oo and ifﬁgz)(F) = 0, then L(I') is a strongly
1-bounded von Neumann algebra.

Proof. By Lemmathere exists an n-tuple X = (X, ..., Xy) of self-adjoint
elements in QI' C LI" and a vector-valued polynomial function F = (F, ..., F)
with F; € Q[ty, ..., ts] so that F(X) = 0 and moreover

rankdF(X) = n — (87 (1) - p&(I') +1).

Furthermore, since 0F(X) € Q(I' x I'°) and I' (thus also I' x I'°) is sofic, the
determinant conjecture holds ([1], [7], [13]; see e.g. the proof of Theorem 13.19 in
[13]). Thus log, [0F(X)*9F(X)] € L'(W*(X) @ W*(X)).

We may thus apply Theoremto conclude that (X, ..., Xy) is

n —rank(3F(X)) = B2 (I') — B (I'+)1 = r-bounded.

Thus if ,852) (I') = 0, it follows that r = 1.
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If I is an infinite group, ﬁ((]z)(F ) = 0. If I' is amenable, it follows [5] that
L(I') is hyperfinite and thus from the results of [10] we get that L(I") is strongly
1-bounded.

Assume that I" is non-amenable; then any finite generating set of I" is a non-
amenability set (cf. [8]). Since I' is sofic, its microstates spaces are non-empty. It
follows from Proposition A.16 of [8] that L(I") is strongly 1-bounded. &

REMARK 2.3. The proof of Theorem still goes through if we assume that
I' satisfies the determinant conjecture (or, more precisely, that

log, [0F(X)*9F(X)] € L'(W*(X) ® W*(X))

for the specific function F we are dealing with) and that L(I") satisfies the Connes
embedding conjecture.

It is an open question whether infinite property (T) von Neumann algebras
are always strongly 1-bounded, even in the group case, although it is known that
every generating set must have free entropy dimension at most 1 [12]. However,
we can settle the case of finitely presented sofic property (T) groups.

COROLLARY 2.4. Let I' be an infinite finitely presented sofic property (T) group.
Then L(I') is strongly 1-bounded.

Proof. Indeed, property (T) implies that ‘Bgz) (I') = 0 and that the group is
finitely generated (see e.g. [13]). 1

As noted in Corollary 4.6 of [20], the free entropy dimension Jy is an invari-
ant of the group algebra CI” of a discrete group.

COROLLARY 2.5. Let M be a finite von Neumann algebra that is not strongly 1-
bounded. (For example, M = W*(X) with 5y(X) > 1, e.g. M = L(I") with 5y(CI") >
1,eg,I =F,, n>2)If M= L(A) with Aa finitely generated finitely presented sofic
group, then ﬁgz) (A) #0.

Proof. 1f [352) (A) =0, Theoremwould imply that L(A) = M is strongly
1-bounded. Contradiction. 1

CONJECTURE 2.6. Let I" be a finitely presented finitely generated sofic group
with B (I') > 0. Then
(i) L(I') is not strongly one bounded;
(ii) 60(CIr) > 1;
(iii) 6o (CT') = BP(I) + 1.
Note that (iii) = (ii) = (i) since if L(I") were strongly 1-bounded, then
Jo(CI') would have to be 1. The inequality 6y(CI') < ,BP(I” ) + 1 is known

(see [6]) and actually follows from the results of the present paper as well. How-
ever, the reverse inequality occurring in statement (iii) is only known in a few
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special cases, e.g. I’ = [, or free products of groups with vanishing first Betti
number (possibly with amalgamation over finite or amenable groups) [3], [16].
Nonetheless, it is possible that parts (i) or (ii) are more approachable than part (iii).

REMARK 2.7. Together with Corollary Conjecture i) would imply
the following: if I' and A are two finitely generated finitely presented sofic groups

and L(I') = L(A) then ﬁgz) (), ,Bgz) (A) are either simultaneously zero or simul-

taneously non-zero. In other words, the vanishing of ,Bgz) is a W*-equivalence
invariant for such groups.
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