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Abstract. We construct non-commutative analogs of transport maps among
free Gibbs states satisfying a certain convexity condition. Unlike previous
constructions, our approach is non-perturbative in nature and thus can be used
to construct transport maps between free Gibbs states associated to potentials
which are far from quadratic, i.e., states which are far from the semicircle
law. An essential technical ingredient in our approach is the extension of
free stochastic analysis to non-commutative spaces of functions based on the
Haagerup tensor product.
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1. Introduction

We would like to dedicate this paper to the memory of Vaughan Jones. It is
no exaggeration to say that Vaughan’s work in mathematics and mathematical
physics has been an inspiration for hundreds of mathematicians worldwide. He
was responsible for breakthrough results in a number of subjects, including von
Neumann algebras, subfactor theory (a subject he initiated), and low-dimensional
topology, to name just a few. For so many of us, he was a personal friend, a mentor
and a guide into the wonderful world of amazing mathematics. He is terribly missed
by us all.

Vaughan had also the talent to organize inspiring conferences in beautiful places,
like Maui and New Zealand. These were places to work hard, but also to enjoy na-
ture and gather together. These were places where often people from very different
backgrounds, from physics and mathematics, would meet and communicate, if not
during the talks, in the afternoon beach sessions. This was a place for discovery.
The second author of the present paper had the chance to give a mini-course at
the New Zealand Mathematics Research Institute summer school about random
matrices in 2019. This was a very inspiring conference, with many researchers and
students from different backgrounds but a common amazing curiosity. Talks were
given on very small white boards which had the advantage of limiting the amount
of information, but increase its communication. A large part of the afternoons was
free, dedicated to hikes, walking on the beach, and to kite surfing for Vaughan and
some other participants. Vaughan was very eager to share beautiful mathematics,
but also the beauty of his country and the kiwis. Alice and her husband will always
be grateful to Vaughan and NZRMI organizers for sharing their piece of paradise.

The subject of this paper is related to Vaughan’s work in several ways. In joint
work with Vaughan and the second and third-named authors [GJS10], we made
a connection between free probability, random matrices, and quantum symmetries
that arise in subfactor theory. Vaughan’s dream was to understand if phase transi-
tions associated with random matrix models could somehow be connected to sub-
factors. Our past work on non-commutative transport [GS12] as well as the present
paper are small steps in the direction of developing the tools that could describe
these phase transitions, and perhaps someday realize some version of Vaughan’s
dream. On a technical level, several of the Haagerup tensor product constructions,
in particular the cyclic Haagerup tensor product, are motivated by subfactor the-
ory and may be of interest in the study of infinite-index subfactors. Finally, a
byproduct of our results is the extension of isomorphism results of [GS12] to the
non-perturbative regime, identifying the isomorphism classes of Neumann algebras
associated to free Gibbs states that are in a certain sense convex.
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A transport map between two probability measures is a function pushing the
first measure onto the second. Finding transport maps which minimize a certain
cost function is the central question in transportation theory. It was formalized
by Monge in the eighteenth century, studied by Kantorovich during World War II
and has known major advances in the last twenty years, starting with a work of
Brenier [Bre91], see also the very inspiring book by Villani [Vil03]. In fact, the
mere existence of a transport map is itself not completely trivial and was proved
by von Neumann in 1930s, under very weak assumptions, as part of the program
to classify measure spaces.

A central question is to find appropriate generalizations of this result to the
non-commutative setting, where measures are replaced by non-commutative dis-
tributions, that is, tracial states. In this case, there is no notion of density but
in certain instances arising in Voiculescu’s free probability theory, integration by
parts makes sense. It gives the adjoint in L? of Voiculescu’s free difference quotient
[Voi98], and is often a (cyclic) derivative of a non-commutative function that we
call a potential (see [Voi00, Voi02]).

Non commutative laws which are characterized by a free probabilistic integration
by parts formula are called free Gibbs laws (see e.g. [Gui06]). In [GS12], two of
the authors of this article constructed transport maps between a class of free Gibbs
laws. They used ideas going back to Monge and Ampére, based on the remark that
transport maps must satisfy an equation given by the change of variables formula.
Solving this equation yields a transport map. Unfortunately, this equation was
only solved in [GS12] in the case of potentials which are small perturbations of
quadratic potentials, i.e., certain small perturbations of Voiculescu’s free semicir-
cular law. Already this result yielded isomorphisms between the associated C* and
von Neumann algebras in such perturbative situations, solving a number of open
questions [Voi06]. In particular, this approach was used to show that the C* and
von Neumann algebras of ¢-Gaussian laws [BS91] are isomorphic for sufficiently
small values of gq.

The goal of the present article is to consider non-perturbative situations. We
will see that we can tackle situations where the potential is “strictly convex” (in a
sense we will make precise later). The idea is once again to use a non-commutative
version of the Monge-Ampere equation, but now to solve it by interpolating the
potential between the two given laws. This requires solving a Poisson type equation.
The latter, in strictly convex situations, can be solved by using the associated
(free) semi-group. However, this program meets several difficulties in the non-
commutative setting. First, smoothness properties of the semi-group have not been
studied so far. Furthermore, the appropriate notion of convexity has not yet been
formulated. We detail our framework in Section 2, leaving to the appendix the
elaboration of most of its properties. In Section 3, we study the semi-group defined
in this framework and derive its properties. Based on this, we finally construct the
transport map in Section 4.

In the rest of this section, we detail the classical construction of transport maps
from which we took our inspiration, and explain how it generalizes to the case of a
single non-commutative variable. We then consider the general non-commutative
multi-variable case and state our main theorem.
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The key technical underpinning of our paper is the existence of a collection of
non-commutative function spaces whose definition and study was initiated by the
first-named author in [Dab15] and which are well behaved in several ways. These
non-commutative “functions” can be evaluated in n-tuples of self-adjoint variables
living in the relative commutant of a von Neumann algebra D, and depend both on
the n-tuple and the choice of a conditional expectation on D. Such functions can
be composed. Moreover, our function spaces describe a kind of C* regularity, so
that differential operators from Voiculescu’s free probability — non-commutative
difference quotients and cyclic derivatives — can each be applied a certain number
of times to our functions. The resulting differential calculus makes it possible to for-
mulate and solve non-commutative versions of certain partial differential equations
that ultimately yield our transport maps.

In our approach to function spaces, we used a version of the Haagerup tensor
product, whose operator space properties and especially behavior under taking con-
ditional expectations make it especially suitable for our construction. To deal with
cyclic derivatives and appropriate closures of cyclically invariant polynomials aris-
ing in free probability theory, we also describe a cyclic version of the Haagerup
tensor product. Its construction is motivated by Jones’s subfactor theory, and (al-
though we do not pursue this direction in the present paper) could be of independent
interest in that context.

We should mention that in the case D = C, there is an alternative (and also well-
behaved) suite of non-commutative function spaces developed by D. Jekel [J19]
after our work first appeared in preprint form. His approach to the definition of
these spaces is different from ours, and has the advantage of constructing examples
of convex functions more easily. In [JLS21] Jekel, Li and the third-named author
have used those function spaces as well as several ideas from the present paper to
describe a kind of information geometry “Wasserstein manifold” structure on the
space of free Gibbs laws which are close to the semicircle law, as well as to construct
transport maps that are associated to more general paths in this manifold (in the
present paper we only consider affine interpolations between potentials defining
the free Gibbs laws). It would be interesting to elucidate the relationship between
the two different approaches to non-commutative function spaces and in particular
between the associated notions of convexity — based on contractivity of certain
semigroups (as in the present paper) or positivity of the Hessian (as in Jekel’s
approach).

Our motivation to consider more general D is two-fold. The first is to consider
the crossed product D x F,, of an action of the free group on D, as well as its
g-deformation [JLU14, JU19]. At this point we did not verify that these defor-
mations correspond to potentials that satisfy our assumptions (for ¢ small enough).
The motivation to also consider the algebra B comes from the analysis of the free
product (D x F,) xp (W*(Ss,s <t)® D); in this case B = D x F,,. Being able to
construct transport maps in this setting would allow us to construct solutions of
free SDE’s with initial conditions in B as the image by transport maps of some pro-
cess St,, ..., S, . For instance, one would want to obtain solutions of free SDE’s
similar to those considered in [Shl09] in the context of crossed product and for
non-algebraic cocycles. Building such solutions in free products with amalgama-
tion could enable the use of techniques similar to those in [DI16, Io15] and would
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lead to the study of algebras B by a free transport approach, for instance to answer
questions such as uniqueness of the Cartan decomposition up to unitary conjuguacy
for non-trivial actions when I is a group with positive first £2 Betti number. Such
interesting applications would require consideration of non smooth potentials V|
something which is still far from our reach. However, we feel that these potential
applications outweigh the small additional difficulties involved in considering the
more complex setting with non-trivial algebras B and D. Thus our article lays
the groundwork for future developments in this direction and our main example of
relative algebra B is exactly the kind of crossed-product that could be interesting
for the above-mentioned applications.

1.1. Classical construction of transport maps. For any suitable real-valued
function U from R? to R we define the probability measure

1
pu(de) = —e V@ dy, Zy = /eiU(z)dx.
Zy
We let V and V 4+ W be two functions going fast enough to infinity so that Zy and
Zy +w are finite. We would like to construct F : R4 — R? 5o that wyaw = F#uy,

i.e., so that for all test functions h

[ @) = [ i @) = [ BE@)IacE) e Iy 2y

where Jac(F') denotes the Jacobian of F. We have simply performed the change of
variables © = F(y) in the last line, assuming that F is C'. We therefore deduce
that F' should satisfy the transport equation:

Viy) = (V+W)(F(y)) — InJac(F)(y) + C (1)

for almost all y where we set C =1In Zyw — InZy .

If V — W is small we can seek a solution F’ which is close to identity, so that its
Jacobian stays away from zero and therefore does not get close to the singularity
of the logarithm. The resulting equation can in turn be solved by the implicit
function theorem. Such arguments were extended to the non-commutative setting
in [GS12].

To solve the transport equation in a non-perturbative situation, we shall in this
article proceed by interpolating the potential. Namely, let us consider potentials
Vo = aW 4+ V and seek to construct a transport map Fi, of uy onto py,. The
advantage of smooth interpolation is that transporting uy, onto py, ., can a priori
be solved for & small enough by the previous pertubative arguments, and the full
transport F; = F' of uy onto py can then be recovered by integration along the
interpolation.

In fact, we shall solve the transport equation (1) under the additional restriction
that F evolves according to a gradient flow: 0, F, = Vg (Fy). It turns out that g
must then be a solution of the Poisson equation

LV&ga =W 4+ 0xIn Zva , (2)

with Ly, = A — VV,.V the infinitesimal generator of the diffusion having uy,
as its stationary measure. Solving the Poisson equation (2) amounts to inverting
Ly, , that is, finding the Green function of the differential operator Ly, . This is
a well known problem which can be solved under various boundary conditions or
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growth conditions on V' at infinity. To simplify we shall assume that V,, (that is V'
and V + W) are uniformly convex. This insures that the semi-group P® = e*Lva
converges uniformly towards the Gibbs measure py, as s goes to infinity. More
precisely, there exists some ¢ > 0 such that for all Lipschitz functions f with
bounded Lipschitz norm || f||, we have

1P f = v (Pl < 2¢7[| fl -

As a consequence we can solve the Poisson equation (2) by setting
gola) = [ POV 4 0u1n 2y, ) (w)ds 3)
0

where we noticed that py, (W + 9, InZy, ) = 0. Hence we see that in the classical
setup (2) can be solved thanks to the associated semi-group. Moreover, by smooth-
ness of z — PX(W)(z), we see that g, is smooth if W is. To conclude, all that
remains is to solve the transport equation 0, F, = Vg.(F,). In the rest of this
article we generalize this strategy to the free probability framework.

Let us first investigate the free set-up in the one variable case. Typically, one
should think about the non-commutative law of one variable as the asymptotic
spectral measure of a random matrix, confined by a potential V: the joint law of
these eigenvalues is given by

N
1
dPY (M, ..., N) = 7v H IAi — Aj] exp{ NZV()\Z)} H dX; .
1<i#j<N i=1 1<i<N
It is then well known (see e.g. [AGZ10]) that the spectral measure Ly =
% Zf\[:l 0, converges almost surely to the equilibrium measure py-, which is char-
acterized by the fact that the function

Viz) -2 / In |z — ylduy (3) (4)

is equal to a constant cy on the support of py and is greater (or equal) than
this constant outside of the support. This equation implies the Schwinger-Dyson
equation

2 PV, / fiyduv(y) — V@), py as (5)

where P.V. denotes the principal value. We will call a free Gibbs law with potential
V' a solution to (5). It may not be unique; in fact, there is a continuum of solutions
as soon as solutions have disconnected support: a solution corresponds to any
choice of masses of the connected pieces of the support. This is not the case
when V' is uniformly convex. In this case, there is a unique solution and it has
connected support. The interest in the Schwinger-Dyson equation is that it can be
interpreted as an integration by parts identity for the non-commutative derivative
of(x,y) == %ﬁ(g) since it implies that

//Wduv(x)duv(y)=/f(w)V’($)dW($)-

As there is no notion of density in free probability, integration by parts can be seen
as an important way to classify measures. Moreover, as we shall soon describe,
there is a natural generalization of free Gibbs laws to the multi-variable setting.
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Let now V, W be two potentials. We would like to construct a transport map
from the Gibbs law py with potential V' to the Gibbs law uy 4w with potential
V 4+ W. We can follow the previous scheme and seek g, satisfying : 0, F, = g/, (Fa)
and Fo#uy = py, . By (4), we find that py, almost surely we must have

/

9o (@) — 90y
Bv,gule) =2 [ L= gy, () Vi @)gi() =W = Bucr, . (©
We recognize on the left hand side the infinitesimal generator Ay, of the free dif-
fusion driven by a free Brownian motion, [BS98|. More precisely, the infinitesimal
generator of the free diffusion is given by

f'(x) = F(X)

Avaf(l') :2]E |: x—X

|- v@re
if X has the same law as .

The fact that this generator depends on the law of the variable complicates the
resulting theory quite a lot. In particular, the operators e®Ve acting on the obvious
space of functions do not form a semigroup. To restore the semi-group property, we
have to enlarge the set of test functions to be functions of not just the real variable
xz, but also of expectations of this random variable. Our idea here is similar to
the one introduced in [Ceb13]. This in turn changes the generator of the diffusion
to also involve differentiation under the expectation: we denote dy the derivative
SvE[f] = E[Ay f]. We can now check that (e5(Ava®9va)) o4 is a semi-group so that
we can apply the previous analysis.

Note here that when x follows the invariant measure wy,, dy, py, (f) = 0 and
therefore the two generators coincide. Thus invariant measures for the semi-group
(es(Avativa)) oo will satisfy (6).

As before, we shall solve (6) in a gradient form. Again, the natural gradient that
we shall use also differentiates under expectation. Namely we let D to be given for
any smooth functions f, f;,i > 0 by

D(f(x) [T B @) = £'(«) [T Bl (@)] + B ) £ [TES]-
i j#i
Then, we shall find a function Dg, (of the variable z and the expectation, see

Lemma 11), which satisfies a gradient form of (6) (after adding dy to the generator
and commuting D with Ay, + dv,) :

D(W) = (Av, + v, )(Dga) + Vo/lega . (7)
Having obtained the solution g, we finally solve
8OCFQ - Dga(Fa) . (8)

To make things clearer, let us transport the measure P}\f onto P}\/,V and only
afterwards take the large N-limit. Again, we consider the transport of Py onto
Pj‘é"‘. We may expect, by symmetry, the flow F'* = (Ff,..., FY) for the transport
map to be the gradient of a function of the empirical measure Ly = % Doy
Eff(AN) = NOy,Go(Ln) = DGo(Nis LN) -

(3
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The infinitesimal generator Ly = A — VV.V acting on functions of the form
F(Ly)=NIl+ Zf\il fj(A\i) reads

N N
L =3 T] 3 S 5005 3 L fulh) + 0(1)
k oj#k T =1 i=1

where the last term comes from differentiation of two different functions and is at
most of order 1/N. Hence, when N goes to infinity we see that functions of the
distribution of the \; should not be taken as constant but also differentiated under
the expectation. Taking the gradient in the Poisson equation (2) shows that we
seek G, such that for each 7

(Ly, +0v,)DGa(A) = DA + V2 (A)DGa(M) + O(5p)

Hence, taking the large N limit, we expect G, to be given to first order by the
solution g4 of (7).

The final step to finish our construction of the transport map is to introduce
a notion of uniform convexity for V so that the associated semi-group converges
uniformly and sufficiently rapidly towards the invariant measure as time goes to
infinity (to make sense of the integral over time from 0 to oo in (3)), and also so
that if f is smooth then also 2 — e5(Avi+vi) f(z) is smooth, uniformly in s (to be
able to solve the transport equation). Our choice of the notion of uniform convexity
of V is designed to guarantee such properties.

1.2. Construction of transport maps in free probability. We now want
to explain our approach to the main goal of this article, which is to construct
transport maps between non-commutative distributions of n > 1 non-commutative
variables. In free probability theory, laws of non-commutative variables are defined
as linear forms 7 on the space C(X1,...,X,) of polynomials in the self-adjoint
non-commutative letters Xy, ..., X,, with coefficients in C which have mass one (so
that 7(1) = 1), and which satisfy the traciality property (7(PQ) = 7(QP)) and the
state property (7(PP*) > 0). Here % denotes the usual involution (zX;, --- X;, )* =
ZXi, - X,

An example one should keep in mind is the asymptotic law of several interacting
random matrices with joint law given by

1
dPX (XN, .. XN = Wexp{—NTr(V(XfV, XN axyaxy

N
where dX* is the Lebesgue measure on the space of N x N Hermitian matrices
and V is a self-adjoint polynomial in C(X1,...,X,) so that Z) is finite. In this
case )

Tx~(P) = NTr(P(X{V, XN
is a non commutative law for any self-adjoint matrices X{¥,..., X». So is its
expectation under P¥; and the limit of these expected value as N — oo (if the limit
exists).
Existence of such an (almost sure and L'(PY;)) limit was proven when V is a

small perturbation of a quadratic potential [GMS06] and when V satisfies some
property of convexity [GS09, Dab16, J18].



FREE TRANSPORT FOR CONVEX POTENTIALS 267

The existence and uniqueness of a limit 7, holds under the assumption that
V' satisfies our definition of convexity, as well. This includes the case of quartic
potentials. By integration by parts, we see that the limit 7 must satisfy that for
any polynomial P

Tv®Tv(aiP):Tv(P'DiV) (9)
where 0; is the free difference quotient with respect to the ith derivative from
C(X1,...,Xn) to C{X1,..., Xp) ® C(X4,...,X,,) given by

and D; = m o 9; the cyclic derivative, m(a x b) = ba. When V = > " X2
On 1= Ty x2 is uniquely given recursively by (9) and is the law of n free semicircle
variables. In general, we say that a non-commutative law 7y satisfying (9) is a free
Gibbs law with potential V. Alternatively we say that the conjugate variables
(0 (1 ® 1))1<i<n are equal to the cyclic gradient (D;V)1<i<n.

The goal of this paper is to construct non-commutative transport maps between
Ty and o,, following the ideas developed in the previous section. In fact, con-
structing the transport map as the solution of the transport equation (8) where
Jo 1s solution of a Poisson equation (7) is a natural analogue thanks to existence
of free diffusion and free semi-groups. However, this program meets several issues
that have to be addressed.

e One of the key point to construct the solution to Poisson equation was the fast
convergence of the semi-group towards the free Gibbs law. In the free context,
it is well known that semi-groups with deep double well potentials do not
always converge. It is therefore natural to search for the appropriate notion
of convexity in the non-commutative setting, which would imply convergence
of the semi-group as time goes to infinity, uniformly on the initial condition.
In [GSO09], the notion of convexity that was used turns out to be too strong
to include many examples. It assumed that for all n-tuples of self-adjoint
variables (X,Y’) bounded by some R,

n

(DiV(X) = DV(Y))(Xi = Yi) + (X = Y)(D,V(X) = DiV(Y))
=1

K3
is non-negative. This is not satisfied by V(X) = X* as can be checked by
taking (X,Y) to be two 2 X 2 matrices given by X133 = 1, X150 = X9 =
O,X22 = —67 Y11 = 1,Y12 = Y21 = \/ﬁ/4, }/22 = —5. It would be more
natural to assume that the Hessian of TrV (X%, ..., XV) is bounded below for
any n-tuple of Hermitian matrices X{¥,..., X. However, this Hessian lives
in a tensor product space and saying that it is non-negative depends on the
topology with which we equip the tensor product. We shall see that a good
topology is given by the extended Haagerup tensor product and prove that our
definition includes the case of quartic potentials.

e As in the one variable case, we have to consider functions not only of the
variables but also of the expectation and the semi-group must also differentiate
under expectation. Hence, we have to develop free stochastic calculus applied
to such functions.

e The solution of the Poisson equation is given in terms of the semi-group, and
we need to show existence and smoothness of the transport maps which are
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the solution of the transport equation driven by this solution. This requires
us to show that the semi-group acts smoothly on appropriate spaces of non-
commutative functions, and also understand its image under the cyclic gradi-
ent.

In Section 2.4 we define several differential operators acting on functions of sev-
eral non-commutative variables, some of them being well known in free probability,
such as the difference quotient and the cyclic gradient. We extend their defini-
tion to functions which also depend on expectations, in order to define a proper
semi-group on the appropriate function spaces. We then define the notion of (¢, R)
h-convexity of a function in Definition 3. It states that the Hessian of this function
is bounded below by ¢/ in the extended Haagerup tensor product, uniformly when
evaluated on non-commutative variables bounded by R. An important point is that
this notion is stable under addition. We then show in Proposition 5 that the free
SDE with strictly h-convex potential converges as time goes to infinity towards a
free Gibbs law. To construct the transport map between 1y and o,,, we shall need
an additional technical assumption. First, as we proceed by interpolation of the
potential, we need to assume that a nice bounded free Gibbs law exists for all po-
tentials V, = oV + (1 —a) > i~ X?,« € [0,1]. This is the content of Assumption
4. We are now in position to state one of our main theorems, see Corollary 13 (with
B=D=Cand W=c) ! X2-V).

Theorem 1. Let ¢, R > 0. Assume that V is a siz times continuously dif-
ferentiable (¢, R) h-conver on the space of variables bounded by 2R. Assume
that (V,ed> | X? — V) satisfies the technical Assumption 4. Let Vo = V +
aley i X7 -V).

o There exists ag > 0 and functions Fy,a € [0,ap] and Gq,a € [0, 9], so that
for all a € [0, ], Tv (resp. Tv, ) is the pushforward of Tv., (resp. Tv) by Fy
(resp. Go).

e For any a € [0,1], the von Neumann algebras associated to the free Gibbs law
with potential V,, are isomorphic; in particular, they are isomorphic to the von
Neumann algebra generated by n free semicircular variables.

In the appendix, see Corollary B.48, we show that the following perturbation of
quartic potentials V satisfy all our hypotheses:

V_1+Xl \/_1+Xn

V) = VX +eP(Uh e ey

),

with

k n n
V(X) = Z/sz’Uj (Z )\i,in> + Z Ai)inXj .
j=1 i=1

ij=1
Here A = (4, ;) € M,(IR) is a positive matrix with A > cI,,, (A ;) € Mp x(R), 1 €
2

k X X3 x4 2
[0,00[%, vj(z) = vjo5- + i35 +viag € C(Xq,...,Xy) for vj4 > 0,155 <
8vj9v;,4/3. Furthermore, P is a self-adjoint polynomial and ¢ is small enough.

This is the first potential which is not a perturbation of a quadratic case for
which isomorphism between the von Neumann algebras associated with its free

Gibbs law and that of free semi-circle variables is proven.
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In the rest of the article we will consider a more general framework. We fix
a unital inclusion of two von Neumann algebras D C B and consider the set of
polynomials in X1,..., X, and elements in B where X1, ..., X,, commute with D.
Our set of test functions will be converging series in such monomials, or closures
of this space arising from certain non-commutative versions of CP-norms. We shall
consider the extended Haagerup tensor product of such spaces, as well as a cyclic
variant which allows the action of cyclic permutations. This is needed to define the
action of the cyclic gradient. This gradient appears in the right hand side of the
Dyson-Schwinger equation (9) and the non-commutative version of the transport
equation (8), and is therefore key to our analysis. Our main result in this general
situation is stated in Corollary 13.

Acknowledgements. The authors would like to acknowledge the hospitality of
the Focus Program on Noncommutative Distributions in Free Probability Theory
held at the Fields institute in July 2013 where an early part of this work was
completed. We are also grateful to the Oberwolfach Workshop on Free Probability
Theory held in June 2015 during which we were able to make further progress.

2. Definitions and Framework

2.1. Spaces of analytic functions. We denote by M(Xq,...,X,,) the set of
monomials in Xy, ..., X,. Throughout this paper, B will denote a finite von Neu-
mann algebra, and D a unital von Neumann subalgebra.
h
The extended Haagerup tensor product relative to D is denoted by ?8 We denote
. D
n
by BP a version of the n-th extended Haagerup tensor power of B that carries
the action of the cyclic group of order n.
For R > 0, we define formally

eh
B(Xy,..,X, : D,R) := Bahth (RmB%(m +1):me M(Xy,...,X,),|m| > 1) .

Here R!™ E means the space E with standard norm multiplied by R, This space
can be regarded as the space of power series in X1, ..., X, with coefficients in B and
radius of convergence at least R by identifying a monomial by X;, by - - - X; b, with
the copy of the tensor by®@- - -®b,, in £}, index by m = X;, - - - X;,. The definition of

h
the Haagerup tensor product ® is discussed in section 1.2 and Lemma 5 of [Dab15]

D
(see also [P, chapter 5], [M97, MO05] for the general module case). We direct sum
of D-modules in the definition above in order the resulting space is a D-module,

h
so that B(X4,...,X, : D, R) E@é B(X1,..,X, : D,R) be well defined. Modulo this
D
(important) property, we could have more simply considered the (ordinary operator
space) ¢* = (¢ direct sum (cf. [P, section 2.6]); we will denote by B(Xji,..., X, :
D, R,C) the corresponding smaller space. We will only use version in the cyclic
case.
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The cyclic variant B.(X1,..., Xy : D, R,C) is given by:

eh
® (Iml+1)
)

(D'nB) @' (R'mBD’ me M(Xy,..,X,),|m| > 1) ,

h
where D’ is the commutant of D and Ei) stands for the cyclic version of Haagerup

D,c
tensor product defined in subsection A.3. This space can be regarded as the space
of power series in Xy, ..., X, with coefficients in B and radius of convergence at

least R, and such that variables X; commute with D. As before, a monomial
boXi, b1 -+ X;,b, is identified with the copy of the tensor by ® -+ ® b, indexed

h
by the monomial m = Xj, --- X;, . The use of the Haagerup tensor product E@

D,c
ensures the possibility of cyclic permutation of various terms in the power series.
We denote by €, the group of cyclic permutations acting on the cyclic tensor
product generated by p(bp®- - ®by,) = b, ®bg - - - ®bp_1. The cyclic gradient (very
roughly, a map on this space) will be defined in subsection B.1.

B.(X1,..,X, : D,R,C) and B(Xy,...,X,, : D,R) are Banach algebras, see
[Dab15, Theorem 39] and subsection B.1.

eh eh
& ®

We let for n,m > 0,i€ {1,...,n—1}, #;: AD" x (D’ﬂADm
canonical extension of the map given on elementary tensors by

eh
Rn+m—2
D

)= A the

(1@ an)#iD1 Q@ bp)=a1® - Qa;—1 Qabi by Qbpait1 ® R ay.

Having those operadic compositions, which will be crucial for non-commutative
calculus, is another reason for using variants of Haagerup tensor products.

eh eh

® m ®
By definition AP+ C (D' N ADm); this leads to to cyclic variants of #; as

. . %‘ n ?8? m %‘ n+m—2 .
defined in subsection A.3: #; : AP x AP<c — AP We write # for #;.
. . %] 3 %1 n %‘ m ?é)l m+n—1
We may also write for instance -#(-,-) : AP¢ x APe x AP — AD:e for

U#(V,W) = (U1 V)#W = (U#W)#V and similarly U#£(Vi, -+, V).

eh

® 2
We endow AP with the adjunction * so that (¢ ® b)* = a* ® b*. Note that

eh

® 2
(a#b)* = b*#a*, so that (AP | x) is a x-algebra.

2.2. Spaces of analytic functions with expectations. We will need a gener-
alization of analytic functions which also depend on a expectation Ep valued in D.
For example, we would like to consider functions of the type

boXi b1+ Xi,bpEp[bpr1Xi, s - bprk ED[bprkt1Xiy pn = Optkml]

xXEp [bp+k+mXip+k+m+1 T bp+k+m+f]bp+k+m+f+1Xip+k+m+e+2 T bp+k+m+l+r
As the order in which conditional expectations are applied matters, we will label
such a monomial by inserting an additional letter Y for each closing and opening
parenthesis of the map. The matching between the closing and opening parenthesis
then defines a non-crossing pair partitions of the set of positions of the letter Y.
Conversely, given a non-commuting monomial in letters Xi,...,X,, and Y having
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even degree 2k in Y, and a non-crossing pair partition of the positions of the letter
Y, we can define a unique expression of the type above. Thus, formally we set

eh
Bi{X1, . X : Ep, R} = £ (RImlx g5 ™Y,

m € Mop(X1, ..., Xn,Y), m € NC3(2k),|m| > 1) , k>1

where M (X1,...,Xp,Y) is the set of non-commuting monomial in letters
X1,..., X, and Y having even degree 2k in Y, |m|x denotes the degree in the
letter Xq,..., X, of m and |m| = |m|x +2k. We call By {X3,...,X,, : Ep,R,C}
the corresponding space with (non-module) operator space ¢! sums (in the sense of
[P, section 2.6]). Similarly, we define

eh
® (Jm|+1)
Bey{X1,... X, : Ep,R,C} == (*(RImx pre :

m e Mgk(Xl, ...,Xn,Y),TF S NCQ(2]€), |m| > 1) .
We set Bao{Xl, 7Xn : ED,R,(C} = BC<X1,...7Xn : l),fi7 (C> and Bo{Xl, ,Xn :
Ep,R} = B(Xy,.., X, : D, R).
Finally we define:

BAXi,... X, : Ep,R,C} := " (B.}{X1, ..., Xn : Ep,R,C}, k € N),
B{Xi,..,X,: Ep,R,C} := 0" (By{X1,....,. X,, : Ep,R,C},k € IN),
B{Xi,..,X,: Ep,R} := (5 (Bx{X1,... X : Ep,R},k € IN).

Above, Ep should be considered as a variable taken in the space of D-bilinear
completely bounded maps.

For P € B.{X1,...Xn : Ep,R,C} and E : B(Xy,...,X, : D,R) — D unital
D-bilinear completely-bounded map, we can define the map P — P(F) taking
BAX1,..,X, : Ep,R,C} to B(Xy,...,X,, : D,R) by recursively replacing each
sub-monomial Ep(Q), Q@ € B(X1,...X, : D,R) inside P by E(Q). A formal
definition is given in subsection B.2 where all the technical lemmas we will need
about those analytic functions are proved.

2.3. Spaces of differentiable functions. Let A be a finite von Neumann algebra
containing B as a unital von Neumann subalgebra. Set

nim (X1, Xa) € (D'NA): X, = X[ € A; | X < R},
Let U C A’ be a closed subset of A%. For convenience, we will first embed the alge-
bra B.(Xi,..., X, : D, R,C) into a much larger algebra Ng~ rCP (U, Be(X1, ..., Xy, :

D, S,C)), where Cp (U, B) stands for the space of bounded continuous functions on
U with values in a Banach space B. On this space we define the norm

[Pllav = sup{[[P(X1, ... Xn)[la : (X1, X)) €U},

where by P(X7,...,X,) we mean the value of P evaluated at (Xy,...,X,) € U,
itself evaluated as a power series in (Xi,...,X,) (see Proposition B.25 for some
details on those evaluations). We call the corresponding completion C(A,U : B, D)
and C;(A,R: B,D) when U = A},.
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For P € NgsrCL(A%, Bo(X1, ... X, : D,S,C)) C NgsrCO(A%, Bo(X1, ..., X, :
D, S,C)) the set of continuously differentiable functions on A% with bounded first
derivative, one can consider the differential

dP € Ng>rCP (A%, L(D' N A%, B«(Xy,.... X, : D, S,C))),

where L(G,G'") is the set of bounded linear maps from G into G’. Here, D' N A?,

should be thought of as a tangent space of A%. As usual, one writes for X € A%

and He D'n A7,
DyP(X)=dP(X)-H

and we see that (D P : X — dP(X)-H) € Ng>rCY(A%, Bo(X1,..., X, : D, S,C))).

Likewise for

P € Ng>rCF(A%, Bo(X1,..., X, : D, S,C)) C NgsrCY(A%, Bo(X1,..., X, : D, S,C))

an element of the set of k times coefficientwise continuously differentiable functions
on A% with bounded first k-th order differentials, one can consider the k-th order
differential

d"P € CY (A%, B(D' N (A2))®*, Bo(X1, ..., X, : D, S, C))),

where @ denotes the projective tensor product.
In this case Dg D 'P(X) = d*P(X) - (K, H, ..., H) and

DDy PP X v+ DD P(X) € Ng=rCY (A%, B.(X1, ..., X, : D, S,C)).

We show in Proposition B.26 that B(X1, ..., X,, : D, R) carries a canonical deriva-
tions

eh
8 : B(X1, ..., Xn: D,R) = B(X1,.., Xy : D,R) ® B(Xy,..., X : D, R)
D

called the i-th free difference quotient, ¢ = 1,...,n. These satisfy 0;(X;) = 6;=;1®
1,0;(b) = 0. They can be extended to B{Xy, ..., X, : Ep, R} by putting d;0 Ep = 0.
We denote in short
eh
k+1
O,y B{X1 0 Xy D, R) = B(X1, 0y X ¢ p,R)5" Y
the map
ok )= (04, ®1®k)o(8i2 ®1®(k_1))o...oaik.

(i1, esik

Recall that Dy stands for the directional derivative of a function in C}(A,U :
B, Ep), viewed as a function from U to the space of power series B.(X1,..., X, :
D, R,C). However, this won’t be the most convenient differential, since the non-
commutative power series part will always be evaluated at the same X € U and we
will instead need the full differential which uses also the free difference quotient on
the powers series part.

On the space of continuous differentiable functions C'*(U, A) from U to A, denote
by D% the derivative in the direction H € A™. Consider the map n : CL1(A, U :
B,Ep) — CY(U, A) given for P € Ng>rCYL(A%, Bo(X1,..., X, : D, S,C)) by n(P) =
(P(X))(X). Then one has

k
DE(P)) = n(Du(P)) + (> (0, (P)#H,)). (10)

j=1

We let dx be the differential associated with D75. We will also write:
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& P(X)-H = (DR)P(P)=d’[X — P(X)(X)|(X) - (H,... H)
= 3 S (@OIP(X)) - (H, oo, H)#(H,,, ... Hy,).
Jj=01ie[1,n]7

For P € Ng>rCY (A%, A(X1, ... X, : D,S,C)), X € A}, , we set

k
1Pl = [ IPCOTa+D- > 102EP)E)] o
p=1i€[1,n]P AD

We will consider the (separation) completion of

() G (A%, B(X1,..., X, : D, S,C))
S>R

with respect to the seminorms for (k,1) € IN? given by

l
1Pl = sup [[Pllx,x + Y1 suwp (I(DF)0(P)(X)]a

p=l " gear

This seminorm controls k free difference quotients and [ full differentials.

We will denote these (separation) completions by CF(A,U : B,D), and
CF(A,R : B,D) when U = A%. Note that for p < [ the above map D%, ex-
tends continuously to a map CXY(A,R: B, D) — Ck=P!1=P(A R : B, D).

When in the definition of || - ||z, x we replace || - H;g?”*“ by || - ”A;élc(l“)’
distinguish the corresponding seminorms by a subscript ¢, yielding the norm || -
|k.1.0.c and the spaces CXY(A,U : B, D), C¥(A,U : B, D).

Note that this require a supplementary assumption that U C A%, 1714,.4.4,, Where
A%U”m App 18 defined before Proposition B.28: this assumption is necessary to
define evaluation into cyclic tensor products. This is crucial to see that the image
of cyclic analytic functions by the free difference quotient belongs to the cyclic
Haagerup tensor product, see also Proposition B.26. More precisely we define
AR Uttraapp the set of Xi,.... X, € A, X; = X7, [X;,D] = 0,]|X;]| < R and such
that B, Xi,...,X,, is the limit in Ep-law (for the x-strong convergence of D) of
variables in B.(Xy,..X,, : D,2,C)(S1, ..., Smn) with S; free semicircular variables
over D. We will thus always assume U C A% 114, App When we deal with spaces

with index c¢. Note that consistently, we will write C¥(A,R : B, D) when U =

n
AR,UltraApp :
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For convenience later in writing estimates valid when there is at least one deriv-
ative, we also introduce a seminorm

k l
”PHk,l,U,zl:;léIl)] > \Iaf’(P)(X)\\A%;(p+l) +y . sw ([(D)n(P)(X)]a

1. — XeU
p=14i€[l,n]P p=1 HeAp

+ Y IDHPO (P (X))
i€ [1,n]™

eh )~
® (m+1)
AD

We next define differentiable functions depending on conditional expectations.
Using the conditional expectation Ep : A — D, we can define a com-
pletely bounded map Ep x : B(Xi,..,X, : D,S) — D by sending P to
Ep(P(Xy,...,X,)), for any S > R.
Consider the map w taking P € B.J{Xi,...,X, : Ep,RT,C} :=
Nss>rBAX1,.... Xn : Ep, S, C} to the function
w(P) X = P(Epyx) S BC<X1, ,Xn : ED,R+,(C> = 05>RBC<X1, ,Xn : ED, S, (C>
We denote by ngtT(U,B<X1, ey Xn : D, R)) the image of this map.
The spaces Cy2' (A, U : B, Ep) (vesp. C,(A,U : B,Ep), Cf, ,(A,U : B,Ep) and
C’tk,f,lC(A, U : B,Ep)) are defined as the closures of the space C’g’”(U7 B(Xy,..,X,:
D, 8)) inside C*!(A,U : B, D) (respectively, C:(A,U : B,D), C*(A,U : B,D),
CHYA,U : B,D) ). When U = A%, we replace in the notations U by R.
We denote by C*4(A,U : B, D) the closed subspace of Ci:'(A,U : B, D) gen-
erated by the image under w of B(Xy,...,X,, : D,S),S > R. We denote in short
CK(A,R: B, D) for C**(A,U : B, D).
Let H € A™. Recall that Dy stands for the directional derivative of a function
in C1(A,U : B,Ep), viewed as a function from U to the space of power series
B.(X1,..,X,:D,R,C). Given P € B.{Xy,...,X, : Ep, R,C} a monomial involv-
ing Fp, we note that Dy (w(P) amounts to replacing each sub-monomial of the
form Ep(Q) with Q € B.(X1,...,X,, : D,R,C) by ED(Zj 0;Q#H,). For example
if H=(Hy, H>), then
Dy (w(X1X2Ep (X7 (Ep(X1))Ep(X2)))(Y1, Y2)
= X1 XoEp(H1Y1(Ep(Y1))Ep(Y2))) + Xa Xo Ep(Y1H1(Ep(Y1))Ep(Y2)))
+X1X2ED(le(ED(Hﬂ)ED(Yé))) + X1X2ED(Y12(ED(Y1))ED(H2))).

In other words, Dy corresponds to “differentiation under Ep”.

2.4. Differential operators. For p, P € B.{Xy,...., X, : Ep,S,C}, we define
recursively the cyclic gradient (2; ,(P),1 <i<n) by Z;,(X;) = 1;=ip,

Dip(PQ) = D gp(P) + Zi pp(Q), Pip(Ep(P)) = D, 55 (p) (P)- (11)

For instance, one computes %1 ,(XoEp(X1bX2)X1) = pXoEp(Xi1bXs) +
bX>Ep(X1pXs). Moreover, observe that for polynomials P in {Xy,...,X,},
p(OiP)#Q = Z;q(P). (12)

We denote in short 2; = %;1. Its restriction to polynomials in {Xq,...,X,}
corresponds to the usual cyclic derivative. We consider a “flat Laplacian” defined
for P € B{Xy,....,X, : Ep,R} by
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A(P)=2) mo(l®Ep®1)d; @ 19;(P).
We define 65 a derivation on B{Xy,..., X, : Ep, R} by requiring that it vanishes
on B(Xy,..., X, : D, R) and satisfies

6a(P) =0, 6a(Ep(Q))=Ep((A+4da)(Q))-
Likewise, for any V € B(X1, ..., X, : D, R), the map

Ay =A== 0,()#DV (13)

produces a map dy such that dy(P) =0, for P € B(Xy,...,X,, : D, R). Moreover,
dy is a derivation and for @ monomial in B{Xy,..., X, : Ep, R},
Sv(Ep(Q)) = Ep((Av +0v)(Q)).

Oy extends to B{X1,...,X, : Ep, R} (see Proposition B.31). Moreover, we have
for any g € B.{X1,...,. Xn : Ep, R,C},

Pi(Av +dv)(9) = (Av +v)Zi(g) — Z Di.2;995V. (14)
j=1
We extend Ay and §y to V € C3(A,2R : B, Ep) by adding the variables Z; to be
evaluated at 2;V (X), letting Vo(Z) = 1 3 Z2 and setting for P € B{X1, ..., X, :
EDv R}

Av(P)(Ep,x)(X) := (Avy2)(P)) (Ep.x.9v(x)) (X, 2V(X)). (15)
Ay (P) belongs to Cf.(A,U). The extension of dy is similar. We define,
C’f;)lv(A,U : B,Ep),k € {x} UIN"k > [ as the separation-completion of
BAX1, ... Xn; Ep, RY} == Ng>rBAX1,..., Xn; Ep, R} for the semi-norm (with
w(P) = (X — P(Ex,p))):

1Pllgrt, (av:8,85) = WP kiv + Lez2l[(Av +0v)(P)llc;, (a0

-1 n
+Y°> sup 1Z:.qx) (P)lk,p,um,
p=0i=1 Q€ (CEP(A, U™ B,Ep))

m > 2

where (X); denotes the unit ball around 0 of the normed space X. We also define

a first order part seminorm ||P]| . (AU:B.Ep),>1 DY replacing the first term in
tr,V U D, 2

the sum with ||w(P)||k;,u>1. We also define the space CtkT”lV’c(A, U: B,Ep) in the
same way as before but considering everywhere cyclic extended-Haagerup tensor
products.

To sum up we have introduced the following spaces

clag Crty = Cylococi
@] @] U @]
Ck+l Ck’l Ck’l Okl
c C tr,V,c - tr,c - u,c
T T

B(+) € B}
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where C means the existence of a canonical injective mapping, whereas — means
the existence of a canonical map (with conditions written in index). We shall not
discuss these mappings as we will not use them and leave the reader check them.

2.5. Free brownian motion. (Sti,t > 0,1 <i < n) will denote n free Brownian
motions. Let U C A%. We denote by *p the free product with amalgamation
over D: see [VDN92] for a definition as well as for a definition of freeness with

amalgamation over D. Let & = Axp (D®W*(St(i),i =1,...,n,t > 0)) and assume
that A is big enough so that < is isomorphic to A. Set Uy ={X € &/, X € U} C

A% and Z = Bxp (D@ W*(S{V,i=1,..,n,t >0)).
Define
CHL (AU B,Ep  {S{,i=1,..,n,t > 0}) C C}}\ (o, Un : B, Ep)
as the closure of

U ns(Bc{Xl,...,Xn,Stl,...,Stm *Stm_l .

OStlgu-Stm,
Ep,max[R, max 2(t; — ti—l)](c})

where ng is the partial evaluation of the analytic functions in X’s and S’s at Sy,
St, — Sty « -+, S, — St,,_,, hence obtaining functions in #.{X1,...,X, : Ep, R}.
In other words, this is the union of partial evaluation maps at the free brownian

motions of analytic functions with expectations. Write in short . = {St(i),z
1,..,n,t > 0))}, and similarly for v > 0,.%, = {St(i),i =1,.,n,u >t
0)}, Fou = {87 = 8P i =1,.in,t > w))}

We call accordingly, for U C A% 114r0.4pp0 CHAU:%,D:.7)C Ctkr’ﬁ/(A, U :
B,Ep : SYNCE(/,Ua : B, D) the space generated by analytic functions (without
expectations) with norm ||.||x,;,.We also have analogously C¥(A,U : 8,D : .#,) C
C’f,jfi,(A,U : B, Ep : F,) (imposing above t,, < u). Fix a trace preserving *-
homomorphism 6, : & — & by 0,(a) = a,a € A, 0,(Ss) = Ssry — Sy with obvious
induced maps

0, :Cily (AU B,D:.5) = Col (AU B.D: Fs,),

\%

and similarly 6, : C’tkr’l(A, U:%,D:5)— C’fr’l(A7 U:%,D:.5,).

For u > 0, we denote by %, = A*p (D ® W*(St(l),i =1,..,n,t € [0,u])) and
FE,, the associated conditional expectation. We observe that when restricted to
polynomial function, the conditional expectations take their values in polynomials.
Under certain conditions on U, see Proposition B.38, we can extend E, as an

application Cf;7lV(A, U:%,D:9)— Cf;fv (A, U:%,D:.7,).

3. Semi-groups and SDE’s Associated with a Convex Potential
eh

® 2
3.1. Convex potentials. With obvious notations, M, (AP ) denotes the space

eh eh
2

® ® 2
of n x n matrices with entries in AP . For M € M, (AP ), (M*);; := (Mj;)* with

eh

® 2
for b € AP | b* defined in Theorem A.19.(1e). We don’t equip this space with the



FREE TRANSPORT FOR CONVEX POTENTIALS 277

norm induced by its natural operator space structure as Haagerup tensor product.
eh

® 2
We rather see M,,(AP< ) as follows

ADhc fi (z?([un (A§cm)),e2([[1,n]],(A;éf]cm))>.

We equip it with the matrix like # multiplication map defined for M = [M;;] €

eh eh eh

® 2 m
Mn(AD’C ), X € 62([[1,n]],AD’C )= (MDvC )™ by

(A#X)i = Ai#X;,

j=1
and with the norm
M, = s s [MAEX)]| o JOCED o X . <1}
m>0
Mn(AD'C) = (AD,C )n, (AD,c )n (AD,c )n
By definition ||M]| o, = [|M*|| o and
M, (AP ) My (AP )
IMENT ) UM NI
M, (AD-<) M, (AP ) M, (AP )

We first recall a consequence of Hille-Yosida Theorem.
Proposition 2. The following are equivalent.
eh

® 2
(1) Q =Q* € M,,(A”<) has a semigroup of contraction e~ '?,

eh

® 2
(2) Q@ =Q* € M,(AP ) has a resolvent family for all a > 0, o + Q is invertible

eh
® 2
in M,(AP<) and||ﬁ\| an, <1.
Mn(AD’C )

In this case we say Q > 0.
Proof. We apply Hille-Yosida Theorem e.g. in the form of Theorem 1.12 in [MR],

eh eh

X m R 2
to each Banach space £2([1,n], (AP )) in the definition of the norm of M, (A”< ).
(I

eh
® 2
Note that the set of non-negative Q = Q* € M, (AP ) is a cone. Indeed, if
a > 0and @ > 0, clearly a@Q > 0. Moreover, () > 0 and @ > 0 implies that
@+ Q > 0. Indeed, as @ and @ are bounded, they are defined everywhere as well
as @ + @, and one can use [T59] to see that
e~ HR+Q) _ im (e*%Q .

k—o0

—EQ)k

w\ﬁ

is a contraction as the right hand side is. Moreover, this set is closed as follows

eh
2

®
easily from the characterization (2) (notice here that the set Q = Q* € M, (A" )
is closed).
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Observe that if V = V* € CE(A,R : B,D), X € A%, (8i@jV(X))1§i,j§n S

eh

® 2
M, (AP ) is self-adjoint.

Definition 3. Let ¢,R > 0. V =V* € C?(A,R: B, D) is said (¢, R) h-convex if
(aing(X))lgi’jgn —clId > 0 for any X e A?%,Ult?“aApp'

We show below that (¢, R) h-convex potentials give rise to linear ODE with
well-behaved solutions.

Lemma 4. Assume V is (¢, R) h-convex. Consider a continuous self-adjoint pro-
cess (X¢)i>0, | X¢|| <R, Xy € D'.

eh

XK m
(a) LetY € (AP )" be such that Y} =Y (here (a1 ®...®an,)" = a;, ®...®a7).

eh

X m
Then, there exists a unique solution ¢ (Y, X) € (AP )" of the following linear
ODE fort > s:

e} KSRGS

It satisfies ¢s¢(Y,X)5 = ¢5:(Y,X);. Moreover, for any o € &, the solution
0.(¢s5,:(Y,X);) of the equation transformed by o (that is the equation obtained by
applying a cyclic permutation of the tensor indices) satisfies:
lo@ua (VXN o, ey a7
(AP (AP yn
eh
QX m
(b) Let Yy be a C' process with values in (AP )" such that Yy(t)F = Yi(t);
(with (a1 ® ... ® ap)* = al ® ... @ a}). The (unique) solution @, (Y, X) of the
following linear ODE for t > s:

BV, X); = Val0); — 3 [ du SOV KOV X (19
s k

satisfies <I>Sy,5(Y,X)3f =0, (Y, X); and
126V, ) o <e IRV
(AD,c )'n.
with
t
Y s = NP 5 )7+ [ e ol ).
AD(‘ s 7 AD,cm

Proof. Part (a): Let X be a continuous self-adjoint process. The semigroup OX
associated to Q = §(9,Z;V (X)), gives a solution (0, (Y)):>0 to

Y;(t) = f/ S 0,9,V (X)#Yi (s)ds

k=1
Therefore we can define the solution to

1 t
VX0 =Y, = g [ DO K 0L, -
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®m
in (AP¢ )" by putting

Xlw] |, Xty

©

"'O("‘)Xé

¢€,t+8(}/’ X) =0 L(pt*pl)J,Jrs Lt] | ° S,2+s (Y) ) (19)
P TP

L ,
o

28 45 tts }7

By assumption of (¢, R) h-convexity, the semigroup e #@=31d) = ¢3te~@ is con-

tractive, which gives the bound

LI o <oty
(AD,C )71, (AD,C )’n,

In particular, this sequence is bounded uniformly. By continuity of X, we can
similarly prove that this sequence is Cauchy, and hence converges towards the
solution of (16); the limit then clearly satisfies the bound (17). Uniqueness can be
proved by the Gronwall Lemma, as (9,%;V)(X ) is uniformly bounded.

Selfadjointness of ¢, +(Y,X); follows from the uniqueness of the solution to
the linear ODE since ((a ® ¢)#(b; ® ... ® by))* = (¢* ® a*)#(b1 ® ... ® by)* and
(T3 V(X)) s = O ZV) X))y = (9u(23V)(X,))ay because V = V* and
Xr=X;.
Part (b). Using the notation of (a), define :

Byt (V. X) = o o(Ya(s), X) + / 1 (0,Y, (1), X).

Differentiating in ¢ shows that @ ; is a solution of (18). The bounds follows readily
from (a). Again, uniqueness follows from Gronwall’s Lemma.
O

3.2. Free stochastic differential equation.

Proposition 5. Assume V € C2(A,R: B, D) is (¢, R) h-convex.
(a) There exists T > 0 so that for any X, € A%)Ulthpp, there exists a unique
solution to

1 t
Xt(Xo) = Xo + St - 5/ @V(Xu(Xo))du
0

which is defined for all times t < T. Moreover, for all Xy, Xy € A?%,Ulthpp and
t>0
1X:(Xo) = X (Xo)|| < e=/%]1 X0 — Xo. (20)

(b) Assume that there evists XV = (X{,..., X)) € AR 3 Uttraapp Jor which the
conjugate variables are equal to 2;V. Then part (a) holds with T = oo for any
solution starting at Xo € A?{/?),UltT'aApp' As a consequence, there is at most one
free Gibbs law with potential V' uniformly in A?%/:;,Ulthpp'

Proof. Existence of X;(Xy) for all times ¢ < T for which sup,_r || Xs(Xo)|| < R
follows from the Picard iteration argument in [BSO01]. The existence of T > 0
(depending only on the Lipschitz constant of 2V) is also shown there.

Applying the same argument as in the proof of Lemma 4 by writing X! =
Xy(Xo), X0 = X, (Xo),

- 1 t 1
X} - X0 =Xy - Xo— 5/0 /O o2V (X0 + (1 — ) XH#(X]! — X2)dbdu
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and arguing that fol OV (X}t +(1—-0)X0)dd — c1d > 0 as the set of non-negative
h

elements of Mn(AE?CQ) is a closed cone, the estimate (20) follows from (17).

Using the hypothesis of part (b), we see that the solution X;(Xy ) is stationary;
in particular, its norm is constant. Part (a) and the estimate (20) then imply that
any other solution starting at an element of A%, /3 stays in A’%%, which means that T'
can be chosen to be infinite. Also, if there were two free Gibbs law with potential
V', they would be stationary laws for the dynamics and (20) would imply that they
are equal. (I

Throughout this paper we assume that

Assumption 1. Let V,W € C2(A,2R : B, Ep) be two non-commutative functions
such that V and V + W are (¢, 2R) h-convex for some ¢ > 0. We assume that for
any a € [0, 1], there exists a solution (X} W ... XV+eW) ¢ A% 3 Uitraapy With
conjugate variables (Z;(V + aW))i<i<n.

In subsection B.9 we describe a class of quartic potentials satisfying this assump-
tion. The existence of a solution to the Schwinger-Dyson equation will be obtained
from a random matrix model in the case B = C and the convexity will be obtained
by operator spaces techniques.

Assumption 1 ensures that

Vo=V 4+aW

is (¢, 2R) convex for all « € [0, 1].
We consider the SDE

t
X =Xo+ 8, — %/ DVo(X*)ds (21)
0

where S is the free Brownian motion relative to D (with covariance map idp). By
Proposition 5, we deduce that there exists a unique solution X; satisfying || X¢|| < R
for any Xo € A% 5. We denote it by Xi*(Xo, {5, s € [0,t]}),¢ > 0, and X3* in short.
We set for U C A%, U, be the subset of its elements stable under the flow:

Uy={XoecU:Vt, X}eU}
Lemma 6. Let U C A;L%’Ulthpp. Under Assumption 1, the map
XO S Ua HX?(XOa {Ssvs € [O7t]})

comes from an element in C’gr’?‘/,C(A, Uy : B,Ep : ), and we have for any T < t
the relation

X7 (o ASs, s €[0,4]}) = 07 [X7 (1 {Ss, 5 € [0, = 7]})] o7 X2(., {Ss,5 €[0,7]})

(22)

where 0, : CpY (A Us « B.Ep + F) — Cply (A Us © B.Ep « ) is the
map induced by the shift 0,(Ss) = Sstu — Su. Moreover, if we also assume
V,W € CFH+2(A 2R : #,D), then Xo — X(Xo,{Ss,s € [0,]}) € C*(A, U, :
B,D ) — C'f;’lV,C(A, Uy : B,Ep : .%). Furthermore, in each case t — X{* is
continuous.

Finally there exists a finite constant Cyx4y such that, for k+1>1 :

X k10U 021 < Crpre™ 2. (23)
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Note that X¢(Xo, {Ss, s € [0,t]}) above is a non-commutative function without
expectation, but can be thought of as an element of this larger space of functions,
hence the reference to [. Note that most of the results only depend on k + [.

Proof. Let k > 1,1 > 0 so that V,W € Ck¥*+2(A 2R : %, D). We prove that X
can be seen as a smooth function of Xg,.S, in the sense that it is an element of
CHHUA U, : B,D : ). Fix T small enough, 2\/T+TSHPXEAQR71‘ [|Z2:Va(X)||a <
R . We can construct the associated process on [0, 7] by Picard iteration as follows.
We let X0 be defined recursively by X% = X and for m > 1,

x5 L [ v oxdom s Xy re o1

Because || Xo|| < R, one checks by induction on m that \|Xt[0’m} || < 2R, and so the

]

. . 0,m] . .
processes are well defined for all m as a Ctkr’lvc functions. Since X, ™ is obtained

from Xt[o’m_l} by operations of integration over a subset of [0, 7] and composition
with 2V, we may use Corollary B.34 and 2V € CF+1(A 2R : %, D)™ to prove
that the Picard iteration procedure is first bounded (for 7" small) and then converges
in the norm ||.||x41,0,u,,c (for T even smaller so that the equation is locally lipschitz
on the a priori bound obtained before in ||.||x+1.0,v,,c)- We let Xg, s < T be the
limit : it belongs to C*¥T(A, U : , D : .#) and is the unique solution of (21). By
the definition of U,, for Xy € U,, X, € Uy, in particular || X;|| < R . Hence, we
can iterate the process by considering for s € [0, T the sequence defined recursively
by Xt[S’O] = X,,t <T and form > 1

1 t
xkEm=g, -5, — 5/ DVp( X Ndy + X, t € [s,5+ T).

Again this sequence converges in the norm |[|.||x41.0.0, . to a limit X5l As V is
Ck++2(A,2R : %, D), such construction has a unique solution so that Xt[s’oo] =

Xt[sl’oo] for all s,s" <t. We denote this solution X“. It satisfies (22). We continue
by induction to construct X® € C*(A, U, : #,D : .#) for all time. The continuity
of t — X is clear, as a uniform limit of continuous functions.

We finally show (23). We apply formula (47) from the proof of Lemma B.33 in
the Appendix to the equation on Picard iterates and then take the limit m — oo.
One gets for k > 1:

t

k @ _ 1 k j k

O, X ——i/duzaj@iVQ(Xu)#a(h _____ X+ Lot +f, X,
s J

where the lower order terms (l.o.t.) are with respect to the degree k of differen-
tiation of X,. Evaluating the differentials and using Lemma 4.(b), one gets the
exponentially decreasing bound on their norms by induction over k (note that all
the other lower order terms are non-linear in derivatives of X; and thus bring more
than one exponentially decreasing term, compensating the increase via time inte-

grals). O
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Lemma 7 (Itd’s formula). Under Assumption 1, for P € B{Xy,..., X, : Ep, R}
we have

P(Epx:)(X7) = P(Epxp)(X8)+5 [ (B, +60)PI(ED ;) (X2)de25)

+/t O[P(Ep,xe)(X)|#dSs.
0

Proof. For P (later called polynomial) in the algebra generated by B, X, ..., X,
inside B(X1,..., X,, : D, R), this is the standard It6’s formula, see [BS98, BS01].
By the norm continuity of all operations appearing, the extensions to ¢! di-
rect sums are obvious, so that it suffices to extend the formula to a monomial
P € B(Xy,...,X, : D, R) having only one term in the direct sum. Finally, using
the standard decomposition of elements in the extended Haagerup tensor prod-

eh
ucts [M97] we note that P € B%n can be written P = x1 ®p ... ®p x, with
x1 € My1,(D),z; € My, , 1,(D) with I; infinite indexing sets but I, = 1. We can
truncate these infinite matrices by finite matrices, giving a net of approximation P,
of P. All the terms in It6’s formula, once evaluated at a given time, will then con-
verge in L?(M) (while staying bounded in M). Unfortunately, to get convergence
of the time integrals we have to be a bit more careful. Considering evaluations into
L>(]0,T], A) it is only possible to get a bounded net P,, of polynomials such that
P, (X)), P, (X§) converges weak-* to P(X7), P(X§), in A, O[P,(X%)] converges

h
weak-* to J[P(X$)] in A ® A. For every s € [0,t], s — [Ay, P,](X$) converges
D

weak-* to s — [Ay, P|(X$) in L*°([0,t], A). Then considering constant functions
with value in L'(A), we deduce the first line in the right hand side of It6 formula
for P, weak-* converges to the one for P in A. To check the same result for the
stochastic integral term, note that by the free analog of the Clarck-Ocone formula
(see Proposition 5.3.12 in [BS98]) and a priori boundedness of all the stochastic
integrals, it suffices to check that for an adapted bounded U, we have convergence
to 0 of the pairing

( / O[(P, — P)(X2)|#dS., / U, #dS,) / (O[(P, — P)(X2)],Us)ds.

Since (P, — P) is a bounded net in B(X1,..., Xy, : D, R), r = sup,¢jo 4 [| XS]] < R
and X is continuous, for p large enough sup,co 1 [[X¢ — X[, /|l is so small that
[10[(P, — P)(X))] — Ol(Pn — P)(Xf;sj/p))]|‘ < € uniformly in n for an arbitrary
e>0.

Finally U € L?([0,t], L?(A)®p L?(A)) so that approximating it by a process with
finitely many values and using weak-* convergence of the finitely many values of
[e3% t « ]

Ol(Pn — P)(X{,5) /)], one gets Jo (Ol(Pn — P)(X{,)/p)): Us)ds — 0. This completes
the proof of the formula for P € B(X;,..., X, : D, R).

For P in the algebra generated by B, X1, ..., X,,, notice that the previous com-

putations show that

PolP(X?)] = EolP(Xo)l + 5 | Polav, P(X2)lds
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so that by induction over the number of conditional expectations, if P belongs to
the algebra generated by B, X1, ..., X,, Ep,

EplP(G)] = ElPCa)] + 5 [ 6v, (o) (X2

Formula (25) follows for P polynomial in the algebra generated by
B, Xq,...Xn, Ep.

The reduction from P € B{Xj,...,X, : Ep, R} to an element of the algebra
generated by B, X1, ..., X,,, Ep is similar. Indeed, we can canonically embed ¢ :
B{Xi,..,X, : Ep,R} — B(Xy,..,X,,S;,j € N: D,R) where the S, are free
semi-circle, free with amalgamation over D. Each term in Ep corresponds to a
different set of S; and

P(EDJ(')(X) = EW*(Xl,...,X,,L,B) [L(P)(Xl, S ,Xn,Si,i € N)] .

The result now follow from weak-* continuity of Eyw-(x, . x,. B)-
|

3.3. Semigroup. Hereafter, we will often need a second technical assumption on
D C B to apply Theorem A.20.(3) and Proposition A.24.(2) in the appendix. The
appropriate definitions are given in the appendix in subsection A.3.

Assumption 2. Assume
e cither that there exists a D-basis of L?(B) as a right D module (f;);e; which
is also a D-basis of L?(B) as a left D module
e or that D is a I} factor and that L?(B) is an extremal D — D bimodule.

As discussed in the appendix, the easiest non-trivial example of a pair (B, D)
satisfying this assumption is B = D XTI, a crossed product by a countable (or finite)
discrete group I'. In particular, when B = D this assumption is obviously satisfied.

It D = C we set A} 4, = AR vitraapp- Otherwise, we denote by Af 4, C
AR Uitraapy the subset requiring additionally that M = W*(B, X1,...,X,) C
WH*(B,S1,...5m) = B*p (D @ W*(S4,...,Sm)), i.e., that M is included into the
algebra generated by m semicircular variables over D (with m finite or infinite).
This will be crucial when applying Theorem A.20.(3) as then the conclusion of this
theorem and Proposition A.24.(2) will be available for M, i.e. it will follow that

eh
(ep, #ep) is a traceon D'NM @ M.
D
We define:

711%704 - ( ?%,App)a'

Proposition 5 implies that AE/B_APP C A% o Let
A} ={X €Ay, 0/(1®1)e W (X,B),i=1,..,n}.

R,o,conj

Using [Dab10b, Theorem 27] (first for V polynomial and then for all V by density),
one gets that for any X € A% ,, Xi* € A%, ,,; for any ¢ > 0. Hereafter we thus
assume that X € A%

R,a,conj*
We write A%

— n n — n 3 1
Roaconjl = A aconjr AR.a.conjo = AR o Hereafter, we will consider

only functions of X and Ep x, we therefore drop the dependency in Ep_x in the
notations. Because we will need later to apply the cyclic gradient to the image of
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the semi-group, we will need the following ad’hoc space CE:5 =1 (A, A™. ;) which

R,a,conj
is the completion of B.{X1,...,X, : Ep, R,C} for

1Pl

(A,U:B,Ep) [[e(P) ||k,10,

plzl

Generalizations of this norm are discussed in the appendix (44).

Proposition 8. Suppose Assumptions 1 and 2 hold. Let k € {2,3},1 > 0 be
given and assume V,W € CKt*2(A 2R : B, D). The process X of Lemma
6 defines a strongly continuous semigroup @§ on Ctkrl(A AR oconj : B,Ep). If
moreover V,W € CktIt3(A,2R . B, D), the semigroup ¢ is also defined on
C’f;:l (A A% : B,Ep). In both cases the semigroup is given by the formula

R,a,conj
oy (P) = Eo(P(X[)),
and satisfies the exponential bounds:

>1 < Crl| Pk, a7 S1e72,

R,a,conj =

o8 (P)|k.1,a7

R,a,conj =

- k-+1 n
Moreover, when restricted to Co™ (A, A%  conj
uous one pammeter families of maps

Ck+l(A ARacong B ED) - Cfrl\/ (A ARaconj B’ED)7

: B, Ep), we get strongly contin-

where oY = 1pY is the canonical map v : CtrV (A A% yeonj © By Ep) —
CEN(A, AR a.conj By Ep). It satisfies

< Ci||P||k,1,47 S1e7e/2,

R,a,conj <

|l (P )||c‘”’v (A,A

Roa,cong) 21

Proof. ¢f is well defined in all cases by composing the maps X7 from Lemma
6, the composition (P, X;) — P(X:), see Lemma B.33, and expectations Ep from
Proposition B.38. To get a semigroup we apply composition on U = U = A" Roa,conj
so we have to check the consistency condition for composition, i.e. for any XO eU,
we have to check that X(Xo, {Ss,s € [0,t]}) has one conjugate variable. This is
proved in Proposition B.42 in the appendix. Note this is where we need Assumption
2 and the condition A% , C A% 4, in order to apply Proposition A.24 to get

eh
M =W*(B,X)*p (D@W*(S;,t > 0), 7 = (ep, -#ep) is a traceon D'NM @ M.
D

The construction of ¢ and the consistency follow similarly.
Let us check the semigroup property. It follows from the following formal com-
putation :

PP u(P)) = Eo(pf,(P) o Xu(., {Ss,s € [0,u]}))
= Eo([Eo(P o X¢—y(.,{Ss,s €0, —ul}))] o Xu(.,{Ss,s €[0,u]}))
= Eo(Eu(0,[(P o Xt—u(., {Ss;s € [0, — u]})] ou Xu(., {Ss,5 € [0,u]})))
= Eo(Eu(P o [0,[(Xi—u(.,{Ss,s € [0, —u]})] 0w Xu(.,{Ss, s € [0,u]]))
= Eo(Eyu(P o Xi(,{Ss,s €[0,1]})))
= Eo(P o Xy(.,{Ss,s €10,t]}))
= ¢y (P)
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where o, is the composition defined in Proposition B.38. To justify this com-
putation, the two first and last equations are the definitions of the “semigroup”,
third, fourth and next-to-last lines come from Proposition B.38 and the fifth line
from Lemma 6. We thus have the semigroup relation. Strong continuity on both
spaces comes from continuity in v of X¢ (see Lemma 6) and continuity of various
compositions and Ej (see Proposition B.38).

Using the variant of (48) with U =V = A} , .., in the context of Proposition
B.38, that is adding the Brownian motion filtration, we get

1P(X4)]

kL U>1

kl—1
< O Plpysr (14 o [Xlies ) e Xt

Using contractivity of expectations in Proposition B.38 and bounds in Lemmas
B.32 and 6, one gets the exponential bounds as claimed. The bounds for the
seminorm || P(X;)||k,;,u>1 follow similarly.

Moreover, we get similar results for ¢* by noticing that if P €
Cf‘*‘l(A,A%’a)conj,B,ED), then P(X}) € Cf‘*‘l(A,A%’a)wnj,B,ED : ). The
seminorm on this space is equivalent to || P(X})||x.;,u>1 which we already estimated.
Continuity of conditional expectation, see Proposition B.38, gives the exponential
bounds for . O

We next find the generator for the semi-group ¢¢': it is given by L, = %(AVQ +dv,)
and in the next Lemma we describe some dense domains of this generator (without
looking for the maximal one).

Proposition 9. Under Assumptions 1 and 2 let k € {2,3},1 > 2, be given, and
assume that V,W € C¥T*2(A 2R : B, D) as before. Let ' be the canonical map

k,l n k—2,0;— n .
VOl (A AR cony t B ED) = CE7 Y YA AR 4 conj : B ED).
Then for any P € CF*(A, A} conj - ByED) k> 2, t = /(9! (P)) is C' and
8 (0% (07
50 (#1(P) = La(#i"(P)),
where L, : C’f;fva (A, A% o conj * B Ep) — C’fT_Z’O;_l(A, A% o conj * By Ep) is given

by Lo = 5(Av, +dv,,)-

Proof. To compute the generator we start with the Ité formula (25). Taking a
conditional expectation, we deduce for P € B.{X1,...,X, : Ep, R,C},

t
(B, 80, )P(X0) = 5 [ (52 = BBy, + 6, PI(Xo)ds.

' (26)
We now want to check the same relation under a full cyclic gradient 2. We need
to check that all the terms above are in CF:%"'(A, R : B, Ep) for our chosen P.
But we won’t check that the relation (26) is valid in this space, we will only show
this relation holds after application of the cyclic gradient in each representation.
Indeed, we do not know if the full cyclic gradient Z is closable, in contrast to the
free difference quotient.

P (P)(Xo) ~ P(Xo) ~ £
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From the definition of [(Ay, + dy, )P] (see Def. (15)) as an evaluation of

[Avy(z) + vy )l(P) € BAX1,..., X0, Z1,...,Zn : Ep, R, m?X(H%VM

0,0,47,)C}

at (X,2) = (X, 9V,(X)) € (C**2(A, 2R, B, Ep))?", the fourth composition result
in Corollary B.34 gives the expected [(Ay, + 6y, )P] € C:5 Y (A, R : B, Ep). The
fact that the terms below semigroups are in the expected space then follows from
Proposition 8 since V,W € C**4(A 2R, B, Ep).

Note that all our terms are known to be in our expected space, thus we can apply
(50) so that the equation (26) under & is true in any representation Xo € A}, , if it
is true under the differential dx,. Integrals are dealt with thanks to the continuity
of the semigroup with value in C’fr’l;_l(A,R : B,Ep) from the previous Lemma.
Seeing both sides of the equation (26) as a function of X, one can differentiate both
sides of (26) under dx, and obtain equality of both sides in each representation.
We deduce the equality under the abstract dx,-differential in Cj},. by injectivity of
the map from C' to C° (A% »A) (in contrast to the space CE571 before where
this is unknown). We have thus deduced the equality in each representation :

t
D01 (P)(Xo) — Zx,.:P(Xo) — §@Xo,i(Ava + dv, ) P(Xo)

1 t
=5 | Pt = el(Av, + b P X s
0

Applying Lemma B.35 and seeing P as an element of Ctkr”lva (A7A7Il%.o¢,conj)7 one
knows that all the terms of the equality are in the domain of order k — 2 free
difference quotient and without having applied cyclic derivative, also in the domain
of order k — 2 free difference quotient (since k,I > 2). By closability, if Xy €

T.a.conj We can apply the k —2 order free difference quotient to the relation above
and deduce corresponding relations. Therefore, the following bound extends for
k>2to PeCy, (A A}

7a,con])'

R,a,conj

1 1
H;(VJ?(P) - P) - §(Ava +6v, ) Pllk—2,0,-1,47

1

t
< g7 [ 11662 = A, + 80 Pllk-z0-1.a5,...0, =0
0

R,a,conj

goes to zero when t — 07, by the strong continuity of @ on CF2%71(A, AR oconj)-
This gives the right derivative of ¢f at zero.

Now for @ € Cé““(A,A%’a’wnj,B,ED), by the semigroup property ¢¢,,(Q) =
!, ol

%V’ (Q)) and applying the reasoning above to P = ¢ (Q), one gets the right
derivative at any time.
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To compute the left derivative, we start similarly from the result of the Ito
formula to P = ¢ @ starting at time ¢t — s and using also the semigroup property

©t(Q)(Xo) — p1—s(Q)(Xo) — %(AVQ +0v)0 (Q)(Xo)
- %/ (Pi—rrsl(Bva + v )9 Q) = (Av,, +6v. )t (@) (Xo) du
- % / Primtasl(Bv, +0v.) (9 = i) Q)] (Xo)du
+ %/tis(‘ﬁg—ws — e (A, + ov, )i (Q))(Xo)du.

Thus, using strong continuity of p® and ¢®, and reasoning as before in the more
general spaces with some free difference quotient and cyclic derivative, we conclude
that the left derivative is in CF- 2%~ (4, A7, ). O

R,a,conj

4. Construction of the Transport Map

Let F € CENA,U)™, k1 > 1. Let X = (Xy,...,X,) € U. Then we define
Op = (Op1,...,0pn) on B(FY(X),...,F"(X)) as the free difference quotient of the
variables F1(X),..., F"(X). Assume W*(B, X1, ..., X,,) = M C (A,7) and let S be

eh
a semicircle variable, free from M with amalgamation over D. Let ¢ € D'NM Q M.
D
The adjoint 0} of O, when it exists, is given by
T((q#5) 0p: P#S) = 7((0p:(¢)*P), 1<i<n.
The Jacobian matrix is given by ¢ (F) = (8;F;)i;. We define for G € O (A, U)™,
, h
Ir(G) = (0riG")1<i,j<n- Its adjoint is given for g € M, (D' N M % M) by
= D

n

r(q) = (Z 8*1'(%1‘))

We will need the following preparatory lemma regarding conjugate variables.
We will need a temporary technical assumption, satisfied under Assumption 2 if
Xo € A% app as shown in the proof of Proposition 8. This will thus be the case
for semicircular variables and then via our transport map for other models with
h-convex potential.

j=1

Assumption 3. Assume W*(B, Xy) = M C (A, 7) is such that X — 7(SX#5S) is
h

a trace on D'N M %)M if S is a semicircle variable, free from M with amalgamation
D

over D.

Lemma 10. Assume Assumption 3. Fiz such an X € U with U C Ay, ... Take

1 >0. Consider a C! map o — F, € Cfr’l(A, U)", on [0,ap] for k > 2, so that

Fy = Xo, |1 — /(FQ)HM o < 1. Let 1 ®1 be the diagonal matriz with
" D,c
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entries 1 ®@p 1 on the diagonal. Then Zp (1® 1) € M™ exists for any a € [0, ao],
a— g (1®1) is in C'([0, 0], M™) and

L 001 = 77 (Fr @uF)]") (27)

Proof. The existence of the conjugate variable is a technical variant of [GS12]
explained in the appendix, see Lemma B.39. It is also shown there that

el = 7 ([ FF)™).
where we have used the notation A=1* = (A71)*. Let us compute the time
derivative of the right hand side. From the elementary equation A~! — B~ =
A~Y(B — A)B™*, one deduces an equation on (_# F,4;,)~ ' which after taking the
adjoint reads

[ I Fosn] ™" = [FFa] ™" = h[ JF] ™V [ F OaFo]* [ F Fo] 7
I Fa) I Fain — FFa— h FOLF) ] Fa] 7
F([F Farn] I Farn — JF) [ J Fol V[ F 0uFul* [ F Fal ™).
Since by Lemma B.36.(1) the map (0; ®p 1" o1 ®p 6i°h) is a derivation, its

domain D((0; ®p 1”01 ®pD &-Ch)) is an algebra. Since all the terms in the equation

above are in a matrix variant of the domain of (9; ®p 11 ®bD 6i°h) and _# Foqp
is differentiable in this space (using k > 2), we can deduce differentiability under
J* from Lemma B.36.(4). Thus after letting h go to zero we can conclude that

d * * —1.% * —1.%
(IR0 = = (I F) LS OaFu] [ r Fa] T
A version of the chain rule holds for any g € CL2(A, U)™:

J9(Fo) = Ir.g# I Fa, (28)

so that, by taking g = 0, Fl,

[F OaFal” = [ Fr.0aFa#t FF]" = [ F Fu]"#] /. 0aFa]" .
This completes the proof. ([l

We will now continue with the construction of the transport map Fy,.

Lemma 11. Assume that V,W, B, D, X = Xq satisfy Assumptions 1, 2 and 8 and

that V,W € CS(A,2R : B, D), and X, € A%/47conj. Let
Pgi= g [ V)t € CEY (A Ay B ).
Then 24 satisfies the equation in C’?;O(A,A%’%conj :B,Ep) :
PW) = (Bv, +50.)(P00) — 3" .,0. T3V (29)
j=1
Moreover, there exists ag € (0, 1], ap = ag(c, R,supgeg 1 ”995”Ctzr’l(A’A}f?/g,wnjiB’ED))’

non-increasing in the last variable, so that the differential equation

d
%Fa:gga(Fa):(nga(Fa)a---a-@nga(Fa))a Fo =X,
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has a unique solution in the space C’t (A ATIL%/4 conj : B,Ep) for all times a €
[0,0&0}.

Proof. The integral defining Zg, exists in the space C’t (A, AR o conj : B,Ep)
because of the exponential bound in Proposition 8 (with k= 2,1 = 2). From the

computation of the derivative in CST’O‘;/_ (A, A%

R,a,conj
gets that the derivative is in Cp2°(A, AR w.conj : By Ep), and is given by

: B, Ep) in Proposition 9, one

5, N N 1 «
a1 768 V) = Ll V) = LoV = 5 32 v ey 25 Ve
where the last identity comes from Lemma B.35 with ¢ = ¢ (W) and k =
Integrating in ¢ and since 2(¢¢’(W)) tends to 0 when ¢ — 0o, one gets the identity
in O?T,O(A ATIL% a,conj . B, ED) :
n
IW) = (Av, +0v.)(Z290) = > 2.9,9. %V
j=1

Fix a > 0. We next define an appropriate space on which the following map

-
x:F— (’y €0,a] = xy = Foy +/O @gg(Fg)dﬁ)

will be a contraction for « small enough. We take Fjg € AE/&COM C AR g con; tO
stay in a space independent of 5. We set, for a to be chosen small enough and for
any fixed K > ||F{||2,0,.47

R/4 conj€?

Eax = {F € OO([O,Q], (OtQT‘OC(A AR/4 conj : B,Ep))") : Fo(X) = X,VB € [0,0]

1
1—- 7F < = F < R/3,||F < K}.
= P Eolly 5y S5 G SOOI S BBt e < )
First, note that &,  is a closed convex set of C°([0,q], (CET%(A AR /4 conj

B, Ep))™), thus it is complete metric space.

By the previous lemma (note that we don’t need at this point to know that
a— F,is CY), for F € &, k, Sk, (1®1) exists for B < a. Thus for any X €
A%/ﬁl,conj’ Fs(X) € A%{/s,conj and we are in position to apply Lemma B.33 to get

Dgs(Fp) € 02 0(A A’é/:s conj : B,Ep)"™. Moreover, applying Lemma B.41, and
the same exponential decay as before, to deal with the tail of the integral, we see

that 8 € [0,1] — g5 € C’t (A, A% )3 onj + B, Ep) is continuous. Using Lemma

B.33 for composition, a € [0,1] — Zgn(F,) € C2O(A A4, cong : B, Ep) is also

tr,c
continuous so that the integral defining y makes sense. Hence x is well defined on

Eq.x With value in C°([0, o], (CE°(A, A7 : B, Ep))™). For «a such that

R/4,conj
R R
i +04ﬁ51[lp 1295llcy, a,az,, ... B.E0) < 3
the image of x belongs to A% 5. Similarly, ”XBH2 0.AZ 4 coms < K if « is small

enough.
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Finally, by the chain rule (28), we have ¢ Zg5(Fs) = Zr, Z9s# ¢ I so that

1.2 2g5(Fs)l o < |ZFB] 1.7 295

M (AS A) Mo (A A)
D,c D,c

3/2 ch
/2.5 2961, o

,c

Mo (A A)
D,c

IN

Ay

Recalling ¢ Fy = 1 and using the continuity of _# Zg3 one can choose a = a(K)
small enough such that x is valued in &, k. It remains to obtain a contraction, up
to choose a even smaller.

Since Zgs lies in a bounded set in Ct%:ylc(A, Ak s conj B Ep) and Eq i is

bounded, Zgs is uniformly Lipschitz by Lemma B.33, with a Lipschitz norm
which does not depend on 8 € (0,1). Thus x is a contraction on &, k. It
has therefore a unique fixed point which is our solution, which is necessarily in

C([0, a0), (CF (A, ATy 4 ons = Bs ED))™)- 0

Lemma 12. Assume the hypotheses of Lemma 11. Let T, = /;a(X)(l ®1)—
DV (Fo(X)), where Fy,, a € [0, ap] is constructed in Lemma 11.
Then Y, satisfies the following differential equation in L*([0, ap], W*(X)):

%Ta = _dFa [.@ga(Fa) : (Ta)]

As a consequence, if Yo =0, then T, = 0,Va € [0, ag).

In other words, for a € [0, ap], F,, (X) has conjuguate variables DV,,.

Proof. Using our previous computation of the derivative of conjugate variables in
Lemma 10, we obtain

d

%’ra = _/F*‘a[fFQ@ga(Fa)] - f@Va(Fa)#@ga(Fa) - @W(Fa) (30)

We next rewrite the right hand side. To this end, notice that (51) yields
(I I P90(Fa)) = F Dga(Fo)#( I, (1@ 1)) = A(Zga(Fa)) -
Moreover, (13) gives
Av, (Z90(Fa)) = A(Z9a(Fa)) = F D9a(Fa)#(DVa(Fa)) -

Hence, we have

—(IF. P P90(Fa)) + J D90(Fa) #( 1, (1@ 1) = DVo(Fa))
= (Av, +0v,)Z90(Fa) = v, Z9a(Fa)

Moreover (12) and 0,2;V, = p(0;%;Va) yield

Z[QX,%QQQJVO&](FQ) = /QVQ(Fa)#@Qa(Fa) .

J
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Putting these equalities together gives:

(I, IFa?9a(Fa)) + F P90 (Fa)#( Fp, (1@ 1)
- @Va(Fa)) - /—@Va(Fa)#gga( o

F.)
= (AVQ + (;Va)-@ga(Fa) - 5Va-@ga(Fa) - Z[-@X,@jga-@jva](Fa)

= -@W(Fa) - [dgga(EF D)'(/I:ﬁa(l ® 1) - @Va(Fa))](Fa) .

s

where at the end we have used equation (29) and Lemma B.35.(1) applied to Zga.
Hence, (30) yields

d

%TQ = _/an(Fa)#Ta —[d29a(EF, p)-(Ya)|(Fa) (31)

We thus obtain the claimed equation from which we deduce the bound:

(0%
[Talloo :=max || Tqlla < [Tollw + [ llgsllcoz aan, I TsllecdB
4 0 R/3,conj

tr,c

so that Gronwall’s Lemma yields the claim. (I

Recall that V5 = 1 3" | X2. We have to slightly strengthen Assumption 1; this
is still satisfied by our examples of quartic potentials.

Assumption 4. Let V,W € C3(A,2R : B, Ep) be two non-commutative (c,2R)
h-convex functions satisfying Assumption 1 and satisfying additionally that for any

a € [0,1], there exists a solution (X} W ... XV+eW) ¢ AR 14 Ultra App-

Corollary 13. Let V,W, B, D satisfy Assumption 4 and 2 and V,W € CS(A,2R :
B, D). Assume also the pair (cVy,V — cVi) satisfies Assumption 4. Fiz an X €
A%/thonj and suppose it follows the free Gibbs law with potential V.

Let F,,, 0 < a < aqg be the solution constructed in Lemmas 11 and 12. Then:

(i) The law of Fo(X) is the free Gibbs law with potential V, =V + oW ;

(ii) The W*-algebras W*(Fo(X), B) are equal for all o € [0, ag].

In particular, for any a € [0,1], the von Neumann algebras generated by B and

generators of the free Gibbs law with potential Vo, =V + aW are isomorphic.

Proof. We first check that Assumption 3 is satisfied under our assumptions. We
first start with the case V' = ¢V}, in which case Assumption 3 is satisfied thanks to
Assumption 2 and Proposition A.24.(2). Then in building the transport map for
the pair (cVo, V — cVp) the same Assumption 3 is satisfied for X € Ay ;...

By the previous Lemma 12, we find that T = 0, which means that 7r, (1®1) =
DV, for a € [0,ag]. Since V, is by assumption (¢, 2R)-convex and || F,| < R/3 it
follows that the law of F, is the free Gibbs law with potential V,,. This proves (i).

To see part (i) fix oy € [0, a0]. Let V, = V,, — aW, with a € [0,], and
consider the same ODE as in Lemma 11, and call F, the solution. V,, replaced by

Va. Note that F,, (X) € A% )4 Uttraapp Y Assumption 4. It is not hard to see that

Fo(Fo, (X)), Fa,—a(X) are solutions to the same ODE (except that W is replaced
by —W, due to time reversal), and is thus the unique solution. Thus by what we
proved, W*(F,(F,, (X)), B) € W*(F,,(X), B), which shows the reverse inclusion
and thus equality W*(F,(X), B) = W*(X, B), for a € [0, o).
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Let us prove the last point of the Corollary. We have just checked the case
a € [0,ap]. Moreover, (V,,, (1 — ag)W) satisfies the same assumption as (V, W)
with the same constants (¢, R). We can therefore perform the previous construction
of a function F, with (V, W) replaced by (Va,, (1 —ag)W). This can be done until
a parameter «f which can be chosen to be equal to «g as the constants (¢, R)
are the same and the semi-groups under consideration are the same. Note also
that Assumption 4 enables us to verify that ||F,,(X)|| < R/4 and thus F,,(X)
satisfies the same assumption as X. Applying (i),(ii) in that case concludes to the
isomorphism of W*(XV+ oW B) for a € [ap, ap + ap(l — ap)] if XV oW are the
unique variables with conjugate variables 2;(V + aW).

Inductively, one concludes to the isomorphism for any « € [0,1]. To complete
the proof, it suffices to note that for e small enough, V, (1 4 €)W satisfy the same
assumptions (a priori with a different convexity constant and replacing R/4 < R/3
by any larger value). a

A. Cyclic Haagerup Tensor Products

Let M be a finite von Neumann algebra and D C M be a von Neumann subal-
eh

R n
gebra. Our goal is to define a notion of n-fold cyclic tensor product MP:¢ which
eh

will be a certain subspace of the Haagerup tensor product M %)n. We start by con-
sidering the case n = 2, and then use amalgamated free products to build the more
general cyclic tensor powers.

The inspiration for the construction comes from subfactor theory. Indeed, if
My C M, is a finite-index inclusion of II; factors and if My denotes the k-th step
in the iterated Jones basic construction, then (see e.g. [JS, Prop 4.4.1(ii)]) L?(Mj)
are precisely the tensor powers of L?(M;) regarded as an M, Hilbert bimodule:
L?(My,) = L?*(M;)®Mok. Moreover, the higher relative commutants M/ N M, are
precisely the cyclic tensor powers of M;. These ideas have been extended to the
infinite-index case [B, Pe, Pel3]. In particular, the notion of Burns rotation will
be useful for us to get a certain traciality property.

A.l. Preliminaries.

A.1.1. Background and basic results on tensor powers of Hilbert bimodules. Let D
be a I'[1-factor and let p Hp be a D-Hilbert bimodule, i.e., a Hilbert space carrying
a pair of commuting normal actions of D. Recall that a vector £ € H is called left
(resp. right) bounded if the left (resp. right) action of M on £ extends to an action
of L?(M) on &. There is always a D-basis {a} of vectors for H which are both right
and left bounded [Po86]. We write Hyz2(py the set of right bounded vectors and
r2(p)H the set of left bounded vectors. We call By = p2(pyH N Hyz(p)y the set of
vectors which are both left and right bounded.

Let us denote by H®P™ the n-fold Hilbert module relative tensor product (for
convenience, we set H®P? = L[2(D)). Denote by P = D' N H®P" the set of
central vectors. Following [Pel3], we denote by {a"} the basis for H®P™ of ten-
sors of elements of {a}. Similarly, fix D-bases {8}, {8"} for Hp and (H®?™)p,
respectively.
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Let
Cn.m =D N B(H®D")

and endow it with the canonical trace

Trn = Z<Bn7ﬂn>
Bn
An example of this is the Jones basic construction, which we denote by (M, ep) for
D C M. Then (M,ep) = D°P' N B(L*(M)) = C1,r2(ar)- Similarly, let

C, = D' N B(H®P™)

with canonical trace
O n n
TriP = E (-a™, a™).
an

Finally, define the centralizer algebras
Qn,H = Cn,H N CZ{)H~
We recall the following definitions from [Pel3):

Definition A.14. (i) A Hilbert bimodule H on a factor D is said to be extremal
if Try = Tr{? on the positive cone QfH.

(ii) A Burns rotation is amap p : Pj; — Pj; such that for all { € Pj,b1,...,b, €
By, we have:

<p(§)7bl .8 bn> = <C7b2 ® .00, ® b1>

Examples are given in [Pel3, section 5.2]. The easiest example is when H has
a two-sided basis [Pel3, Rmk 4.5].

Theorem A.15. [Pel3, Theorems 4.7, 4.20]If H is extremal, H®P" is also ex-
tremal and for all n, there exists a Burns rotation p on Pp which is a unitary
map.

There is also a partial converse [Pel3, Th 1.4], although it is not needed for our
purposes.

A.1.2. Haagerup tensor products and the basic construction. With these prelimi-
naries recalled, we now turn to the definition of the cyclic Haagerup tensor product.
We start by a well-known technical result concerning the Jones basic construction.

If A is an operator space, we write A* for its dual as an operator space [P].
When A is a D — D bimodule, we write A? for the dual operator D’ — D’ bimodule
in the sense of Magajna [MO05]. We will also denote by A*P"™™ the normal dual
defined when A is itself a tensor product over D in [MO05, Th 3.2]. While we will
not recall the general definition of the normal dual here, we will mention that in
the case that A is itself a tensor product over D (and therefore its dual can be
viewed as the space of certain linear maps), the normal dual corresponds to maps
that satisfy a normality condition on basic tensors. In the case that D = C, the
bimodule dual is the same as the operator space dual A*.

Let D C M be finite von Neumann algebras, let ep be the Jones projection onto
D, and denote by (M, ep) the basic construction for D C M. Let

A(M,ep) = Span{zepy : z € LQ(M)LQ(D),y € Lz(D)LQ(M)}.



294 YOANN DABROWSKI, ALICE GUIONNET, and DIMA SHLYAKHTENKO

Denote by Zo({(M,ep)) the compact ideal space (cf. [Po02, section 1.3.3]). Let
Ep: : Io({M,ep)) — D' NZy({M,ep)) be the conditional expectation constructed
in [Po02, Prop 1.3.2].

Lemma A.16. With the above notations, A(M,ep) is weak-* dense in (M, ep),
dense in L?({(M,ep)), Zo({M,ep)) as well as L*({M,ep)).
The following hold isometrically:

L'((M,ep)) ~ L*(M)* @ppor L*(M) = Zo((M, ep)) P C To((M,ep))*.

The restriction of Ep: to a normal projection on Zo({M,ep)) N L*(M) ®p
L?(M) induces a cross-section to the quotient map ZIo({M,ep)) —
Zo({M,ep))/ D, Io({M,ep))]. The  Dizxmier  conditional  expectation
Ep : (M,ep) = D'N{(M,ep) is an extension of Ep:.

The map Ep: is pointwise normal in D and thus its adjoint ET,, induces a
projection E%, : LY((M,ep)) — D'NLY((M, ep)) agreeing with the usual projection
on LY((M,ep)) N L3*(M) ®p L?*(M), and giving an isomorphism

D'nL'((M,ep)) =~ L'({M,ep))/[D, L' ((M,ep))]-
Proof. The identification
L1(<M, eD>) ~ LQ(M)* Qnpor LQ(M) _ I()(<M, 6D>)*Dn07-m
comes from the fact that both spaces are preduals of the same von Neumann algebra
as follows from the computation of their duals in [MO05, Corollary 3.3], the com-

putation of Zy({M,ep)) as Haagerup tensor product below and the identification
with extended Haagerup products [M05, Rmk 2.18]:

L(M, ) = TA(M)" @aper L(M) = I*(M)" & T2(M).

From [MO05, Th 3.2, Ex 3.15] we have the isomorphism
[c(mL*(M)r2(p))p @0 D(p2(p)L*(M)ar)c] o™ ~ L' ((M, ep)).

Note that here the operator space structure p(r2(pyL?*(M)ar)c is the one of the
indicated Hilbert module structure, not the one as a module over D°P. It remains
to check

Zo((M,ep)) ~ [c(mL* (M) r2(p)) 0 @np p(12(0)L*(M)ar)c]
C [c(m L*(M) 2(py) D %1 o2y L*(M)ar)e] ~ (M, ep)

but the last inclusion comes again from [MO05, Th 3.2, Ex 3.15]. In this way
we identify the compact ideal space with the norm closure of basic tensors in the
extended Haagerup tensor product. This norm closure is exactly the Haagerup
tensor product and thus we deduce the first isomorphism.

On the dense space Zo({(M, ep)) N L?(M) ®@p L*(M), Ep/ vanishes on [D, U] for
any U. Since Ep/(U) is a limit of convex combinations of v*Uu = U 4 [u*U, u], u €
D, Ep/(U) has the same image as U in the quotient Zo((M, ep))/[D,Zo({M, ep))].
This gives the claimed isomorphism between the image of Ep, D'NZy((M,ep)), and
the quotient, as well as the identification with the Dixmier conditional expectation.

The key part of our Lemma is to check D-normality of d — Tr(E}, (V){depn),
V e L'((M,ep)),6 € L*(M)r2(py,n € r2(pyL*(M). Since Ep is bounded, one
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may assume V € L?*(M) ®p L*(M) in which case obviously E}, (V) = Ep/(V).
This one is again close to Y A,uVu* so that since d — Tr(d> A\uVu*édepn), is
normal, one gets our result. The second quotient statement is analogous. ([l

The reader should note that the identification L*((M,ep)) ~ L?*(M)* ®@p,por L*(M)
is given on basic tensors by:

repy — Yy Qpor T. (32)
This will be the key to various flips appearing naturally later.

A.2. The cyclic Haagerup tensor product, case n = 2. Recall that the spaces
LP({(M,ep)) are made in compatible couples in the sense of interpolation theory
[P]. We can see them as the inductive limit of LP(¢(M,ep)q) for ¢ finite projec-
tions. Thus these spaces are realized as an interpolation pair as a subspace of the
topological direct sum @gep, ((ar,ep) L' ((M,ep)q).

We refer to [Dab15, Th 2] for a literature overview of the main algebraic op-
erations available on module Haagerup tensor products (see also the original ref-
erences [BS92, B97a, B97b, EK, ER03, M95, M97, M05, SS98] and books
[BLM, ERO00, P]). We will use them extensively. We single out several opera-
tions. The first is the map * (see Section 2) which is given on basic tensors by

(a®b)* = b* ®a*. Next, for a basic tensor X = a®b € M%M and a basic product
U = xzepy € (M,ep) we write:
U#X = Ep (bzepya), (inner action).
and if U € D' N (M, ep):
X#U = azepyb, (outer action)

With these notations, we have the following statements, which we group into
three Theorems for convenience of presentation.

Theorem A.17. Let D C (M, 1) finite von Neumann algebras.

(1a) The outer action (X,U) — X#U extends to all X € M %1 M and U €
D' N (M,ep) C D' N B(L*(M)), taking values in (M,ep). The inner ac-
tion (X,V) — V#X extends to all X € M%;M and V € L*((M,ep)) with
values in D' N LY*({M,ep)).

(1b) If in addition X € D/OM%)IM, UeD'n{(M,ep), then X4#U € D'N{(M,ep).

(1c) The inner and outer multiplication actions give rise to inclusions o1, o3,

o;:D'NM %1 M —
B(D'n{M,ep)NL'({(M,ep)), D' N ((M,ep) + L'((M,ep))) .

Proof. The M°P-modularity of the action on D’ N B(L?(M)) whose definition is

recalled in [Dab15] Theorem 2.(4) insures stability of (M, ep) = (D°?)'NB(L*(M))

under the outer action.

Let us give an explicit description of the predual map giving the inner action on
D'NLY({M,ep)). From the canonical map M ®j, L*(M) = M ®¢p, L*(M) — L*(M)
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and its row analogue L?(M)* ®@.;, M — L?*(M)*, (see [BLM, Prop 3.1.7]), one gets
a map from

L*(M)* @n (M%IM) ®n L2(M) = (L*(M)* @en M) @enp (M @cn L (M)
into L?(M)* ®cnp L?*(M), inducing in particular a map
m: L*(M)* @, L*(M) x M %3 M — LA(M)* @enp LA*(M) = L*(M)* @p L*(M)
which is our inner multiplication. Composing with Ep, one induces a map
Eprom: L*(M)* @ppor L*(M) x M 21;33 M — D' NLA(M)* @cpp L*(M).

The latter is isomorphic to D' N L?(M)* @cnper L?(M), the last inclusion following
for instance from the identification of this commutant with a quotient or because
Ep/(dU-Ud) = 0. Note that the last isomorphism sends a®@pb € D'NL2(M)*®ecnp
LQ(M) to @ ®por b and thus on basic tensors
Ep om(y ®per ¢,a p b) = Ep/(ya @por bx)
which is identified with Ep/(brepya) in D’ N LY((M,ep)) via (32) and coincides
with our inner action.
eh
For X e DNn(M® M), U e D' n{M,ep), X#U € D'N{(M,ep). This proves
D
(1b).
eh
We next claim that for V € L*((M,ep)), X € (M @ M), U € D' N {(M,ep) :
D

Tr(U[V#X]) = Tr([X#U]V). (33)

To show this, it suffices to take V' € A by density. We can also assume X is
a finite sum. Indeed, if X = = ®p y a standard decomposition for X [MO5,
(2.4),(2.5)] the ultrastrong convergence of finite families x5 — z*, yp — y implies
if Xp =2p ®p yr Xp#U — X#U ultraweakly. Likewise if V' = £ @ por 1 we have
the convergence

IVHXE=X) 7200 0o por 22y < 206 Y @i, O lyenl3+2[1€x 130> yiyin,m) — 0.
igF igF
Now for the remaining case V = £ @per 0, X = 2 ®p y (without matrix tensor

products), we note that the image of V in the identification with L'({M,ep)) is
nep&, as explained in (32) so that [V#X| = Ep/([ynepéx]) and

Tr(UV#X]) = Tr(Ulynepéz]) = Tr([zUylV) = Tr([X#UJV).

We have also shown the existence of an extension for the definition of our inner
action, namely that for V.€ D' N {(M,ep) N L' ({M,ep)), and z,y € M,

[V#(z @b y)l = Ep([y ©p z]#V). (34)
We now prove (1c); all we need to show is that o (X) : U = X#U, 02(X) : V —

h
V#X give inclusions. Note that o1(-)(ep) is the canonical inclusion M M —
D

eh

(M,ep) = L*(M)r2(py @ r2(pyL*(M) given by the theory of extended Haagerup
D

product (see e.g. [Dab15, Prop 14]), so that oy is injective.
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c¢h ch

By the definition of o2, 02(X)(ep) = Ep/(i(X)) with i : M @ M — L*(M)* ®

D D
h

L?(M) since it equals i(X) for X € D' N M ® M this gives injectivity of op. [

D

eh

® 2
Definition A.18. Denote by MP?:c the intersection space of the images o;(D’ N
h
M ‘i@ M), i = 1,2, in the sense of interpolation theory. This space is called the
D

cyclic extended Haagerup tensor square of M.

Theorem A.19. We keep the notations and assumptions of Theorem A.17 and
Definition A.18.

eh

®2
(1d) The restriction of the map * defined in [Dabl15] Theorem 2.(4) to MP< and
eh
® 2
the map 0 = g9 0 crl_1 define two commuting isometric involutions on MP-< .

eh

® 2
(le) The involution U — U* := (o(U))* and the product induced on MP< wvia o4

eh

® 2
give rise to an involutive Banach algebra structure on MP:c .
eh

® 2
(1f) For each X € MP< , o7 (X)#-: D'0N(M,ep) — D'N(M,ep) and -#oy ' (X) :
D'NLY((M,ep)) — D' N L*((M,ep)) interpolate to give an action of X €
eh
® 2
MP< on D' N LA(M) ®@p L*(M).

eh

® 2
(1g) There is also an outer action denoted X# 1. of MP< on L*((M,ep)) leaving
D'NLY((M,ep)) globally invariant and commuting with the inner action.

c¢h
(2a) The mapY € (M@ M) — Y#ep € (M,ep)NLY({M,ep)) gives the canonical
D

h
weak-* continuous inclusion ofM%) M into L*((M,ep)) ~ L*(M) ®p L*(M)
D
(c¢f. [Dab15, Proposition 14]).
h
(2b) For any Y,Z € D' N M?@ M the map X — (Z#ep, X#Y #ep) is weak-*
D

h
continuous on bounded sets ofMga M.
D
eh h

® 2 ® 2
(2c) MP< #ep is dense in D' N L*(M) ®p L*(M) and MP*c weak-* dense in

eh
®2
D'NM»b .
(2d) The multiplication map (U, V) — U#V is separately weak-* continuous on
bounded sets in the second variable as a map

eh eh eh
(M@M)x (D'NM®@M)— (Me M),
D D D
and on each variable when restricted to:

(UﬂW%M”MDﬂM%M%MDﬂW%M»



298 YOANN DABROWSKI, ALICE GUIONNET, and DIMA SHLYAKHTENKO

eh

® 2
Proof. Note that the intersection space M P is thus well-defined because of (1c).

eh eh

® 2 ®2
We start by proving (1d). If X € MP~ [ let X' = 0(X) € oo(D' N MP ) so if

eh

® 2
we show X’ = ¢/(X) := o1(05 (X)) we will have shown o leaves M- globally
invariant. The adjoint relation (33) gives for U,V € D' N (M, ep) N L*((M,ep))

Tr(X(U)V) = Tr(loy (X)#UIV) = Tr(U[V#or (X)) = Tr(Ue(X)(V)]),

Tr(X(U)V) = Tr([U#oy  (X)IV) = Tr(Uoy  (X)#(V)]) = Tr(Ulo"(X)(V))).

Since U and V are arbitrary in dense spaces this shows the desired relation and as
a consequence that o is involutive.

With the same notation and using the definitions, o = ¢’ and the adjoint relation
(33) several times, we have:

Tr([X*(U)V) = Tr([o; {(X)*#U]V)
= Tr(| VH#UV) = Tr([o7 (X)#U*]V*)

O'

=1Tr
=Tr
=1Tr

"X
U [Vt (o (X)) = Tr(UV*#(or  (X))]")
Ulo(X)(VI)])) = Tr(Ulog  (X)#V*)])
Uloy (X)*#V))) = Tr([U#oy (X)*IV))).

—~ o~ |

eh

This shows both the two possible inductions of * coincide and stability of M 5
by *. The commutation with o also follows since we showed o5 ' (X)* = o5 }(X*),
o7 (X)* = 07 (X*), thus 0(X*) = 01 (03 (X)*) = 01(07 (0(X))") = o(X)".

To prove (1e), it remains to check the composition and the adjunction x give the
expected Banach algebra structure.

We can reason similarly using our formula (33) and o = ¢’ to check closure under
the product:

Tr((XY)O)V) = Tr([o7 (X)o7 ' (Y)#U]V)
= Tr([o7 ' (V)#U]V#or (X)) = Tr(Ulo(X)(V)#o1 ' (Y)])
=TrUle(Y)(e(X)(V))])
=Tr(Uloy ' (V)#(oy " (X)#V)] = Tr([U#oy " (Y)oy (X)]V).

The middle relation then also shows o(XY) = o(Y)o(X). Similarly, (UV)* =
(U)*(V)* which gives the only missing relation between * and product to get an
involutive Banach algebra.

We next prove (1f). Since commutants have conditional expectations on them
D' N (L?({M,ep))) is indeed an interpolation of commutants (see e.g. [P, Prop

eh eh
2.7.6]). For X € M’%Q, the very definition of MDQ?CQ give the compatibility for
interpolation of the pair of maps oy ' (X)#- : D' N (M,ep) — D' N (M,ep) and
H#Hoy ' (X) : D' 0 LY((M,ep)) — D' N L*((M,ep)). This gives the action on
D'\ L*(M) @p L(M).
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We now turn to (1g). Because L?(M)* @y, L>(M) = L*(M)*®c, L (M) D M ®ep,
M (obviously weak-* continuous injection), one can extend the projection Eps from
M@, M — D'NM ®cp, M to amap L2(M)*®y, L2(M) — D'NL3(M)* @), L2(M).

Indeed, by construction, the projection Ep/(U) is built as a weak-* limit
of convex combinations Y A, uUu* converging thanks to the embedding M ®.p,
M c L*(M) ® L*(M). Moreover, we have ||> AuUu*||r2(ay-e,r2m) <
Ul 2 (am)* @, 22 (1) - Because the injection is weak-* continuous, one also gets weak-
* convergence of the convex combination in L?(M)* @, L?(M) and thus, for any
UeM®ep M,

|Ep (U)llL2(ay@n 2y < Ul L2 ()= @n12(0)-

By density, Ep/ extends to a bounded map on L?(M)* ®;, L?(M) which obviously
induces a map L?(M)* @ppor L*(M) — D' N L*(M)* @5, L?(M), a cross-section to
the quotient map (as seen first for U € M ®.;, M by the weak-* limit above).

eh
® 2
Now take U € L'((M,ep)) ~ L?>(M)*®@ppor L*(M), X € MP- write o5 *(X) =
Yy @p x, a canonical decomposition with y € M; (M), € M;1(M) and take
U' = Ep/(U) = 3 u; @v; € D'N L*(M)* @, L*(M) sent to U by the quotient
map 7 : L2(M)* @, L>(M) — L?*(M)* ®ppor L*(M).
Then X#.U := >, - m(ziuj; @ v;y;) is well defined in L2(M)* ®ppor L*(M).
ch
Indeed, if o5 ' (X) = 0 € M®M, by [MO05] (2.5) there exists P € M;(D) with Pz =
D

x, yP = 0 so that > w(xEp (U)y) = > w(PxEp (U)y) = > w(xEp(U)yP) = 0.
Moreover, we have a bound }, ; llziuill3 < IS i > lujl|3 so that (w;u;) is

,J

indeed a row vector in L?(M)*, and similarly (vjy;) is a column vector in L?(M).
Thus we have indeed }, ; vu; ® v;y; € L2(M)* @, L2(M) ~ L*(M)* @5, L*(M)
as claimed.

Moreover, by the definition of the norm, it is now easy to see
IX# 22 Ullzzay@enrzon < Mo o IEo (I <X e NUllz200) @0 por L2 21)-

b MPe

This gives the outer action on L'((M,ep)) owing to the identity o, ' (XY) =
oy H(Y)#05 ' (X). The stability and commutation are easy.

We now turn to (2a)—(2d). First note that orc : L?(MP)* @yp L*(M°P) —
L2(M)* ®@ppor L2(M), given by orc(a ®p b) = b ®por a, is isometric. This uses
that a row vector of L?(M°P)* is the same as a column vector of L?(M).

h h
To prove (2a) note that the canonical map j : M @M — L?(M)* ® L?*(M) =
D D

L?>(M)* ®up L*(M) composed with orc above gives the map orcj valued in
L3(M)* @ppor L2(M) = L'((M,ep)) such that Y#ep coincides in the canoni-
cal identification with orcj(Y), proving Y#ep € (M,ep) N L*((M,ep)). The
statement about the agreement with canonical inclusion is then obvious.

Let us prove (2b). Since D'NLY((M,ep))N (M, ep) is dense in D'NL2((M,ep)),
by approximating Z#ep by Z' € D' N L*((M,ep)) N {M,ep) and even Z' =
> ;. %epz € MepM in L? norm, we see that it suffices to prove that X —
(Z', X#Y #ep) is weak-* continuous on bounded sets.
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ch
For Y € D'’N M ® M, note that Y#ep € D' N (M,ep) C (M°P,ep). Since
D

Y#ep € D'NLY((M,ep)) = (D'N{M,ep)). C L*({M’,ep)), we see that Y#ep €
LY((M',ep)) N (M’ ep). Since L'((M’',ep)) ~ L*(M)* @up L*(M) we have a
canonical form Y#ep = > (y})Pepyr°? with (y,) column vector in L?(M) and
(yx) row vector in L?(M)*. Note that for £ € M, one can compute the evaluation
with the formula above [(z' @ z)#(Y#ep)](§) = >, v'Ep(x€yr)y), € L*(M) (one
can first approximate yy, y). by elements of M to establish the formula).

If we take (g;);jcs a basis of L2(M) as a right D-module (of elements of M if we
want), then one can use the well-known formula

Tr(Z'[X#(Y#ep)])) = Y (g5, Z'[X#(Y#ep)(9;)))-

J
We compute a term in the last formula. We continue our computation by applying
Z' which also gives a map on L'(M) :

Z'((« @ 2)#(Y#en)(95)] = Y #Ep(zi y_ ' Ep(xgjyn)yy) € L' (M),
i k
Then since g; € M, one can compute the trace :
(g Z'[(¢' @ 2)#(Y#ep)(9;)]) = D _7(Ep(g;2)2: D ' Ep(xg;y)v;.)
i k

which could be expressed as a duality formula for Y#ep € D'NLY((M’,ep)) since
the sum in ¢ is finite, thus one can use its commutativity with D :

(5210’ @ o) # (Y tep)(9)] = D 7(2i ) 2'Ep(ag;Ep(g)=)y)uk)
k

%

> (22’ @ 2)#(Y#ep)(9;Ep(9; 7)),

i
where we have used one of our previous formulas with { = g; Ep (g} 2}) instead of g;
at the last equality. Again viewing (2’ ® x)#(Y #ep) as the bounded operator on
L? and using the relation for a right basis > ;95Ep (9] %;) = 2 with convergence in
L?, one may use operator weak-* convergence to replace (z'®x) by X = > (zj®@x;):

Tr(Z' [X#(Y#ep)]) = Y 7(zX#(Y#ep)(2)))
= > r(z@iEp(@iziyn)ui) = (X, yiz @por 21yk).
i,k,l ki
Since >y ; Yz ®@por 2Yk € L3(M*) ®cppor L2(M) C LY(M)®np'2_ the predual of
the weak-* Haagerup tensor product, one gets the claimed weak-* continuity and

thus the proof of (2b) is complete.
To prove the density part in (2c¢), it is enough to show that for a finite sum,
eh

® 2
Ep/(> ;2 ®p ys) € MP= .
More precisely, we will show that

o1 (ED’<Z T @p Yi)) = Uz(ED'(Z Yi ®p ;). (35)

K2 3
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We thus want to prove, for any U,V € D' N (M, ep) N L*((M,ep)) :
TT([(ED'(Z z; ®@p yi))#UWV) = Tr([U#(Ep (Z Yi ®p z;))]V)

7

= Tr(U[(ED/(Z Yi @p x:))#V]).

By density (simultaneous weak-* and L! using the agreeing conditional expecta-

eh
tions) it suffices to take U = X#tep,V =Y#ep, X, Y € D'N M%)Q.

But now we can use the weak-* continuity we just proved to replace the condi-
tional expectations by the limit of a net of convex combinations of conjugates by
unitaries of D, and thus by commutativity with D, the conditional expectations
can be removed, and the relation then becomes obvious.

Finally, for (2d), taking bounded nets U, — U,V, — V we note that
U,#V,U#V, are still bounded, thus weak-* precompact and it thus suffices to
show that U#V is the unique cluster point, for instance by showing the nets con-

ch
verge weakly in L?(M)®p L?(M) or D'NL*(M)®p L*(M). For Z € D'NM ®@ M,
D

by (2b) we have (Z#ep, U, #V#ep) — (Z#ep, U#V #ep), and since the elements
Z#ep are dense in D' N L?*(M) ®p L?*(M), one deduces the wanted weak conver-
gence in D'NL3(M)®p L?*(M). Applying formula (33) to (Z#tep)* € L*({M,ep)),

eh
one gets for Z € M @ M,
D

(Z#tep, U4V, 4tep) = Tr(U#(Vi#tep)(Z#ep)™) = Tr((Vo#ep)|(Z#ep) #U])
— Tr((V#ep)[(Z#ep) #U]) = (Z#ep, U#Vtep).

h
The convergence is due to the weak-* continuity of the map .#ep M %@ M —
D

(M, ep) (following from the corresponding one with value L?((M,ep))). Again, by
density we deduce the weak convergence in L?(M) ®p L*(M), and since .#ep is
the canonical weak-* continuous map to L?(M) ®p L?(M), this concludes.

(]

Theorem A.20. We keep the assumptions and motation of Theorem A.17 and

Definition A.18.

(3) Assume either that there exists a D-basis of L?>(M) as a right D module (f;)icr
which is also a D-basis of L>(M) as a left D module or that D is a II; factor
and that L>(M) is an extremal D — D bimodule. Then (writing oy (X)#ep =

eh eh

2 ® 2
X#ep) 7(X) = (ep, X#ep) is a trace on D'NM5” such that LA*(MPe 1) =
eh

2
D' N L*(M)®p L*(M). Moreover the involution on MP* coincides with the

adjoint in its action on D' N L*(M) ®p L*(M).
eh eh
® 2 ® 2
(4) Assuming the conclusion of (3), the inner action of MP- on L*(MPe 1) =
D'NL*(M)®p L*(M) extends to an action on L?>(M) ®p L*(M).

h eh

® 2 ®2
We may later identify MPc as a subset of D'’ MP via 01_1.
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Proof. (3) Our proof relies on the existence of a unitary Burns rotation, which
exists in the extremal case. The case with a two-sided basis is an easy variant of
that case and is left to the reader.

First, note that, without any assumption on M related to traciality, for X €
eh eh

Mg?cz, YeDnNn ]\4%27 one can apply the relation established during the proof of
(1):
Tr(loy (X)) #UV) = Tr(Uloy ' (XO)#V)]")
toU =ep,V = (Y#ep) to get
T(X'Y) = Tr(ep|(o7 ' (a(X)#(Y#ep)*]")
= Tr(Y#eploy ' (o(X))#ep)]")
= Tr([oy ' (X)#ep)]"(Y#en))
= <X#CD,Y#€D>.

eh

® 2
In particular, this realizes canonically isometrically L?(MP-c ,7) as a subspace of
D'NL*(M)®p L*(M) and as a consequence shows the agreement of the previously
defined adjoint with the Hilbert space one. The density in our part (2c) give the

eh
® 2
identification L2(MP=< ;1) = D' N L*(M)®p L*(M).
It remains to prove traciality 7(XY) = 7(Y X); it is enough to prove it for
eh
X,Y € M ® M. Indeed, using the proof of the density and weak-* continuity in
D,c
our part (2), we only need to consider X = Fp/(x1 ® x2),Y = Ep/(y1 ® yo) for
xi,y; € M. But from our previous computation, this reduces to:
(X"#ep,Y#ep) = (Ep (ziepr3), Ep/(y1epy2))
= (Ep/(yiepys), Ep/ (z1€p2))
= (Y*#ep, X#ep)

Now the key equality in the middle line comes from the extremality of L?(M)
that gives from Theorem A.15 a unitary Burns rotation. From unitarity it is easy
to see that p(Ep/(y1 ®p y2)) = Ep/(y2 ®p y1) so that the equality in the middle
line comes from

(Ep:(z1epx3), Ep (y1epy2)) = (Ep/ (] ®p 23), Ep/(y1 ®p y2))
= (p(Ep/(z] ®p 73)), p(Ep: (y1 @D ¥2)))
(Epr(z3 ®p 1)), (Ep (y2 @D y1)))
= (Ep(z3ep27), Ep/(y2epy1))

Tr(riepraEp (y26pY1))
= (Ep'(yiepys), Ep (z1epT2))-

eh
2

®
(4) The extension of the inner action of M= to an action on L?(M)®p L*(M)

eh

® 2
will require more work. The action of X € MP-c will extend for U € L*({M,ep))N
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L*(M) @p L*(M),
U#X = o(X)#1.T,

with the outer action on L*((M,ep)) built at the end of (1).

eh
2

&
We aim to construct the action of M”-¢ by interpolation of the previous action
with a dual action on (M, ep), defined by duality for V € (M, ep):

Tr(VH#L-X)U) =Tr(V(X#:0)).
It thus remains to see these two actions agree on a common dense subspace.
Take U = Y#ep € L*((M,ep))N{M,ep), for Y € (M ®q1y M) C M @pp M C
eh
M ® M. We already noticed they form a dense subspace in both L'({M,ep))
D

and (for the weak-* topology) in (M, ep). Note that this indeed gives (even for
eh

Y € M ® M) the expected inner action
D

o(X)# 12U = o(X)#11(orci(Y)) = orcj(Y#X)

For the last key equality, take a canonical representation of Y = Yy, ®p y;, X =
> x; @p x; then we note that

o(X)#pi (orci (V) = o(X)# (O 4j@pery;) = Y 24y @poryja; = orcj(Y#X)
ij
Now, take also V = Z#ep € L'({(M,ep)) N (M, ep), for Z = > 2! ®p 2z €
T(M ®q1g M) to compute V# o X:

Tr((V#r=X)U) = Tr((Z#ep)[(Y#0(X))#epl])

r((Z#tep)[Y#(o(X)#ep)])

r([(Z#ep)#Y (o (X)#ep))
(D yjziepziy;)(o(X)#ep))

I
N 54

r

= Tr(ep[(Ep (Y ziy; @b yjz)#0(X)#ep)),

ij

where we started by using the relations we just established, the adjoint relation (33)
in the third line, an explicit computation in the fourth valid for finite sums and
the weak-* continuity on bounded sets of our part (2b) to introduce a conditional
expectation.

eh
Now having elements in D’ N M ® M we can use the traciality we just proved,
D

the adjoint relation (33), then in the third line the definition of ¢ and a removal
of conditional expectation since X#ep € D' N (M, ep) and finally again explicit
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computations for finite sums to get:

Tr((Vitr=X)U) = Trieplo(X)#(Ep (3 zi; ©p yj=)#ep))])
= TT((eD#U(X))[((EDf(jZ ziyj @b Y;z;)#en))])
= TT((X#eD)[((Z ZiYj ®7D Y;zi)#ep)])
=Tr(} zé(X#e;>zA(Y#eD)>

=Tr([(Z#X)#ep|(Y#ep)).

Thus (V#1-X) = (Z#X)#ep = o(X)# 11V and we can thus interpolate both
maps to get the desired action. Finally, the agreement with the inner action on the
commutant comes from the equality o(X)#r:(Y#ep) = (Y#X)#ep we proved

eh
forY e M ® M. O
D

A.3. k-fold cyclic module extended Haagerup tensor products. We now

eh

turn to the construction of k-fold cyclic tensor powers MP?c extending the case
k = 2 we have just dealt with. The desired properties of these tensor powers include
the action of cyclic permutations, commutation with left-right actions of D as well
as compatibility with various multiplication and evaluation operations. Elements
in these modules will serve as coefficients for our generalized analytic functions, on
which free difference quotient and cyclic gradients will be well-defined.

We will use free products with amalgamation as a convenient trick to reduce to
the case of 2-fold cyclic modules we have already considered.

We thus now fix the appropriate notation. Let D C M finite von Neumann
algebras and consider D C N, = M *p (D ® W*(S4,...,S,)) the free product with
amalgamation with a free semicircular element Sy, ..., S, for k an ordinal. This
gives an isomorphic result for each ordinal of same cardinality. Note that as D-
bimodules, L2(N,.) ~ @ ,(L3(M)®rm)" " with @F_ (L2(M)®P")s""" being
the usual orthonormalisation of Span{(MS;,)...(MS;, ,)M,1 <n <k,i; € [1,x]}
(“Wick words”).

In particular, for any word n = n;j...nj,| in & letters there is an embedding

ch
R(|n|+1)
D

LnZM _>L2(Nn)

valued in L?(M)®rI"I+1 0 N, obtained by first sending the tensor 2o ® -+ @ x|y
to x9Sy, 1 - Sp,, | and then projecting onto the orthogonal complement of the

space Span{(MS;,)...(MS;, ,)M,1 <k <|n|,i; € [1,k]}. We will write

L2(M)®Dn ~ L2(M)®D(\n|+1)

for the closure of the image of ¢,,.
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A.3.1. Construction of intersection spaces. To handle the action of a basic cyclic
permutation, we need an intersection space similar to the intersection L' ((M,ep))N
(M,ep) in the previous section (which corresponds to the case [n| +1 = 2). For
this, we will use L'((N,,ep)) N (Ny,ep) (for any fixed k > k, e.g. k = w)

Let Ky m = LA(M)®PImIHL K, 0 = L2(M)®PImItt g L2(M)@rInHL i m o n,
considered with the right normal action of D, and consider the corresponding ba-
sic construction B(M : D,(m,n)) = B(Kmn,Kmn)p with a canonical semifi-
nite trace Tr (see e.g. [PV11, section 2.3] or the beginning of section 6.1).
In our operator space terminology, we have, by [M05, Corol 3.3] (and the pre-
ceding Theorem to change the reference Hilbert space structure to compute du-

eh
ality), B(M : D,(m,n)) ~ (Kmn)r2p) ® r2(p)(K;, ). Via this isomorphism
5 ;

€d®@p T = & ®p nd* is send to LeaLy, = LedLy, = Lng;d*, where L¢ denotes left
multiplication by &, see [PV11, Section 2.3]. Its predual is 7€ (M : D, (m,n)) :=
LY(B(M : D,(m,n)),Tr) ~ K, ,, @npor Km.n. The spaces B(M : D, (m,n)) and
TE€ (M : D,(m,n)) are considered as an interpolation pair as before.

We will be mostly interested in off-diagonal block matrices in these constructions,
namely (for k # 1),

TE€(M : D, k) := LQ(M)®DV€|+1* ®npor LQ(ZM)®D|I|+17

B(M : D, k,l) := B(L*(M)®»IkI+1 12(pn)@plitly

so that B(M : D,k,l) = 7€ (M : D,l,k)* and the duality can be seen as induced
by Tr above when they are seen as block matrices in the space above.

Let us start with a lemma making explicit this relation. Consider, for n a word in
K letters, P, € (N,,ep) N B(L*(N,), L?>(M)®p") the orthogonal projection on the
n-th component in the decomposition L?(Ny) ~ @, D), =, L*(M)®>". Note
that we draw a distinction between the adjoint P} € B(L?(M)®P" L?(N,)) and
the map P, € B(L*(N,)*, L2(M)®p™*): P,(£) = £ o P¥ = P,&, even though they
may be conjugate by some isomorphisms above.

Lemma A.21. (1) Let X € (Ny,ep) and Y € L*((N,,ep)) ~ L*(N)* ®pper
L?(N). X and Y agree in the classical intersection space, if and only if for
all k,1 words in k letters, BLXP; € B(M : D,k,l) and (P, ®@per P)(Y) agree
in the intersection space coming from the inclusions B(M : D, k,l) C B(M :
D,(k1)), €M : D,k,1) C T€(M : D, (k,1)).

(2) We have the inclusions:

TE (M : D,k,l) C B(L*(M)®?* LY(D) ®uper L*(M)®?YYp, D B(M : D, k,1)

(the right module structure on L'(D) ®ppor L2(M)®P! given by right multi-
plication on LY(D)). Moreover the intersection space of interpolation theory
TEM : D,k,1)NnB(M : D,k,l) coincides with the one coming from the
inclusions B(M : D,k,l) C B(M : D, (k,l)), 7¢(M : D,k,l) C TE€(M :
D, (k,1)), those spaces being realized as classical compatible couple for interpo-
lation of LP spaces of a semifinite von Neumann algebra.

Proof. (1) This point readily comes from the agreement of the trace induced by
projections from (N, ep) with the one defined on B(M : D, (k,1)). Thus if p finite
projection in B(M : D, (k,1)), P¥pPy is finite in (N, ep). Hence the agreement of
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X and Y, which boils down to the agreement for any finite projection of their com-
pressions, gives P;'pP X PipP;, = (PfpP; @peor PpP)(Y) and thus the agreement
after removing one application of P, i.e. as we said since this is for all finite pro-
jection p, PX Py, = (P, ®por P)(Y). Conversely, since P<,, = Py + ... —|—Z‘m|:n P,
increases to identity, it suffices to consider finite projection ¢ € (Ng,ep) with
g < P<,, which readily reduces to compression by ¢ A P, = P;(q A Py)Py, (on the
right and g A P, on the left) for a projection p on B(M : D, (k,l)). And we can
then apply the converse reasoning.
(2) Note that

(LA(M)P7) = (IA(M)3H%) & 12(D)

~ CB(L*(M)®P*  L?(D°P)*) poy ® L*(D)
D
~ CB(L*(M)®rk* L*(D°P)* ® L*(D))per = CB(L*(M)®P* L} (D)) pov.
D

For any ¢ € (L?(M)®P*) we have a map ¢ ®upor 1 : L2(M)®P** @} pop
L2(M)®pl — LY(D) ®ppor L*(M)®P!. Moreover, take Z = x Qpor y a typi-
cal element in L2(M)®PF* ®ppor L?(M)®P!) if its image vanishes, this means
for all ¢ € L*(M)®rk  ¢(z) ®per y = 0, thus by [MO5] formula (2.5) there is
Py € M;(DP) such that ¢(x)Py = 0, Pyy = y. Take P = A 12ppepr Py then
Py =y and ¢(xP) = ¢(x)P = ¢(z)PyP = 0 thus since ¢ is arbitrary in a space
containing the dual of the space of z, xP = 0 and thus z ®per y = 0; thus we get
the first claimed injectivity.

The agreement of intersections spaces comes from the fact that the intersection
space of L' and L® can be reduced to equality when compressed by rank 1 pro-
jections coming from elements in a fixed right-module basis. Then the agreement
corresponds in the second picture to agreement when evaluating at this fixed basis
(and evaluating by duality at this basis too). O

A.3.2. Wick’s formula. We will also need a straightforward tensor variant of
Wick’s formula. For the scalar version of Wick’s formula for expectations in free
probability, the most standard version is [MS, Def. 6 p 41]. We also have in mind
its extension to describe ordinary product of Wick words (a.k.a Wick products),
see e.g. in the scalar case [EP, (14)] (their formula (15) shows how this generalizes
Wick’s formula for expectations). For the operator-valued version, more relevant to
this section, one can refer, for the basic case, to the more general operator-valued
moment cumulant formula [MS, (9.16)] which reduces to Wick’s formula when the
only non-vanishing cumulant is k2. More precisely, using projections, we will focus
on describing each term of the sum involved in a tensor variant of Wick’s formula
for the product of two Wick words. The focus will be on the extension to Haagerup
tensor products of rather elementary formulas at the basic tensor level.

For k = ki..kg,m = mi.m)y, words in k letters, we write
kom = ki.kgmi..mp, for the concatenation, and also k o; m =
kv Rk —imagi...mypm, k| Afm| > i > 0 (defined only if the last 4 letters of & and
the first i letters of m form identical words). Note that |k o; m| = |k| + |m| — 2i.
We also write k = k|g|..-k1. Sometimes, we will need to emphasize the following
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isomorphism:

eh
Uiy maidys :B(M 2 Dymama, lilo) =~ (L2 (M)®P12) 12 % r2(py (L2 (M) EPmama»)

~ (L2(M)®»lhl @ B(M : D,ma,ly) L2(M)*)@oml
~ (L°(M) Jr2(p) © B(M : D,ma, l2) @ 12(p) (L*(M)")

given by tm, ms iy 1 (& ®D~--®D§|l1\+|l2\+1)®D (m ®p ... ®p 77|m1\+|m2\+1) =& ®p

- ®D&11 9D (€141 @D @D &1, 1) @D (Mjmy [+1 BD -+ @D Ny | +[ma|+1) @D My | @D
. ®p T
Likewise, we have :

h
by oty 2 TE(M 2 D mamy, hly) = (LP(M)PP™m%) & (L2(M)PPht2)

eh — eh eh
=~ (L (M)®Pm=*) ® 12(p) (L*(M)*) Pl 2, (L2 (M) =PIl Loy ® (L*(M)®rl=)

given by

by ma, e (M @D e @D Miny | +ma|+1) @Dov (1 @D - @D &1y |+]12]+1)

= (Mm1|+1 @D - @D Njmy |+|ma|+1)OD
(M @D - @D 1) @por (§1 @p - @D &111) @D (1141 @D - OD &j1y | +]15]+1)-

Lemma A.22. Let X € (N.,ep),Y € L'((N.,ep)), k,l,m,n,p,q words in k

eh
k|+|l]+2 h
letters, U € D' A M5 2 00a v = (1 B w)(U) € D' NOewn2,
D

If we consider P, XP* € B(M : D,n,m)N.J% (M : D,n,m), we have

ch
®|k|

eh
l
(Proom[VH#(Pn X PP ) € MP il

eh eh
®B(M :D,n,m)®@ M»p |
D D

[’Z,n,k,m

and Py[V#(Pn X P;)|Py =0 for either |q| > [n| + |I| or |q| < [n| + [I] = 2(|I] A |n])
or [p| < |m[+[k[ = 2(|k| A [ml[) or [p| > |m|+ [k|.
Moreover, if we consider the canonical map

eh
@]

eh
’ ’ k| eh eh
m{klkok’ [ tel’) . M5B ‘@B(M :D,lol'kokY® Mp — B(M:D,lI',K)
D

)

extending:

m&k"kok/’l”’ml)(ml QMg @ Ek)+1 Bk @ @& R & k42 @+ @ E k| 4|k|+1
RMu+1 @M @ @M @My2 @ @ N1 |+1 @ @ -+ @ 77)
=miEp(ma - Ep(mg Ep(§r1+1)8k) - §2)61 @ k42 @ -+ - @ k|| +1
®@n1Ep(nz - Ep(nyEpmu+1)my) -+ m12)m @ njj2 @ -+ @ 0y +1
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for ||, |l| >0, (by convention m Q0

[0, [k[ A fm[], @ € [0, || A |n]:

= Id) then we have the relation for P €

Propm|[VH#(Pn X PP,

*
Tog n Hl’fw (i—ny=mi X

—_
l[@+1,u|1’"[Q+1,|nnakl[xlk\—PJvm[mlJmn(

X ﬁ 1y, (1P @ (D @m) @ 1911=CL - (Prom [VH#(Pm X PP ) -
- (37)
Likewise we have:

I nt.m (Pron ®Dor Prom)[(Pr @pov P)|(Y)#V]

k 1
c DN [(LQ(M)@)Dn* ®M(§| |] 2 [M®\ | e
Der
and (Py @peor Pp)[(Pn ®per Pm)](Y)#V] =0 for |q| > |n| + |k| or |q| < |n| +[k| -
2(lk| Anl) or |p| < |m| + |I] = 2(JI] A |m]) or |p| > |m| + |l|. Moreover there is a
canonical map

w0 LA(M)=P™)]

eh
m n " ®|k| ®|[l| eh "
mgll,P, | E[,Qm) . ((LQ(M)@)D" ®M )D(%)p (M? %LZ(M)@)D n))

— T€(M : D,kogn,lopm),

given on elementary tensors by:
(I2],Pym,
my "

k|,Q,n
*Q )(77|k|+1®77\k\ @ QM QNk+2 @ -+ D Njnj+1
QKR+ ®N1) @ (M1 @ M @E+1 @ @ VE B 42 @ -+ @ &jmi41)) =

N ®--® n\l|7Q+1ED(7’L|”7Q+1 e ED(nmED(mlHl)nll\) e ml|*Q+2)ml|7Q+1
Q@M D N42 @ - -
® [(m1 ® -+ myg—p @ M- p+1ED (Mg —py2 - Ep (M Ep (Eri+1)€ k) - Ekl—P+2)Ek|— P41
DEpp—p @ OEL D2 @ O L]
These maps satisfy:

(11,Q,m; |k, Pym) ~

-1 o (1811~ g (P @m) g1 ©11-Q) o, — m! -

Ll[@+1,u|1’"[cz+1,|nn»kl[l.lk\—PJvm[P+1,|m|1 bnk,m
when restricted to the intersection of their domain viewed as a subset of B(M :
D,lonkom)+ €M : D,lon,kom). For P e[0,]l| AN|m|],Q € [0, k| A |n|]:
Q P
(PEan X por Plopm)[(Pn X por Pm)}(Y)#V] = H ]‘k'i:ni H 1l|l\—(i—1):mi X (38)
1,Pm, |k - -
my P o (Pron ® 0o Prom)[(Pr ®pos Pr)|(Y)#V]) -
Proof. The definition of the map m(‘k‘ RoRLILOY) and its weak-* continuity in
the variable B(M : D,l o l',k o k') are easy. Thus one can assume X €
[Alg(S, M)]ep[Alg(S, M)]. Then using canonical forms for the extended Haagerup
tensor product and strong convergence of corresponding finite sums, we are re-
duced to the case where V is a finite sum. For finite tensors, the relation reduces to
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the usual Wick formula. The second part of the statement is similar using norm-
instead of weak-* density. O

What really matters for us in the previous result is that the highest component of
the product is a tensor product, while the remaining terms are then determined
by applying multiplication and conditional expectations to its various components.
For convenience for words m,n and k < |m|, we write :

m#Kn = m1...mK_lnl...mn‘mK_H...m|m|,
MFRN = ML VKN T T 12Ty |

A.3.3. Flips and cyclic permutations. We start by interpreting a cyclic permuta-
tiono = (14+2,1+3,...1+k+2,1,2,...,l+1)in €,, n =1+ k+2, as the flip (i.e.,
period two permutation) of the blocks [l +2,...,l 4+ k + 2] and [1,...,1+1]. We
mimic this point of view in terms of injections in our free product von Neumann
algebra N,. We thus make use of our results on the two-fold cyclic Haagerup tensor
product in this context to construct a suitable intersection space, using which we
then construct the n-fold cyclic Haagerup tensor product.

Proposition A.23. Let D C M finite von Neumann algebras and N = N, =
M xp (D @ W*(S1,...,5:)). We assume & infinite k,l words in k letters.
Let o € €, be a cyclic permutation as above, n = |k|+|l|+2, o(1) = |l|+2. Using

h
o; of Theorem A.17 for D C N,; we have two inclusions I (o) = Jlo(Lk%i)Ll), I(o) =
D

( eh )
09 O (L ®L
2 l k

eh

Ii(o) :D'N ME" B(D'N{(N,ep)N L*((N,ep)),D' N ((N,ep) + L'({(N,ep))).

The intersection space in the sense of interpolation of these inclusions, written

eh eh
®(kol,o ®(k,l . .
MD( - MD( ), has a change of inclusion I(c) = I3(c™t) o I1(o)~t

%(kol,a) . M%(U.(kol)p*l

M ) which satisfies I(o) = I(c™1)~! (witho-kol =1ok).

. . . . . Qn
Moreover, the  isometric  involution *  induced on MPD -

NCB((D")"Y, B(L3(M)) given by U*(X1,...Xn—1) = UX}_1,...., X])* ez
eh eh
® (kol,o ®(lok,o !
tending (r1 ®p -+ ®p Tpn)* = () @p -+ - @p }) sends MD( ) to MD( ).
, o ®lml+1
The product . #x.: M x(D'NMP )= M for K € [1,|n|+

1], induced by the composition in the K-th entry of NCB((D')I"1+1

eh eh
®|n[+2 @ (Inl+Im[+1)
D D

NCB((D)"*+ B(L2(M))x NCB((D")™, D'nB(L*(M))) — NCB((D")I"*I™I B(L?(M))

corresponds on tensors to the map (r1®p - ®p Tn|+2)# K Y1 D @D Yjm|+1) =
T1®@p - @p TkY1 @D Y2 Op "+ @D Yjm|+1TK+1 @D =+ @D T|p|42- The product is
separately weak-* continuous on bounded sets in each variable and has the following
stability properties:
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o Ifo € ¢|n‘+2, T E Q:|n‘+|n/‘+1 o(l) = ‘TL| -k +2, T( Y= |n|+ || +1-F,

eh
Ve D™ e have U#xV €

n7

< K-1, thenforanyUeMD

M‘Eé?(n#m'x)’

o Ifo €42, TE ¢|n‘+|n/‘+1 o(l)=|n|—K +2=7(1), ¥ > K, then for any

eh

Uenrs™ vep n ™Y we have UV € p B
o Ifoc ¢|n‘+2,p € €42, T € Cppppnj42 0(1) = n| =K +3,p(1) = l?’| —k+2
7(1 ) [n|+|n'|— K-k +3, k' €[1,|n| —1], then for any U € M D B Ve
M%( ) we have U#KV € M®(H#Kn T) )
Similarly, the map M%WH_I (Mglm‘ﬂ) — M%(lnwm'“) induced by the prod-

uct in B(L*(M))
NCB((D")", B(L*(M))xNCB((D")™, B(L*(M))) = NCB((D")"*I™l, B(L*(M))

and corresponds on tensors to the map (v1®p -+ @p Tjn|4+1) (Y1 @D @D Yjm|+1) =
T1@D @D TYn|41Y1 @D Y2®D *@DYjm|+1- It has the following stability properties:
e Ifo e Q:‘nl_i'_Q, T € Q:|n‘+|m|+2 o(l) = \n| -k 42 71) =|n|+|m|+2-F,

eh eh
®(n,0) Blm ®(nm,7)

then for any U € M P ,VeD NnM»p wehaveUVEM
e Ifo € QmHQ, T E €|n‘+|m|+2 o(l) = |m| -k +2 = 7(1), then for any

vems™ vepn M%‘”|+ we have UV € M®("m ™)

Proof. (i) For the first statement, we only have to prove that Iy(c=1) o I1(0)~! =
Ii(c7Y) o I(0)~!. 1In this it becomes clear that the image of I(c) is indeed

%’(zmo*l) 1 1 ® (k1) .
MD>D and that I(o)™"' = I(c7"'). Take X € MP- We know there is

eh
ch
U € D' N M®erpari+i+2) such that U’ = 1, ® 4(U) € D’ AND” and U = o H(X)
D
eh

there is also V' € D' N M®erp(ri+1+2) such that V' = 3‘3 (V) e D'n N8 is
V' = g5 (X). Then by definition ’

L(o™") o Ii(0) 1 (X) = 02(U") = 0(X) = 0103 (X)) = Li(07 ) 0 I (o) (X)),
using in the middle the key relation proved in Theorem A.17.(1) and then the

definition of our maps I;.
(ii) For the statement about the adjoint, one uses

(01 & O = [ o) (U],

and our previous results in Theorems A.17 and Theorem A.19.(1) to deduce:

(o)(U*) = (e~ )(U)]".
(iii) For the weak-* continuity of composition products, take bounded nets U,, —
U,V, — V. By weak-* precompactness of U, #xV, U#xV,, it suffices to show that
they converge weakly in L2(M)®@p(nl+ImI+1) to U4 V. By density it is enough
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® n|+|m|+1
to check convergence dually against any Z € M P (el ). Take any word o of

eh
length |o|] = |m| — 1. We claim that (¢ ®p t0)(V, — V) — 0 weak-* in N ® N.
D

This is obvious again by the isometric embedding at L? level and since it suffices to
check weak convergence in L?(N) ®@p L?(N). Take similarly n = kl, |k| = K — 1,
then (1 ®p ¢)(U, — U) — 0. From the result in Theorem A.19.(2),

[tk @D u)(Un)l#((te @D 10)(V)] = [(tk @D w) (U)]#((te @D 10) (V)]
[tk @D ) (U)]#((te @D o) (V)] = [(tx @D u)(U)]#[(te @D 10) (V)]

eh

®2
in NP2 . Since from the computation below coming from Lemma 37

(Z,U#KV) = ((tke @D to)(Z)#ep; [tk @D u)(U)]#[(te @D 1) (V)]),

we get the weak convergence by duality against (txe ®p tor)(Z)#ep.
(iv) For the stability of composition productb consider first the situation of the third

eh eh
n,o ki,l n ka,l
poiut, U € e By RIS CERY (o S,
|k1] = K — 1, ]ko| = k' and con81der U' = L(o) (o) (U), V' = Ly(p) 1 (p)(V).

But from the definitions, one easily gets for X € (N,ep) N L*((N,ep)):
Pryoksom ([thiky @D v, (U#KV)# (P X)) P

looly ol

= Pklokzom ([[’kl ®p Lll(U)]#[LIQ @D L, (V)]#(P XJDZ )) ‘Pl olyol”
and similarly :

(Prrotro1 ®Dor Pryoksom) ([(PL ®@por Prn)|(X)# b1ty @D thyky (V' # e 41— U")])
= (Pmol ® por Pklokzom) ([(Fl & pop Pm)](X)#[LlQ QD lky (V/)]#[Lh Q@D Lk, (U/)])

From the assumptions on U and V the two second lines are equal, and then,
from (37) and (38), one deduces the conclusion we wanted, for all p, ¢

Py ([thyoks ®D tizol, (UK V)#(Pn X P)) Py

= (P, @peov Pp) ([(Pr @ por Pr)|(X)#[t1z1, @D theyrey (V' H# ) 41-0U"])
which, using Lemma A.21.(1), implies our statement and :
L(r) " L(n)(U#kV) = V' # i 41-0 U’

The other statements about composition product and product are similar, the
first statement in each case always following from the second using the stability by
adjoint proved before. We give a few details concerning the second point for the
composition product.

eh eh
n,o k1,l n’
Take U € M%( ) ®( v n = kily, [k = K

— M5 v e pAMET K > K,
and let U’ = Iy(0)~ 11 (0)(U). Note that n#x(n') = [k1#x(n')] o l1. As before it

suffices to prove:

Pirytrc nryom ([hittrc )y ©0 ty, (U V)#(Pn X P)) P,
= (Pro; ©Dor Pity e (n))om) ([(PL ®@por Pr)](X)#[u, ©p Lkl#K(n»(U/#mmeV)]) ;



312 YOANN DABROWSKI, ALICE GUIONNET, and DIMA SHLYAKHTENKO

But now, by assumption, we know:

Piyom ([t ®p e UlFH( P X ) P,
= (% ®Dop Pklom) ([(-Pl ®Dop Pm)](X)#[Lll ®D LklU/]) ,

Moreover, by Lemma A.22 the left and right-hand sides are valued respectively in

eh eh
1 , ®|k1| eh ) eh __®]|l;] 1 ’ 2 ®pl* eh
Lﬁ,l,kl,m[D NMPp %JB(M : D,l,m)@D@MD ] and Lﬁ,l,kl,m[D N ((L*(M)®P GD§>
7%)|ll| eh Eg|k1| eh
Mp» ) @ (Mp @ L*(M)®p™))]. By Lemma A.21.(2), it suffices to see

Der D
that the two elements we wish to prove equal in B(L?*(M)®r"°!, LY(D) @ppor
L2(M)®plki#x(n)lemy ) have the same value on any & € L2(M)®phel,
eh
. ®lk1| eh
Since Py om ([ti, @b thy UJ# (P X P)) Pfoz(f) € L*(D) ®ppor (MP e
L2(M)®P™) the equality we want can be obtained from the one we know by ap-
plying the multiplication -#V which is well defined on the appropriate extended
Haagerup tensor powers of M in the range of our maps.
The reader should note that in this case, we actually proved

L(r) ' L(n)(U#KkV) = U'#njp2-r V.

O

A.3.4. Cyclic Haagerup tensor products: the general case. We are now ready to
introduce our cyclic extended Haagerup tensor product as an intersection space
with enough compatibility condition to have a cyclic group action on it. Once
those cyclic group actions are obtained, our various products and actions leave
stable our intersection space as expected. We also obtain a density result saying
that our spaces are non-trivial as soon as D’ N L?(M)®P™ are. We also obtain
traciality and functoriality results crucial to build later evaluations maps.

Proposition A.24. Let D C M finite von Neumann algebras and N,, = M xp
(D @ W*(51, ..., 5%)), K infinite. We write n a generic word in k letters of length
N. Let M®ersep(N+2) the intersection space of
E(omo™)
D

eh eh
®(n,0) %(NJrQ)

Ii(o,n) Y (MDY = Lo, on) Y (M yc (D'nM )

for 0 € €ni2, completely isometrically included via I = @n,m\:N(Id &)

eh
R(N+2
(J(0,1))0e(e,—{1d})) into (D'N MD( ))@(QN”X'“N), (with operator space direct

sum norm) and write J(Id) = Id, J(o,n) = I;(c7,0.n)"t o I(c™1, o.n), with I
associated to n. This intersection space is independent of k infinite.
Consider M®enseoN+2 = (ﬂn;ﬁm,\n|:|m\:N Ker(J(o,n) — J(o, m))) C

M®ehseDN¥2 gnd on (M®erseom)EN+2 P the projection on the o component and
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the maps J(01,02) = J(01)Psy n, with J(o) = J(o,n) for any n, and a correspond-
ing I without repetition over n and then define
® Nt2 .
D =]" (1 Ker(J(on,00) — J(Id,0102))
(0’1,0’2)66%,+2

C I—l((M®ehsCDN+2)¢N+2) I ]\4®ehscul\/+27

with the induced norm, for which we have equality with the previous definition when

N =0.

(1) For any U € M®enedN+¥2 7y e N[OenecdM+2 0 e deduce U* €
M®ehseoN+2 7tV g MOehseoN+MA2 for q]l § € [I,N + 1], UV €
M®ensepN+M+3 o d similarly for s replaced by S.

® N2
Moreover the maps J(o) induce a continuous action of €nio on MP:e

eh eh eh

® N+2 ® M+2 ® N+2
For any U € MP- ,V € MPp- , we have: U* € MP-e JU#,V e
@ N+M+2 . & N+M+3 SN2
o foralli € [1,N+1], UV € M- . Moreover, M- is

eh
weak-* dense in D' 0 MB ° and dense in D' 1\ L3 (M)®pN+2,

(2) Assume either that there exists a D-basis of L?>(M) as a right D module (f;)icr
which is also a D-basis of L*>(M) as a left D module or that D is a II;
factor and that L*(M) is an extremal D — D bimodule. Then, the linear map
J (o) extends to an isometry on the subspace generated D' N L2(M)®P". As a

eh

®2
consequence, 7(X) = (ep, X#ep) is a trace on D' N N .

. . g %lnl Egnp . g
(3) [Partial fonctoriality] If ¢1 : MP  — Ny,...,¢p : MP ~ — Ny are multiplica-
tion maps to canonical semicircular variables in N, , then

eh eh
®n X p
(]51 Xp ... Qp (pr‘Z\fD’C — NP

is a completely bounded map with n = > n;. In particular, in the degenerate

eh eh

X n QKn
case Vi,n; = 1, we have a complete isometry MP-< C NP .
Moreover if E : N, — M is the canonical conditional expectation, E®PP :

eh eh

®p Xp .
NP — MP< is a completely contractive map.

Proof. The independence of the intersection space of x infinite is obvious since
any equation to check can be reduced to a countably generated algebra, and thus
to countably many S; as variables. The agreement with the previous definition in
the case N = 0 is easy from Lemma A.21.(2) and left to the reader.

(1) The stability of M®ehsep™ by adjoint, composition product and product are

eh

obvious from Proposition A.23. The stability of M 5" comes from the equations
we (could have) got on J(7)(U#V),J(c(U*)) in the proof in each case. We
fix n and first compute the inverse of J(o) = J(o,n) = 1(c7})"t o I(c~!) on
M®ensepN+2 - Note first that J(o~1)J(0) = I1(0) ' o Iy(o) 1 (™) o Ih(07 )
Li(o) ' (o7 I3(0c71) so that J(o71)J (o) 1(0)~t = Ii(0) (eI (0) = I, (o)™

[
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by (1) and since I; (o)~ is surjective, one gets J(o~!)J (o) = Id and likewise the
converse to that J(o,n)~! = J(oc71, 0.n).
eh
RXRn
By definition as an intersection, (J(o)) defines an action on MP?-¢ since on the

intersection of kernels we exactly have J(o1)J(02) = J(0102).
It mostly remains to show the density results. For, we prove that for any

® N+2
X1,y TNp2 € M, then Ep/(z1 ®p ... ®p n12) € MP< . From the weak-*
continuity on bounded sets of Ep, this implies the weak-* density. The L? density
is easier. More precisely, we show that Ep: (21 ®p ... @p n42) € MPersedN+2 and

J(U7 n)(ED/ (gcl ®p ...@p $N+2)) = FEpr (xa—l(l) Xp ... D $071(N+2))
eh
Xn
and on this formula one reads it is also in the intersection of kernels defining M P .
Thus we can fix 0 € €nio and n =kl, o(1) = |I|+2, |I| = N +1 — |k|]. We have
to show for any X € (N,,ep) N LY ((Ny,ep)):

(th ®p u(Ep/(r1 ®p ... ®p tn42)))#X = X#(u ®p tk(Ep (Zr41 ®p ... ®p T1))).
This reduces to (35) if we show that

1tk ®p u(Ep(1 ®p ... ®p &n42)) = Ep/ (1 @p 4(21 @p ... ®p TN42)).

But we saw both sides can be further included in L?(M)®pN+2 as a subspace with
both Ep/ agreeing with the projection there.

(2) From the action property in (1) on the dense set where J(o) is defined,
it suffices to consider o a generator of the cyclic group. We thus extend J(o)
isometrically in the case o is such that o(1) = N + 2.

Moreover, by the density of (linear combinations of) vectors of the form
Ep/(z1 ®p ... ®p TN+2) obtained in the proof of (1), it suffices to show that the
restriction of J(o) to those vectors is an isometry.

But note that with our fixed o, we have obtained the relation :

J(O’)[ED/(.’El Xp ... Ap 1’N+2)] = ED/(.’EQ ®p ... ®p TN4+2 ®p 1'1).

Moreover, assuming extremality, there is by Theorem A.15 a unitary Burns rotation,
and by its defining relation, it coincides with J(o)™! so that J(o) is an isometry
as stated. The case with a basis is left to the reader.

eh

®2
For the last statement about traciality of 7(X) = (ep, X#ep) on D' N N7 ,

we start from the result we obtained using the action for a general o. Let U, U’ €
eh

eh
® (N+2
D’ OMD’C( ), V = J(e)(U),V' = J(o)(U') € D'n V2 S One easily gets

from the isometry relation :
Tr(ep|(ix @ (V) #[(te ® u(U"))#ep]] = (U, U") = (V, V')
=Tr([(ur @ u(U")#(ez ® 7(V*))#ep]lep)

and one easily gets zero for various other injections.
Finally, we know that linear combinations of Ep/(n®pn’), n,n’ € N, are weak-

eh eh

. ®2 . . ®k
* dense in D' N NP , and then using the strong density of Span(ux(MP ),k €
kN, N > 0) in N,, we get the same result, with n,n’ in this span. But now, we
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already noticed that Ep/ (1 ® ¢(U)) = (1 ® y(Ep/(U)) thus proving the weak-*
® N+2 %2
density of Span{Ep: (1 @ (D' N MP< ) |k|+|l|]=N >0}in D'NN,> (and
even of the intersection of the unit ball in the intersection of the unit ball by using
the Kaplansky density theorem [KR] in the reasoning above). Now, the weak-*
continuity proved in Theorem A.19.(2) of X — (ep, X#(Y#ep)) (and the obvious
one of Y+ (ep, X#(Y#ep)) using (33)) proves the statement.
(3) The complete boudedness statements follow from replacing M by M, (M)

and checking the bounds don’t depend on n. For the first statement, using Wick’s

eh eh

expansion, it suffices to prove boundedness of iy, ®p ... ®p ¢y, : Mg?“n — N,.@g)“p
eh eh

for |kp| = np — 1. Since the map is defined D' N MB" D ONK%p by the universal
property, it suffices to check the stability of corresponding subspaces. Since Ny is
involved, we consider N’ = W*(N,, 51, ..., S..) and ¢}, the corresponding evaluation
for a word in & letters (with primes), ¢} the evaluation for M with a word k in 2k
letters. If |I| = p—1 is a word in & letters with primes , and k;’s are word in & letters
without prime as before, we write lo(k1, ..., kp) = kily...l,_1k, and one then notices
(using some orthogonality in free products) that ;o (tx, ®p...@p ) = ng(khm,kp).
One easily deduces from this the stated stability, the boundedness following from the
very definitions of norms involving more specific evaluation and from (N’ Eps) ~
(Ng, Ep) since k is infinite.

For the statement on conditional expectations, it suffices to prove the bound-
edness on F®pP : N, ®chsecbP _y N[®cnseDP by the symmetry of this map which
implies the stability of kernels under the action of the cyclic group. It suffices
to check that I1(o) o E®DP(X) = EW*(M,S{,...,S,’{)[II (U)(X)]EW*(M,S{,.‘.,S,’Q) and
IQ(O') o E®DP(X) = (EW*(M,S{,.A.,S;) Q@ por EW*(M7517.“,5;))IQ(O')(X), which can be
routinely checked on elementary tensors using freeness with amalgamation over M
of N,, and W*(M, Sy, ..., S.).

O

B. Function Spaces

In this appendix, we study several function spaces crucial to our constructions.
We start by considering spaces of analytic functions as well as cyclic analytic func-
tions (these can be regarded as enlargements of spaces of non-commutative poly-
nomials and cyclically symmetrizable non-commutative polynomials). We then
consider analytic functions that depend on expectations, i.e., enlargements of func-
tions of the form X;, F(X,;, X;, E(X;, X;,)X,,)X.:,, where E is a (formal) conditional
expectation. Finally, we consider analogues of spaces of C*-functions, defined as
completions in certain C* norms.

B.1. Generalized cyclic non-commutative analytic functions. In this sec-
tion we study the properties of cyclic B.(X1,....,X, : D,R,C) and ordinary
B(Xy,...., X, : D,R,C) generalized analytic functions in n variables with radius
of convergence at least R, defined in subsection 2. Here, as before, D C B are finite
von Neumann algebras. We will also consider a variant with several radius of conver-
gence R, S, B{(Xy,... X, : D,R;Y1,....Y,,, : D,S), Bo(X1,... X : D,R; Y1, ... Y, :
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D, SC). We will use it freely later. If X = (X1,---, X,,), we also write B(X : D, S)
for B{(Xy,...,X, : D, S), etc.
We have the following basic result:

Proposition B.25. Let X = (X1,...,X,), Y = (\1,...,Y). Then (a) The
linear spaces B.(X : D,R,C),B(X : D,R,C) (resp. B(X : D,R)) are Banach
x-algebras as well as operator spaces (resp. Banach algebra and strong operator D
module). Moreover, B(X : D,R,C), B(X : D, R) are dual operator spaces when
seen as (module) duals of (module) co direct sums of the fized preduals of each term
of the (% direct sum. We always equip them with this weak-* topology. Finally the
algebra generated by B, X is weak-* dense in those spaces.

(b) For P € B(X : D,R),Q1,...,Qn € D'NB(X : D, S,C), such that ||Q;]| < R,
there is a well defined composition obtained by evaluation at Q;: P(Q1,...,Qn) €
B(X : D,S). The composition also makes sense on the cyclic variants and is
compatible with canonical inclusion maps on these function spaces.

(c) If Bgr(X : D,R,C) (with C = C or C = D) is the subspace of B(X,Y :
D, R,C) consisting of functions linear in each Y1, ..., Yy, and so that in each mono-
mial each letter Y; only appears to the right of all letters Y; with i < j,then there
are canonical maps

k
F(oers ) Bon(X : D, R) x [[ Bot,(X : D, R,C) = Bgs,1,)(X : D, R),

i=1

l; > 0 induced from composition in the Y wvariables. (Note that by definition
Bgo(X : D,R) = B(X : D,R).)

(d) For any N D B a finite von Neumann algebra, P € B(X : D, R) defines a
map (D' N N)} — N, by evaluation, with P(X4, ..., X,) € W*(B, X1, ..., X,,).

Proof. The fact that B(Xy,..., X, : D,R) is a Banach algebra is obtained in
[Dab15, Th 39]. The dual operator space structure and weak-* density also come
from this result. The stability by adjoint only works for direct sums over C (since
adjoint is not a module map and would require the conjugate module structure).
The stability by multiplication obtained in Proposition A.24 gives the same result
for B.(X1, ..., X, : D, R,C). For the stability by composition, the well-known com-
position map in [Dab15] Theorem 2 is completely bounded in each of the middle
variables and it is easy to see that the compositions built in Proposition A.24 also
are (since the intersection norm is obtained from Haagerup norms dealt with in the
non-cyclic case). Thus, ¢! direct sums are dealt with using universal property, the
only key point is that we use operator space (and not module) ¢* direct sum for com-
position in @); variables since the multilinear map (P, @1, ..., @Qn) = P(Q1, ..., Qn)
is a D — D module map only in the variable P. In this way, the previous complete
contractivity can be used in each variable with the right universal property for
each type of ¢! direct sum. In order to use the universal property in P, one also
needs to know the source and target modules are strong operator modules over D
in the non-cyclic case, and they are since those extended Haagerup products are
even normal dual operator modules. The statements for Bgj are obvious conse-

eh eh
quences. The evaluation map comes from the standard inclusion B B" CN B" (see
e.g. [Dab15] Theorem 2.(2)), and from the multiplication maps explained e.g. in
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[Dab15] Theorem 2.(4). The reader should note that they can be applied on a
larger space than the one in [Dab15, Th 39] since in general D' N D> E, N N.
Note the evaluation maps used here may not a have any kind of weak-* continuity,
contrary to those of [Dab15, Th 39]. O

B.1.1. Difference quotient derivations and cyclic derivatives.

Proposition B.26. Let S < R. (a) The iterated free difference quotients
aglmik) = (Ox,, ® 1®-1 o .o Ox,, define completely bounded maps from

B(X : D,R,C) to B®k<X : D,S,CY (with C = C or C = D, and thus in both

ft1
cases to B(X : D S> ).

(b) The space B.(X : D, R,C) is mapped by 6@‘1,..4,%) to Bgre(X : D, R,C).

(c) For d € B.(X : D,SC), the cyclic gradient Px, q defines a bounded map
from Bo(X : D, R,C) to Bo(X1,..., Xn : D, SC)

(d) The following cyclic derivation relation holds:

Px,,4(PQ) = Ix,,0a(P) + Zx,,ar(Q). (39)

(e) The following relations between derivatives and composition hold, denoting

Q:(Ql7"'7Qn):

0oy (P Z SN Oy PHQ#

=2 ni,..., n 1< <...<iy=k (40)

k
inaam “u Qn27' - QTLI)

(Jig41>5din) Y (Jz, L4 1eendk)

o)

(J1se ’Jll

and
Dx:, Z%f Pa,.a(P)(@)(@5); (41)

where we wrote g, 4(P)(Q) = [@Xj»[d(xi»--inl)( (@, X) considering P € B.(X :
D,R,C) C BJX,X': D,R,C),d(X") € B.{X' : D,R,C) C B.(X,X': D,R,C),
so that Dx, jax)(P)] € Bo(X, X" : D, R, C) is well defined and can be evaluated at
Xi=Qi, X| =X;.

Proof. Let us write nx, (m) for the X; degree of a monomial m, i.e., the number of
times the variable X; occurs in m. To define the free difference quotient and cyclic
gradient, we start from the formal differentiation on monomial, add appropriate
change of radius of convergences S < R to allow boundedness of the map and then
gather the monomials at the ¢! direct sum level by the universal property:

eh
Ox, : B(X1, ., Xn : D,R,C) — (4 (S'm(B%)(lmH)

)Galcnxi(m);m € M(Xq,...X,),|m| > 1) ,
and similarly in the cyclic cases.

In order to for the value to belong to the claimed space, we also need to specify a
canonical map I with values in Bgo(X : D, S, C). Of course, we want it to send the
j-th component in the ®5nx,(m) direct sum to the component of the monomial
mx, ; which is identical to m but with the j-th X; replaced by Y;. Since there is
a bijection between the disjoint union over monomials of {m} x [1,nx,(m)] and
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the set of monomials in X and Y7 linear in Y7, it is easy to see that I extends to a
complete isomorphism of ¢, direct sums. We still write dx, for I o dx;.

For the cyclic gradient, one can then apply a different cyclic permutation on
each term of the direct sum and we gather them in a map o : Bgao(X : D, S,C) —
Bg2.(X : D,S,C) and a multiplication map my : Bga.(X : D,S,C) — B.(X :
D, S,C) (based on composition # at d on the appropriate term of the tensor product
and extending my(P®Q) = PdQ = (P®Q)#d) to get the expected cyclic gradient:
-@Xi,d = mda'axi.

For the free difference quotient, to see there is a canonical map to the range space

h
B(X1,..,X, : D,R) ?@ B(X1,...,X, : D,R), one applies the following Lemma to
D

each term of the direct sum inductively, and then the universal property of ¢! direct
sums to combine them. (We of course apply after mapping ¢, to £}, direct sums).
The various relations then follow by construction from the various associativity
properties of the compositions and multiplication defined in Proposition A.24. We
explain those associated to cyclic gradients. First, we obtain the derivation property
of dx, and Jx, (PQ) = Jx,(P)Q + PJx,(Q) so that :

00x,(PQ) = [00x,(P)|#(Q ®1) + [00x,(Q)l#(1 @ P)

and applying my one gets (39). Similarly, one obtains first the relation
0x.(P(Q) = D 0x, P(Q#(9x,Q)
j=1

and then

00x,(P(Q)) = Y _[0(0x,Q))|#[00x, P(Q)]

j=1
and applying my gives (41). a
The following result is a module extended Haagerup variant of [OP97, Lemma

7], the proof is the same using universal property of ¢! direct sums and [M97, Th
3.9]. We leave the details to the reader.

ch
Lemma B.27. Let El,EQ € DSOMD,Fl,FQ € DSOMD, let X = (E1 @b E2) X
D
(FL®L Fy). Let S be the closure of the subspace obtained by injectivity of Haagerup
eh eh
tensor product (Eh ® F1) + (Ey ® Fy). Then we have:
D D

eh eh
S~ (E1®F)&p (B, ® F),
D D
completely isometrically.

We will also need a more subtle evaluation result for Bgg.(X1, ..., Xpn : D, R,C)
which requires that our variables are nice functions of semi-circular variables.

We write A% 114,04, fOr the set of X1,..., X, € A, X; = X[, [X;, D] =0, || X <
R and such that B, X1, ..., X, is the limit in Fp-law (for the *-strong convergence of
D) of variables in B.(X71,...Xp, : D,2,C)(S1, ..., Spm) with S; a family of semicircular
variables over D, that is of elements in the set of analytic functions evaluated in
S1,...,Sm. Here m is some large enough fixed integer.
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eh
® .
Proposition B.28. For any (X1,...., Xn) € AR prranpp if @5 Br M, j=
1+Z{;11nl,...,X {:lnz)’ M =
eh

1,...,p are multiplication maps ¢;(2) = Z#(X
eh
® n Xp
W*(B,X1,....,Xn), then ¢1 ®p ... @p ¢p : BP¢ — MP< is a completely bounded
map of norm less than R™ P with n =Y n,;. As a consequence, any (X1,..., X,) €
eh
® (k+1)
AR Uttraapp> nduces an evaluation map Bgge(X1, ..., Xn : D, R,C) — MP .
Proof. Assuming first X; € B.(X1,...X,,, : D,2,C)(51, ..., Si,) the result is obvious
in a similar way as for composition of corresponding analytic functions and from the
evaluation map to (S, ..., Sp,) in Proposition A.24.(3). At first, the result is valued

eh

®p
in N with Ny = W*(B, Sy, ..., S,,) but one easily deduces the more restricted

space of value.
We now consider the more general case with

X; € CY (B, S1, ..., Sp) := C*(evs, .5, (B{(X1, ... Xpn : D, 2,C))),

in the C* algebra generated in W*(B, Sy, ..., Sp) by evaluations of our analytic
functions at semicircular variables. There is a map ¢1 ®p ... ®p ¢, on the extended
Haagerup tensor product by functoriality and nothing is required to get a map on
the intersection space ¢1 ®p ... @p ¢y : BOereed™ — N[@enseDP  To get the stated
map and even first a map ¢ ®p...Qp ¢, : BEersep™ — N[@ensepP we have to check
various stability properties of kernels appearing in their definition as an intersection
space. From the formula below describing the commutation of the cyclic action and
various tensor products of the maps ¢, this stability of kernels will become obvious.
More precisely, let U € B®<r=eP™ for g € €,, we write ¢ the induced permutations
on blocks and V' = J(6)(U) and n = kl, (1) = || + 2, |l| =p — 2 — |k|. We want
to show for any X € (N,ep) N LY({N,ep)) with N = W*(M, S1, ..., S,) :

(e ®@pu)(¢1®@p...@D op(U))#X = X#(11@p k) ((Po-1(1) @D - @D Do-1()(V)))))-

It suffices to evaluate them to Y, Z € [B{(X1, ..., X :
D,R,C)(X1, ..., Xp)]{S1,...,Si) =0 C C L*(N) as in Lemma A.21.(2) and to
take X € CepC, and see equality in L' (D). The statement for Xi, ..., X,, analytic
as above gives exactly this in this case. In the evaluated form, the convergence in
FEp-law is clearly enough to get the general case from this one. The evaluation map
is then obtained by the universal property of ¢! direct sums. It crucially uses the

bound on the norm of the completely bounded map above R™~P that follows from
eh

A . ®p
the bounds on canonical evaluations, and the sup norm on M®ehsepP AfD.e ]

B.2. Analytic functions with expectations. For X = (X1, ..., X,,), the spaces
BA{X : Ep,R,C}, B{X : Ep, R} have been defined in section 2. To prove various
results for them, we need some formal notation to explain several computations
combinatorially. First, since those spaces are defined as ¢! direct sums over pairs
of monomials m and non-crossing partitions ¢ € NC5(2k) (indexing the paren-
thesizing where conditional expectations are inserted), we can write m,, , for the
projection on the corresponding component of the ¢! direct sum, and €, , for the
corresponding injection.
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We write Ep for the formal conditional expectation characterized for P €
Bak{Xl,...,Xn : ED,R} by ED(P) S Bc7k+1{X1, ...,Xn : ED,R} and such that
the only-nonzero projections 7 are of the form

Tymy,s (Ep(P)) = Tm o (P)

for 6 = {{1,2i +2}} U (0 4+ 1) where the blocks of o + 1 are {a + 1,b+ 1} if {a, b}
are the blocks of 0. All other components of 7, o (Ep(P)) are 0. Ep is obviously
D — D bimodular and completely bounded.

The scalar case D = C was considered in [Ceb13]; in this case we note the
density of C{X1,...,X,,} D Span{Potr(Py)...tr(Py), P; € C(X1, ..., X,,)}.

For P € C{X;, ..., X,,} and alinear form 7 € (C(X7y, ..., X,,))* there is a canonical
element P(7) € C(Xq, ..., X,,) defined by extending linearly [Potr(Py)...tr (Py)](T) =
Py7(Py)...7(Pg). In this way, one embeds

C{X1,...; X} = COU(C(X1, oo, X)), C(X1, .y X))

(where the continuity is coefficientwise on the range and for the weak-* topology
induced by C(Xj, ..., X,,) on the source).

Similarly, for P € B{Xj,...,X,,; Ep, R} and a unital D bimodular completely
bounded linear map E € UCBp_p(B{(Xi, ..., X, : D, R), D), there is a canonical
element P(E) € B(X;, ..., X, : D, R). Since P — P(E) will be completely bounded
D — D bimodular on monomials, by the universal property of ¢! direct sums, it
suffices to define it for monomials P = 7, »(P), 0 € NCy(2k). It is defined by
induction on k. Write o_ € NC2(2(k — 1)) the unique pair partition obtained
by removing from o the pair {i,7 + 1} of smallest index i and re-indexing by the
unique increasing bijection [1,2k] — {i,7 + 1} — [1,2(k — 1)]. Let also j(i) the
index in the word m of the i-th Y (this being 1 if ¢ = 1 and m starts by Y). Then

® (jml+1)
P =m7,,,(P) € BPe , then

P(E) = [em,e 1999 @ E 0 € @ 1¥IM=30HDH) (P)|(E),

with m/ = ml...mj(i)_lmj(i+1)+1...m|m‘, m'’ = mj(i)+1...mj(i+1)_1. Indeed the let-
ters between the index j(i) and j(i+1) in m” are only X’s and we can thus apply E
eh
identifying B%j(lﬂ)ﬁ(l) via €, with the corresponding subspace of B{X1, ..., X, :
D, R). Since E is D — D bimodular [, ,_[1%7) @ E o e, @ 12ImI=3@+DH1]] §g
well defined and we can apply E inductively.
In this way, we have a canonical map

B{X1,...,Xn: Ep,R} = C*(UCBp_p(B(Xi,..., Xn : D,R), D), B(X1, ..., Xn : D, R)).

where the topology on UCBp_p(B{(Xj, ..., X, : D, R), D) is the topology of point-
wise normwise convergence of idy;, ® E on all M;(B(X1,...,X,, : D,R)) (for I a
cardinal smaller than the cardinal of B).

To state the algebraic and differential properties we will use, we also need the
following variant (for C' = C or C' = D):

Bop(l){le ,Xn . ED, R, C}

eh
& (|m|+1)
D

=l (RmXB sm € Mby (X1, .oy Xn3 Z1,y s Z13Y ), € NCo(2k), k > o) :
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where M}, (X1,...,Xn;Z1,...,Z;;Y) is the set of monomials linear in each Z;,
without constraint on the order of appearance of Zi,...,Z, and of order 2k
in Y The blocks in Z; are made to evaluate a variable in D’ N N. We call
Bewy{X1,...,Xn : Ep,R,C} the subspace involving monomials with Z; ordered
in increasing order of k and with all variables Z; having an even number of Y be-
fore them and with their pair partitions unions of those restricted to the intervals
between them (thus Z;’s are interpreted as not being inside conditional expec-
tations.) We write Bg)c{X1,...,Xn : Ep,R,C} the cyclic variant generalizing
B®(1)0<X1, ...,Xn : ED, R, O>
The following result is clear:

Proposition B.29. Let X = (Xy,...,X,). (a) The spaces B.{X : Ep,R,C},
B{X : Ep,R,C} are Banach *-algebras for usual adjoint and multiplication, ex-
tending the ones of B(X : D,R,C). B{X : Ep, R,C} is a dual Banach space and
the smallest algebra generated by B, X and stable by Ep is weak-* dense in it.

(b) B{X : Ep, R} is a Banach algebra. B{X : Ep, R} is a dual Banach space
and the smallest algebra generated by B, X and stable by Ep is weak-* dense in it.

(c¢) There is a composition rule, for P € B{X : Ep,R},Q1,...,Q, € D'NB{X :
Ep,S,C}, such that ||Q;|| < R, then there is a composition P(Q1,...,Qn) € B{X :
Ep, S} extending the composition on B(X : D, S). There are similar cyclic variants
compatible with canonical maps and with the evaluation map below.

(d) For finite von Neumann algebras N D B, P € B{X : Ep, R} defines a
map (D' N N)} — N by evaluation, with P(X) := P(Ex,p)(X) € W*(B, X), thus
extending the value on B{X : D, R) and where Ex p € UCBp_p(B(X : D, R), D)
comes from the conditional expectation.

(e) Similarly there is a canonical evaluation evyy(P,Ex p,X) € CB((D' N
N)@ U N), P € Bypu{X : Ep, R}, where N are evaluated in the Z;’s and then
each pair of Y'’s is replaced by a conditional expectation.

(f) There are also canonical continuous compositions (in the Z; wvariables)
commuting with evaluation (with variants for Bgu{X : Ep,R,C}, Bgp{X :
l?D7 R, C})

k

0(yer?) t By {X + Ep, R}x [ [ Bop){X : Ep, R,C} = Bop(s,10{X : Ep, R}.
i=1

(g) For (X1,...X,) € AR Ultraapp We i particular have an evaluation map

eh

® (I+1)
Bg@ye{X : Ep,R,C} — MP-e with M = W*(B, X1, ..., X,,) as in Proposition
B.28.

B.2.1. Various derivatives of analytic functions with expectations.

Proposition B.30. For C =C or C =D and any S < R, (a) The free difference
quotient (FDQ) derivations give rise to bounded maps

(91‘ : B{X : ED,R, C}—) B®(1){X : EUD,S7 C}

eh
= B{X : Ep,5} & B{X : Ep, 5}
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extending the free difference quotient from B(X : D, R,C) and determined by weak-
* continuity of the first line and by the requirement that the composition with the
formal Ep is zero: 0;Ep = 0.
(b) The iterated FDQ 8@1,_”%) : BA{X : D,R,C} — Bgy{X : D,S,C} and

8@17_“7%) :B{X :D,R,C} - Bgr{X : D,S,C} are also bounded maps.

(¢) Let d : B{X : Ep,R,C} = Bop{X : Ep,S,C}" and the operator variant
d: Bopy{X : Ep,R,C} — Bopu41){X : Ep, R,C}" be the formal differentiation,
i.e. a derivation uniquely determined among weak-* continuous maps by

d(B(X,Z1,..Z,: D,R)) =0
and for any monomial P € B,,y{X : Ep, R} (possibly | =0):
dEp(P) = Ep(dxP), dxP :=dP+ (0;(P)#Zi+1)):
and le( 0y = dxidxiy B{X : Ep,R,C} = B,,;y{X : Ep,S,C}. Then d

D1 yeens i
and d' are bounded maps.

(d) We define the cyclic gradients on B.{X : Ep,R,C} - B.{X : Ep,S,C}
ford € B{X : Ep,S,C},S < R as a natural continuous extension of the cyclic
gradient on B.(X : D,R,C), satisfying Px,,q4(X;) = dli=;, (39) and for P,Q
monomials and for d, P monomials

2i.a(Ep(P)) = Z;,pp(a)(P)-
(e) The following relation with compositions (40), (41) holds:

k
By P@QY =D > Y )

=1n1,...,n 1< <<=k b 1 =Ll — 1,1 <bm 1 <eoo<dmigy — iy _ g Sk

1 i 1o —1 k—i;—
(dX(nl,nl)(P))(Q) © (d)l((jll,l jll,il))Qn17d§(jl;,1 )ana seey dx(]illl

---------- Jl2‘712—i1

and in particular:
dx (P(Q1,--Qn)) = Y _((dx(P)(Q1, -, Qn))i © dx (Q1)-
i=1
[Note the sum of /; ; in formula (42) is only a sum over partitions, the first term
of the first set being written [y 1, the first term of the second set in the partition
l2,1, the ordering between sets in the partition being by the ordering of the smallest
element)

Proof. For the most part, we only have to give a combinatorial formula for the
derivations acting on monomials. Then by the bimodularity of the formula and
explicit uniform bounds, the universal property of the ¢! sum will extend them
to module ¢! direct sums. They will be moreover weak-* continuous as soon as
they are weak-* continuous when restricted to monomial components since the ¢y
sum of predual maps will then give a predual map. The derivation properties then
determine d, O on the Ep-algebra generated by B, X1, ..., X,, which is weak-* dense
in the ¢! direct sum (actually in each monomial space by properties of the extended
Haagerup product and then, the finite sum of monomial spaces are normwise dense),
thus weak-* continuity determine those maps everywhere.
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For 0 € NC%(2k), m € Msp(X1,...,X,,Y), let us say a submonomial m’ C
m (with a fixed starting indexed, m’ is thus formally a pair of the mono-
mial and the starting index) is compatible with o and write m’ € C(o,m) if
m' € My (X1,....,Xpn,Y), 1 <k and !’ the index in m of the first Y in m’, then
Ol = ol 142111 C o (which means there is no pairing in m broken in m' by our
extraction of m’). We then write Sub(o,m’) € NC3(2l) the partition o|p: y191-1
reindexed.

Then we define:

ai(em,a(P)) = Z (em’,sub(a,m’) @D Em”,sub(a,m”))(P)'
m=m'X;m"’,
m’,m"” eC(o,m)

Of course the sum is 0 if its indexing set is empty, this in particular explains
0;Fp = 0 and the remaining properties are easy.

The definition of d is complementary. When m’ or m” are not both in C'(o, m)
and m = m'X;m” (some i), we write (m’,m”) € IC(o,m) (and this corresponds
to a differentiation of X; below a conditional expectation).

Then we define

d(em,o(P)) = Z (em'zym,0) (P)
m=m'X;m’’,
(m/,m"")eIC(o,m)

For 01,09 € NC5(2k;) we define for i € [0, 2k;] the obvious insertion o1#;09 = o
such that o|[i41,i48,] = 02, Olfi41,i+k]c = 01 the equalities being understood
after increasing reindexing. Likewise p;(o1) = {{i; + t,ix + i} : {ij,ix} € o1}
addition being understood modulo 2k; so that par, = po = id, and write also p;
the corresponding permutation p;(k) = k + ¢ modulo 2k;.

We now define the cyclic gradient as follows:

Dicrss@(emaP)) = D ewstm pyn, @)y 5 (O |- P)#E i)

m=m'X;m"’

and the relations are then easy. We give details for two of them involving cyclic
gradients.

Let us explain (39) on spaces of monomials. We have to compute
Dient (d) (€m0 (P)eu(Q)). First note that €y, o (P)eur(Q) = €mp,our(PQ). Here
o U is merely the concatenation of non-crossing partitions and PQ the product
of tensors defined in Proposition A.24.(1). Note that the sum over mu = m’X;m”
splits into two sums depending on whether X; comes from m or p. This gives the fol-
lowing computation (using relations on rotation and product such as p,»,,|.(PQ) =
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‘@LGM,):(d)(em,G(P)G/L,Tr(Q))
= Z em“/AMm’,p‘muMY(o’Tr)#‘muMYE((p|m”u|~PQ)#|m”u|d)

m=m'X;m'’

+ Z 6m”M?nm’,p‘muly(‘:771')#WL//|YZ((p|m”|'PCQ)?'%‘4|771”|CZ)
u=m’X;m’

= Z Emt M | s, (@) ), (72) (Pl -(P)) # v (@)
m=m'X;m'"

=+ Z em”Mmm’,p‘m//ly(‘n')#‘m//‘y(EU)((plm”|'Q)#|m”\(dp))
p=m'X;m’"

= D @ers,n (@) €m0 (P)) + Diers (e (P) (€7 (Q))-

Let us finally explain (41). By linearity (in P) and continuity (in P and @), it
suffices to consider the case of finite sums

Qr = ZeMk,iao'k,i(Qk,i)7 k=1,...,n
i

and where P is replaced by a monomial €, ,(P). Then write Qx, ; = Qk,; and
Qy7i =1®1, MY,k =Y, MXl,k = Ml,k and note that

emaPUQ = D ety by 87 oty oy (P Qo s Qo)

where if m;, , ..., m;,, is the set of Y’s in m, 0 € NC(2l), ox, ; = o, and

U#m(amhilv s O’m|rn,|7i|m,|) :(' e ((U#2l(0mj21+17ij21+1 T Um|m|7i|m,|))
#21—1(0m1‘2171vijzz71 o .O-mjzl—lvijm—l)) A0 (Omai Ty iy 1)
Thus one gets in writing for short My, ; .+ = My, 6000 --Mm

Djers@lemePN@Q = > >

L:l...\m|,mL7£Y M"”L'iL :m’ij” ’il,‘...,’i|m,|

[m]sE|m]|

€y ! . . . ’ 3 . .
m Mmﬂ=L~+MMm1~'l'“MmL—lﬂL—lm ’p‘m”]\fm,i,[,,_p\y(U#m(a-ml"’l""7Um|m|ﬂ\m\))#‘m”kfm,i‘L,-MYZ

((plm//M'rrz,i.L,+|' (P#(thil’ ) Qm\m\d\m\ )))#lm”M7n,i,L,+|d)'

Then note the following combinatorial identities. We fix m = M’'X;M" with
IM'|=L—-1,m=M"X;M
Plm! Mpi L+ |y (OH#™ (Omy i - O-m|'m,|7i\m,\))#|m”M7n,i,L,+‘YE
= p\m//ly(UmL,iL)#\m/’\ ([le”h’(U)}#W(O—mL-f—luiL-f—l » 2 Omy ) im) ¥, Omy,irs oo O—mL—lyiL—l))V
and similarly:
((p|7””]\/[m,7i.b,+|' (P#(le,ilﬂ ) Qm‘m‘,i‘m‘)))#|m”vai,L,+|d) =

(plm”|~QmL,iL))#|m”\ ((le//I(P))#(QmL+1,iL+17 cey QM|m|,i|m| ) d, leyil’ () QmL_l,iL—l)) .

An inspection shows that gathering these terms leads to the definition of the right
hand side in (41) as expected.
O
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Finally, we will need a second order operator and its commutation with cyclic
gradients.

Proposition B.31. There are continuous maps A,n on B{X
Ep,R}— B{X : Ep,S} for S < R uniquely defined as weak-* continuous
map by the following properties (a) and (b):

(a) For P € B{X : Ep, R} monomial

A(P)=> mo (1® Ep ®1)d; ® 19;(P)

and AEp =0

(b) éa is a derivation, Sa(P) = 0 for any P € B(X : D, R), and for Q monomial
in B{X : Ep, R}, 6a(Fn(Q)) = Ep(( +64)(Q)).

(¢) Moreover,

Z2i(A +6a) = (A +6a)%;. (43)

(d) Likewise, for any V € B(X : D,R), the map Ay = A+ 3. 0i(.)# DLV
produces a derivation 0y such that oy (P) = 0 for P € B(X : D,R) and for Q
monomial in B{X : Ep, R}, 0v(Ep(Q)) = Ep((Av + v )(Q)). Moreover, for any
g€ B(X:D,R):

Zi(Av +dv)(g9) = (Av +6v)%Zi(9) + Z Di.2,99;V.

j=1
Proof. Again it suffices to define those D — D bimodular maps on monomials
spaces, i.e., at the level of extended Haagerup tensor products. Then the universal
property of the direct sum will extend them as weak-* continuous maps as soon as
each component map is weak-* continuous. The algebraic relation then determines
the maps on the Ep algebra generated by B, X1, ..., X,, and weak-* density of this
algebra implies the uniqueness of the weak-* continuous extension. For A we use
the formula above. Let o € NCy(2k), m € Map (X1, ..., X, Y).
For m = nX;n'X;n",n’ € C(o,m) with the notation of the previous proof, we

define
Add(o,n,n',n") = {{Inly +1,|nly +[n/ly +2}}

U{{i+Lj+1}:{i,j} €0, nly <i<j<|nly + 'y}

U{{i,j +2}:{i,j} € 0,i < |nly <|nly +[n'ly <3}

U{{i,j} :{i,j} €o,i<j<Inly}

U{{i+2,54+2}:{i,j} €o,|nly +|n|y <i<j} e NCy(2k+2).
Then we define for a monomial €, ,(P) :

n

(A + 6A)<€m7g(P)) = Z Z 6nYn’Yn”,fhid(cr,n,n’,n”)(P)'

Jj=lm=nX;n'X;n" ,n'€C(c,m)
All properties but the last equation (43) are easy. By definition, we have:
Zi((A 4 0a) (€m0 (P))

=> > > Emmt pyny, (Add(onnt ) (P (P)))

J=lm=nX;n'X;n" ,n'€C(o,m) nYn'Yn" =m’'X;m’"
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The sums can be divided into 3 cases depending on whether X; € n,n’,n”. Simi-
larly, we have

(A+68)TiemsP) = 3 3 2

m=M'X;M" j=1 M""M'=NX;N'X;N"",N'€C(pjpr, (¢),M" M')
GNYN’YN”,Add(p‘Mu‘Y(a),N,N/,N”))((le”|~(P))>

and there are also 3 cases depending X’s are both in M", in M’ or one in each.
The proof of the equality is combinatorial, we check we have a bijection of the
indexing sets of the sum, with equality of the terms summed in each case.

If X; € n, then n = 0X,0’ and m = 0X,;0'X;n'X;n" this suggests M’ = o,
M" = oX;n'X;n" corresponding bijectively to a term where both X;’s are
in M'", N = o,N = n',N'" = "M, m" = o, m" = oJYn'Yn" so that
m”’"m’ = NYN'YN" as expected, |M"”| = |m”| implying the same rotation of
P and Add(pjar)y (0), N,N', N")) = pjyr|y (Add(o,n,n',n"")), as is easily checked
with the same condition on n’ = N’, implying the final equality. The case X; € n”
is similar corresponding bijectively to the case where both X’s are in M.

If X; en',n =0X;0 and m = nX;0X,;0'X;n",m" =nYo,m" = o'Yn”. This
suggests, M’ = nX;0,M" = o'X;n” corresponding bijectively to a term where
one X; is in M" the other in M’ with N = o/, N’ = n''n, N = o. Since N is
related to a complement of n/, the relations imposed on n/, N’ are equivalent after
rotation. We also have m”m’ = NYN'Y N” as expected, |M"| = |m”| implying the
same rotation of P and Add(p|psr|, (o), N,N',N")) = pipmr|y (Add(a,n,n',n"")), as
is easily checked, implying the final equality. O

B.3. Non-commutative C*!-functions and their stability properties.

B.3.1. C*' norms. As in the main text, we consider several variants
Coliv (AU : B,Ep), e € {0,1}, &2 € {—1,0,1,2}:

r

1Pl ekt a vm,mp) = 1UP) i +all(Av+av)(P)lley, )

I=1+1caa(le2]) n

Flzmiatow Y domax [ 2Py
p=0 =1 (44)

€2
oV =) sup |Z;,0x(P)]

2 _
Qe (CchPa,um1t:B,Ep)
m > 2

k,p,Um]

We of course also define a first order part seminorm ||P|| kte;.e
P 1Plertereaiav.p,mm,21

only replacing the first term in the sum by ||L(P)||kvl,U,21. Note that

”P”Cf;fSkZZ'Z(A,U:B,ED) = ||P|‘CthfV(A,U:B,ED) enables to include our previous case

in an ad-hoc way. We may write Cfr’f{?’sz (A,U : B,Ep) = Cfr’l;o’ez (A,U : B,Ep)
since there is no more dependence in V in this case. [Note that we wrote
CEE2 (AU : B,Ep) = C’Ei}{B’EQ(A,U : B,Ep) for short in the text before the
appendices since we only used this case 3 = 0.]

In the last seminorm we considered P in variable X = (Xy,...,X,) and @ in
variable X' = (X{}),..., X(,, ;) € U™ and U™ C AR" = (A%)™. In order
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to get a consistent definition, we still have to check the last term is finite for
P € BA{X1,...,Xn; Ep, R,C}. We gather this and a complementary estimate in
the following lemma. A variant explains the inclusion C*! c Cfr’,lv,c at the end
of Subsection 2.4 with norm equivalent to the restricted norm (explaining why the
completions are included in one another).

Lemma B.32. Assume U C A% .5 p,- For any P € B.AXi,....,X,; Ep, R,C},
we have

sup 1Zi.@xy (Pl k,p,um < 00
Q € (CRP(A, U™ B, Ep))
m > 2

and moreover if P € B.(X1,...,X,; D, R,C), for any p > 0 we have:

sup ||@7;7Q(X/)(P)”k,p,U"” < C”PHkJrLILU@Zl
Qe (CEP(A, U™ B,Ep))
m > 2

so that we have extensions of the identity which give injective bounded linear maps:
CHUA,U: B,D) = Ci' (AU : B, Ep),
CHHTYAU : B,D) — CEEPY (AU : B, Ep),
and we have for some C' > 0:

HPHCﬁI‘lV(A,U:B,ED),Zl < CHPHkJrl,l*LU,C,Zl'

Proof. We can assume @ € Bc{Xgl)l, "'7X€1)n’ ...,X(’m)l, ...,X(’m)n; Ep,RT,C},m >
1 X' = X{l)l’""Xgl)n""’Xém)l’""X(/m)n' We detail only the second estimate,
since the first one mainly needs P monomial and is an easy extension.

To compute differentials we introduce partial differentials d‘(g X,x7)(

a full differential is

Z A xc x i .wyZixn (P) X, X').(HTY, . HI).
rell,(m+1)n]s

so that

T1yeTs)

Recall this de’ X0 is the full differential so that d% applied to P €
B.(X1,...,Xn; D,R,C) is a certain expression involving free difference quotients
but is not necessarily 0 (unlike d* by its definition).

It suffices to compute on monomials, for s, < k —1

s 11
dix X)) Ol iy Zixn (P))
_ #R, —(l—p+1) glo+l—p+1) #R' o(p—o)
- Z l[dXR(p ! 'a(jpﬂ ~~~>jz,i’j1w~7jo)(P))]#dX'R/a(joﬂ’m,jp)(Q)
0<o<p<

(45)

where R = (74,,...,7i,,) with the underlying set uR = {r;,,...,7i 5} = {ri,7: €
1,n]}, i1 < ... < igr and R = (rj, — Myooos Ty — n) with {rjl,...,rj#R,} =
{ri,.rs} —uR j1 < ... < jgr so that dix x/)(r4+n) = dx'r’, and note there is
no real sum to split the derivatives between P,Q (the sum can contain only one
non-zero term) since the variables of () and P are not the same.
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Using this remark and the natural bound on products defined in Proposition
A .24, one gets the term in the seminorm to estimate for a fixed order s of differentials
d®:

|| Z d?X,X/)(rl,...,TS)‘@i,Q(X/)(P)(X7X/)'(Hflv"'7H9 )
rell,(m+1)n]s

Z [ Z d?X,X/)(rl,...,rs)ajl“@LQ(X')(P)(X’X,)'(lelv"'aHsrs) |

‘%‘ (1+1)
Jj€l,n(m+1)]t  re[l,(m+1)n]® D,ec

v v l+1
<k Z 1% 0P|l e +Z Z 15 05 (PYX)-(Higs ooy Hi )|
V C 18] ADr I=1 je[1,n]! ADe
V= {i1, ..., %0}
Ve ={j1,-ds—v}

< | " QX (Hjy oy Hj,

Wit Y I QX (Hy o )

=1 je[1,nm]!

| en
® (1+1)
AD,c

The factor k appears for a the same reason as the sum over V', because in the sum
over j (resp. over r) the position of differentials X, X’ need to be determined by a
starting point for the block of X’ variables (resp. a set of X variables) and in the
first case the number is less than [ < k.

Thus taking suprema in the definition of seminorms, one gets the concluding
result for any p:

1Zi.0xy (P lk=1,pum+1,e < (k= 1)2P[| Pk pv.c

—1,p,U™cs

and similarly

1Zi,0xy (Pl k=1,p,um+1 < (k= 1)2°(| Pk p,v,e|Qllk—1,p,0m -

The definition of the two bounded linear maps are then straightforward and
injectivity comes from the fact that the bounds enable us to get equivalent norms
on the image so that the separation completion defining the first space can be
computed in the second. O

B.3.2. Composition of functions. To understand the relationship between the
Laplacian and composition of functions we need the following basic remark. Let
P, Ql, ceey Qn S UR>0BC{X1, ceey Xn : E/’D7 R, C} Then:

A(PoQ) = Zm o(1® Ep ®1)9; @ 1((9;P) 0 Q#9i(Q;))
= Z((@‘P) o Q#mo (1@ Ep®1)(9; ®18,(Q;)))

+ Z mo (1® Ep @ 1)((0x @ 10;P) o Q#(9:(Qx), 9:(Q;)) -

.3,k
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Thus we have a lack of stability of the form of the second order term so that it
is natural to introduce for P € B{X,...,X,, : Ep, R}, R = (RF) = 3 (R}'x ®

eh

eh
2 2
REL )k € (DN A5 )®(D'N A% )]"* the following expression:

Ar(P) =Y mo(1® Ep@1)[0;@10;(P)#(RY , RY )] € A{X1, ..., X : Ep, R},
1,7, K

and similarly

0@ ©a (R )] ® [00(Q1))#(R3 k)]

K,l,z
In this way one gets
AR(PoQ) = (Oar@)P) o Q+ Awp@ea@)#r(P) o Q. (46)
As before we can also define dr as a derivation
6R : B{X17 7Xn : ED,R} — A{Xl, 7Xn : ED,R}
by requiring that it vanishes on B(Xj,...,X,, : D, R) > P and satisfies
or(P) =0, 6r(ED(Q))=Ep((Ar +r)(Q)).
We consider the variants C¥YSU(A U : B,Ep), ¢ € {—1,0,1},e

tr,(2)
{_L 0,1 52}a o€ [[O,maX(O,l - 2)]]

I=1+1caa(le2]) n

(e2—1,—€2) Z Z

||PHCk e

12(AU:B,Ep) = [[e(P)

max [H@i,l(P)Hkaan’

€2
(o0v3) sup 12200 (Pl
Q€ (CLP(A,U™ Y B, Ep))
m > 2
+ max (0V &) sup |(AR +6=)(P) 0.0
IR*| b, b, <1

[(D'NAD )&(D'NnAD )

0V (=) (A +62)(P) o0 |-

Finally to deal with our universal norms we need to consider in what space of
variables our functions are valued to handle composition properly. For this consider
U cC AR,V C A% sets, S > R and C a class of functions on U as before or one
defined later, B¢ the space of analytic function (either B.{X1,..., X,,; Ep, RT,C}
for classes with index tr or B.(X : D,R,C) or ﬂT>RC’£+1(A7]3,BC<X1,...,Xn
D, T,C)) for classes with index u etc.) used to define it as a separation-completion
with canonical map ¢ : Bc — C. We define two candidates of sets admissible for
composition

Comp(U,V,C) ={Q = (Q1,...,Q,) e C" VX € U,Q(X) e V},

Comp™ (U, V,C) = Comp(U,V,C) N Comp(U,V,C) N ((Bc))")
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which are subspaces of Comp(U, A%, C) . We first define composition on the dense
subspace of Q; € OT>RCé+1(U, B.(X : D, T,C)), with Q(X) € V for all X € U,
for P € NyssCi (V, B.(X : D,T,C)) by

P(Q17"'7Qn) XeUw P[(Ql(X)77Q7L(X))](Q1[XLaQn[XD

where P[(Q1(X),...,Qn(X))] € NprssBA(X : Ep,S,C) is then composed with
Qi[X] € B(X : Ep, R), since ||Q;[X]|| < T for some T > S one can apply the
definition of composition at analytic level from Propositions B.25, B.29.

If P € B{X1,...,X,; Ep,ST,C}, P defines X — P(Ep x) on any V C A%, so
that we can define P(Q1, ..., Q) assuming only [|Q;(X)|| < S (case V = A% above).

We can now extend these maps. We first deal with the cases of stability by
compositions and then deal with the variants we used in the main texts obtained
via various compositions with canonical maps.

Lemma B.33. Fiz V,U as above with U C V (with V C A% 114,44, 05 S00OT as
a space with index ¢ is involved). The above map (P,Q1,...,Qn) — P(Q1,...,Qn)
extends continuously to Q1,...,Q, € Comp~ (U, V.CKY (AU : B,Ep)) to give a
map

Ca'(A,V : B,Ep) x Comp™ (U, V,(Cy'Y(A,U : B, Ep))) — Cy'(A,U : B, Ep),

for k > 1. Moreover, for any (k1) € IN?, it also extends continuously consistently
to

CFYA,V : B,Ep) x Comp(U,V,(CENA,U : B,Ep))) — CENA,U : B,Ep),
CF (A, V 1 B,Ep) x Comp(U,V,(CE! (AU : B,Ep))) — CEL(A,U : B, Ep),

tr,c tr,c tr,c
CHEC2 (A V . B, Ep) x Comp(U, V,(CEEYYe (A U : B, Ep))) — CEE%2(A, U : B, Ep),

Clly (A, V 2 B, Ep) x Comp(U, V,(Cp 51V (A,U : B, Ep))) — C{lis 52 (A,U : B, Ep),

(
(
e € {-1,1},e2 € {—1,0,1,2},0 = 0 and with the constraint k,l > 1 in case e; = 1.
Finally, for P € CH*Y(A,V : B,Ep) (Q1,..-,Qn) = P(Q1,...,Qy) is Lipschitz on
bounded sets of Comp~ (U, V,C*(A,U : B, Ep)) with corresponding statements on
all other spaces in adding to the P variable only 1 more derivative to | and to o.
Moreover, the Lipschitz property is uniform on bounded sets for P in the space it
can be taken.

Although the case o € [1,max(0,] — 1)] is not needed in this paper, it can be
treated similarly but this is left to the reader.

Proof. Note first that for composition on Comp~ we can extend the first defini-
tion of composition since then we have approximate @ € «(B)™ with Q(X) € V.
For all extension to Comp we use the second definition since we can start from
P e BA{Xy,....,Xn; Ep,ST,C} by density in the corresponding spaces. As we will
see, we will always extend first in @), and for P fixed as above this extension can
be done with V' = A%, using Comp(U, A%, C) = Comp~ (U, A%, C) (since A% open
and using compatibility with the topology of considered C') and then restrict this
first extension to our space Comp(U,V,C) C Comp(U, A%, C). We have to esti-
mate various norms using (40) and (42) (and its variant which is the elementary
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differentiation of composition of functions):

Ay Oy P(Q1, Q)

k
- Z Z Z di((h,...,rs) {(afnl,,nl)(P))(le Qn)

=1 n1,....,n1 1< <...<i;=k

i1 i2—i1 k—ij_1
HOD L Quyd @z 05 Qu))]

(J15--2dy (Jig+1,-20in (Jig_q+1,--

IDDS

niyeon 1< <<=k V={{to,1<...<to,uq }»---{t1,1<...<t1,u, }EPart([1,s])}

>y X

M=101,..00m 1<j1 <...<Jm =g

(47)

l
Z |:[d}l(ol,...,om)(a(nl,...,nz)(P))(le Qn)
LePart([1,up]):L1,1=1,L _1,1<L. 1
djl duo—jmfl :|
o( X(Tfo,L1,1""’no,Lle))QOl” ) X(TtO’Lm’l).“7Tt0’Lm‘u,0—jm71))QO"L))

1 k—i;_
uy i1 ug -1
#(dX(Ttlylw--,'f’tl‘ul)8(1'17---,%1)62"1’ “.’dX(Ttl,la-~77”tl,ul) (jill+17~--7jk)in):|

(the sum over V runs over partitions of [1,s] (not ordered) and the sum over L =
{{Ll,l < ... < Ll,jl}v"' a{Lm—l,l < Lm71 < ... < Lmyj'm,_jm—l}})7L-_111 < L_,l
over partitions Part([1,ug]) of [1,ug] with the extra inequalities written order-
ing the blocks of the partitions by the index of the smallest element). Now for
P e ﬂT>sC,l)+1( %, B.(X : D,T,C)), one checks (using we started from one more
derivative on U than necessary, namely [ + 1 instead of ) that (Q1,...,Qn) —
P(Q1,...,Qy) is uniformly continuous (on balls) thus extends by uniform continu-
ity to Comp™ (U, V,CYY(A,U : B, Ep)).

Obviously, if one does not care about constants, we have from the previous
computation, a bound of the form

k+1
I1P(Q o @liser < O L) Pllsy (14 o 1Qilier)

thus P — P(Q1,...,Qy) is Lipschitz with value in the space continuous functions
with supremum norm on @; and thus extend to all P in the space CX!(A,V :
B, Ep). This concludes to the extension part. Note that one deduces from the
computations above the estimate of independent interest :

k+1-1

kLU max ||Q;lk1,u,>1
1=1,...,n

(48)

For the Lipschitz property, the only problematic term in the expression above

is the composition d%, TS)[(aéol ol)(P))(Q]-’ .oey @Qn). We note that under the
supplementary assumption of differentiability for P, it is always differentiable with

IPQ s @lsoros £ COL NPyt (1+ max 104
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differential
ST (O (PD(Q1s s Qu) e H).

3
The conclusion follows by the fundamental Theorem of calculus.

Now, the case of Cfr’l spaces is obvious because P(Q1,...,Qn) exactly comes
from the composition in Proposition B.29 and the discussion at the beginning of
the proof to deal with Comp. Ctkr”lc is also a variant.

We now turn to the spaces Cr:5%2 first with e, = 1. For P fixed and analytic,
the extension in ); is the same as before (using the estimate below); it remains to
prove the uniform Lipschitz property in P. Recall the basic formula (41) and since
in our case Zg, r(P)(Q1,....,Qn) € CHY A, U™ : B, Ep) we have the following
bound for p <1 :

sup 1Zi,rx) (P(Q1; s Qu))l ke p,um
RE(CHP(AU™1:B,Ep))

Z sup ”-@LS(X”)(Qj))”k,p,Um“

€(CEP(A,U™:B,Ep))
sup 1Zq;,r(x") (P)(Q1, -.Qn)lk,p,um
RE(CFP(A,UM1:B,Ep)),

(49)
where we took the variables S = %, r(x)(P)(Q1,.-.Qn), X" = (X', X) € U™, and
used (|22 poxn (@1, @) (@i)lk—1p,0m < ([ Zh5x) (@) lk—1,pm+1. And
from a variant with parameter of our previous estimates for the change of vari-
able (Q1(X),...,Qn(X), X’) (based on the fact that no additional sum related to
composition is involved for the variables X’ so that the constant C'(k—1, p, n) below
only involves the number of variables of X), the last term is bounded by

12q, rx) (P)(Q1, - Qu)llk.p.um

pt+k
< Ck,p, )| Zx; rix) (P)lkp,v xvm—1 <1 + , max (HQsz,p, )> .

This gives the expected Lipschitz bound in P (using U C V in takmg Q;(X) =X,)
for the part with cyclic gradients. The Lipschitz property in @ is dealt with as
before.

‘We now consider the case e = 0. In this case the norm becomes

-1 n
1Pl gtieno a1 ) = NePlksw + el (Av +8)(P)lleg, (ay + D2 D 1Zea (P ey
' p=0 i=1
and thus we can use the estimate (49) with R = 1 to establish the result.
We now turn to the case e5 = —1. In this case the norm becomes
1Pl gttt (03, 0) = 1Pt + all(Av +6v)(P)le, (a0 + Lizt ZZH% Mkp0r-
) p=0 i=1

The term Z;ZO St 121 (P)||kp,u is controlled by the similar term (with sum-
mation up to !) in (44) which gives the norm of @ (noting that ea V 1 = 1). The
other terms are treated as before.
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Finally, we consider the case e = 2. This time 1V €2 = 2 and the summation
over p goes up to [ — 1; thus we can use essentially the same estimate as in (49) in
this case.

It remains to deal with the case ¢, = 1 with 0o = 0. Based on (46)

(AR 4+ 0r)(P o Q) = (dox)P(Ep,o(x))-(Ar + 0r)(Q))
+ [Apgeog)#r) + 00000 #”) | (P)(ED,q(x))(Q(X)).

Hence one gets:

sup [(Ar + 0r)(P o Q)]

Cr (AU
IR o <1 )
2 ®2
[(D'NAD Y&(D/'NnAD )]
< sup I + 60 (Pl av) (e 1R 00 )
I REL| ch en <1 P
®2 ®2
[(D'NAD HY&(D/'nAD )
+ sup [(Ar +0r)(Q)llcs, (a0 Pll11,0-
IRFI o <1

®2
(D'NAD H&(D/NAD )
This enables the extension in P after extension in @ if k,I > 1 and gives the
Lipschitz property in ¢ on bounded sets as required (replacing o with o + 1 to
deal with the annoying new term). The case ¢; = —1 is possible because taking
R¥ =1,;(1®1)® (1 ® 1) recovers the Laplacian and using a general R on the P
variable enables to deal with the particular case (and remove the sup) for Q, Po Q@
variables. |

Corollary B.34. In the setting of the previous Lemma (in particular for U C
V' C AR vitraapp)s for any 1 > 1 (and k > 2 in any case with W) the map
(P,Q1,...,Qn) — P(Q1,...,Qn) also extends continuously consistently to

CHU(A,V : B,D) x Comp(U, V,(Ci'y, (AU : B, Ep))) — Cpy (AU : B, Ep),
CHTU(A,V : B, D) x Comp(U, V,(Cy, (A, U : B,Ep))) = Cily, (AU« B, Ep),
CL(A,V : B,D) x Comp(U,V,(CL(A,U : B,D))) — C.(A,U : B, D)

CEEYTYAV : B, Ep)xComp(U, V,(C*HY (A, U : B, D))) — CEX"Y(A,U : B, Ep),

Similarly as before if we require one more derivative in P in the | variable, one
gets the Lipschitz property on bounded sets in the space for Q.

Proof. This is a consequence of the previous result using the canonical maps

:CMU(AV : B, D) — cf;l(;;’g)(A,V : B,Ep), ColWw(AU : B,Ep) —

Cf;fg;gf(A, V :B,Ep), for k>2,1>1, and C*+1(A U : B,D) — ClE"Y (AU -
B, Ep), from Lemma B.32.

The last variant for C*(A,U : B, D) follows, since it is defined as a subspace
with equivalent norm with respect to the previous space (with [ = 0) and thus a
consequence of stability of analytic functions (without expectation) by composition.

O
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A routine computation shows that

n

Z 7(2;,e(P)(Ep x)(X)H;) = 1(eldx P(Ep x).(Hu, ..., Hy)]). (50)

i=1

Note that (50) extends for e = 1 to Cfr’f{fl’ez (A,U : B,Ep), X € U as soon as
[ >1.

We will need later the following consequence of Proposition B.31.

Let us define the first space introducing a conjugate variable assumption that
will be frequently used in the next subsection:

A’n

R,conj

= {X € ATFLi,UltTaApzﬂa’?(l b 1) € W*(X),’L = 17 ,’I’L}

Lemma B.35. Let U C A%

R,conj*
(1) Let V. € CHA, A} ., ¢ B, D). For g € B{Xy,...,X,, : Ep,S,C}, X =
(X1,..,Xn) € AR conjs & = 071 ®@ 1,6 = (&1,....&n) the conjugate variables

of X relative to Ep in presence of B, then
(6v(9))(Ex,p) = dg(Ex,p).(§ — 2V (X1, ..., Xn)),

and this extends to g € C’tkT’fV(A, U),k>21>1.
(2) Let k € {0,1,2,3},V € Ck+1(A, An : B,D). For any g € CEP?(AU -

R,conj
B,Ep), we have h = (Av +0v)(g) € C§* (A, UNAY, coni : B, Ep).(Z:g) €
CfTJrz’l(A,UﬂAR,Conj : B,Ep) and we have equality in Ctkr’o(A,UﬂAR_,wnj :

B, ED)

Dih = (Av + 0v)(Zig) — Z Pi,2,97;V.

j=1

Proof. (1) Because of the norm continuity of the various maps, by density, the
first assertion needs only to be checked for V= 0 and ¢ = P a monomial. By
the standard form of tensor products in extended Haagerup tensor products [MO05,
(2.4), (2.5)], one can even reduce terms in those tensor products to finite linear
combinations of products. Thus it suffices to check this on the algebra generated
by B, X1, ..., X, where this is then an easy consequence of the definition of conjugate
variables. The extension to Cfr’,lv (A,U),k > 2,1 > 1 is obvious by norm continuity
of the various maps.

(2) We first need to extend (14) to V' € CF (A, A}, .« B, D), stillfor g = P €
B.AX1,...,X, : Ep,R,C}. If one uses the notation after this formula extending
the definition of Ay + dy to these values of V' and notes from the formula (41)
for cyclic gradient of compositions above (extended beyond analytic functions since
[Avy(z) + 0vy(2)](P) is a non-commutative analytic function with expectation and
we can use the composition lemma as in the proof of Proposition 9), one gets the
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expected relation:

Zx. ([Avy(z) + Ovo()|(P)(X, 2V (X)) = (Zx.[Avy2) + Svy2)](P)) (X, 2V (X))

+ Z (@Xi,@zj ([AVO<Z)+5VO(Z>](P))@XJ'V(X))

j=1

= ([Avy(z) + 0vo(2)](Zx, P)) (X, 2V (X)) + 4

J

3 ('@X“%‘j (P))'@XJV(X)) )

1

where we used (14) for the extra variables Z to get

P2,([Ave(z) + v ))(P)) = [Aviz) + Ovo(2)|(Z2,P) + Y Dz,.9,p D2, V0(Z)
k=1
- 9P,

since Yz, P = 0 and similarly
Px.[Avi(2) + vy (2)](P) = [Avy(z) + 0vy(2)] Zx. (P),

since Ix, Vo = 0.

It now remains to extend the relation in P to apply it to our g.

For the second statement we check that the map g — (Ay + dy)(g) is bounded
for g analytic function with expectation between the spaces

Ay +0y 1 CERPHAU B, Ep) — CpS*  (A,UNAR conj1 * B, Ep),

where the identity has just been checked. We need to bound the k-th order
free difference quotient of h and Zh. We use the fact that Zg is controlled in
Ck*+21(A U : B,Ep) thus by closability we can apply a k-th order free difference
quotients to the relation for Zh (using Lemma B.32 for the term with second order
derivative on V). We can also apply a k-th order free difference quotient to the
formula for h, each time using the relation for dy (g) in terms of differential. The
bounds are now easy using for the term 90y the identity checked before in (1) in
any representation for dy and commutation of 9 and d. |

B.4. Free difference quotient with value in extended Haagerup tensor
products. We now consider closability properties of the free difference quotient
with value in the extended Haagerup tensor product.

For later use we consider variants of the spaces considered in subsection 3.3:
A% conjo = Ak .Uttrappr Ak.conj = Al conj1 With all conjugate variables relative to
B7 EDZ

A%,conj(l/Q) = {X € A?%,conjO’ :(1 ® 1) € LQ(W*(X))v’L = 17 ...,’I’L},
nM,coan = {X € ATI%’,,conjv az*(az*(l ® 1) ® 1) € W*(X)vl =1, ,TL}
They are motivated by the various cases in the next lemma:

Lemma B.36. Let M = W*(Xq,..., Xy, B) for (X1,...,X,) € (A, 7).
(1) If (X1,...,Xn) € (A,7) have conjugate variables (051 ® 1,...,071 ® 1) €
L?(M, 1) relative to B, Ep then the unbounded densely defined operator

eh
D
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—eh
18 weak-* closable with closure 6ie . Moreover, 0; ®p 1,1 ®p 0; are weak-*

h h_ eh
closable M?@M — M%) M?@) M, and the closures are derivations for the natural
D D D

eh eh J—
multiplication: forU e M @ M,V € D'NM @ M, with U,V € D(0; ®p 1 h)
D D

(resp. U,V € D(1®p 81-6}1)) so is U#V and
0,0 1" (U#V) = B @p 1 (U)#aV + U, @p 17 (V)

(resp. 1 ®p aieh(U#V) =1®p 3¢eh(U)#1V +U#1®p @‘eh(v))-

(2) If (X1,...,Xn) € (A,7) have conjugate variables (051 ® 1,...,071 ® 1) €
L*(M,T) then (1® Ep)0; extends to a bounded operator from M to L?(M),T)
or from L*(M,7) to L*(M, 7). If moreover (Xi,...,X,) € (A, T) have conju-
gates variables (071®1,...,051®1) € M and second order conjugate variables
(0f(1®071®1),...,05(1®0x1®1)) € M then (1 Ep)0; extends to a bounded
operator on L?(M,T).

(3) If (X1,..., Xn) € (A, T) have conjugate variables (071®1,...,0:1®1) € M and
second order conjugate variables (07(1® 0f1®1),...,0;,(1®0;1®1)) € M

(k+1)

eh
®
then the unbounded densely defined operator a;jlk M — M»p is weak-*

————eh
closable with closure 5‘{“17“_%6 and OF . LA(M,7) — L3(M,7)®p*+1) s

closable with closure df ;. .

Moreover, for k < 3 (resp. k < 2) the conclusions about the eh extension
and for k <2 (resp. k < 1) for the L? extension hold assuming only (0;1 ®
1,.,001®1) e M (resp. L*(M)).

Finally, if F € CE2(A, A, : B,Ep) and ||X;|| < R

R,conj(1p>1/2+1k>3/2+1k>4)
eh
then F(X) € D(9f

eh
i ) and OF (F(X) = [0f, .., ()I(X)
(4) If (X4, ..., X,) € (A, T) have conjugate variables (071®1,...,051®1) € M then
05 is a weak-* continuous bounded operator D(d; @p 1°h d1®p &-Dh) — M
and if moreover they have second order comjugate variables it extends to a

eh
bounded operator M @ M — L*(M).
D

Proof. (1) Using [Dabl5, Prop 14, Th15], we have a canonical weak-* continuous
eh

completely contractive map M @ M C L?*(M) ®p L*(M). Thus closability follows
D

from closability as a map valued in the Hilbert space L*(M) ®p L?*(M). The
densely defined adjoint is then given by Voiculescu’s formula B(Xy,...,X,) ®p
B(X1, ., Xn)y:

97 (a®pb) = adf (1@ 1)b— (1® Ep)(9;(a))b — a(Ep @ 1)(8;(b)).  (51)

This shows the first result. The reasoning for 9; ®p 1,1 ®p 0; is similar. To check
the derivation property it suffices to take bounded nets U, — U,V,, — V and
to use the weak-* continuity of .# . obtained in Proposition A.23 from Theorem
A.19.(2) in order to take the limit successively in n,v of 0; ®p 1eh(Un#Vy) =

B @p 1" (Ui + UntBi ©p 1 (V,)
(2) The second result is the relative variant of [Dab08, Remark 11, Lemma 12].
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(3) The third result then follows similarly from the first using also the second
result. It always suffices to show weak-* closability from M (or L?(M)) with value
an L? tensor product, for which one needs densely defined adjoints with value
LY(M) or L?(M) respectively.

We detail only the case £k = 2,3. From Voiculescu’s formula, for a,b,c,d €
B(Xjy,...,X,), one deduces:

(@2 )" (a®p b®p ) = 35, (a® b0}, (1® 1)c — bEp © 10, (c) — 1 @ Epdy (b)c])
— (00 1@ 1~ 1® Epd;, (a)][bd%(1® 1)e — b(Ep © 195, (c) — 1 ® Epdiy (b)c])
— a(ED X 1)8,‘1 [b@;(l X 1)0 — b(ED X 1)82‘2 (C) —-1® ED)(’)iz (b)C}

where the second line is in M and the third in L?(M) by the second point as soon
as the first order conjugate variables are in M (resp. both in L'(M) by the second
point as soon as the first order conjugate variables are in L?(M)). This gives the
various statements in case k = 2.

Likewise, we have :

(83 i1,i,) (@®p b®p c@p d)
— (00191 - 1@ Epd;, (a))(02 ,,)* (b® c® d) — a(Ep ©10;,)(92 ,,)* (b ® c® d)

1,12 11,12
and the first term is in L?(M), the second in L!(M) by the second point and what
we just proved, as soon as the first order conjugate variable are in M (resp. both
in L2(M) if we have first and second conjugate variables in M).

The higher order terms are then similar to this last case when we have both first
and second conjugate variables in M. All the higher adjoints are then valued in
L2(M) on basic tensors from B(Xq, ..., Xp,).

For the compatibility with C* spaces, the non-commutative analytic functionals
are clearly in the domain and the extension by density is straightforward (even
with norm instead of weak-* convergence which is used at the analytic function
level though).

(4) For the fourth statement the M valued extension only involves application
of canonical maps associated to Haagerup tensor product to mimic the formula
above. For the second part of the fourth statement, we extend each term of the

eh
formula above. First we know that a ®p b — a&;b can be extended to M ® M
D

since & € D' N M (see e.g. [Dab15, Lemma 43.(2)]). We next write down explicit
bounds for the last L?(M) valued extension. From the Cauchy-Schwarz inequality

for Hilbert modules one gets (3., a;&§b;)" Y25 a;&b; < || 325 ajaj[|(32; 0767 &ibs) so

that
1Y " ai&ibslls < 1> azailll&lz Db,
J J J
and moreover

1Y ai&bill® < 1D agaf Il o501
J J i
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Likewise we get,

1Y aj(Ep@)aib)l3 < 1Y aja;ll > II(Ep @ 1)(0:(b))13
J J J

1> " ajaslll(Ep @ Do [1b;113
J J

N

IN

and replacing b; by aj, a;, by b7 :
11 ® Ep)@i(a))bils < 11 b50;llll(Ep @ Da:l* D llasl3
J J J

giving the last claimed extension (using the canonical expression for elements in
the extended Haagerup product in [MO05]). O

We finally recall Voiculescu’s extension result for free products:

Lemma B.37. Assume that the conjugate variables to Xy, ..., X,, exist. Consider
the unique extension 0; on B(Xy,...,X,,St,t > 0) of the free difference quotient
derivations 0; satisfying the Leibniz rule and 0;(S;) = 0. Then 07 (181) = 95 (1®1).

Let U C A% o = Axp (D®W*(St(i),i =1,..,n,t > 0)), and recall that we

R,conj’
defined in subsection 2.5: Uy = {X € &/}, X € U} C A% ,,,;- Given any inclusion
i1 = Aset Uy ={X € &/},i(X) € U}. If U is invariant under trace preserving
isomorphisms (as will be the case for us), the space U/, does not depend on the

choice of the inclusion 7.
eh eh

n Q@ n
For all spaces with cyclic variants here, &/ B is replaced by .ZPc | with 4 =
W*(B, X1, ..., Xn,St,t > 0) so that Proposition B.28 can be applied to all the
variables X1, ..., X,,, S;.

B.5. Conditional expectations and C*! functions. Recall the spaces
C’Ifcr’,lv(A7 U:%B,D:), C’fr’l(A, U:%,D:.%,), etc. from subsection 2.5. They
are convenient spaces to define semigroups thanks to the following result. The
composition maps are variants of the previous subsection and the new conditional
expectations are based of the behaviour for extended Haagerup products of free
difference quotients of our previous Lemma B.36.

Proposition B.38. (1) Letk,l (k > | when required in the definition of the space)

and U C A}y conjo (resp. U C A% niijey f k21, resp. U C Aﬁ,co@jp if
k>3 resp. UC A conins if k>4) . Then Ep: B =Bxp (DoW*(S\",i=

1,...,n,t > 0)) = B gives rise to contractions
Eo: (CENAU : B,Ep: ), | leav) = (CEAU : B, Ep),|.
Eo: Cplsv (AU B,Ep « &) — Cpliv (AU « B, Ep),
Ey:Cply(AU:B,Ep: %) = Cul (AU :B,Ep), k=>2
and likewise for cyclic variants : C’tk,?,lc(A,U : B,Ep 1 ) — C’tk,f,lc(A,U :
B,Ep), CENU2(AU : B,Ep + &) — Cpliv® (AU« B,Ep), Cf, (AU -
PB,Ep : ) = Cfr’,lv7c(A,U : B,Ep). They are also contractions for the
seminorms ||.||k..u>1 and ”'||Cf;fV(A,U:=%”’ED:5’),Zl'

kU )
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We also have similarly for u > 0
E,:CH (AU :B,Ep:.7) - CE AU : B,Ep : .7,),
Ey:Cplisv(AU : B,Ep : &) — Cplisv (AU : B,Ep : ),
E,:Cply(AU: 2B,Ep: &) = Cply (AU : B,Ep : ),
such that Ego E, = Eg and Eg = E, 00, = Eyo0.,.
(2) Moreover, the extension result of Corollary B.84 is also wvalid for any U C
A’}{’COMO, V C Agwnjo giving composition maps o:

o: CE(A,V : B,D) x Comp(Ua, VA.Coly (AU : B,Ep : 7))
= Cp (AU B,Ep :.7),

o:CPY A,V : B,D) x Comp(Ua, V4,CEHAU : B,Ep : 7))
— CHYAU . B,Ep : .7)
(here and in the next also for (k,1) € IN?),
o: CREC2(A V. B, D) x Comp(Ua,V4,CEXOY AU - B, Ep - 7))
— CERO (AU B Ep: ),

0:CH(A,V : B,D) x Comp(Ua,V4,C*(AU : B,D :.7))
— CMAU:%8,D:.5),

and as in Lemma B.32 a map ' : C¥*Y (A, U : #,D : .¥)) — C’tljj,lw’c(A,U :
B.Ep: ), CHIFY AU B.D: 7)) = CE2 (AU : #,Ep : .5).
We also have (.) 0 8,,(.) =0.,((.) o (.)) on the above spaces.
(3) Finally, we also have a similar composition map o, for any u >0 for (k1) €
IN?
CENAV - B Ep : F54)) x Comp(Ua, Vi,CENAU : B,Ep : %))
— CEN AU - B,Ep : ),

CEEO2 (A V - B Ep : F54)) x Comp(U,V,(CEXOYN AU - B, Ep : 7))

— CERO (AU B, Ep : 7)),
€2 € {—1,0,1} and we have : (.)o[(.) oy ()] =[(-)o ()] oy () and Eg(.)o(.) =
Eu(0.()0u () : CENAU : B,Ep : 7)) x Comp(Ua, V4,CENAU : B,Ep :
7)) = CEY AU - B,Ep : ).

Proof. By density, it suffices to prove contractivity restricting to the polynomial
variant of the space Cl?’tr(U,B<X1,...,Xn : D,R)). But if P is in the partial
evaluation ng(Be{X1, ..., Xn, St;5 -y St,, — St,,_, + A, Ep,max[R, max;—s n 2(t; —
t;—1)]C})}, it is easy to see by definition of free semicircular variables with amal-
gamation that E4(P(Ep x)) = Q(Ep, x) for some @ € B{X;,...,X,, : B, Ep, R}.
Q@ is the same as P where Brownian variables are replaced by sums over formal
conditional expectations.
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More precisely, let P = €, »(P’), for
m € Mgk(Xl, s X, 21 = Stl, s Lo, = Stm — Stm_l,Y),(f S NCQ(Q]C)

eh
® |m|+1
with P/ € BP- , a typical monomial in the direct sum for analytic func-

tions with expectation in the component indexed by (m, o). Recall that Y vari-
ables and the pairing ¢ indicate the position of conditional expectations. Let
Tm © NC2(2k + |m|z) — NC(2k) the restriction to the indices of YV variables in
the monomial m(X; =1,..,X, = 1,21, ..., Zp,Y) and mp, ;.1 : NCo(2k + |m|z) —
NC(Im|(zym),i=1,...,m,k = 1,...,n the restriction to indices of the variables in
position (Z;)*®). Note that this is valued in pair partitions when (Z;)(*) variables
are only paired within themselves.

Then, the conditional expectation is obtained by replacing with pairings and
conditional expectations the brownian variables in an appropriate way so that we
define with for convenience tg = 0 :

m

Ep(P)=Q := Z €m(X1, o X 20 =Y Zm =Y, ),m (P') H(ti—tz'—1)
™ e NCQ((Q)k +1mlz) i=1

o
Tom,i k() € NC2(\m|(Zi)(k>)

so that the relation above E4(P(Ep x)(X)) = (Eg(P))(Ep,x)(X),X € A} is
easy to check from the definition of free Brownian motion. Note that

(A +6a)(Eo(P)) = Eo((A+6a)(P)) (52)

(where of course A only applies on X; variables) since, using the definition in the
proof of Proposition B.31, both expressions correspond to having a supplementary
sum over pairs of X; variables giving a partition not crossing the previous ones and
replaced by a formal F.

Using relation (50) with e, H; in the smaller algebra A, one sees that for e € A,

Eal2i,e(P)(Ep,x(X)] = Z.(Q)(Ep,x (X)) (53)

and we can extend this directly to the cyclic gradient of Proposition B.30. For
e € B{Xy,....,X, : B,Ep, R} we have

EO[-@i,e(P)] = gi,e(EO(P))' (54)

Indeed, for e, P monomials, since e has no dependence in Sy’s, there is a bijection
between pairs of S;’s appearing in each monomial after and before applying Z; ..
Since cyclic permutations globally preserve the set of non-crossing partitions the
result is thus a combinatorial rewriting.

It thus remains to check contractivity estimates to extend Ejy to spaces of CF
functions. .

For X € U, P as before 9}(Q)(Ep x)(X) = 8£e [Q(Ep.x)(X)] by Lemma B.36
(we only use it when k > 1, the various conditions on U also when k > 4 comes
from this application), and by duality from Lemma B.37, one gets it equal to

—eh —-eh
Al [Ba(P(Ep x)(X))] = (ES*")(0 [(P(Ep.x)(X))]) and hence by functori-
ality of the Haagerup tensor product. we get:

185 (Eo(P)) (X))l yoennasrn < NBH(P) (X 4enpasn -

\m\zi/Q,
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Here it is crucial to note that for all cyclic variants that by Proposition A.24.(3)

if 8£Eh[(P(ED7X)(X))] is in a cyclic extended Haagerup tensor product, it remains
there after application of (EE"”‘ZH).

Likewise, the full differential commutes with conditional expectation (which is a
linear bounded map, we thus get the bound for all parts of the seminorm involving
free difference quotients and full differentials. = We thus proved contractivity on
C’f’r’l—spaces.

Since (Ay + 6y )(P) = (Ao +0a)(P) + dx P.(AV, ..., 2,V) the previous results
give (Ay + 0v)(EB(P)) = Eg((Ay + dv)(P)) so that since in this case k > 2,
the choice of the seminorm chosen with this term is compatible with contractivity.
The contractivity of the term with cyclic gradients is also easy with the previous
established commutation relation, so that one gets the stated contractivity on C’ﬁj,lv—
spaces. Obtaining multiplication maps is as easy as before in this context and by
arguments of stability of subspaces for C*-spaces.

The variant F,, and its relations are obvious. O

B.6. Regular change of variables for conjugate variables. The computation
of conjugate variables along change of variables we used to identify conjugate vari-
ables of our transport maps are explained in Lemma B.39 with the differentiation
along a path of such change of variables.

Let M = W*(Xq, ..., X, B) for (X1, ..., X,,) € (4, 7). We will soon assume those
variables have enough conjugate variables relative to D in presence of B.

Lemma B.39. Assume W*(B, X, ..., X)) = M is such that X — (ep, X#ep) is
a trace onD'ﬁM%IM.
Let (X1,...,Xn) g U’ C AS conj» S > 0 and thus have conjugates variables (071®
1,..,051®1) € M" relative to B, Ep. Take F = F* € (Cf'(A,U"))", with k > 2.
Then (Y1,..,Y,) = F(X4,...,X,) have conjugate variables in M as soon as
11 — fF”Mn(M%SM) < 1, with ( fF);; = 0;xY;. Moreover, we have, setting

D,c

C(F) = ==z

eh ’
Mp(M ® M)
D,c

195yt @ 1) < C(E)|o5L @ 1]+ C(E) | Y lol(F Flijllmoamnn | D 10i1 @ 1)

k#j k#j
2 ®pe ® 77°h
+O(F) > [1€0€ @p O @p 1907 (o[(LF F)im])ll - e -
k,l,m € [1,n] MD

(e;m) € {(1,0), (0, 1)}

Proof. This proof is a variant relative to D of Lemma 3.1 in [GS12].
Take P € B(Xi,...,Xn,D,R,C), R > max(S,supxcy [|[Fi(X)]|), then P(Y)
satisfies the natural extension of formula (45) from the proof of Lemma B.33 and

eh
so we get the equation in D' N M ® M:
D

n

0ixP(Y) = (9;(P)(Y)#0; xY;.

Jj=1
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Note that from the assumption on (7 F);; = 0; xY;, one deduces that #F is
h
invertible in M, (M ® M ) so that one gets:
D,c

Zajxp #(FF) i

Thus applying the weak-* continuity of Theorem A.19.(2) to introduce Ep. (and
then remove it in the next-to-last line), the assumed traciality and applying (36)

to X =[(ZF)"'5;,Y = Ep(9;x P(Y)), we get:

(ep, Ep/(9; x P(Y))#[(# F)™'Ji#ten)

NIE

(ep, (0:i(P))(Y)#ep) =

<.
Il
—

I
NE

T(((FF)~5)" Ep[9;,x P(Y))

<.
Il
—

I
NIE

([(F )5 #ep, Ep [0 x P(Y))#ep)

<.
Il
—

2

((FF) ") #en, Tx - (PY))).

I
NIE

<.
I
—

Thus if we check that ([(_Z F)~']};)#ep € D(aj,x*) we will deduce the existence
of the conjugate variable and the equality

6 ®D 1 Zan }]z)#eD}
Note that in any representation with X € U as above
Fox i (X) = [(0ix (((FD)X) = [(05.x («(F))(X) = (05.x ((F))](X)* = B F; (X))

eh

where the last % is the one of M ® M, and one uses natural properties of evaluation
D,c

extended using the one on polynomials since X € Ag ;14,4 4pp-

h
Now, since ( ZF);; € M ® M one can note that (o(_ZF)i;) is well defined in
D,c

D'n M%M and (JZF);; =o[( FF);] = [o((FF)i;)](X) and thus from Lemma

B.36.(3), the assumption o((_#F);;) € D(0x ® ™ 01s 8k°h), Neumann series
and from the derivation property in (1) of the same Lemma, so does (0(/¢F)):J1
and for instance, one gets as expected

Bl [(0(FF)5] ==Y (0 FF)N#B @1 (0(F F)im)#2(0( 7 F)),h).
lm

Thus from part (4) of the same Lemma, one gets that 0}y (1 ®p 1) exists and is
in M and the expected bound easily follows from the proof of this statement giving
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the appropriate extension of Voiculescu’s formula. Only note that for j # ¢

(o (7 ) 10)l#0;x"(1® 1)
co N-1
= D o (I F =)Vl o (I Pk J#lo( FF = 1)a]"#0; x* (1@ 1).
N=1n=0 k#i
(]

B.7. Various continuity properties. We start by checking the continuity in «a
of our various maps. Recall that A% /3 C A% , independently of « € [0, 1].

Lemma B.40. If we assume the Assumption of Lemma 6 with VW €
C*2(A2R : B,D),U C Al ss then X @ o= Xy(a) is continuous on [0,1] with
value C°([0,T),C*(A,U : B,D : .7)).

Proof. For the continuity in o of X, we have :
1 t
Xifa) - Xu(o') = —3 / Q[ DV — DV |(Xu()
0

- % /Ot du [/01 dBODVa (BX (@) + (1 — B)Xu(a’))} #[Xu(a) = Xu(a)]

Using the argument in Lemma 4 with 02V, (X,,) replaced by

[ /01 dBODVa(BX () + (1 — B) Xu(o/))] > eld,

with the positivity coming since our notion of positivity is a closed convex cone,
one gets:

1Xe(c) = Xi (@] < 6_“/2/0 due“‘“/z(z I[Z:iVa = ZiVar ) (Xula)]*)1/?

This converges uniformly on [0,7] to 0 when o — « using the corresponding
continuity of V.

Similarly, one gets bounds inductively using (24) in decomposing the higher order
term

0; DV (Xu(Q)H(OG, ... sy X (@) = 05 Ve (X)) #(8; X{(a))

(J15-20k) (J15--dk)
= (0, DV — 0; DV ) (X)) #(f;, )X P ()

+ 105D Var (Xu(@) = 0, DiVar (Xu(@))J#(D(, . sy X (@)
+ (9 2iVer (X (@) # O, iy X (@) = (B, X (@)
The last line is treated by Lemma 4, the first line and lower order terms tend to
zero uniformly on compacta by continuity of a +— V,, or inductively, in the second
line (and corresponding terms for lower order terms) , V,, is approximated (uni-
formly in «) by analytic functions to get a Lipschitz function, and use the previous
bound on || X¢(a) — X;(a/)||. Note that the Lipschitz property could have been
treated by explicit bounds on derivatives except for the lowest order term having
highest derivative in V', namely k 4+ 2, for which it is crucial that our definition of
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Ck*2 implies uniform continuity of the highest derivative via uniform approxima-
tion by analytic functions as explained. This concludes the uniform convergence
statement in «. O

We also obtain the corresponding result for semigroups.

Lemma B.41. If we assume the Assumption of Proposition 8 with V.W €
CkIF2(A2R : B,D) (k € {2,3},1 > 1) then for every T > 0 each P €
Cﬁ‘*‘l(A,A%mnj :B,Ep), ¢/ (P): aw ¥ (P) is continuous on [0,1] with value

CO([0,T], Cly (A, A g con; © BLED)).

k,l . _ kil .
Proof. Recall that CtT,Vo(A’A;L%/B,conj : B,Ep) = Ctr,v(,(AvA?a/s,conj : B,Ep)
with equivalent norms for & > 2,1 > 1. The result follows by composing the
composition map and expectations of Proposition B.38 with our previous Lemma
since for X € A% 5 .0 Xe(X) € AR ., for all t so that the composition condition

is satisfied. 0

B.8. Conjugate variables along free SDE’s. The following result is an adap-
tation in free probability of (a special case of) Lemma 4.2 in [RT02], except that
we have to use the It6 Formula for the proof instead of the Girsanov Theorem,
which is not (yet) available in free probability. This is also an extension to our new
classes of C? functions of a result first explained by the first author in [Dab10a].

Proposition B.42. Assume the Assumption of Proposition 5(a) with V €
C4(A,R: B, D). Assume moreover that, for M = W*(B, X¢)*p(D@W*(S;,t > 0),

h
T = {ep,.#ep) is a trace on D'NM @M as in the conclusion of Theorem A.20.(3)
D

and Proposition A.24.(2).
Consider on [0,T] the unique solution obtained there:

1 t
Xt(Xo) =Xo+S5; — 5/ @V(Xu(Xo))du
0

Then X}, ..., X[ have bounded conjugate variables in presence of B relative Ep,
and the corresponding i-th conjugate variable is given by

| . , St 1
& = SEwex1x <X§ - X —/ dt 2F@iV(th7"'7th)>+2@’iV(Xsla e X&),
0

where for W € C2(A, R : B, D) we defined:Fy (X) = $ Ay (W)(X).

Proof. Step 1: Obtaining a differential equation from It6 formula.

We have to prove that 7({(1 ®p 1,0P(X}, ..., X)) = 7(&P(X}, ..., X))
for an ordinary B-non-commutative polynomial P (in the algebra generated by
B, X1,...,X,). Let us write 05 the following (Malliavin) Derivation operator de-
fined on B-non-commutative polynomials in X!’s (as usual one can assume them
algebraically free without loss of generality):

Os(P(X, e X)) = Y (00 (P)) (XL, s XI)(5 A 85),

J
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where 0(;y is the B — Ep-free difference quotient in the j-th variable for P (send-
ing X;’ to (1 ®p 1);; having only an i;-th non-zero component). Obviously,
§:P(X}, ..., X)) =tdP(X}, ..., X") so that it suffices to show:

T({(1®p 1)i, 0, P(XJ, ..., X)) — T(ELPs) = 0,

for 2t = X! — X{ — [y dt $Fg,v(X}, ..., X") + $2;,V(X},...,X!), and any non-
commutative polynomial P, = P(X}, ..., X"). We will first prove using the Ito
formula a differential equation for the above differences.

Applying Itd’s formula, one gets (9; the ordinary difference quotient):

P =P(X}, ... X)) = P(X5, ..., X)) /ds Ay (P)(X), ..., XD
/8 LX) #dS,.
Let us write for short 8, = £ Ay (P)(X], ..., X1).

Thus, let us compute likewme

(Pt Xl Xo / dST _7@‘/( ))+BS(X;:_X8)+<1®DL8i(P)(Xsl,"'7X:)>B(X>)~

T(Ptt%V(Xt))/tdST(PS%V( )+ PysFo (XL, ., X7 + Bys DV (X))
0
+/0 dsr((@(P*)(Xsl,...,X?),@(s@iV(XS)»).
Thus
H(PE]) = / ds (r(B1) + 7((1 ©p 1,8(P)(X), ... X))

- dST<<a<P*><X;,...,X;l>,a<§v;<s7xs>>>>.

Using similarly It6’s formula on tensor products:

T((1®p 1);,6:P)) = /Ot dst({(1 @p 1), 0i(P)(Xs)) L2(B(X.).E0))
+ gr(<(1 ©p )i, (Ay @ 1+ 1@ Ay)IP(X,)))
= [ dor (1 80 0. 9P 8000
+7((1®p 1)i, 0585 — Zaj(P(Xs))#%%@jV(Xsm
J
where we used the elementary relation applied to a polynomial P:

(Ay @1+1® Ay)I() = 0Ay () Za ()H#OD,V.
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But of course we can use the fundamental property for cyclic gradients
0,2;V(Xs) = p(0; 2;V(Xs)) = (0,2;V(Xs))* with the rotation pla®@b) =bRQa
extended to cyclic Haagerup tensor products and using V = V*. Thus, one gets:

1®p1) l,Za N#38.2;V (X ZST 1®p1),0;(P(X.)#(0;2:;V (X

Rewritten with the notation of Theorem A.17—A.20 so that one can use our tra-
ciality assumption, this is

> slep, 0 (P(Xo)#(0; 2V (X,)) #ep)
:] > slep, Bpr(0;(P(Xo)#(0; 75V (X,)) " #ep)
- Ej: s(ep, (0;2iV(Xs)) " #Ep (9;(P(X5)))#ep)
_Z (0; 2V (Xs))#ten, 0;(P(X.))#ten)

Note that we introduced in the second line the projection on the commutant using
the weak-* continuity obtained in Theorem A.19.(2). In the next-to-last line, after
using traciality, we used (36). In the last line we removed the conditional expec-
tation using the fact that (0;2;V(X,))#ep commutes with D. Finally, we have
(0;(P(Xs))#ep)” = 0;(P*(Xs))#ep and [(0; 2V (Xs))#ep]™ = (0;2:V(Xs))#ep
since V = V* and thus

((0;2:V (X)) #ep, 0;(P(Xs))#tep) = (0;(P*(Xs))#ten, (0; 2V (Xs))#ep).-

‘We have thus obtained:

(1 ®p 1)i,5tP(Xt17...7Xt")>):/O dst((1®p 1,0, P(X}, ..., X™)))

+ / dst({(1®p 1)i,6,8.)) — / dsT((O(P7) (XY, ... X7),8,Vi(s, X))

Summing up, we have obtained our “differential equation”:
t
T(PED)—7((8i, 0 P(X{s s X{)) Bx.)) = / ds T(Bs25)—7((S:, 0s8s) B(x.))- (55)
0

Step 2: Case with V € B(X3,...,X,, : D, R,C) of finite degree p+ 1 (i.e. “usual”
polynomial with all terms in the £* direct sum of order higher than p+2 vanishing).
Let us write

My :=nmax |2V px, .. x,:010) = En.

Let p be the maximum degree of Z;V. Let R > supc(o 7y, | X{-

Let M, := M, + 27”L(Rlp :)2 = Dn. Finally, let 6 a time such that for all
monomials P, all t < 6 we have already established what we want (for instance at
the beginning 0 = 0):

T(PE]) — 7((Si, 0 P(X [, s X)) B(x,y) = 0.

)
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Let us show quickly using (55) that for P monomial of degree less than n = kp
(with coefficient in extended Haagerup norm less than 1 i.e. of norm less that 1 in
B(X1,..,X, : D,1,C)), we have for t > 0 (since by definition the left hand side is
0 before) :

T(PEL) — 7((Si, 0 P(X ]y ooy X)) Bex.)

_ = )N C + pT)F!(k + 21)2+1

- 21(“)2 RFDP —; A(t, k),

where C = supp 71||Z}|| < oo and F = max (Rp—jl,Ep).

We prove this by induction on [. Initialization at [ = 0 is obvious by boundedness
of Xy by R > 1.

To prove induction step, note that 8, = Ay (P)(X}, ..., XI) contain two types
of terms. The term coming from the first order part is a finite sum monomials of
degree less than (k+1)p. Each of these terms will be bounded by the induction As-
sumption at level I by A;(s,k+ 1) times the norm of the coefficient in the extended
Haagerup tensor product, which all sums up to max; [|Z;V | p(x,,...x.:D,1,0) <
M, /n = E. Finally the number of sums due to derivation can always be crudely
bounded by n = kp, the degree of P. We thus obtain a bound FkA;(s,k + 1) for
this first order term.

The other terms come from the second order derivative, we have of course at
most n(n — 1)/2 pairs of terms selected by the derivative, but we have to pay
attention to their degrees. For sure we have at most n terms with a given space
I < n between the two 1 ® 1 inserted by the derivative, in that case the degree is at
most kp — [ after taking the conditional expectation Fp, and we have a bound by
R! to bound the coefficient induced by this conditional expectation (corresponding
to the variables X inside, below Ep). Let us gather terms by taking only into
account the integer part i of [/p. We have thus at most np terms with such an
integer part, all of degree at most (k — i)p, with R plus a factor 1, R, ..., RP~1
depending of the exact degree in the group. At the end one obtains:

T(PE)) — 7((Si, 0. P(X}, ... X))
) RP —1

¢ k
< / dsA;(s, k + 1)Fk+ZAl(s,i)npRp(k7
¢ i=0

t k
< / dsAi(s, k+1)Fk+ Y Ai(s,i)kRPF ) FRP.
6 i=0
We have just used our induction Assumption and we reorder a bit our expression
to factorize powers of R and replace A4; by its value to get:
T(BE)) = 7({Si, 6 P(X{, oo, XT')) Bix))

EOA(s k1) o= Al(s,i)
p(k+1) 1\9, 1\9,
< FkR / ds =y > i

0
t k+1 1 1
(k+1+1) , ar41 (8 = 0)(C +pT)F

< FERP /9 ds E (1+20) SITIE .

=0
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We can now use comparison of the integral to a Riemann sum:

k41 k1421 2042
, , k+2+20)

2[ 2l+1< 2l+1<( )
;OJF )< ; = 2+ 2

Computing the integral, we have therefore proved:
T(PE)) — 7((Si, 6. P(X} s oy X)) (X))

k42420242 (t — §)*(C + pT) F!
20+ 2 20T+ 1)

< FkRp(+1+0) ( < Ay (t, k).

Let us finally estimate
((k/21) +1)*+1 ()

Ay(t, k) = 2(C + pT)R*? BE

(4RPF(t — 0)/2)".

Note that
((k/20) 4 1)2F < exp((21 + 1)k/21) < exp 2k
and by Stirling’s formula
W)*/(1)? ~ e* /(2x1)
we conclude that as soon as 4RPF(t — 0)e?/2 < 1, i.e. when t — 0 < 2/e?4RPF

(independent of k), A;(t,k) —i— o0 0, so that one easily deduces by induction one
can take 6 =T

Step 3: Case of general V.

Take a sequence V;, as in step 2 converging to V in C24(A, R : B, D). Note that we
can assume the V,, to be (¢/, R) h-convex for some ¢’ < ¢. Let us write X¢(V},), X (V)
the solutions given by Proposition 5, and call Z;(V},),Z;(V') the formulas from step
(1) and let us show that

sup max([|X; (Vi) = Xe(V)[, [Z¢(Va) = Ee(V)]) = nooe O.
te[0,T)

This is roughly the same argument as in the previous subsection for continuity
in a. Note that

XVa) = XuV) = / [PV, — DVI(Xu(V))

_;Aqujw&%@wX4wa1—mXAW4#MMWJ—XAWL

Using the argument in Lemma 4 with 02V, (X,,) replaced by

[/01 dBoDV, (BXu (V) + (1 — ﬁ)Xu(V))} > (1,

with the positivity coming since our notion of positivity is a closed convex cone,
one gets:

X,V = X)) < [ aue 2 [V, - 2V 2

This converges uniformly on [0, T] to 0 when n — oo using the corresponding limit
V., — V and the a priori bounds on the norm of the process X, (V) on [0,T].
(Doing this for small T first, this in particular ensures a bound for X;(V;,) for ¢
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huge enough without assuming the assumption of Proposition 5(b) for V,,.) The
convergence of Z(V},) is then straightforward by the explicit formula. We can then
take the limit in the conjugate variable equation to conclude. ([l

B.9. Examples of h-convex potentials. We first produce an elementary exam-
ple in 1 variable.

Lemma B.43. If v(Xy) = pX + 25 105 ¢ cxy,.,x) c
B.(X1,...X,;D,R,C) for v > 0,)\? < 8uv/3, then for any B,D, v = v* €
C2(A,R: B, D) is (0, R)-convex for any R.
Proof. From the computation on algebraic tensor products inside cyclic ten-
sor products, in the proof of Proposition A.24, it is clear that v(X;) €
B.(Xy,...,X,; D, R,C). Note that
H(Xl) = 31.@11)

= Y XI91+ X1 X1+10XH)+AX1@1+10 X)) +pul®1

AN\ v v A\ v A 2
= <X1+2y> ®2+2®<X1+2y> +2<X1®1+1®X1+2V1®1>

3\
+ (u - > 1®1.
8v
Thus let B C (M, 1), fix X1 = X7 € D' N M and let us observe that

e tH(X1) _ Z (—tv) e—t(yXf+AX1+u/2) (X{c ® X{c)e—t(lez+)\X1+u/2)

k!
k=0

h eh
belongs to M @ M C M ® M.
D D
Of course, the sum even converges in a projective tensor product, and we want
to estimate its norm. Recall that

M5 M € CBapar (D' 0 BULA(M)), BIX(M)) € CB(B(LX(M)), B(L*(M))

completely isometrically.
We now get an alternative integral formula. For convenience, we let

Y1=<X1+2’>>‘\/g.

Using Cauchy product formula of absolutely converging series, one gets:

o] A2 k
eftH(Xl) _ ei(ui%)teityfz [_tl/(Xl RI1+10 X, “FE) /2] eftY12
k!
k=0
[ I A
_ efwf%)t/ Py Z [ivVivo(X1 ®@1+1® X1 + Wﬂke*tYf
R P k!

ei(ui%ﬁ 2 2 A 2
_ / doe=° /267753/1 ot tVO'(X1®1+1®X1+g)€7tY1

Ver

322
67(”7 s )t 2 2, . N 2, . A
—0° /2 —tY "+ivViveo( X1+ —tY +ivitvo( X1+~

= —— doe 7 /2e=tY1 (X1t4y) © 17 Hivive(Xitgy)

Ver
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where the second line is obtained using moments of standard gaussian variables
(and Fubini Theorem). Using Hermite polynomials H, (z) = %6”2/2%6_”2/2
as orthonormal basis, and &; € L?(M), one obtains by using the orthogonal decom-
position in L2(dv), dy(c) = e~ /2do /\/2x,

oo

(€1, e MHVITX1td gy = Z 0)(E1, en(X1)E2)

which yields

eftH(X1) *(l‘ Z X1 ®Cn Xl)

1 . N
Cn X)) =— doe™? /2Hn o e_tyl ‘H\/EU(XPF@).
(X1) Jon /]R (o)
Indeed, to make this identification in M ®.;, M = C By (K(L*(M), B(L*(M)))

(see [BP91] for the equality), we first identify the two sides after evaluation on a
finite rank operator, say in using the orthogonal decomposition recalled earlier

/ dy(o) (&, e YT HVIve(Xatan) gy (g; o= YTHIVIFT (Xt e )
R
= (6 (X)) € en(X)0)

Then, if both sides extend to compact operators, one obtains the claimed equality.
We already said the left hand side does (for instance by our previous bound on
et (X1) obtained from the series expansion) and the right hand side will by our
next bound giving the contractivity property.

Thus, for instance from [MO05], when p > 38%2:

—tH(X1) *
e O, < I3

But note that for £ € L2(M), with (€j);cIN an orthonormal basis of this space,
we first get using Parseval’s equality and the Tonelli-Fubini Theorem to switch the
sum over j:

/ d’y(o’)<e—tY12+i\/tT/a(X1+ﬁ)£’ e—ty12+i\/t70(xl+ﬁ)§>
- Z/IR dy(o) (e THIVIT X TE ¢y (o), eV HIVII(Xat ) g)

:ZZ|<€j’Cn(X1)§>|2
= ZZK@gACn(Xl ZHCn (X0)E)? = (€, ch (X1)"en(X1)E)
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where the third line is obtained by using Parseval’s equality again, this time on
L?(dy), and again the Fubini-Tonelli and Parseval’s equalities. Thus, since v > 0:

2 2 2, .
doe=° /2(e—tY1 +z\/tu0'(X1+ﬁ))*e—tY1 +7A/tlJO’(X1+ﬁ

D en(X1) en(X1)

n=0

1
v 2T /IR
1 2 2
- = doe=° /26—2tY1
V2T /IR

is a contraction and so is Y~ ¢n(X1)c, (X1)*. Finally, from (35), it is easy to see
by truncating the series that (e *7(X1)) = ¢=t#(X1) and this gives:

[le7 D) <1,
M ® M
D,c

O

In order to deduce a more general example, we need to describe more explicitly

e¢h
the norm structure we put on M, (M ® M) to obtain various contractive maps.

,C

Lemma B.44. There is a completely contractive map

o ch 2 ® m 9 %]m
2([L,n],M @ M) — CB£*([1,n], MP< ), ¢2([1,n], MP-
D,c

eh

)

corresponding to action by diagonal matrices. FEspecially, there is a contractive

eh eh
diagonal embedding (Koo([[l,n]],Mg@ M)) — M"(Mj(jg) M).

eh

X m
Proof. First recall that in [P], the operator space structure of ¢2([1,n], M P )

eh eh
is described as the interpolation of £>°([1,n]) @min MDQ?Cm =(>°([1,n]) @4 Mgcm
eh eh
and El([[l,n]])(éMgcm = 0([1,n]) @ M’?icm (the first equality comes from the
fact both operator space product are injective and [ER00, Lemma 9.2.4, Prop
9.3.1] that imply the same result with ¢>°([1,n]) replaced by M, (C), the second
equality reduces to the first one after taking duals, the computation of dual of the
Haagerup tensor product is known in this case from [ERO00, Cor 9.4.8] and for the
projective tensor product see [ERO00, Prop 8.1.2, 8.1.8]). From the interpolation
result of Haagerup tensor products [P, Th 5.22], one deduces the complete isometry

eh eh
AL, M5 = 2, ([Ln]) @4 MO
We will start from this description to get our map. From the universal prop-
erty of the projective tensor product (and agreement of Haagerup and extended
Haagerup tensor products in the finite dimensional case), it suffices to get a canon-
ical completely contractive map

eh eh

%‘2 —~ Q@ m ® m
(€ ([1,n]) @en M2 )5, ([1,1]) @er, MPe ) = £ ([1,n]) @en MP .
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To reach this goal, we compose several known complete contractions. First we start
with the shuffle map from [Dab15, Lemma 8]:

eh

(€>=([1, n]) @n ME?CQ)@(Z?,,]([[I, n]) @n MP< )

— L ([1,n]) @ <(€OO([[1, n]) ®n ML?CQ)®M§Cm>

2 0o %]2/\ %‘m
— 02, ([1,n]) @p £2°([1,n]) @p | M= @MP> | .

We compose this map with a canonical multiplication map ¢2, ([1,n]) ®n
>([1,n]) — £2,([1,n]). It is obtained by interpolation from the map ¢>°([1,n])®p
2([1,n]) — ¢%([1,n]) from [BLM, 3.1.3, Prop 3.1.7] and the symmetric map
2([1,n]) ®n £°([1,n]) — €3([1,n]) which we interpolate after noticing that
C([1,n]) ®n =([1,n]) = C2([1,n]) ®min £2°([1,n]) = £2°([1, n]) @min L2([1,n]) =
Z‘X’([[l n]) ®n £2([1,n]). This multiplication of course gives the expected diagonal
matrix action.

eh eh eh

® 2 ®m ® m
The multiplication map we finally want M?-c Q MPc — MP< isof course the
one we built in Proposition A.24.(1). By density of the algebraic tensor product,
it suffices to get a contractivity on basic tensors. Since the target norm is induced
form M®esnep™ it suffices to get the contractivity with this target space. This
decomposes in various contractivity for each flip (using the fonctoriality of nuclear

eh eh eh

®2 ~ ®@m ®@m
tensor product). We thus have to see that # : M2 (D' N M» ) — M> and

Sm &2 gm . o
#i:Mp (D' NMp ) — Mp are complete contractions. This is obvious from
complete contractivity of composition of C'B maps. (]

Lemma B.45. Let A = (4;,) € M, (ﬂ%) a positive matm’x with A > cI,, and
(Xij) € My i (IR), p € [0, 00, vj(x) = vj2% p) +UJ3 5 T VAT for Vja > 0,07 53 S
8Vj721/j74/3. Let

E:uﬂg<§:MjX>—%§:fLrYX

t,j=1
Then,for any B,D, V(X) € C(Xy,...,X,) C Be(X1,....X,;; D,R,C), V = V* €
CS(A,R: B, D) is (¢, R)-h-convex for any R.

Moreover, let P = P* € Cluy,...,u,) a *-polynomial in unitary variables, and
define fore >0

V=1+X, ﬁ+Xn)
Vi-X, VA= X,

Then, for any R > 0 and any ¢ € [0,c), there exists eg > 0 so that for e €
[—er,er], W € CS(A,R: B, D) is (¢, R) h-convez.

V(X) = V(X) +eP(

Proof. From the additivity of positivity, the positivity elements form a cone, so
that it suffices to consider k£ = 1 and even to show that W(X) = vy (31, Xi1X))
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is (0,R) convex. But with the notation of the previous proof

81_@JW = Aj,lAi,lH(Z )\z,le)
i=1
Let us call P = ), )\12’1 > 0. From the previous proof of Lemma B.43, one
deduces [|e (=i ’\i~1xi)||Meh y S 1. Let us fix an orthogonal matrix O with
®
D,c
Oj1 = A\j1/VP and write the matrix A = (9;2,W);; as A = O(O*A0)O*.
Note that (O*AO);; = 0 except for (0*AO)1,1 = PH(> ;_; Ai1X;). Thus e 4 =
* eh
Oe 10" 40)0* " To conclude, note that O, O* are contractions in M,(M & M)
D,c
® ®
since their action coincides with O°®1 on £2([1,n], M= ) = %, ([1,n]) @, MP .
Finally, e *(©"40) = Diag(etPH(XiziAi1Xi) 1 1) and each term in the diag-
onal matrix is a contraction, so that one can apply Lemma B.44 to conclude to
Heft(O*AO)H o <1.

We finally consider the case where the polynomial is pertubed. In order to
check that V € CS(A, R : B, D), since this space is obviously an algebra, it suffices
to check Pi(X) = nﬁ%xl € CS5(A,R : B,D) for t > 0. For t large enough, a
geometric series converging in C%(A, R : B, D) shows this. The set of such ¢ is
thus non-empty, it is easy to check that CS(A, R : B, D) has an equivalent Banach
algebra norm, then, a Neumann series gives the set of ¢ is open. It remains to see
it is closed in ]0, 0o to get the result by connectivity. An easy computation shows
that || 760,47 < 22:0 1/tF*+1 as soon as we showed P is in the space above, since

,,,,,

Pi(X1) — Py(X1) = —Py(X1)(t — s)vV/—1Ps(X1)

one easily gets the convergence ||, — Pi[]6,0,47 — 0 (in getting a Cauchy sequence

and identifying the limit with P;). It only remains to check the stated h-convexity.

It suffices to take the coefficients of P small enough so that b = (9;Z;(V — V),

has a norm |[b|| := ||b]] en < cand in this case ¢ = ¢ — ||b|| is appropriate.
M (M © M)

c

Indeed, let a = (0;2;(V));.i, we can use the Dyson series:

Sk—
0

0 t S1 1
e—t(a+b) _ e—ta_’_Z/ dsy / dsg - - - / dske—(t—sl)abe—(81—sz)a . be_(Sk—l—Sk)abe—Ska’
k=170 0

and one obtains:

Sk—
0

o0 t S1 1
\|e*t<a+b>\|M e ge*t%Z/ dsl/ d52~~/ dsge™ | [b||*F = et 1ol
o k=170 0

O

It remains to check the other assumptions on V. We need variants of results
from [GMS06, Th 3.4] and [GS09].
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Proposition B.46. Let V be of the form of V in Lemma B.45, and (¢, R) h-
convex for all R > 0. Consider the probability on (My(C)so)™ given (for some
normalization constant Zy n) by :

1
76—NTT(V(X1w,Xn))dLeb(MN((c)sa)n (dX)

dx) =
pv,n (dz) Zvn

Let AN, ..., AN of law pv. N (on a same probability space), we have a constant C > 0
such that almost surely:

lim sup max || AY || < C,

N—o00 ?

and for K € IN*
. 1
lim sup EHV,N (1{"AfleOOZC}NTT((AiVJ)QK)) =0. (56)
N— 00 ’
Moreover, for any non-commutative polynomial P € C(X) ®q4 C(X)
. 1 1
ngnoo EHV,N(W(TT X TT)(P(Al, veny Ak)) — m [(ENV,N o TT) ® (E,UV,N o TT)} (P) =0.

Proof. The proof is identical to [GMS06, Th 3.4] since Xi,...,X, +—
TrV(Xy,...,X,) is convex, with Hessian bounded below by ¢, on the space of
Hermitian matrices. In fact, one can check that any h-convex function V satisfies
this property. O

Theorem B.47. Let V be of the form of V in Lemma B.45, and (0, R) h-convex
for all R. Consider, the law absolutely continuous with respect to the law Pgn of

GUE GN: 1
7€—NTr(V(X1,..,Xn,))dPGN (X).

dpy,n(X) = Zon

Then E,., \ © %Tr converges in law to a tracial state Ty which is the law of self-
adjoint variables X (V) (of norm bounded by some R) and the unique solution with

this property to the equation (SDvy ), for G(X) =1x(V):
VP € C(Xy, ..., Xn), (v @ 7v)(0x,(P)) = 7v(X;P) + 7v(D;VP).

Moreover, there is a solution on IRy given by Proposition 5 with potential Vo +V
and Ty is the unique stationary R¥-embeddable trace for this free SDE.

Note that the R¥-embeddability assumption in the uniqueness is not really nec-
essary, but we stick to that case in order to be consistent and to use our previous
setting.

Proof. Step 1: Defining limit variables in a von Neumann algebra ultraproduct.
Consider a non-principal ultrafilter w on IN and the tracial von Neumann algebra
ultraproducts £ = L?(My(L>®(uy,n))*, M*® = My(L®(uy,n))*. Considering
AN ..., AN the canonical hermitian variables in My (L% (uy.n)), we know from (56)
that ||AfV1{\|A§VH§C}—AfV||2 — 0so that X¥ = (AN)v = (AﬁVl{HAngISC})“’ € Mv.
We thus also fix BY = Aivl{HAf"HSC}'
This gives a tracial state 7x. Let us check that any such state satisfies (SDy).

Step 2: Showing (SDy ).
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As in [GMSO06], we use an integration by parts formula on py x which gives
VP € C<X1, ...,Xm>:

1 1
o <NTT(A5.VP(A§V, o AN)) A TH(NY o GUAY, o AN)P(AY .. Ag>)>

1 1
= EHV,N ((NTT ® NTT)(a)(,P)(A{Va ,A%))

and the second concentration result in Proposition B.46 implies that the right hand
side converges when N — w to (Tx« @ 7x«)(0;(P)). One thus obtains the relation
in taking of limit to w of the integration by parts relation. Moreover, note that this
implies Txw~ has finite Fisher information.

Step 3: Properties and use of the SDE.
Let Xo = X“ or a R¥-embeddable solution of (SDy ), which ensures X, €
A% /3, App in the scalar case B = C. The application of our Proposition 5 thus gives

a unique solution X;(Xy) on [0, co[ solving

1 [t 1 [t
X(Xo) = Xo — 5/ DV (X,(Xo))ds — 5/ X4(Xo)ds + S;.
0 0

Considering another solution starting at Y, one obtains:
[1X:(Xo) — Xe(Yo)l[3 < e[| X0 — Yol[3.

Then exponential decay implies that the laws 7y, (x~) and TX, (X' e arbitrarily
close for t — oo and since they are equal to 7x« and 7y.s by stationarity, one
deduces that X“ have the same law for any ultrafilter. Similarly, (SDy ) has a
unique R“-embeddable solution and the exponential decay implies a stationary
state for the SDE is unique too.

Step 4: Conclusion on the limit of £, ; o7.

The law E,,, , o %Tr is close to E,,, y oTpn~ for N large enough and this second
law lies in the compact set Sf% (tracial state space of the universal free product
C([-C,C])*™ with the weak-* topology) and from the result on ultrafilter limits
the sequence has a unique limit point there (any such limit point being a 7x«). We

thus deduce by compactness the claimed convergence. O

Corollary B.48. Let V,V+W be of the form of V in Lemma B.45, and thus (¢, R)
h-convez for all R and some ¢ > 0. Then they satisfy Assumption 4.

Proof. The application of the previous Theorem gives existence of solution of
(SDy,),a € [0,1] which is R“-embeddable or equivalently L(F.)“-embeddable
which is a reformulation of A%, 17,4, 0 the case B = C. Everything else comes
from Lemma B.45 and stability of (¢, R) h-convexity under taking convex combi-
nations. (]
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