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A MODERN GAUSS-MARKOV THEOREM

BRUCE E. HANSEN

Department of Economics, University of Wisconsin

This paper presents finite-sample efficiency bounds for the core econometric prob-
lem of estimation of linear regression coefficients. We show that the classical Gauss—
Markov theorem can be restated omitting the unnatural restriction to linear estimators,
without adding any extra conditions. Our results are lower bounds on the variances of
unbiased estimators. These lower bounds correspond to the variances of the the least
squares estimator and the generalized least squares estimator, depending on the as-
sumption on the error covariances. These results show that we can drop the label “lin-
ear estimator” from the pedagogy of the Gauss—Markov theorem. Instead of referring
to these estimators as BLUE, they can legitimately be called BUE (best unbiased esti-
mators).

KEYWORDS: Gauss-Markov, BLUE, efficient estimation, least squares, linear esti-
mators, unbiasedness.

1. INTRODUCTION

THREE CENTRAL RESULTS IN CORE ECONOMETRIC THEORY are BLUE, Gauss—Markov,
and Aitken’s. The BLUE theorem states that the best (minimum variance) linear unbi-
ased estimator of a population expectation is the sample mean. The Gauss—Markov theo-
rem states that in a linear homoskedastic regression model, the minimum variance linear
unbiased estimator of the regression coefficient is the least squares estimator. Aitken’s
generalization states that in a linear regression model with a general covariance matrix
structure, the minimum variance linear unbiased estimator is the generalized least squares
estimator. These results are straightforward to prove and interpret, and thus are taught
in introductory through advanced courses. The theory, however, has a gaping weakness.
The restriction to linear estimators is unnatural. There is no justifiable reason for modern
econometrics to restrict estimation to linear methods. This leaves open the question if
nonlinear estimators could possibly do better than least squares.

One possible answer lies in the theory of uniform minimum variance unbiased
(UMVU) estimation (see, e.g., Chapter 2 of Lehmann and Casella (1998)). Lehmann
and Casella (1998, Example 4.2) demonstrated that the sample mean is UMVU for the
class of distributions having a density. The latter restriction is critical for their demon-
stration, does not generalize to distributions without densities, and it is unclear if the
approach applies to regression models.

A second possible answer is provided by the Cramér—Rao theorem. In the normal re-
gression model, the minimum variance unbiased estimator of the regression coefficient is
least squares. This result removes the restriction to linearity. But the result is limited to
normal regression and so does not provide a complete answer.

A third possible answer is provided by the local asymptotic minimax theorem (see Ha-
jek (1972) and van der Vaart (1998, Chapter 8)), which states that in parametric models,
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estimation mean squared error cannot be asymptotically smaller than the Cramér—Rao
lower bound. This removes the restriction to linear and unbiased estimators, but is fo-
cused on a parametric asymptotic framework.

A fourth approach to the problem is semi-parametric asymptotic efficiency, which in-
cludes Stein (1956), Levit (1975), Begun, Hall, Huang, and Wellner (1983), Chamber-
lain (1987), Ritov and Bickel (1990), Newey (1990), Bickel, Klaassen, Ritov, and Well-
ner (1993), and van der Vaart (1998, Chapter 25). This literature develops asymptotic
efficiency bounds for estimation in semi-parametric models including linear regression.
This theory removes the restriction to linear unbiased estimators and parametric models,
but only provides asymptotic efficiency bounds, not finite-sample bounds. This literature
leaves open the possibility that reduced estimation variance might be achieved in finite
samples by alternative estimators.

A fifth approach is adaptive efficiency under an independence or symmetry assump-
tion. If the regression error is independent of the regressors and/or symmetrically dis-
tributed about zero, efficiency improvements may be possible. If the regression error is
fat-tailed, these improvements can be substantial. This literature includes the quantile
regression estimator of Koenker and Bassett (1978), the adaptive regression estimator of
Bickel (1982), and the generalized t estimator of McDonald and Newey (1988). These im-
provements are only obtained under the validity of the imposed independence/symmetry
assumptions; otherwise, the estimators are inconsistent.

Our paper extends the above literatures by providing finite-sample variance lower
bounds for unbiased estimation of linear regression coefficients without the restriction to
linear estimators and without the restriction to parametric models. Our results are semi-
parametric, imposing no restrictions on distributions beyond the existence of the first
two moments and no restriction on estimators beyond unbiasedness. Our lower bounds
generalize the classical BLUE and Gauss—Markov lower bounds, as we show that the
same bounds hold in finite samples without the restriction to linear estimators. Our lower
bounds also update the asymptotic semi-parametric lower bounds of Chamberlain (1987),
as we show that the same bounds hold in finite samples for unbiased estimators.

The results in this paper are a finite-sample version of the insight by Stein (1956)
that the supremum of Cramér—Rao bounds over all regular parametric submodels is a
lower bound on the asymptotic estimation variance. Our twist turns Stein’s insight into
a finite-sample argument, thereby constructing a lower bound on the finite-sample vari-
ance. Stein’s insight lies at the core of semi-parametric efficiency theory. Thus, our result
provides a bridge between finite-sample and semi-parametric efficiency theory.

Our primary purpose is to generalize the Gauss—-Markov theorem, providing a finite-
sample yet semi-parametric efficiency justification for least squares estimation. A by-
product of our result is the observation that it is impossible to achieve lower variance than
least squares without incurring estimation bias. Consequently, the simultaneous goals of
unbiasedness and low variance are incompatible. If estimators are low variance (relative
to least squares), they must be biased. This is not an argument against non-parametric,
shrinkage, or machine learning estimation, but rather is a statement that these estimation
methods should be acknowledged as biased and the latter is necessary to achieve variance
reductions.

Our results (similarly to BLUE, Gauss—Markov, Aitken, and Cramér—Rao) focus on
unbiased estimators, and thereby are restricted to the special context where unbiased es-
timators exist. Indeed, the existence of an unbiased estimator is a necessary condition for
a finite-variance bound. Doss and Sethuraman (1989) showed that when no unbiased esti-
mator exists, then any sequence of estimators with bias tending to zero will have variance
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tending to infinity. A related literature (Zyskind and Martin (1969), Harville (1981)) con-
cerns conditions for linear estimators to be unbiased when allowing for general covariance
matrices.

A caveat is that the class of nonlinear unbiased estimators is small. As shown by Koop-
man (1982) and discussed in Gnot, Knautz, Trenkler, and Zmyslony (1992), any unbiased
estimator of the regression coefficient can be written as a linear-quadratic function of the
dependent variable Y. Koopmann’s result shows that while nonlinear unbiased estimators
exist, they constitute a narrow class.

The literature contains papers which generalize the Gauss—Markov theorem to allow
nonlinear estimators, but all are restrictive on the class of allowed nonlinearity, and all are
restrictive on the class of allowed error distributions. For example, Kariya (1985) allowed
for estimators where the nonlinearity can be written in terms of the least squares residuals.
Berk and Hwang (1989) and Kariya and Kurata (2002) allowed for nonlinear estimators
which fall within certain equivariant classes. Each of these papers restricts the error dis-
tributions to satisfy a form of spherical symmetry. In contrast, the results presented in this
paper do not impose any restrictions on the estimators other than unbiasedness, and do
not impose any restrictions on the error distributions.

The proof of our main result (presented in Section 6) is not inherently difficult, but
is not elementary either. It might be described as nuanced. It is based on a trick used
by Newey (1990, Appendix B) in his development of an asymptotic semi-parametric effi-
ciency bound for estimation of a population expectation.

2. GAUSS-MARKOV THEOREM

Let Y be an n x 1 random vector and X an n x m full-rank regressor matrix with m < n.
We will treat X as fixed, though all the results apply to random regressors by conditioning
on X.

The linear regression model is

Y=XB+e, ey
E[e] =0, (2
var[e] =E[ee'] = 0?3 < o0, 3)

where e is the n x 1 vector of regression errors.

Let F, be the set of joint distributions F of random vectors Y satisfying (1)—(3). This
is the set of random vectors whose expectation is a linear function of X and has a fi-
nite covariance matrix. Equivalently, F, consists of all distributions which satisfy a linear
regression.

The independent sampling linear regression model (heteroskedastic regression) adds
the assumption that the observations are mutually independent. Under independent sam-
pling, 3 is a diagonal matrix with heterogeneous diagonal elements. Let F; C F, be the
set of such joint distributions.

The homoskedastic independent sampling linear regression model adds the additional
assumption

S=1,. 4)

Let F) C F; be this set of joint distributions. The standard estimator of 8 in model F is
least squares

Bus = (X'X) ' (X'Y).
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For all F € F,, Eols is unbiased for B, and for all F € F), Eols has variance Var[ﬁols] =
o?(X'X)~!. The question of efficiency is whether there is an alternative unbiased estima-
tor with reduced variance.

The classical Gauss-Markoy theorem applies to linear estimators of 8, which are esti-
mators that can be written as B = 4(X)Y, where A(X) is an m x n function of X. Linearity
in this context means “linear in Y.”

THEOREM 1—Gauss—Markov: If B is a linear estimator, and unbiased forall F € ¥, then
var[B] > O'Z(X/X)_l
forall F € FS.

In words, no unbiased linear estimator has a finite-sample covariance matrix smaller
than the least squares estimator. As this is the exact variance of the least squares esti-
mator, it follows that in the homoskedastic linear regression model, least squares is the
minimum variance linear unbiased estimator.

Part of the beauty of the Gauss—Markov theorem is its simplicity. The only assumptions
on the distribution concern the first and second moments of Y. The only assumptions on
the estimator are linearity and unbiasedness. The statement in the theorem that 8 “is
unbiased for all F € F;” clarifies the context under which the estimator is required to be
unbiased. The requirement that E must be unbiased for any distribution means that we
are excluding estimators such as g = 0, which is “unbiased” when the true value satisfies
B = 0. The estimator 8 = 0 is not unbiased in the general set of linear regression models
F; so is not unbiased in the sense of the theorem.

Theorem 1 also holds if the class F; is replaced by F, meaning that the unbiasedness
requirement is only required over independent or homoskedastic samples.

An unsatisfying feature of the Gauss—Markov theorem is that it restricts attention to
linear estimators. This is unnatural as there is no reason to exclude nonlinear estimators.
Consequently, when the Gauss—Markov theorem is taught, it is typically followed by the
Cramér—Rao theorem.

Let FY C FY be the set of joint distributions satisfying (1)-(4) plus e ~ N(0, I, 02).

THEOREM 2—Cramér—Rao: If E is unbiased for all F € F‘f , then
var[B] > a-z(X/X)_1
forall F e FY.

The Cramér—Rao theorem shows that the restriction to linear estimators is unnecessary
in the class of normal regression models. To obtain this result, in addition to the Gauss—
Markov assumptions, the Cramér—Rao theorem adds the assumption that the observa-
tions are independent and normally distributed. The normality assumption is restrictive,
however, so neither the Gauss—Markov nor the Cramér—Rao theorem is fully satisfactory.
Consequently, the two are typically taught as a pair with the joint goal of justifying the
variance lower bound o?(X'X)~! and hence least squares estimation.

Closely related to the Gauss—Markov theorem is the generalization by Aitken (1935) to
the context of general covariance matrices. In the linear regression model with known X,
Aitken’s generalized least squares (GLS) estimator is

Bus= (X37'X) " (x'27"Y).
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For all F € F,, Egls is unbiased for B and has variance Var[ﬁgls] = o} (X'Y7'X)"L. The
question of efficiency is whether there is an alternative unbiased estimator with smaller
variance. Aitken’s theorem follows Gauss—Markov in restricting attention to linear esti-
mators.

THEOREM 3—Aitken: If E is a linear estimator, and unbiased for all F € F,, then
var[B] > (TZ(X’E_IXY1
forall F € F,.

Aitken’s theorem is less celebrated than the traditional Gauss—Markov theorem, but
perhaps is more illuminating. It shows that, in general, the variance lower bound equals
the covariance matrix of the GLS estimator. Thus, in the general linear regression model,
generalized least squares is the minimum variance linear unbiased estimator. Aitken’s
theorem, however, rests on the restriction to linear estimators just as the Gauss—Markov
theorem.

Theorem 3 also holds if the class F, is replaced by F;, heteroskedastic regression un-
der independent sampling. In this context, Aitken’s bound corresponds to the asymptotic
semi-parametric efficiency bound established by Chamberlain (1987).

The development of least squares and the Gauss—Markov theorem involved a series of
contributions from some of the most influential probabilists of the nineteenth through
early twentieth centuries. The method of least squares was introduced by Adrien Marie
Legendre (1805) as essentially an algorithmic solution to the problem of fitting coef-
ficients when there are more equations than unknowns. This was quickly followed by
Carl Friedrich Gauss (1809), who provided a probabilistic foundation. Gauss proposed
that the equation errors be treated as random variables, and showed that if their den-
sity takes the form we now call “normal” or “Gaussian,” then the maximum likelihood
estimator of the coefficient equals the least squares estimator. Shortly afterward, Pierre
Simon Laplace (1811) justified this choice of density function by showing that his central
limit theorem implied that linear estimators are approximately normally distributed in
large samples, and that in this context, the lowest variance estimator is the least squares
estimator. Gauss (1823) synthesized these results and showed that the core result only
relies on the first and second moments of the observations and holds in finite samples.
Andrei Andreevich Markov (1912) provided a textbook treatment of the theorem, and
clarified the central role of unbiasedness, which Gauss had only assumed implicitly. Fi-
nally, Alexander Aitken (1935) generalized the theorem to cover the case of arbitrary but
known covariance matrices. This history, and other details, are documented in Plackett
(1949) and Stigler (1986).

3. MODERN GAUSS-MARKOV

We now present our main result. We are interested if Aitken’s version of the Gauss—
Markov theorem holds without the restriction to linear estimators.

THEOREM 4: If B is unbiased for all F € F», then
var[B] > 0’2(X,271X)71
forall F € F,.
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We provide a sketch of the proof in Section 4 and a full proof in Section 6.

Theorem 4 is identical to Theorem 3, but without the limitation to linear estimators.
Theorem 4 is a strict improvement, as no additional condition is imposed. This shows that
the GLS estimator is the minimum variance unbiased estimator (MVUE) of 8.

Theorem 4 also holds under independent sampling, as we now establish.

THEOREM 5: If E is unbiased for all F € F;, then
var[B] = a-z(X/E_lX)_1
forall F € F;.

Theorem 5 provides a finite-sample efficiency bound for estimation of the regression
coefficient under independent sampling. As this efficiency bound equals the variance of
the efficient GLS estimator, Theorem 5 shows that the best unbiased estimator of the
regression coefficient is GLS. The theorem shows that this efficiency result holds over
both nonlinear and linear estimators.

A reasonable question is whether there exist nonlinear unbiased estimators. In the in-
dependent sampling model, an example is the following. For some i and j # i, let B
be the leave-one-out least squares estimator of B, leaving out observation i, and set
B= Bols +Yi(Y; - X8 'B_;). This is a nonlinear function of ¥. A simple calculation shows

that 3 is an unblased estimator of B for all F € F;. Thus indeed nonlinear unbiased esti-
mators exist.

We can specialize Theorem 5 to the context of independent homoskedastic observa-
tions.

THEOREM 6: If B is unbiased forall F € F;, then
var[B] > (72(X/X)71
forall F € F5.

Theorem 6 is identical to Theorem 1, but without the limitation to linear estima-
tors. The implication is that in the homoskedastic linear regression model, ordinary least
squares is the MVUE of B.

Theorem 6 is also an improvement on Theorem 2 as it lifts the normality assumption of
the normal regression model. It is not a strict improvement, however, as the Cramér—Rao
theorem only requires the estimator to be unbiased in the class of normal regression mod-
els, while Theorem 6 requires unbiasedness for all regression models under independent
sampling.

An important special case of Theorem 6 is estimation of the population expectation
under independent sampling. This is the linear regression model where X only contains a
vector of ones.

Assume that the elements of ¥ have a common expectation u with covariance matrix
3,0, Equivalently, assume E[Y] = 1,u and var[Y] = 307, where 1, is a vector of ones.
Let G} be the set of joint distributions F of random vectors Y with independent elements
satisfying these conditions, and let G) be the subset with 3 = I,. G) is the set of inde-
pendent random variables with a common variance. The standard estimator of u is the
sample mean Y, which is unbiased and has variance var[Y] = ¢?/n for F € GY.
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THEOREM 7: If @ is unbiased for all F € G, then var[@] > o*/n for all F € GY.

As the lower bound ¢/n equals var[ Y], we deduce that the sample mean is the MVUE
of u. Equivalently, the sample mean is the best unbiased estimator (BUE)—there is no
need for the classical “linear” modifier.

Essentially, Theorems 4, 6, and 7 show that we can drop the label “linear estimator”
from the pedagogy of the Gauss—Markov theorem. Instead, GLS, OLS, and sample means
are the best unbiased estimators of their population counterparts.

4. A SKETCH OF THE PROOF

In this section, we give a simplified proof of Theorem 4, deferring a complete argument
to Section 6.

For simplicity, suppose that the joint distribution F(y) of the n x 1 random vector Y
has a density f(y) with bounded support ). Without loss of generality, assume that the
true coefficient equals By = 0 and that o> = 1. We use here the assumption of bounded
support to simplify the proof; it is not used in the complete proof of Section 6.

Because Y has bounded support ), there is a set B C R” such that |[y2'Xg| < 1 for
all B € B and y € ). For such values of B, define the auxiliary density function

fe) =f»(1+y2'Xp). ®)

Under the assumptions, 0 < f5(y) <2f(»), fs(y) has support ), and fy fe(y)dy=1.To

see the latter, observe that fy yf(y)dy = XBo = 0 under the normalization 8, =0, and
thus

/yfa(y)dy=/yf(y)der/yf(y)y/dyz1XB=1

because fy f(y)dy =1. Thus, f; is a parametric family of density functions with an asso-
ciated distribution function Fg. Evaluated at 3, we see that f, = f, which means that Fj
is a correctly-specified parametric family with true parameter value B8, = 0.

To illustrate, take the case of a single observation with X = 1. Figure 1(a) displays an
example density f(y) = (3/4)(1 — y*) on [—1, 1] with auxiliary density fs(y) = f(¥)(1 +
y). We can see how the auxiliary density is a tilted version of the original density f(y).

< P
fa(y)
f(y)

Bo B

(a) True and Auxiliary Densities (b) Space of Distribution Functions

FIGURE 1.—Illustrations.
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Let Eg denote expectation with respect to the auxiliary distribution. Because
[,yf(y)dy=0and [, yyf(y)dy =%, we find

Eo[¥] = /y s () dy = /y () dy + /y i) dyS" XB=XB.

This shows that F; is a regression model with regression coefficient 8.

In Figure 1(a), the means of the two densities are indicated by the arrows to the x-axis.
In this example, we can see how the auxiliary density has a larger expected value, because
the density has been tilted to the right.

The parametric family Fj; over B € B has the following properties: its expectation is
X B, its variance is finite, the true value B, lies in the interior of B, and the support of
the distribution does not depend on B. To visualize, Figure 1(b) displays the space of
finite-variance distributions F, by the large circle. The dot indicates the true distribution
F = F;. The curved line represents the distribution family Fgz. This family Fj is a sliver in
the space of distributions F, but includes the true distribution F.

The likelihood score of the auxiliary density function is

S= % l0g f5(¥) g0 = %(logf(Y) +log(1+ Y3 XB))lpo = XS7Y.  (6)

Therefore, the information matrix is
I=E[SS]=X3"E[YY]2'X=X3""X.

By assumption, B is unbiased for all finite-variance distributions (the large circle in
Figure 1(b)). This means that 3 is unbiased in the subset Fy (the curve in Figure 1(b)).
The Cramér—Rao lower bound states that

var[B] > 7' = (X/E_lX)fl.

This is the variance lower bound, completing the proof.

Some explanation may help as the argument may appear to have pulled the prover-
bial “rabbit out of the hat.” Somehow, we deduced a general variance lower bound, even
though we only examined a rather artificial-looking auxiliary model. A key insight due
to Stein (1956) is that the supremum of Cramér—Rao bounds over all regular parametric
submodels is a lower bound on the variance of any unbiased estimator. Stein’s insight fo-
cused on asymptotic variances, but the same argument applies to finite-sample variances,
because the Cramér—Rao bound is a finite-sample result. A corollary of Stein’s insight is
that the Cramér—Rao bound of any single regular parametric submodel is a valid lower
bound on the variance of any unbiased estimator. If this submodel is selected judiciously,
its Cramér—Rao bound will equal the supremum over all submodels, and this holds when
this Cramér—Rao bound equals the known finite-sample variance of a candidate efficient
estimator, which in our case is the GLS estimator.

Another way of looking at this is as follows. Because Iz C F,, estimation over Iz cannot
be harder than estimation over the full set F,. Thus, the variance from estimation over Fg
cannot be larger than estimation over F,. This means that the Cramér—Rao bound for Fg
is a lower bound for the full set F,.

This raises the question: How was the density (5) constructed? The trick is to construct
a density which (i) includes the true density as a special case, (ii) is a regression model,
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and (iii) has its Cramér—Rao bound equal to the variance of the GLS estimator. The key is
(6), which shows that the likelihood score of (5) is proportional to the score of the normal
regression model with covariance matrix 2. This was achieved by constructing (5) to be
proportional to the normal regression score.

5. CONCLUSION

A core question in econometric methodology is: Why do we use specific estimators?
Why not others? A standard answer is efficiency: the estimators are best (in some sense)
among all estimators (in a class) for all data distributions (in some set). The Gauss—
Markov theorem is a core efficiency result but restricts attention to linear estimators—and
this is an inherently uninteresting restriction. The present paper lifts this restriction with-
out imposing additional cost. Henceforth, least squares should be described as the “best
unbiased estimator” of the regression coefficient; the “linear” modifier is unnecessary.

6. PROOF OF THEOREM 4

We provide a complete proof of Theorem 4. The proof of Theorem 5 is similar, so is
omitted. (The difference is that the auxiliary distriubtion is derived separately for each
observation in the sample, rather than jointly for their joint distribution.) Theorems 6
and 7 are special cases of Theorem 5, so follow as corollaries.

PROOF OF THEOREM 4: Our approach is to calculate the Cramér—Rao bound for a
carefully crafted parametric model. This is based on an insight of Newey (1990, Appendix
B) for the simpler context of a population expectation.

Without loss of generality, assume that the true coefficient equals By = 0 and that
o’ = 1. These are merely normalizations which simplify the notation.

Define the truncation function R” — R”

Ye(y) = yi{lyl < c} —E[YL{IY] < c}]. (7

Notice that it satisfies E[.(Y)] =0,

[#e)] =2, ®)
and
E[Yy.(Y)]=E[YY'1{|Y] <c}]E€3..

As ¢ — o0, 2. — E[YY'] = 3. Pick ¢ sufficiently large so that 2, > 0, which is feasible
because % > 0.
Define the auxiliary joint distribution function Fj(y) by the Radon-Nikodym derivative

dFs(y)
dF(y)

for parameters S in the set

b= {pernxixpl <) ©
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The Schwarz inequality and the bounds (8) and (9) imply that, for 8 € B. and all y,

1
e XB < v [ |27 X8 < 5
This implies that Fz has the same support as F' and satisfies the bounds

L_dFs() _

3
2= dF(y) — 2 (10)

‘We calculate that

/ dFs(y) = / dF(y) + / Ye(»)2 XBAF(y)

=1+ E[¢.(Y)]S'XB

=1, (11)
the last equality because E[¢.(Y)] = 0. Together, these facts imply that Fj is a valid dis-
tribution function, and over B8 € B, is a parametric family for Y. Evaluated at 8, =0,
which is in the interior of B., we see F, = F. This means that Fj is a correctly-specified
parametric family with the true parameter value B,.

Let E; denote expectation under the distribution Fz. The expectation of Y in this model
is

Eg[Y] = /deB(.Y)

= [yarw)+ [yoysxpar)
=E[Y]+E[Yy.(Y)]3'XB
—Xg (12)

because E[Y] =0 and E[Y.(Y)'] = Z,. Thus, distribution Fj is a linear regression with
regression coefficient 3.
The bound (10) implies

B 1¥1] = [ WP a0 <3 [ 1P dFG) = SE[ITI) = 3 (®) < oo.

This means that Fz € F, for all 8 € B..
The likelihood score for Fj is

Fg(Y
7 1og dFs(¥)

~ 9B CBdF(Y)

=0

d
=% log(1+ ¢.(Y)S.'XB)lp=0

= X,Ec_llwljt(y)'
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The information matrix is
7. =E[SS']
= XS E[g (V) (Y) ]2 X
<X3'X, (13)
where the inequality is
E[¢.(Y)p.(Y)] =3 —E[YL{|Y] < c}|E[YL{| Y] < c}] < =..

By assumption, the estimator B is unbiased for B for all F € F,, which implies that it
is unbiased for all F € Fjz. The model Fj is regular (it is correctly specified as it contains
the true distribution F, the support of Y does not depend on B, and the true value 8, =0
lies in the interior of B,). Thus, by the Cramér—Rao theorem (see, e.g., Theorem 10.6 of
Hansen (2022)),

var[B] = Z.' > (X/Ec’]X)_l,

where the second inequality is (13). Because this holds for all ¢, and %, — X as ¢ — oo,

var[B] > lim sup(X’E;lel = (X/E‘lX)fl.

c—>00

This is the variance lower bound. Q.E.D.
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