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ABSTRACT: Nonadiabatic (NA) molecular dynamics (MD) , $g868
goes beyond the adiabatic Born—Oppenheimer approximation to
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0909 ° KRR prediction
account for transitions between electronic states. Such processes  , 6868 o -
are common in molecules and materials used in solar energy, oot
optoelectronics, sensing, and many other fields. NA-MD Strupctu'al
simulations are much more expensive compared to adiabatic MD information
due to the need to compute excited state properties and NA | Enter NA-MD
couplings (NACs). Similarly, application of machine learning 2] P
(ML) to NA-MD is more challenging compared with adiabatic 3| o
MD. We develop an NA-MD simulation strategy in which an €| =~ Accurate result with low
adiabatic MD trajectory, which can be generated with a ML force (A vpTime computational cost

field, is used to sample excitation energies and NACs for a small

fraction of geometries, while the properties for the remaining geometries are interpolated with kernel ridge regression (KRR). This
ML strategy allows for one to perform NA-MD under the classical path approximation, increasing the computational efficiency by
over an order of magnitude. Compared to neural networks, KRR requires little parameter tuning, saving efforts on model building.
The developed strategy is demonstrated with two metal halide perovskites that exhibit complicated MD and are actively studied for

various applications.

1. INTRODUCTION

Machine learning (ML) techniques have experienced rapid and
extensive developments in recent decades, stimulated by
growing computational power and large amounts of exper-
imental and theoretical data accumulated in all fields, including
science, technology, and daily life. Many efforts are devoted to
applying ML to chemistry and materials science to predict
relevant properties,' > identify promising candidates for
various applications,””” and guide and design ongoing
experiments.9’10 With the help of ab initio-calculated data,
ML is successfully practiced for predicting molecular proper-
ties."'™'® Prediction of time-series data, such as forces on
atoms in molecular dynamics (MD) simulation, can alleviate
the burden of the computational cost of quantum mechanical
calculations."” The key to the success stems from the fact that
ML models can quantitatively estimate the behavior in an
unknown realm by learning the pattern from an existing data
set. The accumulated results of calculations and experiments
provide an abundance of data that serve as training sets
necessary for ML model prediction, giving sufficient resources
for learning.'® While many time-series studies focus on
extrapolation of the properties of interest, our strategy is to
extrapolate the simpler properties, such as ground state forces,
and to interpolate the more complex properties, such as the
nonadiabatic coupling (NAC).

AD initio calculations suffer from high computational cost if
applied to relatively big systems and at high levels of theory.
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This is particularly true of NA MD (NA-MD) simulations that
require thousands of ab initio electronic structure calculations,
including not only ground state electronic properties but also
excited state properties and NAC."”~** NA-MD is capable of
modeling quantum dynamics of molecular, condensed matter,
and nanoscale systems that undergo transitions between
electronic states. NA-MD simulations imitate closely time-
resolved spectroscopy experiments at the atomistic level and in
the time domain in systems that form the basis for modern
technologies, such as solar cells, photocatalysts, light-emitting
diodes, optoelectronic devices, and so forth. NA-MD
simulations generate MD trajectories along which one needs
to calculate excited state energies and NAC between the states,
sometimes including hundreds of thousands of states.”*”°
Depending on the processes under consideration, one may also
need to compute the Coulomb matrix elements”’ and spin—
orbit coupling.”®”’ Such calculations are time-consuming,
especially for large, nanoscale systems involving long processes,
such as formation of large polarons® and defect diffusion.’!
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Bypassing some of the computationally demanding electronic
structure calculations can provide great benefits for NA-MD.

Modeling of charge carrier dynamics in metal halide
perovskites (MHPs) presents an important and modern
example of NA-MD simulation.****737 MHPs, such as
CsPbl;, constitute an actively investigated class of solar energy
and optoelectronic materials, due to high power conversion
efficiency.”*™*' MHPs possess many favorable attributes, such
as high carrier mobility and lifetime, low exciton bindin
energy, tunable band gap, easy fabrication, and low cost. '™t
Both hybrid organic—inorganic and all-inorganic MHPs have
been synthesized and extensively studied. Pb-based MHPs
generally show higher power conversion efficiencies compared
to non-lead MHPs, while non-lead perovskites avoid the
toxicity of lead.***> MHPs exhibit many unusual physical and
chemical properties, and intricate MD with large-amplitude
anharmonic motions, slow diffusion of atoms and defects, long-
range electric ordering and disordering, phase transitions, and
so forth. Modeling excited state dynamics in MHPs is a
challenging task for NA-MD, requiring further methodological
developments and providing a strong motivation for the
current work.

Development of ML force fields (FF) is becoming a routine
task and has been achieved for many classes of molecules and
materials.””"" It is more challenging to develop ML models for
NAC.*"* The adiabatic force and the NAC arise from the
same quantum mechanical nuclear derivative operator.
However, the force is its diagonal matrix element, while the
NAC is the off-diagonal element. The NAC exhibits a more
complex dependence on atomic geometry than the force and
can fluctuate wildly, diverging to positive or negative infinity as
the energy gap between two states approaches zero. In
addition, the number of NAC matrix elements scales
quadratically with the number of electronic states, while the
number of forces scales linearly.

The classical path approximation®”' (CPA) provides
significant computational savings for NA-MD because it allows
for one to replace multiple excited state MD trajectories with a
single, typically ground state trajectory. The CPA is valid in the
cases when MD is driven by thermal fluctuations, and the
differences in the ground and excited state geometries are
insignificant compared to the fluctuation amplitude. Many
classes of systems obey such conditions.”*****~>" Under the
CPA, one can use a ML FF to generate the trajectory, use a
small fraction of geometries from the trajectory to calculate the
excitation energies and NACs, and develop a ML model that
interpolates the excitation energies and NACs between the
sampled points. This task is notably easier than time
extrapolation because sampling along the trajectory ensures
that relevant geometries are present in the training set. In
contrast, sampling from a short MD trajectory may not
represent all geometries needed for extrapolation of the
trajectory to longer times. Already challenging for development
of ground state ML FFs, the task becomes much harder for
excited state forces and NACs.

In this paper, we employ kernel ridge regression (KRR) to
predict excitation energies and NACs for NA-MD simulations
under the CPA. We assume that a MD trajectory can be
obtained efficiently using a ML or other FF and demonstrate
an over an order-of-magnitude computational speed up by
computing the NA-MD Hamiltonian using density functional
theory (DFT) only for a small fraction of geometries along the
trajectory and interpolating the remaining excitation energies
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and NACs with KRR. The strategy is illustrated with two MHP
systems with and without a common defect. The data show
that KRR is capable of representing accurately the full NA-MD
Hamiltonian with only 4% of the sampled points, and even
0.8% sampling gives reasonable results. Importantly, the NA-
MD simulations based on the KRR NA-MD Hamiltonian
converge systematically to the DFT data. Generally, the KRR-
based simulation underestimates the NAC and transition time
because KRR misses some of the NAC peaks that contribute
strongly to the transition rate. Therefore, further progress can
be achieved either by improving sampling of the NAC peaks,
for example, by considering velocity of the atoms that
contribute to NAC or by extrapolating NAC and rate values
obtained at different levels of sampling. The over an order-of-
magnitude speedup provided by the developed strategy allows
for one to extend NA-MD simulations to larger systems and
longer timescales, accessing new classes of systems and
processes.

2. THEORY

Combining the simplicity of the least-squares solution of linear
regression and the kernel handling of nonlinear problems gives
birth to KRR, making KRR a simple but powerful model.>*
Requiring tuning of only the kernel function and a
regularization term, KRR has notably fewer hyperparameters
compared to neural networks (NNs), which need tuning of the
number of hidden layers, neurons per layer, the way how
neurons connect, learning rate, and so forth. Further, KRR
only needs a simple matrix operation to find the optimal
solution of the model, while NNs involve gradient descent,
which may lead to a local rather than global minimum. KRR
enables a simple ML-assisted NA-MD simulation. Given a
trajectory, we sample excitation energies and NACs for a small
proportion (0.8, 2, 4, and 8%) of points along the trajectory
and employ KRR to predict the remaining missing values.

The DFT calculations, including geometry optimization and
adiabatic MD, are performed with the Vienna ab initio
Simulation Package (VASP).*” The NACs are calculated from
the overlap of the two wavefunctions at adjacent time steps
using the CA-NAC package®”®'

d, = —ihg(r, RVl R(t))((li—I:

o (r, R()IVRH(R(t))lop(r, R(t)) gr
E - E dt

—i

i, RO o r, R()

Q
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=g, R(+ A0, RO))) .

While the abovementioned expression is written in terms of
the Kohn—Sham (KS) orbitals, the calculations are performed
using the many-particle Slater determinant basis, and the NAC
between Slater determinants is reduced to the NAC between
KS orbitals, as detailed in ref S0.

The Perdew—Burke—Ernzerhof exchange—correlation func-
tional®” is used. The projected-augmented wave method is
employed to handle interactions between electrons and ion
cores.”” After geometry relaxation at 0 K, the pristine and
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Figure 1. Geometric structures of (A) pristine CsPbl; and (B) CsPbl, with the I, defect. The I atom replacing Cs is marked by the red circle.
(C,D) Corresponding projected DOS, with the zero-energy set at the VBM.

defective MHPs are heated to 300 K, reaching thermal
equilibrium. Then, 7000 fs adiabatic MD trajectories are
produced in a microcanonical ensemble with a 1 fs timestep.
We employ the DISH method™ to simulate the nonradiative
charge trapping and recombination processes in the MHPs.
The pure-dephasing times used in DISH are obtained via the
second-order cumulant approximation of the optical response
theory.°**> The NA-MD simulations are carried out with the
Pyxaid software.””!

The calculations are performed with pristine CsPbl; and
CsPbl; containing a I, defect, in which a cesium atom is
replaced by an iodine atom, as shown in Figure 1. The

tetragonal phase is represented using a (v/2 X /2 X 2)
simulation cell of the cubic phase with the lattice constants a
=9.02 A and ¢ = 12.76 A. Aiming at accomplishing a good
prediction precision with a minimum amount of training data,
we train and evaluate the KRR models with 0.8, 2, 4, and 8% of
the DFT data serving as the training set, and, respectively, 0.2,
0.5, 1, and 2% of the DFT data used as the validation set, with
the rest of the data used for testing. The chosen training/
validation data set are equally spaced along the trajectory. We
demonstrate the results based on the 4% training set in detail,
while the remaining results are presented in the Supporting
Information. Specifically, 5% of the 7000 data points are
chosen and split into 4% (280 data points) as the training set
and 1% (70 data points) as the validation set, while the
remaining 95% (6750 data points) is used as the testing set.
The 280 + 70 points employed for training and validation are
equally spaced every 20 fs. Every fifth of the chosen points is
assigned to validation, and the remaining points are the
training set. The DFT data are provided in the Supporting
Information.

All KRR training, validation, and testing are carried out with
the Scikit-learn package.”° The kernel is used to map the
original data to a higher-dimensional space. Therefore, the
linear model can fit nonlinear data in a more complicated
space. Laplacian and cosine similarity kernels have been tested.
The Laplacian kernel has been found to give a better overall
performance, while the cosine similarity kernel gives better
NAC peaks when training is performed with very small
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sampling, 0.8%. Though we value the prediction of the NAC
peaks because the rate of an electronic transition increases
when the NAC is large, and according to Fermi’s golden rule
the rate depends on NAC squared,”” we still wish to achieve a
good overall precision. Therefore, the Laplacian kernel is
selected to build the KRR model. The Laplacian kernel is
defined as

K(x, y) — e—yllx—yll1 (2)
where x and y are the input vectors and y is a hyperparameter
that needs to be tuned. Tuning the hyperparameter is a
common procedure of training any ML model because the
hyperparameters cannot be acquired from training data. After
tuning the hyperparameter y for a few different values, we
realized that y = 1/(number of features) shows relatively better
results for most of the models, compared to other tested
hyperparameters. For simplicity and consistency, we sety = 1/
(number of features). llx — yll; is the Manhattan distance
between the input vectors.

Overall, there are four models for the NAC prediction and
four models for the energy gap prediction for the pristine
system, corresponding to 8, 4, 2, and 1% of the data used for
the training. The defect system includes three NA transitions,
and there are 12 models for the NAC prediction and 12
models for the energy gap prediction. All models share the
same hyperparameter set. It is possible to tune the hyper-
parameters separately for each model. However, we have
achieved good accuracy with 4% training data, and the
improvement is not necessary. Therefore, we keep the
hyperparameters the same for all models for simplicity and
consistency.

KRR requires input vectors containing features. Currently,
the features are obtained from atom positions, enabling
portrayal of an accurate system structure. Many efforts have
been made to extract the structural information, while
balancing the accuracy of description of structural details and
the redundancy.”®”” The modified symmetry function' with
the following form is used to capture the individual atom’s
radial and angular information in a specific chemical
environment and to record contributions from all atoms.

https://doi.org/10.1021/acs.jpca.1c05105
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Figure 2. Kernel ridge regression predicted energy gaps for (A) pristine CsPbl; and (B—D) CsPbl; with the I, defect. The training is performed
with 4% of the data. The deviation at the end of the trajectory for the pristine system, indicated by the circle, is discussed in the text.

atoms [ [Rv+ka R]Z]
— = Ry
Gmod =27t Z (1 + cos(fy — 0)) x e 2
j ki

X fo (Ryf. (Ry) 3)
The symmetry function consists of a cosine part and a
Gaussian part. Considering one central atom, there are three
different distances and six angles. 6y is the angle between three
atoms with the i atom standing in the center. R;; is the distance
between atoms i and j. R, and 6 are the average distances and
angles for each pair ij and triplet ijk of elements, respectively.
Taking Pb as an example, R, are the Pb—Pb, Pb—Cs, and Pb—I
distances averaged over all MD time steps, only considering
the nearest neighbors. For 6, given Pb as the central atom, the
angles are Cs—Pb—Pb, Cs—Pb—I, Cs—Pb—Cs, I-Pb—Pb, I—
Pb—1I, and Pb—Pb—Pb. Atoms of the same type are grouped
together. The R and 6, values are computed separately for the
pristine and defect structures, and the defect atom is assigned
its own atom type. The KRR models are invariant with respect
to permutations of atoms within the same type.

Given that there are 4 Cs, 4 Pb, and 12 I atoms in the
simulation cell of the pristine system, we obtain a total of 72
features for the Cs and Pb atoms (4 X 3 X 6) and 216 features
for the I atoms (12 X 3 X 6). In the defective systems, the
features associated with one Cs atom become the features of
the defect I atom that replaces the Cs atom. The input vectors
defined in eq 2 are the feature vectors. Each geometry from the
MD trajectory gives one input vector, containing 360 features
coming from the Cs, Pb, and I atoms.

The cutoff function f that enters the symmetry function, eq
3, ensures chemical locality and reduces the computational
cost

ﬂRij
0.5 X cos] — | + 0.5 for Rij <R¢
f(R) = Re
0.0 for Rij > R¢ *)
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¢ and 75 control the magnitudes. They are set to 1 and 0.15,
respectively, making the angular and radial terms similar in
magnitude. The cutoff radius Rc = 9.1 A is set to be the
distance between the center of the simulation cell and its
vertex.

During the training, the algorithm searches for an optimal
solution of the weights to best describe the provided training
set. Then, the validation and testing sets are used to compute
the following measure, demonstrating that the obtained
optimal weights and bias provide a good prediction.

J, = min{llXw — yI* + allwl*} s)

Here, X are the feature vectors, w are the corresponding
weights, and y are the input vectors of either the NAC or the
energy gap. aw” is an L2 regularization term. KRR uses an L2-
norm regularization term to prevent overfitting. The penalty
for L2 is set to 0.0001 for the pristine and defective systems.
The optimal weights can be expressed as

w* = (X'X + al) "Xy (6)
where I is the identity matrix. Application of the kernel
technique simplifies computing the inner product X'X and
fitting of the model. The hyperparameters y and « used for the
pristine and defect structures are the same.

Equations 3 and 4 generate the features that are used as
input vectors to the KRR model. Introducing the L2
regularization term is used to prevent overfitting and to take
care of the collinearity during multiplication of the matrix of
the input vectors and their transpose, when solving for the
optimal weights of the model. Introduction of the kernel
function is needed to map the features to a higher dimensional
space, such that the model is able to fit nonlinear data.
Generally, KRR only requires tuning of the kernel type, the
hyperparameter inside the kernel function, and the penalty for
L2. This is quite straightforward and bypasses the complexity
of building layers of NNs.

https://doi.org/10.1021/acs.jpca.1c05105
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3. RESULTS AND DISCUSSION

To demonstrate the KRR-assisted NA-MD method, we utilize
pristine CsPbl; and CsPbl; containing the I defect, as shown
in Figure 1A,B. The calculated element projected densities of
states (DOS) are shown in Figure 1C,D. The direct band gap
of pristine CsPbl; is 1.67 eV. The defective system introduces
a trap state inside the band gap, separated from the valence
band minimum (VBM) and the conduction band maximum
(CBM) by 1.27 and 0.1S5 eV, respectively. The trap state is
empty and is much closer to the CBM than the VBM,
indicating that it is an electron trap. The VBM in pristine
CsPbl; arises from I atoms, while the CBM is localized on Pb
atoms, as shown in Figure 1C. I and Pb support the VBM and
the CBM, while the defect state is localized on I atoms. The
charge densities shown in Figure S1 support these conclusions.
Interestingly, the defect charge density is delocalized over
many I atoms, as shown in Figure S1D.

Figure 2 shows the DFT and KRR predicted energy gaps
between the VBM, the CBM, and the electron trap state in the
pristine and defective systems. Using 4% of the data for
training successfully captures the energy gap fluctuations,
showing good agreement with the DFT results for both
systems. Using 8% of the data reproduces all peaks and
fluctuations, as shown in Figure S2. Training with 2% of the
data fails to reproduce some peaks, though it exhibits a good
overall precision, as shown in Figure S3. The errors in the
calculated average energy gaps in pristine CsPbl; are 0.053 and
0.106% for the 4 and 2% training, respectively. The 8% training
converges to the DFT result, as shown in Table 1.

Table 1. KRR and DFT RMS NAC, Average Absolute (Abs)
NACs, Fundamental Band gap, Pure-Dephasing Times, and
Charge Recombination Times in Pristine CsPbl; Obtained
with 8, 4, 2, and 0.8% Training Sets

RMS-NAC  Abs-NAC ap dephasing  recombination
pristine (meV) (meV) feV) (fs) (ns)
8% 0.534 0.445 1.888 8.53 93.5
4% 0.522 0.435 1.887 8.67 98.4
2% 0.490 0.410 1.886 8.73 123.7
0.8% 0.403 0.330 1.875 7.74 69.1
DFT 0.538 0.448 1.888 8.49 90.8

Note that the KRR results deviate from the DFT data at the
very end of the 7000 fs trajectory, as shown in Figure 2A. It is
because the last few femtoseconds are not included in the
training set. This observation highlights the difficulty of time-
extrapolating the NA-MD Hamiltonian. The 7000 fs trajectory
is not sufficient to sample all geometries that are possible in
CsPbl; at 300 K. In contrast, interpolating the gap works very
well, demonstrating the efficiency of the current strategy. In
applications, the starting and ending points of the MD
trajectory can be included into the training set manually to
obtain a better performance. The interpolation works very well
in general. Even the 0.8% sampling captures most of the points,
as shown in Figure S4. Time extrapolation requires much
longer training trajectories and is likely to predict the gap
values only for short times into the future. The interpolation
strategy works well because KRR is able to interpolate
complicated continuous functions, offering large computational
savings.

Generally, the NAC has a more complicated dependence on
geometry than the energy gap. Nevertheless, the KRR model
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with the 4% sampling successfully obtains an accurate
prediction of the NAC, capturing all the peaks and fluctuations,
as shown in Figure 3. Predicting NAC peaks is important
because electronic transitions are more likely to happen at
these timesteps. The NAC may increase and decrease
dramatically in a few timesteps, showing larger fluctuations
than energy gaps. An example is seen with the CBM-trap NAC
early in the trajectory in Figure 3C. The NAC increases
because the corresponding energy gap approaches zero, as
shown in Figure 2C, and the NAC is inversely proportional to
the energy gap, eq 1. The NAC also depends on the overlap of
the initial and final wavefunctions and is sensitive to atomic
geometry. That is why the NAC is not as large at around 4500
fs, when the CBM-trap energy gap also becomes small.

The errors in the root-mean-square (RMS) NAC computed
with KRR, relative to DFT, are 0.74, 2.97, and 8.92% for the 8,
4, and 2% sampling in pristine CsPbl;, respectively, as shown
in Table 1. The RMS NAC is calculated using the standard

N d ky2
expression, RMS = , Zk:l%, where dj,»k is the NAC, eq 1,

for the timestep k, and N is the total number of timesteps.
Compared to the energy gap prediction, the NAC shows larger
errors due to a more complex dependence on the system
structure. KRR shows good agreement with the DFT
calculation even when the NAC exhibits large fluctuations,
indicating that the NA-MD simulations based on the KRR
NAC should give good results.

The KRR results for the energy gaps and NACs in both
pristine and defective systems are obtained with the same
hyperparameters, reducing the hyperparameter tuning efforts,
as discussed in the Theory section. The data are based on the
Laplacian kernel, eq 2. The cosine similarity kernel, K(x,y) =
xy" /xy, was used as well, but it showed poor prediction for the
CBM:-trap NAC in defective CsPbl; owing to the large jump of
the NAC at the early time, as shown in Figure 3C. To fit the
jumps of the CBM-trap NAC, the weights of the model with
the cosine similarity kernel should be generally larger than the
overall optimal values. In such a case, the NAC after the jump
is overestimated. In comparison, the Laplacian kernel works
fine, both capturing the peaks and giving a reasonable NAC
prediction after the peaks. Note that the deviation between the
KRR and DFT NAC is at the very end of the 7000 fs trajectory
for the pristine system, as shown in Figure 3A. The deviation is
similar to that seen in Figure 2A. It arises because the last few
femtoseconds are not included into the training set.

Next, we computed Fourier transforms (FTs) of the ACF of
the energy gap and NACs, as shown in Figure 4. The ACF of
the energy gap is defined as

Cy(t) = SE(t)SE(t — 1), 7)
where OE;; is the deviation of the energy gap E; between states i
and j from its canonically averaged value. The FT, known as
the influence spectrum or the spectral density, is defined as

(@) = f_ 0 ©

The NAC ACFs and FTs are computed the same way. The
FTs characterize the phonon modes that couple to the
electronic subsystem. The peak heights indicate the strength of
the electron—phonon coupling for the phonon modes of the
corresponding frequencies. The 4% KRR prediction is nearly
identical to the DFT data, with the NAC FT's showing slightly
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containing the I, defect.

more noticeable differences than the gap FTs. The NAC FTs
exhibit higher frequency signals than the gap FTs. This is
because the NAC depends not only on the gap but also on
other factors, eq 1. Generally, the NAC is a higher order
property than the energy gap, and it is more sensitive to
changes in the wavefunctions.

The NAC reflects inelastic electron—phonon scattering that
leads to energy exchange between the two subsystems. Elastic
scattering is quantified by the pure-dephasing time, which
represents loss of coherence within the electronic subsystem
due to coupling to phonons. The pure-dephasing times are
calculated based on the energy gap fluctuations using the
second-order cumulant approximation of the optical response
theory.”*®> The pure-dephasing functions
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1 t ’ t/ " "
Dy(t) = exp[—?/o dt/o d"Cy(t ))

are computed based on the energy gap ACF, eq 7, and are
fitted to Gaussians, exp[—0.5(—t/7)*], to obtain the pure-
dephasing times, 7. The KRR pure-dephasing times converge

)

to the DFT values, similarly to the other properties, as shown
in Tables 1 and S1.

The pure-dephasing time is an important property on its
own right. It can be measured using photon-echo experiments
and obtained as an inverse of the single chromophore optical
linewidth.°%> In addition, pure-dephasing provides an
estimate of the decoherence process that should be included

. . . 237172 .
into NA-MD simulations™’ "’ when loss of coherence is
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I, defect, obtained by NA-MD simulation using DFT energy gaps and NACs, and corresponding KRR results for different training set sizes.

faster than the quantum transition, which is true in the present
case.

The energy gaps and NACs predicted by KRR define the
KRR Hamiltonian. It is used to perform the NA-MD
simulations and to compare the results to those obtained
with the NA-MD Hamiltonian from DFT. Figure S presents
the NA-MD results for the pristine and defective systems,
obtained with the DFT and KRR Hamiltonians. Shown are
evolutions of populations the ground state in pristine CsPbl;
and the excited, ground, and trap states in defective CsPbl;.
The charge recombination times, 7, are obtained by fitting the
data to the short-time, linear approximation to the exponential
evolution, 1 — exp (—t/7) = t/7. The KRR results converge to
the DFT data with increasing sampling. KRR with the 4%
sampling shows good agreement with the DFT data, while the
2 and 0.8% data deviate more. Even the 0.8% sampling gives
meaningful estimates of the charge trapping and recombination
timescales. The 4% sampling provides a good balance between
the computational cost and accuracy.

Tables 1 and S1 summarize the DFT and KRR prediction-
based properties for the pristine and defective systems,
respectively. The KRR quantities are obtained the same way
as the DFT results, using the NA Hamiltonians predicted by
the KRR models. All KRR data converge systematically to the
DEFT results with increasing sampling, and the 4% sampling
gives good results. The errors in the average energy gaps are
the smallest among all properties, indicating that the excitation
energies are easier to predict than the pure-dephasing times
and the NACs. Both the pure-dephasing time and the NAC are
higher-order properties than the gap. The pure-dephasing time
depends on the amplitude of fluctuation of the gap away from
its average value,”* while the NAC depends on the gap and
other properties, eq 1. The NACs are underestimated by the
KRR models because they miss some of the NAC peaks.
Similarly, the pure-dephasing times are overestimated because
KRR misses some peaks in the energy gap fluctuation and
therefore, underestimates the fluctuation amplitude. The
relaxation times are overestimated as well, primarily because
of the underestimated NAC.

Because the NAC error is generally larger than the error in
the excitation energies, it is desirable to improve the NAC
prediction. This can be achieved by considering not only
system geometries but also velocities because the NAC
depends explicitly on the nuclear velocity, as shown in eq 1.

All KRR data show systematic convergence to the DFT
values with increased sampling, and therefore, one may use
results from several sampling levels to extrapolate the DFT
results. For example, one may use the fact that the transition
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rate is proportional to the NAC squared, according to the
Fermi golden rule.”® The relationship holds for the transitions
studied here, as can be verified using the data presented in
Tables 1 and S1. Therefore, for example, one can first
extrapolate the RMS-NAC to the DFT values with some
function and then use the NAC to obtain a more accurate
transition rate with the Fermi golden rule dependence of the
rate on NAC squared.

It is important to understand why the 4% sampling provides
good results while decreasing the sampling below 1% increases
the errors. This fact can be rationalized by considering the
frequencies in the FTs of the gaps and NACs, as shown in
Figure 4. The 4% sampling protocol is based on 5% of the data,
with 1% used for validation. The 5% data are spaced 20 fs
apart, and the 20 fs period corresponds to the 1666 cm™
frequency. The FTs decay by about 400 cm™, as shown in
Figure 4H, which corresponds to about 80 fs. Thus, one needs
to sample at about four times the highest relevant frequency, to
capture both maxima and minima in the NAC and gap
fluctuations. Sampling at double frequency may capture the
extrema, but may also fall between them. Quadrupling the
frequency samples both the extrema and the points between
them.

The electrons and holes in MHPs are supported by the
metal and halide atoms, and the characteristic frequencies of
the lattice are 95 cm™" for Pb—I stretching and 60 cm™" for
tilting.”* The FTs of the energy gap and NACs exhibit higher
frequencies, as shown in Figure 4, corresponding to overtones.
Therefore, one should not rely purely on the known vibrational
frequencies of the system and obtain a short MD trajectory to
identify the highest frequencies that contribute to the gap and
NAC fluctuations.

The computational cost of KRR is trivial. The train/
validate/predict cycle is finished as soon as the python script is
run on a personal laptop. The time-consuming part is to obtain
the DFT data for the training. The 4% training/validation
requires 350 DFT data points, while the full DFT calculation
requires 7000 data points. Because the KRR NA-MD
calculation uses only 350 DFT points, and the KRR training
part is essentially instantaneous, the computational advantage
relative to the fully DFT NA-MD is 20-fold.

Finally, it is important to emphasize once again that the
current ML methodology uses time interpolation rather than
time extrapolation, and that the time interpolation strategy
provides a major advantage over time extrapolation. A small
fraction of DFT calculations of energy gaps and NACs are
obtained along a precomputed MD trajectory. Then, KRR is
employed to interpolate between these points. Such a strategy
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allows us to use only 4% of 7000 geometries to obtain high
quality NA-MD results. The interpolation strategy works much
better than the extrapolation strategy, in which the training is
performed using an early part of the trajectory, and the model
is then used to extrapolate the energy gaps and NACs for later
times. This is because a short 7000 fs trajectory is not sufficient
to sample all structures that can be encountered in the future.
Much larger sampling using significantly longer MD
trajectories would be needed to achieve this goal. For example,
if another 2000 fs of MD simulation is performed, it would be
impossible to extrapolate the energy gaps and NAC based on
the 7000 fs of the already performed MD. However, if 4% of
the points from the 2000 fs of the additional MD are used to
compute DFT energy gaps and NACs, then accurate
interpolation between these points can be easily achieved.
The strategy is based on the general idea that some properties,
such as ground state energies, are easier to extrapolate in time
than other properties, such as excitation energies and NACs.
Then, a ML model can be used to time-extrapolate the simpler
properties, and another ML model can be used to time-
interpolate the more complex properties.

4. CONCLUSIONS

We have demonstrated a ML-assisted NA-MD methodology,
which allows one to reduce the calculation cost by over an
order of magnitude under the CPA. Using the fact that DFT-
quality ML FFs can be obtained rather routinely already, we
use a few percent of geometries from pre-computed trajectories
to sample the NACs and excitation energies and generate the
remaining NACs and excitation energies by interpolation with
KRR. This strategy works very well, compared to strategies that
aim to generate NACs and excitation energies for a complete
set of geometries, similar to the generation of ML FFs, or to
extrapolate NACs and excitation energies forward in time.
Excited state energies, in particular NACs, are more complex
functions of system geometries than the ground state energy
and force, and they are harder to predict. The strategy
combining time extrapolation of the simpler properties, that is,
ground state trajectories, and interpolation of the more
complex ones, that is, excitation energies and NACs, provides
an eflicient alternative. Compared to NNs, the KRR method
requires a minimum amount of hyperparameter tuning, which
is a time-consuming part of building ML models. The cost of
the KRR calculation is negligible compared to the DFT
calculations.

The method has been demonstrated with two MHPs, which
exhibit intricate MD involving anharmonic motions and
multiple timescales. KRR training with 4% of the DFT data
generates reliable results. The analysis shows that it is notably
easier to obtain the excitation energies than the NACs and the
pure-dephasing times, the latter depending on the amplitude of
the excitation energy fluctuation away from the average value.
Sampling an insufficient amount of data can miss the maxima
and minima in the fluctuating NACs and excitation energies.
As a result, both inelastic and elastic electron—phonon
scattering events become underrepresented. That is, the
NACs, the pure-dephasing rates, and the relaxation rates are
underestimated. Compared to NNs, the KRR results converge
systematically to the exact answers with an increased amount
of training data. Valuable on its own right, this property can be
used to extrapolate the final answers to the DFT answers and
to correct for the systematic underrepresentation of the
electron—phonon scattering. The achieved increase in the
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efficiency of the NA-MD simulations allows one to study larger
systems, longer timescales, and more complicated processes at
a significantly reduced computational cost.
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