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ABSTRACT: We investigate two sparse Sachdev-Ye-Kitaev (SYK) systems coupled by a
bilinear term as a holographic quantum mechanical description of an eternal traversable
wormhole in the low temperature limit. Each SYK system consists of N Majorana fermions
coupled by random ¢-body interactions. The degree of sparseness is captured by a regular
hypergraph in such a way that the Hamiltonian contains exactly k£ N independent terms.
We improve on the theoretical understanding of the sparseness property by using known
measures of hypergraph expansion. We show that the sparse version of the two coupled
SYK model is gapped with a ground state close to a thermofield double state. Using
Krylov subspace and parallelization techniques, we simulate the system for ¢ = 4 and
q = 8. The sparsity of the model allows us to explore larger values of N than the ones
existing in the literature for the all-to-all SYK. We analyze in detail the two-point functions
and the transmission amplitude of signals between the two systems. We identify a range
of parameters where revivals obey the scaling predicted by holography and signals can be
interpreted as traversing the wormhole.
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1 Introduction

The Sachdev-Ye-Kitaev (SYK) model [1-3] is an exactly solvable quantum mechanical
system of N Majorana fermions coupled by a random all-to-all ¢g-body interaction. In the
large N and low-energy limit, an approximate conformal symmetry emerges and the system
saturates the chaos bound [4]. This unique combination of properties is also present in
a large class of black holes and suggests that the SYK model is a holographic dual of a
two-dimensional black hole [5]. However, numerical computations in the all-to-all SYK
are resource intensive; the number of terms in the Hamiltonian grows as ~ N9. Recently,
Xu, Susskind, Su and Swingle (XSSS) [6] proposed a sparse version of the SYK model
(see also [7]). The advantage of the sparse SYK is that the interactions grow linearly
with IV, as opposed to VY, while retaining properties of the original all-to-all SYK model
such as fast scrambling and maximal chaos at low temperatures. The significant reduction
in computational complexity of the sparse model opens up a new avenue where we can
investigate properties of the SYK model at finite N and study how a gravitational behavior



emerges as IV increases. There is still much to be understood about the sparse SYK. For
example, how sparse can the model be and still retain properties of the original SYK? Does
it reproduce all the physics of the all-to-all SYK or only some features? How large is the
computational benefit of sparseness? The goal of this paper is to advance our understanding
of these questions.

A natural language to describe many-body interactions is provided by hypergraphs.
Quantum systems consisting of two-body interactions can be described using graphs; each
degree of freedom lives on a vertex and the interaction is represented by edges connecting
them appropriately. For many-body systems, graphs are not adequate anymore, we need
to use hypergraphs. The formal definition of hypergraphs is in terms of set theory but
intuitively we can think of a hypergraph as a generalization of a graph where particles are
identified as vertices and interaction terms in the Hamiltonian as hyperedges connecting
more than two vertices. To define a sparse model of a quantum many-body system that
still behaves as the complete model, we want to preserve enough hypergraph connectivity
while keeping the smallest number of hyperedges possible. Hypergraphs that are highly
connected but are sparse are known as expanders. A natural question arises: how sparse can
a hypergraph be and still reproduce features of the all-to-all SYK? To address this question
we use a two prong approach: we study formal properties of hypergraphs and also perform
explicit calculations of physical quantities and compare the results to the all-to-all SYK.

The central theme of the present work is to investigate to what extent sparse SYK
models can be used to simulate features of an eternal traversable wormhole. Maldacena
and Qi [8] showed that two copies of SYK coupled via a bilinear interaction behave as an
eternal traversable wormhole in the large N, low temperature and weak coupling limit. The
wormbhole has a global AdSs geometry where the two boundaries are causally connected and
it remains traversable independently of time. This geometry can be obtained as a solution
of Jackiw-Teitelboim (JT) gravity [9-11] by adding a time independent coupling between
the two boundaries following the mechanism pioneered in [12].! Some of the main features
of the two coupled SYK system are that it has a ground state close to a thermofield double
(TFD) with a temperature that depends on the strength of the coupling [8, 13, 14] and
that there is an energy gap above the ground state that plays an important role in the
characterization of the dynamics of the model. In this work we demonstrate that these
properties also appear in the sparse SYK model indicating that the two coupled sparse
SYK model is a good candidate for a holographic dual of a traversable wormhole.

To sharpen this connection we focus on the ability to send a signal through the wormhole.
This phenomenon can be interpreted as a quantum teleportation protocol [15-22] or as a
generic feature of chaotic systems. In the context of quantum chaotic many-body systems,
the addition of an instantaneous coupling between two quantum systems can be understood
as a revival phenomena [23]: a localized perturbation in one system gets scrambled and
reappears at later times on the other system due to the addition of the coupling. This
effect is expected to be universal in quantum chaotic many-body systems, relying only

! Alternatively, we can think of it as a solution of JT gravity coupled to matter fields but it requires
matter that violates the Averaged Null Energy Condition (ANEC).



on the chaotic nature of the system and the entanglement structure of its state. Since
the interaction in the Maldacena and Qi model is time independent, the system of two
coupled SYKSs undergoes a series of revivals. From the gravity point of view, this is simply
understood as the oscillatory motion of a particle that bounces back and forth between the
two boundaries, traveling through the wormhole. This type of dynamics has been studied
in detail in ref. [24] and also at finite temperature in ref. [25]. The frequency of the revival
oscillations is controlled by the energy gap.

In the system of two ¢ = 4 SYKs coupled via a bilinear term with coupling strength g,
revival oscillations with a frequency o 2/ have been observed by solving the Schwinger-
Dyson (SD) equations in the N — oo limit [24]. Remarkably, this nontrivial scaling is in
perfect agreement with predictions from holography [8]. At finite N, however, this type of
dynamics has not been found. Finite-size effects and the computational cost of the all-to-all
SYK limit the state of the art simulations of two coupled SYKs to 2N = 32 Majorana
fermions. In this work, we employ Krylov subspace methods (see appendix A) and massive
parallelization to study a two coupled sparse SYK system in detail for 2N = 40. Using these
techniques, we simulate the sparse SYK system for ¢ = 4 and ¢ = 8, and show that the
nontrivial frequency scaling, consistent with the causal structure of the eternal traversable
wormhole with global AdS, geometry, is present for some range of values of the coupling .
Our numerical calculations make use of the dynamite package [26], a Python wrapper for
dynamical evolution based upon the SLEPc¢/PETSc libraries.

This paper is organized as follows. In section 2, we introduce the relevant hypergraph
definitions and review the sparse SYK model defined on a regular hypergraph. In section 3,
we characterize the amount of sparsity in the model using known measures of hypergraph
expansion, namely the algebraic entropy, vertex expansion and spectral gap. In section 4
we introduce the two coupled sparse SYK model and study its properties. In particular,
we study the effect of sparsity on the system by focusing on the ¢ = 4 and ¢ = 8 body
interaction cases. In section 5, we present a diagnostic of signal transmission between the
two sparse SYK system at both zero and finite temperature and we compare our results
with the gravitational picture valid in the large N limit. We conclude with some remarks

and future directions in section 6.

2 Preliminaries: sparse SYK and hypergraphs

The Sachdev-Ye-Kitaev (SYK) model [1, 2] has been a successful toy model of lower
dimensional quantum black holes. The model was proposed by Kitaev inspired by a spin
quantum Heisenberg magnet with Gaussian distributed interactions previously studied
by Sachdev and Ye [27]. Here, we will refer to the original SYK model as all-to-all SYK.
The gravitational description is given by a nearly AdSs solution of two-dimensional JT
gravity [11]. A variant of the SYK model, dubbed sparse SYK, was recently proposed as
an effective theory for the all-to-all SYK with the advantage of allowing for more efficient
computer simulation [6] (see also [7]). In this section we will briefly review the sparse SYK
model and some basic definitions pertaining hypergraphs which will be helpful to describe
the structure of the interactions in the model.



2.1 Review of the sparse SYK model

The Hamiltonian of the sparse SYK model with N Majorana fermions y/, j =1,..., N, is
defined as

/2 ) )
H = Zq/ Z le_“qu'jlqule e X]q. (21)
J1<...<Jq

The parameters x;, _; are either 0 or 1 and they can be defined in different ways leading
to different sparse models. The couplings Jj, . ; , are drawn from a Gaussian distribution
with zero mean and variance given by

(g — 1)!.J?
<(Jj1..-jq)2> = T NeT (2.2)

where p is the fraction of terms in the Hamiltonian, i.e., the number of the terms such

that zj,j, = 1 divided by (J;[ ), which is the number of terms in the all-to-all version. The
parameter J has dimensions of energy and sets the energy scale of the theory. It will be

k:zif(ij) (2.3)

which is such that the Hamiltonian is a sum of kN independent terms. Due to the random

convenient to define the parameter

nature of the couplings, physical observables are obtained after performing an average over
different disorder realizations of the system. If we choose all z;, . ; , to be 1, we recover the
original all-to-all SYK Hamiltonian

Hallto-an = > TivegaXt X (2.4)
1<j1<...<jg<N

In this case we have p = 1 and we also recover the variance of the all-to-all SYK model

(¢ =1

e (2.5)

2
<(Jj1---jq) )all—to—all =

One possible implementation of sparseness in the SYK model consists of taking ;i = 1
with probability p and w;;;; = 0 with probability 1 — p. The system becomes more sparse
as p — 0 and we recover the all-to-all SYK when p = 1. This procedure, known as random
pruning, is perhaps the simplest to implement. However, it makes necessary to take an
additional average since ;i are treated as random variables and can potentially lead
to disconnected clusters of Majorana fermions that do not interact with the rest of the
system [7]. A more powerful and general approach to characterize the sparseness in the
SYK model is to use hypergraphs.

2.2 Hamiltonian interactions and sparsity from hypergraphs

The structure of Hamiltonian interactions of a quantum many-body system can be viewed
as a hypergraph. Before plunging into hypergraphs and its properties let us recall that



an (undirected) graph G can be defined as a tuple G = (V, E) where V is a finite set
whose elements are called vertices and F is a set of pairs of vertices. Every element e € F
is encoded as a set of exactly 2 vertices, i.e., |e|] = 2. Because of that, graphs are good
tools to model problems where the relationship between objects comes in pairs, such as in
links of computer networks, couplings in Ising or general 2-local spin chains, etc. However,
interactions or relationships between more than two elements cannot be described in terms
of graphs. A hypergraph is then a natural generalization of a graph where a hyperedge can
contain any number of vertices. Thus, hypergraphs become necessary to describe the SYK
model with ¢ > 2 body interactions.

The definitions below will help establish our notation and facilitate the discussion in
the following sections [28, 29]:

Definition 1. A hypergraph H = (V, E) consists of a set V' of vertices and a set E of
hyperedges such that each hyperedge is a nonempty subset of V.

Definition 2. A hypergraph H is s-uniform for an integer s > 2 if every hyperedge ¢ € £
contains exactly s vertices.

Definition 3. The degree of the vertex i, denoted deg(i), is the number of all hyperedges
incident to 1.

Definition 4. A hypergraph is r-regular if all of its vertices have degree r.
Definition 5. A hypergraph is (r, s)-regular if it is both r-regular and s-uniform.

Definition 6. A s-uniform hypergraph is complete if the edge set is the set of all s-element
subsets of vertices.

Let us illustrate these definitions for the all-to-all SYK with N Majoranas and ¢-body
fermion interactions. Each Majorana is identified with a vertex, and each term in the
Hamiltonian is a hyperedge with ¢ vertices, meaning that the corresponding hypergraph is
g-uniform. The number of terms in the Hamiltonian, i.e., the number of hyperedges is

N
Lall—to—all = ( q ) . (26)

The fact that the system is ‘all-to-all’ translates into the hypergraph being complete. That
is, the edge set has cardinality |E| = (];[ ) which is the number of all possible g-element
subsets of N. On the other hand, the sparse SYK hypergraph is still g-uniform but the
Hamiltonian has fewer terms than the all-to-all and clearly the associated hypergraph is no
longer complete. We can write the number of terms as

N
Lsparse =Pp ( )7 (27)

q

where 0 < p < 1. In terms of the parameter k defined in (2.3), this can be rewritten as

Lsparse =k N. (28)
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Figure 1. Hypergraphs associated to the Hamiltonians for the all-to-all SYK (Left) and sparse
SYK from a (k g, g)-regular hypergraph (Right). The parameters used are N =20, ¢ =4 and k = 1.
For drawing purposes, each hyperedge is replaced by a complete set of edges.

An important property of (r, s)-regular hypergraphs is that they are expected to be
expanders [29, 30]. Expanders are sparse but still have good connectivity, in a sense that we
will make precise in the next section. Thus, we want to define the sparse SYK model over a
regular, uniform hypergraph. More precisely, the sparse SYK Hamiltonian will be defined
over a (k g, q)-regular hypergraph. It is g-uniform because all terms in the Hamiltonian still
involve only ¢-body interactions, and the fact that it is k g-regular follows from a simple
counting argument.? We illustrate the difference between the all-to-all and the sparse
hypergraphs in figure 1.

Summarizing, the sparse SYK Hamiltonian can be represented as

Lsparse

H= Y Hpy,, (2.9)

i=1

where Hy,,) acts on a set of vertices {v;}. The hypergraph associated to this Hamiltonian
is g-uniform and r-regular with r = k¢. In other words, it is a (k ¢, g)-regular hypergraph.
The parameter k quantifies the degree of sparseness in the Hamiltonian. In ref. [7] the
authors described an efficient algorithm, algorithm 1, based on the so called ‘pairing model’
for regular graphs [31], that generates a regular hypergraph randomly. The same algorithm
will be employed in our simulations. In the next section we turn our attention to the
question of how to quantify the connectivity of a hypergraph.

2Recall that there are k N hyperedges and each hyperedge contains ¢ vertices. Thus, the full list of
hyperedges contains k N ¢ vertices. By imposing the regularity condition, each vertex must appear exactly
k g times on the list of hyperedges and we conclude that the degree of each vertex should be r = kgq.



Result: If at the end /¢ is empty then E gives a list of hyperedges for a
(k q, q)-regular hypergraph
Initialize ¢ = {1,1,1,2,2,2,..., N, N, N} where each integer 1,..., N appears
exactly kq times;
Initialize empty list to store hyperedges F = {};
for n=1, n < 2N (or more) do
Sample g elements from ¢ (i.e., a hyperedge);
if sample has no duplicates and it is not already in E then
Move sample to F;
Remove sample from /;
end

n<<n+1
end

Algorithm 1. Generate a (k ¢, ¢)-regular hypergraph.

3 How much sparseness?

As previously mentioned, the advantage of the sparse SYK model is that due to its high
connectivity it has the same features as the all-to-all SYK — such as quantum chaos
and scrambling — but the sparsity makes it less computational demanding. A central
question is: how much sparsity are we allowed to have and at the same time maintain
these features? This is one of the questions we aim to answer in this paper. Intuitively, we
want the hypergraph to have a small number of hyperedges but in a way that it maintains
‘enough’ connectivity. Quantifying connectivity is a central question in the theory of sparse
hypergraphs. There is a class of hypergraphs that are sparse and at the same time have
strong connectivity properties; they are known as expanders. Random regular hypergraphs
are believed to be expanders [29, 30]. That is the main motivation to define the sparseness
in the Hamiltonian in such a way that the associated hypergraph is (k g, ¢)-regular.

In order to get intuition for what is an expander hypergraph, let us first review the
concept of an expander graph. The connectivity of a graph can be quantified using measures
of edge expansion, vertex expansion or spectral expansion. A standard measure of edge
expansion is the Cheeger constant. Let G be a k-regular graph (with & < 2) with n vertices,
and S a subset of G of cardinality |S|. The Cheeger constant is defined as

|05
hG) = 0L o] (3.1)
where 0S is the set of edges running from a vertex in S to a vertex outside of S, and |05
is its cardinality. If |S| < §, then |0S| > h|S| so that if h is large, then every subset S
has many neighbors outside S and G is said to be an expander. We can also measure the
expansion of a graph by looking at the vertex expansion. In this case, we are interested
in comparing the number of vertices in a neighborhood of a subset to the vertices in the
subset. The third measure of expansion, the spectral gap, refers to the eigenvalues of the



adjacency matrix. The adjacency matrix A is a n X n matrix whose elements are either
1 or 0 depending on if there is an edge that connects the two vertices or not. Since A is
symmetric, the eigenvalues are guaranteed to be real. The spectral gap is defined as the
difference between the largest and the second largest eigenvalues. In graph theory, it has
been shown that these three different measures of expansion — edge, vertex, spectral gap
— are all related to the eigenvalues of the adjacency matrix; they all provide equivalent
measures of the connectivity of a graph.

On the other hand, hypergraph expansion is much less understood. Unlike for graphs,
it is not clear which operator associated to the hypergraph captures information about
the connectivity. One approach is to generalize the definition of an adjacency matrix for
hypergraphs [32]. Other authors suggest to define an appropriate tensor [33]. A third
approach relies on Laplacian matrices defined through higher order random walks [34]. In
this paper we will follow the adjacency matrix approach of [32] and use some recent results
showing that vertex expansion is controlled by the second largest eigenvalue of the adjacency
matrix and that for a random regular hypergraph there is always a spectral gap [29].

Let us begin by defining the adjacency matrix of a hypergraph.

Definition 7. The adjacency matrix associated to a hypergraph with n vertices is the
n X n matrix whose elements are

# of hyperedges containing vertices i and j if 1#£j

3.2
0 ifie=y (3.2)

Az‘j =

In this section we will discuss a measure of hypergraph vertex expansion and apply it to
(k q, q)-regular hypergraphs that describe the sparse SYK Hamiltonian. We will also discuss
the algebraic entropy that measures how much information is contained in a hypergraph.
These two measures will guide us to choose a sparsity that maximizes numerical efficiency
and at the same time preserves properties of the all-to-all SYK.

3.1 Algebraic hypergraph entropy

Hypergraphs are used in many areas, among them computer science, biology, neural networks,
engineering, etc. It is important to quantify the amount of information contained in a
hypergraph. A hypergraph is a combinatorial object that can be very complicated, so the
notion of entropy can also serve to assess this complexity. The definition we present here to
quantify this information is the algebraic hypergraph entropy I(H) [28].

Consider a hypergraph H = (V, E) and its adjacency matrix A(H) with elements Aj;.
We define the degree matrix as

D = diag(dy,ds, . ..,dn)),  di= > Ay (3.3)
JEV

The Laplacian of H is defined as

L(H) =D — A(H). (3.4)



The adjacency matrix A(H) is symmetric and A;; = 0 by definition. We also define a

rescaled Laplacian
L(H)

L'(H) = . 3.5
(H) = =5 (3.5)
The eigenvalues of the rescaled Laplacian, denoted by v;, satisfy
N
0<ru<1 and > =1 (3.6)
i=1
We can now define the algebraic hypergraph entropy as
N
I(H)= - vilogu. (3.7)
i=1

Our goal is to explore different measures of how similar the sparse SYK is compared to the
all-to-all version. As a first step, we calculate the algebraic entropy for the all-to-all-SYK,
whose hypergraph is complete. Its adjacency matrix has elements

N -2
Az-j:<q_2>zw fori#j, and Ay =0. (3.8)

From (3.3), we immediately obtain that
D:diag(dl,...,dN) :w(N—l) ]lN><N- (3.9)

The corresponding rescaled Laplacian (3.5) has components

1 L
L;] = —m fOI' (3 7é 75 and L;Z =0. (310)
The eigenvalues of L' turn out to be v1 = 0 and vy,..., vy = ﬁ, so that the algebraic
entropy for the all-to-all SYK is
I(Hat0-a11) = — Zl/i logv; = log(N —1). (3.11)
i

On the other hand, the algebraic entropy for a sparse SYK defined over a (k ¢, q)-regular
hypergraph is determined numerically. In figure 2 we present the algebraic hypergraph
entropy as a function of the sparsity parameter k£ and for the all-to-all SYK. Clearly, the
q = 8 result approaches the all-to-all entropy value for smaller k as compared to ¢ = 4. We
will see that this is a pattern common in all the measures of connectivity.

3.2 Spectral gap and vertex expansion

In graph theory, the difference between the two largest eigenvalues of the Laplacian (3.5)
associated to a graph G, also known as spectral gap, plays an important role in the
discussion of expander graphs. Generically, the Laplacian is a scaled and shifted version of
the adjacency matrix A(G). For the special case of regular graphs, the Laplacian and the
adjacency matrix are related in such a way that studying the eigenvalues of the adjacency
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Figure 2. Algebraic hypergraph entropy I(H) as a function of the sparsity parameter k for a
(kq, g)-regular hypergraph generated randomly using algorithm 1. The entropy is obtained from the
eigenvalues of the rescaled Laplacian matrix (3.5).

or of the Laplacian is equivalent. Furthermore, if we denote Apax > A9 > -+ > A, the
eigenvalues of A(G), the largest eigenvalue of a d-regular graph always satisfies Ayax = d.
Thus, in the case of regular graphs all the relevant information is contained in the second

largest eigenvalue
A = max{ Az, |An|}. (3.12)

Since all the important information is contained in A, this quantity is commonly referred
to, as an abuse of language, as the spectral gap. Even though vertex expansion and spectral
gap are well understood for d-regular graphs, the situation is very different for hypergraphs.
Just very recently [29], the authors proved that uniformly random (r, s)-regular hypergraphs
always have a spectral gap. The largest eigenvalue of the adjancency matrix for (r, s)-regular
hypergraphs is Apax = 7(s — 1). Thus, hyperedge and vertex expansion are controlled by
the second largest eigenvalue of the adjacency matrix. Therefore, we can study the spectral
gap of the sparse SYK model and compare it with the all-to-all SYK to obtain another
measure of how good an expander a given random (r, s)-regular hypergraph is.

We note that the largest eigenvalue of the adjacency matrix (3.8) associated to the
all-to-all Hamiltonian (2.4) is Amax = (N — 1) w and all the other eigenvalues are equal
A2, ..., Ap = —w, which gives the spectral gap

A =w, (3.13)
where w was defined in (3.8). Note that the ratio A/Apax only depends on N via

A 1
- 3.14
N1 (3.14)

S\max
For the sparse SYK represented by a (k ¢, ¢)-regular hypergraph, its spectral gap Agparse 1S
evaluated numerically for each value of k. The results are illustrated in figure 3. Again,

~10 -
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Figure 3. Left: spectral gap normalized by the largest eigenvalue of the adjacency matrix. Right:
bound on vertex expansion (3.17) for subsets S C V' smaller than half the size of the vertex set V.
The dashed lines are the values for the all-to-all SYK.

we see that ¢ = 8 requires a smaller value of k to achieve a spectral gap closer to the
all-to-all SYK.

Another standard measure of expansion is wvertex erpansion. Intuitively, vertex ex-
pansion is the idea that small sets of vertices in a hypergraph have a large numbers of
neighbors. There is rich literature regarding graphs vertex expansion. For example, Tanner’s
Theorem [35] provides a lower bound on the size of a neighbourhood N(S) of a subset
S C V. Before proceeding, let us define the neighborhood of S.

Definition 8. Consider a subset S C V. We define its neighborhood as the set
N(S):={i:3j €S such that {i,j} C e for some e € F}. (3.15)

In [29] the authors proved a theorem that bounds the vertex expansion of a random
regular hypergraph. Consider a (r, s)-regular hypergraph H = (V| E) with adjacency matrix
A(H). Let A := max{A2(A), | \n(A)|} where A\a(A) is the second largest eigenvalue of A and
An(A) denotes all the other eigenvalues. In ref. [29], the authors showed that for any S C V

1— <1—T2(:j1)2) (1—'5')]1. (3.16)

We consider subsets S that are at most half of the size of the set V', then (1 - ‘nﬂ) >1/2

and we have
N (S 1 A2 -

This lower bound on vertex expansion is plotted in figure 3, right panel, together with the

NS
5T~

all-to-all value. We observe that for ¢ = 8 the bound is always larger and closer to the

- 11 -



all-to-all value. Furthermore, if ¢ = 4 we need a larger value of k, as compared to ¢ = 8§, to
achieve the same level of vertex expansion. This implies that when simulating the sparse
SYK we can expect that given a value of N, the optimal value of k will be ¢ dependent.

4 Two coupled sparse SYK model

4.1 Definitions of the model

The traversable wormhole mechanism of Gao, Jafferis, and Wall [12] relies on turning on
an interaction between the two asymptotic boundaries of a non-traversable wormhole for
some amount of time, which renders the wormhole traversable for some finite time interval.
Based on this idea, Maldacena and Qi [8] constructed an eternal traversable wormhole
with a global AdSs geometry that is traversable for any time. By considering a system
made of two copies of the SYK model with a bilinear coupling between them, it has been
found that the two coupled system behaves as the eternal traversable wormhole in the large
N, low-energy, and small coupling limit. Here, we consider the sparse version of the two
coupled SYK system, whose Hamiltonian is given by

H=Hp+Hp+ Hin,  Hine = i) X7 X5 (4.1)
J
where Hy, and Hp are the Hamiltonians for two identical sparse SYK systems coupled by the
bilinear interaction Hiyy whose strength is controlled by the parameter u. We assume that
each copy, which we refer to as L (Left) and R (Right), has N Majorana fermions denoted
by x4, with @ = L, R and j = 1,..., N, and are normalized such that {x%, Xi} = 00", We
recall that the Hamiltonian for a single sparse SYK was defined as

Hy =12 3" T8 g XX (4.2)

1<j1<...<jg<N
where the coefficients x;, .. ;, are either 0 or 1 according to the hypergraph that characterizes
the sparsity in the model. We will restrict ourselves to the class of hypergraphs that
are (k g, q)-regular (see definitions in section 2), meaning that the associated Hamiltonian
is a sum of exactly kN terms and each Majorana appears in exactly kg terms in the
Hamiltonian. The random couplings J¢ . are sampled from a Gaussian distribution of

J1---Jq
zero mean and variance

(5 ) = 2071 7% (g - 1) J*(g— 1)!
J1---Jq - quqfl - qufl

(4.3)

Note that the variance is rescaled by a factor p = kN/ (];7 ) compared to the all-to-all SYK
model. The parameter J sets the energy scale of the system and we will work with the
convention J = 1.2 It is important to notice that, even though the Left and Right couplings
are random, they are not independent. They are related by

L  _ .q7R
le...jq = Zq‘]j1...jq' (4.4)

%Note that our convention is the same as in refs. [6, 7, 13, 24], whereas refs. [8, 14, 25] use J to define
the energy scale of the system.
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This correlation is necessary to increase the information transfer between the two systems
and observe revivals [8, 24].4

In our numerical simulations, we will make use of Krylov subspace methods and the
Jordan-Wigner transformation (see appendix A) that maps the two coupled system with
2N Majoranas into a system of N qubits.

4.2 Real time Green’s function

We begin by computing the real time retarded Green’s function for the two coupled sparse
SYK model and we examine the effect of the sparsity characterized by the parameter k
defined above. Our goal is to estimate an ‘optimal sparsity’, given by the smallest value of
k that still captures the same properties as the all-to-all SYK to a good approximation.
Previous analysis [6, 7] have indicated that k ~ O(1) is enough to reproduce features of
SYK such as the chaotic behavior. Based on our refined analysis in section 3, we expect that
the optimal sparsity for the ¢ = 8 body system can be achieved using a smaller value of k
(more sparse) compared to the ¢ = 4 case, and here we verify this is indeed the case within
the range of parameters we are able to explore. Once we have determined the optimal
sparsity, we will move to the simulation of the two coupled system by fixing the optimal
sparsity we have found, whose results we expect to also hold for the corresponding all-to-all
SYK model.

The real time (retarded) Green’s function G (t), averaged over all fermionic modes, is
defined as

Galt) = 5 S 2ReOA(ON(0),  a,b=L,R (4.5)

In the above expression, (...) = %Tr[. ..e PH] denotes the thermal average at inverse
temperature 3 with normalization Z = Tr[e™?#], and it is implicitly understood that
besides the thermal average there is also an average over quenched disorder for the different
realizations of the random couplings Jj, . j, in the Hamiltonian.

In the low-energy, weak coupling limit < J, the large N physics of the two coupled
SYK system is governed by two reparametrization modes tr,(u) and tr(u) whose effective
action is given by a Schwarzian for each mode plus a contribution coming from the
interaction term Hiy (4.2). In the zero-temperature limit, the solution for the saddle point
is t7,/p(u) = t'u, from where one can derive the behavior of the two-point functions [§]

y 2A y 2A

. . PN . . )

<XJL(U)X]L(0)> ~e 't (t/(u_“)> ) <X]L(U)qu(0)> ~1 <m> ) (4.6)
S1n — COs 2

where A = 1/q is the identified conformal dimension. Upon increasing the temperature, the

system undergoes a phase transition interpreted as a transition from a wormhole to two

weakly coupled black holes. At finite temperature, the system displays a similar oscillatory

behavior in the two-point functions but there is also a decay in time [25].

1A study of the two coupled SYK with imbalanced interactions have been considered in ref. [36]. Similar
physics of the two coupled SYK has also been shown to arise by considering a single PT symmetric SYK [37].
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We are interested in the behavior of the two-point functions for the sparse SYK at
finite V. In this regime, the thermal average can be well approximated by an expectation
value in a Haar-random state [38-40)]

j J
CAENG0) = ST [P e (0)] = LGOI @)
(B15)
where |8) = e 3H |1) is the state obtained from imaginary time evolution of a random
state 1) using the full coupled Hamiltonian H. This approximation follows from quantum
typicality, and its error is expected to decrease exponentially with N and temperatures
above the gap of the system. Each component of |¢) is drawn from a Gaussian distribution,
and in practice the average is performed simultaneously over the random states and the
disorder realizations of the couplings Ji: ;. Moreover, the all-to-all SYK is known to
be self-averaging, meaning that when N — oo a single disorder realization approaches the
disorder average. For the sparse SYK system, however, the self-averaging property does not
hold in general but it is still valid for the Green’s function [6].

The real time Green’s function Gy(t) from our numerical simulation is shown in figure 4.
In the uncoupled case at p = 0, we obtain the typical decay of the SYK two-point function
Gy ~ |t|_2/ 9. The addition of an interaction term makes the G correlator to be non-zero
and produces an oscillatory behavior with the same characteristic frequencies in both Gpr,
and G . The existence of a non-zero left-right correlation indicates that signals can be
transmitted between the left and right systems. This is not a surprise since we are explicitly
adding an interaction between them, but what we are interested in is how these transmissions
occur, and in particular whether or not they can be interpreted as a signal traveling through
a traversable wormhole. We will explore these aspects in more detail in section 5.

Our main criteria in the estimation of the optimal sparsity is that it will give approxi-
mately the same characteristic frequency of oscillation for values of k above the optimal
sparsity. Empirically, we notice larger fluctuations for ¢ = 4 compared to the ¢ = 8 case as
we vary the sparsity parameter k within the same range. This suggests that the optimal
sparsity for larger ¢ can be achieved using a smaller value of k, in agreement with our
expectations based on the analysis of regular hypergraphs in section 3.

For concreteness, we have selected the optimal sparsity to be k = 4 for ¢ = 4, and k = 2
for ¢ = 8. For these values, the behavior of the Green’s function in the two coupled sparse
SYK is in good agreement with the corresponding all-to-all model — see figure 5. Even
though the direct comparison with the all-to-all SYK in our simulation is restricted to small
N, the hypergraph analysis in section 3 suggests that k£ = O(1) is enough to reproduce the
all-to-all model regardless of the value of N. Thus, we expect that the selected optimal
sparsity parameters will also be enough to recover the traversable wormhole features of the
all-to-all coupled SYK at larger N. In what follows, we will support this choice by studying
additional properties of the two coupled sparse SYK.

4.3 TFD and ground state overlap

The thermofield double state (TFD) plays an important role in many constructions of
holographic models. One natural question is how to actually build this state, in particular
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Figure 4. Real time retarded Green’s function G, (t) (4.5) with 2N = 40, ¢ = 4 (Left) and ¢ = 8
(Right), for different choices of the sparsity parameter k. Each curve is an average over 50 disorder
realizations of the random couplings. For p = 0, the left-right correlator Gz (not shown) vanishes.

using the SYK model. In general, the Hamiltonian H; + Hgr does not admit a TFD
as its ground state. On the other hand, it has been shown that the TFD state can be
approximately realized as the ground state of the two SYK system if we add the interaction
Hint (4.1) to the system [8]. Thus, the TFD state for SYK can be prepared by starting from
any excited state and then cooling the system down by coupling to an external bath [41].
A variational approach whose goal is to minimize the expectation value of the coupled
Hamiltonian has also been employed to simulate the TFD for the SYK model [42]. A
more general discussion about how to prepare the thermofield double state can be found in
ref. [43].

While it has been understood that the ground state of the two coupled SYK system
is approximately the TFD, it is not obvious that the same happens when we introduce
sparsity in the SYK model. Here, we study in detail the properties of the ground state |¥g)
of the two coupled sparse SYK and its relation to the TFD state, by performing a similar
analysis that was carried out for the all-to-all SYK [13, 14, 44, 45]. By taking advantage of
the sparsity, we are able to reach up to 2N = 48 for ¢ = 8, which goes beyond previous
studies for the corresponding all-to-all model [14].
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Figure 5. Retarded Green’s function G, for the two coupled sparse SYK model (solid) compared
to the corresponding all-to-all SYK (dashed) for 2NV = 28 for different values of the coupling p. We
set ¢ =4, k =4 (left) and ¢ = 8, k = 2 (right), and each curve is obtained from an average over 100
realizations of the random couplings.

The TFD state at inverse temperature 3 is defined as

_&
ITFD;) = e B3l i (48)

where |E,) 1,/ are the eigenstates of the L/R system and * denotes complex conjugation.
The TFD state is a purification of a thermal state, in the sense that the reduced density
matrix pr, = Trg|TFDg)(TFDg| is a thermal density matrix of the left system and vice-versa.
The temperature of the approximated TFD obtained from the ground state of the coupled
Hamiltonian (4.1) will depend on the parameter p controlling the interaction between the
two systems. When p — 0 we obtain the zero temperature TFD state, whereas u — oo
gives the infinite temperature TFD.
We can determine the temperature of the TFD state by maximizing the overlap

‘(TFDB(M)‘\IIO>‘> (4'9)

where |Wg) is the ground state and we assume that both states are normalized. We
follow closely the procedure adopted in ref. [14] which takes advantage of Krylov subspace
techniques. First, we construct the coupled SYK Hamiltonian and find its ground state
|Wp). Then, we build the infinite temperature TFD state

ITFDy) = |I). (4.10)

Note that |I) is just the ground state of Hiy. The TFD at finite temperature can be
obtained by imaginary time evolution using the uncoupled Hamiltonian

ITFDg) ox e *AHLTHR)/A| 1) (4.11)
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Figure 6. Main: maximum overlap between the ground state of two coupled sparse SYK model
and the TFD, assuming that both states are normalized. Inset: finite N scaling for the value pmin
at which the overlap reaches its minimum. We set ¢ = 4, k = 4 (Left) and ¢ = 8, k = 2 (Right), and
performed an average over 50 disorder realizations.

with small increments 63 typically ranging from 0.01x < 68 < 0.1u. We keep evolving the
system until the overlap [(TFDg,)|Wo)| starts to decrease. Note that the imaginary time
evolution can be carried out efficiently using Krylov subspace since we are not required to
write the Hamiltonian matrix explicitly.

In figure 6, we show the (maximum) overlap obtained using the method described above.
The overlap remains close to 1 for all values of the coupling strength, with a minimum
= 94% for ¢ = 4 and = 93% for ¢ = 8. Our results are in good agreement with the results
obtained for the all-to-all SYK where the overlap has been computed for up to N = 52
Majoranas for ¢ = 4, and up to N = 40 for ¢ = 8 [14]. The sparsity in our model enabled
us to push the simulation for ¢ = 8 to larger values of N which suggests that ppin, the
value of the coupling at the minimum overlap, goes to zero as N — oo, though more data
would still be necessary to support this extrapolation.

The temperature S(u) of the TFD state that maximizes the overlap is presented in
figure 7. We emphasize that the temperature of the TFD is simply an effective temperature
and is not the same as the physical temperature of the system, which is zero since the
system is in the ground state. In the large N and large ¢ limit, it is possible to derive an
analytical formula for 5(u), which is given by [8]

2 a)? J
=—4/1 — tan —, 4.12
8 = =1+ (5 ) avctan (412)
where a« = J sinh «y, and uq = 2atanh y. We found a large discrepancy when comparing our
numerical results with the analytical formula (4.12) in the small coupling region, signaling
strong finite-size effects in this region. We start to obtain agreement with the analytical
result for larger values of . This behavior have already been observed for the all-to-all
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Figure 7. The inverse temperature 5(u) of the TFD state which maximizes the overlap [(TFDg|¥g)|.
We set ¢ = 4, k = 4 (Left) and ¢ = 8, k = 2 (Right), and performed an average over 50 disorder
realizations. The dashed line corresponds to the analytical formula (4.12) valid in the large N and
large ¢ limit.

SYK [14], but in our simulation it becomes more evident that, for ¢ = 8, the numerical
data gets closer to the analytical formula as we increase N, though the region of very small
p displays a non-monotonic behavior with respect to N making it unclear how to draw a
finite NV scaling in the small coupling region.

4.4 Energy gap

The two coupled SYK model is known to be a gapped system, and its energy gap Fgap
provides a way to characterize different regimes of the system. In the traversable wormhole
phase, the energy gap can be used to estimate the frequency of oscillations in the transmission
amplitude of excitations between the two SYK systems [8, 24]. The global AdSs picture [8]
suggests that in the low energy limit and at weak coupling, the energy gap is expected to
scale as

Egap o uﬁ, (4.13)

where A = 1/q is the conformal dimension. In particular we have Eg,;, o ;LQ/ 3 for g =14
and Eg,p, o< p*7 for ¢ = 8. The appearance of this particular scaling of the energy gap at
weak coupling and low energy regime can be obtained from the effective Schwarzian action
that governs the dynamics of the system in this limit, from where one can derive that the
spectrum contains a conformal tower of states

E — /(A +n), (4.14)

1
where ' ~ 225, This is the same as the spectrum for a bulk field in AdS,. There is also
an extra quantum mechanical degree of freedom referred to as ‘boundary graviton’, which
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encodes the gravitational dynamics and backreaction of the system. Its spectrum sector is
given by

EPe =1\ /2(1 - A) <n + ;) : (4.15)

Thus, it follows that the system has an energy gap scaling as (4.13). On the other hand, at
strong coupling the interaction term in (4.1) dominates and we expect the linear scaling

Egap o< 1, (4.16)

simply because in this regime the system behaves roughly as a free fermionic harmonic
oscillator.

The energy gap Eg,p provides a way to identify distinctive features of the traversable
wormhole phase. In the large N limit, the energy gap can be extracted from the decay
rate of the imaginary time Green’s function [8]. In the wormhole phase, the decay of the
Left-Left and Left-Right Green’s function is exponential and their decay rates are equal
and given precisely by the energy gap.

At finite N, though, we can extract the energy gap from direct computation of the
lowest energy levels of the two coupled SYK system. In figure 8 we show our results for
the energy gap obtained in that way. For ¢ = 4, we find agreement with results using
exact diagonalization for the all-to-all SYK [44]. At large enough couplings we obtain the
expected linear scaling. At very small couplings, however, we observe large variations with
respect to IV, signaling that finite N effects are dominant in that region.

Remarkably, at some intermediate coupling, we can match the scaling predicted from
holography (4.13). This is more visible for ¢ = 8, where this scaling is obeyed within the
range 0.015 < p < 0.05. In the next section we will study the transmission of signals
between the two sparse SYKs and show the transmission can be related to the energy gap.

5 Diagnostics of signal transmission

The Maldacena-Qi model [8] has a wormhole phase in the regime of small 11/ .J and low-energy.
In the traversable wormhole picture, it is straightforward to interpret the transmission of a
signal from one boundary to the other simply as the signal traversing the wormhole. On the
other hand, from the quantum mechanical point of view, this phenomena can be understood
as a ‘revival’, in which a perturbation in one side of the system gets scrambled and after
some time, due to the effect of the interaction, it reassembles itself on the other system [23].

In the two coupled SYK model, the revival phenomena has been investigated for ¢ = 4
at both small and large N [24]. In the large N limit, revival oscillations at frequency
w o p?/? have been observed by solving the Schwinger-Dyson equations, in agreement
with predictions from holography. On the other hand, for small N, an emergent conformal
tower of states (4.14) could not be observed and revival oscillations arise from a different
mechanism attribute to finite-size effects. It remained unclear how the dynamics change
with increasing N giving rise to a traversable wormhole behavior.

Here, we make use of Krylov subspace methods combined with the introduction of
sparsity in the Hamiltonian to push this investigation to larger values of N. We study
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Figure 8. Energy gap of the two coupled sparse SYK system for ¢ = 4, k = 4 (Left) and ¢ = 8,
k =2 (Right). Dotted and dashed lines are the expected scalings Eg,p, ufé/q and Egap X 1 at
weak and strong coupling, respectively, obtained from the large N analysis. The energy gap for
the two coupled all-to-all SYK model with 2N = 28 is also included for comparison. The results
correspond to an average over 50 disorder realizations.

the sparse two coupled SYK for 2N = 40, for ¢ = 4,8 with sparsity parameter k = 4,2,
respectively, at both zero and finite temperature. We again consider the two coupled sparse
SYK Hamiltonian (4.2)
H=Hy+Hr+iny_ X)xh (5.1)
J
where H, is the sparse SYK Hamiltonian with N Majorana fermions for the a = L, R
system. We will be interested in the real time greater Green’s functions

Gap(t) = —% %X’fxi(t)xi(()» = (ggig ggi%) ' (5.2)

For Majorana fermions, the lesser and greater Green’s functions are related by G5 (t) =
(GZ,(t))*, and due to time translation symmetry we have G7 (t) = Gpz(t) and G x(t) =
—G7, (t). From the greater Green’s function we can obtain the transmission amplitude as

Ty = 2/G5). (5.3)

The square of the transmission amplitude reflects the probability of recovering 7 at some
time ¢ after inserting xj at ¢ = 0. Another quantity of interest is the spectral function
pab(w), which is related to G, (t) via

Gap(w) = (1 = np(w))pap(w), (5-4)

where G, (w) is the Fourier transform of G2, () and np(w) = 1/(1+ €¥) is the Fermi-Dirac
function.
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5.1 Transmission at zero temperature

We first consider the transmission amplitude in the zero temperature limit 5 — oo, i.e., the
transmission amplitude from excitations of the ground state. We can imagine that, at time
t = 0, we create a Majorana excitation on the Right system so that the full state of the
system is

(W (t =0)) = xr|¥o) = |¥r). (5.5)

As time evolves, the excitation gets scrambled. According to the revival phenomena [23, 24],
after some time t,.y, the excitation can reassemble itself and become localized on the Left
system so that the quantum state will take the form

|U(t = trev)) = XL|W0) = |¥L). (5.6)

In principle, this process repeats itself with Left and Right interchanged and one can imagine
it as an excitation that travels back and forth between the Left and Right systems. This is
what we refer to as revival oscillations. The transmission amplitudes are then given by

Tor(t) = (YO, Tro(t) = [(T(H)[VL)]. (5.7)

In figure 9, we show the transmission amplitude at zero temperature for ¢ = 4 and
q = 8 for the two coupled system with 2N = 40. The expected revival oscillation, in which
the transmission amplitudes 17,z and 17, alternate their local minimum and maximum,
is not observed for ¢ = 4 but can be noticed for ¢ = 8 at early times. This is presumably
due to the suppression in the transmission amplitude from the typical decay |t|=2/7 of the
Green’s function.

Remarkably, for ¢ = 8, the spectral function pry (5.4) displays a sharp peak whose
frequency obeys the expected scaling o uﬁ for the range of couplings 0.02 < u < 0.06,
and it changes to a linear scaling for p = 0.06. On the other hand, the position of the
highest peak in the spectral function for ¢ = 4 is closer to a linear scaling, although the
appearance of multiple frequencies in the spectral function prevent us to obtain a precise
scaling. Moreover, these multiple frequencies are not separated enough to be compatible
with the spectrum (4.14) predicted by holography.

Below some value of the coupling, which is approximately p < 0.15 for ¢ = 4 and
u < 0.015 for ¢ = 8, the oscillatory behavior in the Green’s function is no longer observed.
This value is around the point at which the overlap between the TFD and the ground
state (4.9) starts to decrease (as we decrease u), which is also near the point where the
energy gap starts to deviate from the large IV expectation. In this region of smaller couplings,
a different type of signal transmission that is not connected to the wormhole phase can
be observed [24]. In figure 10, we show that a non-zero transmission amplitude T g is
also observed at late times, which also indicates that the system does not thermalize. We
found agreement with a numerical simulation carried out using exact diagonalization for the
all-to-all SYK [24], and our results for larger N also supports the conclusion that this type
of transmission is a particular feature of the finite N regime, as the transmission amplitude
clearly decreases with N.
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Figure 9. Transmission amplitude T, at zero temperature (5.7) (left), the spectral function
prr (5.4) (center), and the characteristic frequency of oscillations of the Green’s function (right) for
2N =40, qg=4, k =4 (top) and ¢ = 8, k = 2 (bottom). The dashed and dotted lines represent the
expected frequency scaling at weak and strong coupling, respectively, according to (4.13) and (4.16).
We performed an average over 50 disorder realizations.

Also in the small coupling regime described above, revival oscillations can be ob-
tained by considering low-energy excitations, i.e., instead of looking at a single Majorana
excitation (5.5) we consider its projection into low-energy states

Nmax (En—Eg)
[Eol

1 _¢(En—Eg) .
|\IIR>low-energy = ﬁ Z € ¢ <\Iln’X;2’\PO>|\Iln>v (58)

where |U,,) are the low-energy eigenstates of the coupled system, £ > 0 is a parameter
controlling the suppression of higher energy states, and C' is a normalization constant.
We have also introduced a parameter np.x < 100 because in practice we cannot solve
for the whole spectrum when N is large enough. Figure 10c shows an example of signal
transmission for a low-energy state for 2IV = 32 and ¢ = 4. Since this type of transmission
involves a larger time range compared to our previous analysis, quantitative agreement
is obtained only for £ = 16. As a side remark, this type of transmission amplitude has a
strong dependence on the value of N and could possibly be related to its random matrix
theory (RMT) classification.” It would be interesting to understand if there is a connection
between this type of revivals and the RMT universality classes.

5Depending on the value of N mod 8, the SYK model is classified as a Gaussian Orthogonal Ensemble
(GOE), Gaussian Unitary Ensemble (GUE), or Gaussian Symplectic Ensemble (GSE) [46].
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Figure 10. Transmission amplitude T, r at zero temperature for fixed sparsity parameter k = 4
and different values of N, averaged over 50 disorder realizations, for (a) u = 0.005 and (b) p = 0.05.
(¢c) Single realization of the transmission amplitude Ty r for low-energy states with 2N = 32 and
sparsity parameter k = 16.

5.2 Finite temperature effects

We now turn our attention to the transmission amplitude at finite temperature. The two
coupled SYK model with a given fixed coupling p undergoes a first order phase transition
as the temperature of the system increases. This has been interpreted as a transition from
a wormhole phase to a black hole phase [8]. Intuitively, at higher temperatures the effect
of the interaction Hiy (4.1) becomes less important, in the renormalization group sense,
leading to two high temperature, weakly coupled black holes. At larger couplings, the
phase transition takes place at higher temperatures. At some coupling pmax, the phase
transition terminates.

Several aspects of the two coupled SYK model at finite temperature have been investi-
gated by solving the Schwinger-Dyson equations at both small and large ¢ in ref. [25]. Our
goal here is to study the temperature dependence of the Green’s functions and how they
affect the transmission amplitude at finite N. In particular, we want to analyze whether or
not a phase transition occurs at finite /N in our sparse two coupled SYK model.

We numerically evaluated the retarded Green’s function G, (4.5) and the transmission
amplitude Ty (5.3) as a function of the temperature using Krylov subspace techniques
combined with the approximation of the thermal average by a pure state (4.7). Our results
for 2N = 40 are shown in figure 11. We first notice that, unlike the zero temperature case,
the system thermalizes since T, — 0 for sufficiently large times. In general, as we increase
the temperature of the system, the Green’s function changes qualitatively from a non-
oscillating function with the typical SYK decay to an oscillating function whose amplitude
also increases with the temperature. This is similar to the transition between the wormhole
and black hole phases discussed above. Although this is a good evidence that the phase
transition is also present at finite IV, a more detailed study of the thermodynamic properties
is required to fully characterize the phase diagram of the sparse two coupled system.

The signature of revival oscillations, with 177, alternating their local minimum and
maximum, is enhanced at higher temperatures. Revival oscillations can be observed also
at infinite temperature for a short time interval, as it can be seem in our result for ¢ = 8
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Figure 11. The effect of temperature on real time retarded Green’s function G, (top) and the
corresponding transmission amplitude T, (bottom) for the two coupled sparse SYK system with
2N = 40 Majorana fermions and parameters: ¢ =4, k =4, and p = 0.5 (left); ¢ = 4, k = 4, and
1w =0.5 (center); g =4, k =4, and u = 0.5 (right). Each curve is the result of an average over 50

disorder realizations.

and g = 0.06 in figure 11. This particular value of the coupling is approximately the value
at which we observed a change of from o uﬁ to linear scaling in the zero-temperature
analysis in section 5.1. This indicates that a phase transition is no longer present, in
agreement with previous studies [8, 13].

Transmission in the infinite temperature in the SYK model have already been observed
in a recent quantum teleportation protocol [22]. It has been found that varying the
temperature of the SYK model gives a continuous interpolation between teleportation at
low temperature and the so called peaked-size teleportation at high temperature [15]. It
would be interesting to investigate if there is a direct connection between these protocols
and the transmission that we observed here.

6 Discussion

In this work we investigated a variant of the SYK model defined on a sparse regular
hypergraph. In this model, the Hamiltonian is a sum of exactly kN terms, in contrast to
the ~ N7 terms in the fully connected (all-to-all) SYK model. Despite the exponentially
large Hilbert space dimension, 2%, the sparse SYK model can be efficiently simulated using
Krylov subspace methods and massive parallelization. The results presented here are the
first steps in a program to study finite IV corrections in the holographic correspondence
between SYK and AdSs gravity with the goal of understanding how the gravitational
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behavior of a traversable wormhole emerges from the low energy limit of two coupled SYKs
as N increases.

Several known results from hypergraph theory provide us a good intuition about the
effect of the sparsity in the model. We have studied the algebraic entropy, the spectral
gap and the vertex expansion, which characterize the expansion in a hypergraph. These
measures suggest that the g-body SYK model can be well approximated by a sparse model
on a (kq,q)-regular hypergraph with a sparsity parameter k of O(1). We find that the
precise value of k can be smaller for larger q. The introduction of sparsity allowed us to
explore g-interacting Hamiltonians with ¢ = 4 and ¢ = 8. The case of ¢ = 8 has been less
explored in the literature [6, 14] because it is computationally more demanding than ¢ = 4
since the number of terms in the Hamiltonian scales as ~ N9. For concreteness, we fixed
the sparsity parameter to be k = 4 and k = 2 for ¢ = 4 and ¢ = 8 cases respectively.

We showed that the two coupled sparse SYK model displays similar features as the
corresponding all-to-all model such as a ground state that is close to a TFD and the presence
of an energy gap. Finite IV effects are stronger at weak coupling where the system fails to
reproduce the expected energy gap scaling obtained from the large N, and gravitational,
analysis. Interestingly, the scaling o /A?—i;/q predicted by holography is observed at finite N
only for ¢ = 8 for some interval of the coupling strength.

The analysis at very small coupling p is tricky. For small couplings, below p ~ 0.15 for
q = 4 and below p ~ 0.015 for ¢ = 8, we find that the overlap between the TFD and the
ground state (4.9) slightly deviates from unity, and the corresponding effective temperature
of the TFD state deviates significantly from the analytical formula (4.12). This suggests
the existence of strong finite-size effects in the weak coupling regime. This is also the same
range of y where the energy gap obtained in section 4.4 does not follow the expected scaling
o uﬁ associated to the wormhole phase.

We also studied the transmission of signals between the two coupled sparse SYKs.
At zero temperature and for ¢ = 8, we found a range of coupling strength that agrees
with the prediction from holography, which is approximately the same range where the
energy gap obeys the scaling (4.13). This might be an indication that finite-size effects
are suppressed by additional 1/¢g corrections. Thus, it would be interesting to push the
simulation at even larger ¢, which is still doable for the sparse model. Finally, we have
also studied the effect of temperature on the two-point functions and the transmission
amplitude. We found similarities with the phase transition between a wormhole and two
high temperature black holes [8]. These results are the first steps towards understanding
the complete phase diagram of the coupled sparse SYK model. This is a question that
deserves further investigation, specially in the region of small coupling where finite-size
effects are dominant.

Our results underscore the significance of the sparse SYK as a holographic dual and
highlights the need to better understand this class of models. There are several directions
that can contribute to this aim.

More properties of regular hypergraphs. Hypergraphs that are optimal expanders, in
the sense that their spectral gap is as large as possible, are known as Ramanujan hypergraphs.
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A (kq,q)-regular hypergraph is Ramanujan if any eigenvalue \; of the adjacency matrix
A such that A\; # Amax = kq(q — 1), satisfies [\; — g+ 2| <2/(kq—1)(g—1). In [29] the
authors showed that (k g, g)-regular hypergraphs are almost Ramanujan, i.e. they satisfy

N —g+2 <24/(kg—1)(g—1) +ew, (6.1)

where ey — 0 as N — oo. The sparse SYK model defined on (k g, ¢)-regular hypergraphs
then satisfy (6.1) in the N — oo limit. But numerical studies of sparse SYK are carried
out at finite N. Thus, it would be interesting to investigate to what extent (k ¢, q)-regular
hypergraphs satisfy (6.1) for finite N. This could provide another indication of the optimal
sparsity for a given NV and ¢. Another property of uniform, regular hypergraphs is how
the ‘cover time’ in a random walk scales with N. The vertex cover time, the edge cover
time, and the inform time, they all scale like N log N when N — oo [47]. It would be
interesting to understand the relevance of these cover times at finite N in the context of a
sparse SYK model.

OTOCs. The estimation that quantum chaos happens for k > 1 derived in ref. [7] used of
level statistics analysis. Another avenue to study aspects of quantum chaos is to compute
out-of-time order correlators (OTOCs). One interesting direction is to study OTOCs in
the single sparse SYK using the numerical approach of ref. [40]. In the context of the two
coupled sparse SYK model studied in the present work, one can investigate the behavior of
the Lyapunov exponent in the large N limit. In [48] the authors found that, for the all-to-all
coupled SYKs, the high temperature phase saturates the chaos bound 27 /3, while the low
temperature phase has a small but non-zero Lyapunov exponent. The chaos exponent was
related to the energy gap Egap via Af, ~ exp(—(% — 1)3Egp). It would be interesting to
see whether this relationship still holds or how it is modified at finite N.

Quantum complexity. Another question about the two coupled SYK model is how
doable it is to simulate such system in a near-term quantum computer [49]. One could
investigate if the addition of sparseness makes the simulation on a quantum device easier
and estimate the complexity to simulate it using methods such as qubitization [6, 50]. There
is also the problem of encoding the state on a quantum device. The Majorana fermions can
be encoded into qubits via the Jordan-Wigner transformation, but other choices of fermionic
encoding [51, 52] could be applied to make the simulation more efficient. Going even further,
one could also think of optimizing the simulation of SYK in hybrid quantum-classical format,
e.g., by using tensor networks [53].

Connection with teleportation protocols. Quantum teleportation has been investi-
gated in two coupled SYK systems [22], and in more generality for many-body quantum
system [15-17]. The key difference as compared to the eternal traversable wormhole setup
of Maldacena and Qi is that the interaction is turned on only for a finite amount of time.
A natural question in how to relate these teleportation protocols to the two coupled SYK
system studied here. Another natural question is to quantify the amount of information that
can be transferred through it. From the bulk perspective, this can be done by studying the
effect of the backreaction of the signal that we want to send [18, 54, 55]. If the backreaction
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gets too strong the geometry will be deformed in such a way that it makes the opening
of the wormhole smaller. From the quantum teleportation point of view, the bound on
information transfer can be quantified from the amount of entanglement that is available and
is understood as entanglement being used as a resource for the success of the teleportation.

We hope to return to some of these ideas in the near future.
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A  Numerical methods

A.1 Krylov subspace methods

Krylov subspace methods are particularly useful when dealing with large sparse matrices
M whose action on a vector z is easy to compute. These methods do not require writing
down the full matrix explicitly, thus they significantly reduce the memory usage.

Given a matrix M and a vector z, the Krylov subspace is define as the vector space

Km (M, z) = span{z, Mx, M2z, ... M™ 1z} (A1)

Within the Krylov subspace, we can look for good approximations for eigenvectors. As m
becomes larger, the better the approximation, but as a trade-off it requires more storage.
A Krylov process consists in finding a good basis for the Krylov subspace. The vectors
x, Mz, M?z, ... in general do not provide a good basis because M™z points more and
more at the direction of dominant eigenvectors as m increases. We can find a better
basis, for example, by choosing = randomly first, and making it orthonormal by using the
Gram-Schmidt method. There are other good basis constructions that are not necessarily
orthonormal. Two widely used Krylov processes are: Arnoldi and unsymmetric Lanczos
process. In the Arnoldi process the basis is orthonormal.

Krylov subspace can be used to approximate the time evolution of a many-body
quantum system. The comments below are based on section 5 of [39]. We consider a
quantum many-body system with Hamiltonian H and Hilbert space dimension dim?#. The
quantum state at time ¢ + At can be well approximated by a vector in the m-dimensional
Krylov subspace

Ko = span{[v(t)), H|o(t)), H[ (1), ..., H™Hip(t))}. (A.2)
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We can generate an orthonormal basis for IC,;, using the Arnoldi process. Then, we project
the Hamiltonian into this subspace to obtain an approximation for the time evolution

€_iHAt|1/)(t)> ~ Vme_iVmHVmAtel, (A3)

where V,,, € CHmHXm ig the matrix whose columns contain the orthonormal basis vector of
K, and e; € C™ is the first unit vector of the basis, which corresponds to |¢)(¢)) in the
new basis.

A.2 Jordan-Wigner transformation

The SYK system with N Majorana fermions can be encoded into spin—% degrees of freedom
via the Jordan-Wigner transformation. For Majorana fermions {x” ;-Vzl the transformation is

- 1 n—1 1 n—1
2l = = [[o7)oz, x*= 7 [Loi)os D xit =6 (A4)
i=1 =1

The index 7 = 1,..., N labels the jth Majorana fermion, and we splitted them into even
(i =2n) and odd (i = 2n — 1) cases. There is some freedom to define the transformation,
the condition we need to obey is that they satisfy the Dirac algebra {x;, x;} = d;j. There
are other ways to represent fermionic operators as qubits, such as the Bravyi-Kitaev
transformation [51] (see also [52] for a recent discussion on fermionic encoding).

The Hilbert space associated to the single SYK Hamiltonian has dimension 2V/2. In
the two coupled system, we can apply the Jordan-Wigner transformation twice so that
the coupled system gets encoded into N spin—% degrees of freedom, with a corresponding
Hilbert space of dimension 2.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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