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Abstract

We study the black hole information problem within a semiclassically gravitating AdS,
black hole coupled to and in equilibrium with a d-dimensional thermal conformal bath.
We deform the bath state by a relevant scalar deformation, triggering a holographic
RG flow whose “trans-IR" region deforms from a Schwarzschild geometry to a Kasner
universe. The setup manifests two independent scales which control both the extent
of coarse-graining and the entanglement dynamics when counting Hawking degrees of
freedom in the bath. In tuning either, we find nontrivial changes to the Page time and
Page curve. We consequently view the Page curve as a probe of the holographic RG flow,
with a higher Page time manifesting as a result of increased coarse-graining of the bath
degrees of freedom.
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1 Introduction

Recent progress has given us a new way to think about the black hole information paradox [1],
a central question in quantum gravity. The key insight is that in gravitational systems coupled
to an external bath, the fine-grained entropy of the Hawking radiation going into a “radiation
region" R is given by the generalized entropy S,en, which includes contributions from bulk
degrees of freedom in “islands” Z [2-5].

S(R) =minextg (RUT), o)
A(BT)

Sgen(R U I) = + Smatter(R U I) . (2)
Under this prescription, we minimize Sg, counting both quantum and gravitational degrees
of freedom [6], including possible subregions Z € M  which are treated as redundant with
R. The 7 minimizing the entropy is the entanglement island. By accounting for the emergence
of such an island, one finds a Page curve consistent with unitary evolution of the black hole.

The island rule has been studied so far in a variety of toy models far removed from stan-
dard Einstein gravity. The richest chapter of the story has been in 2-dimensional dilatonic
gravity, with the island rule being obtained from replica wormholes [7] and thermodynamic
tools [8,9] only readily available in 2 dimensions. Higher-dimensional (d > 2) toy models have
been constructed by embedding (into AdS,;,;) braneworlds which localize gravity as in the
Karch-Randall-Sundrum construction [10-12]. Such models are called “doubly holographic"
because they have three equivalent descriptions (see Section 1.1). This construction features
both a nongravitating external bath (the conformal boundary) coupled to the brane and en-
tanglement islands [13-16], but gravity on the brane is massive because of the bath [17].
This brings into question the physicality of even having a nongravitating bath in the first place
in such higher-dimensional braneworld models, i.e. whether theories with a bath can truly
impart lessons about black holes in our own universe.

The underlying theme of this critique is that, in the higher-dimensional models, the bath
gives too much computational control over the picture—a satisfactory toy model should not
have such a bath in the first place. One way to demonstrate this effect would be to ask how
the introduction of a dimensionful scale may affect physical quantities characterizing black
hole entanglement dynamics. To this end, we deform the bath theory by a relevant® operator,
which introduces a new, tunable scale in the bath and thus breaks conformal invariance. The
usual logic of double holography—that (d + 1)-dimensional classical geometry describes the

!While one may also consider an irrelevant deformation, the corresponding Klein-Gordon potential in our
minimal setup will not satisfy swampland bounds [18].
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Figure 1: A cartoon depiction of the setup, with the brane in red, the bath in black,
and the interface represented as a dot. The two-headed arrow indicates transparent
boundary conditions. By computing the entanglement entropy of the radiation region
R, the island rule demands that we also minimize over possible regions on the brane
Z. Classically in (III), we end up with the Z for which the entanglement surface area
(possibly including brane-action contributions) is minimal.

semiclassical Page curve in the braneworld—hints that this sort of bath deformation will indeed
influence the Page curve because it would correspond to bulk classical backreaction.

We use an eternal two-sided black hole—which features an eternal version of the informa-
tion paradox [19]—as our test bed and study how deformations of the bath corresponding to
a scalar field ¢ in the bulk affect the Page curve. While the size of R provides us with one pa-
rameter by which to tune the Page curve (specifically its saturation entropy), the deformation
triggers a holographic RG flow [20-23] from a UV fixed-point state on the boundary to an IR
state at the horizon, then to an analytically-continued “trans-IR" flow [24].2 The “strength" of
this deformation (i.e. its boundary source term) provides us with a scale that may be dialed
arbitrarily to change the Page time. Thus, the bath is not a consistent computational tool.

1.1 Double Holography

We focus on a doubly holographic setup [13]; a class of models where the island rule can be
written holographically. These systems have three equivalent descriptions:

(I) a d-dimensional boundary conformal field theory (BCFT), i.e. a d-dimensional CFT with
a (d — 1)-dimensional boundary [25, 26],

(I) a d-dimensional CFT coupled to gravity on an asymptotically AdS,; space M, with a
half-space CFT bath coupled to M, via transparent boundary conditions at an interface
point,

(III) Einstein gravity on an asymptotically AdS,,; space containing M, as an “end-of-the-
world" brane [10-12].

A particularly useful manifestation of double holography is when the end-of-the-world brane
is “tensionless" in the sense of the Karch-Randall-Sundrum constructions [ 10-12]. While such
a “probe" brane does not backreact on the bulk geometry of (III), there is still a tower of spin-2
Kaluza-Klein (KK) modes living on the brane [11]. As discussed in [17], one may still consider
the picture (II) by taking the lowest-mass mode to be a graviton and the higher modes to
compose the CFT.® While such a theory is certainly not standard Einstein gravity, the upshot of
using a tensionless braneworld is that holographic calculations in the bulk (III) do not require
particularly intricate numerics, unlike in setups with nontrivial tension parameters [13,16,27].

2In other words, the radial coordinate—identified with the energy scale of the holographic RG flow—becomes
timelike. We thank Sean Hartnoll for clarifying this point.
3We elaborate on this point in Section 3.
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Figure 2: On the left is the two-sided thermal configuration of (II) featuring both the
t = t, radiation region R (t,)URR(t,) and the island Z which emerges at late times.
The right figure is a sketch of the (eternal) Page curve depicting (renormalized) en-
tanglement entropy versus time—initially the time-dependent no-island entropy S
is minimal, but it eventually exceeds the non-trivial island entropy Sz. This curve
can be obtained by computing (renormalized) areas in the (IIT) configuration.

The scenario relevant for the black hole information paradox is (II). The relationship be-
tween (I) and (III) is the AdS/BCFT correspondence [28,29]. The advantage of such dou-
bly holographic models is that the interesting semiclassical physics in (II) can be extracted
from computations performed classically in (III) [4, 14,30, 31]. Concretely, the generalized
entropy of (II) is well-approximated, to leading order in 1/Gy, in (III) by a classical entan-
glement surface computed via the Ryu-Takayanagi (RT) prescription [32] (or its covariant ex-
tension [33])—the surface is extremal and thus must satisfy some boundary condition on the
brane.* This perspective allows us to interpret the island Z of the entanglement surface of the
radiation region R as “completing” the standard homology condition and serving as a portion
of the boundary of the full fixed-time entanglement wedge.

We note that interpreting R as embodying the degrees of freedom of Hawking radiation
from some black hole on the brane is simply one interpretation commonly seen in double
holography [13-17,27] which we also employ. One could reasonably argue that, although the
entropy of such intervals is well-defined, it is not the appropriate quantity to compute when
dealing with black hole information in these setups. However, studying Hawking radiation
would then require an alternative entropy proposal altogether.

1.2 The “Eternal" Information Paradox

To see how islands appear in doubly holographic braneworlds, we can consider a simpler
analog to the information paradox of evaporating black holes which instead appears when
examining eternal black holes coupled and in thermal equilibrium with a bath.

In the landscape of double holography, we consider the evolution of two BCFT systems
comprising a thermofield double state characterized by inverse temperature 3. The corre-
sponding solution in (II) is a two-sided AdS, black hole in thermal equilibrium with two finite-
temperature baths, while the solution in (III) is an AdS;,; black hole with a brane present.
At a given time t = t,, the radiation region of interest (shown in Figure 2) consists of two
disconnected pieces—RE(t,) and RE(t,).

In (III), following the RT prescription without regarding the islands—that is for 7 = @—
tells us that Hartman-Maldacena surfaces encode the entanglement entropy of radiation [34].

*Technically speaking, it is S, Which is well-approximated by such an area. However, so long as the only
gravitational terms on the brane are “induced" by gravity in the bulk, the G;l term vanishes at tree level and thus
counts as a quantum correction which we neglect in a semiclassical approximation taking only an effective theory
on the brane. This is discussed by [14,27].
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In satisfying the homology constraint, these spacelike surfaces cross the interior of the AdS,,;
black hole’s Einstein-Rosen bridge. The entropy thus exhibits monotonic growth from t = 0,
with the late-time t > 3 growth being linear. This eternal growth is an information paradox
in (I—the Hawking radiation becomes more entropic than even the black hole [19].

This issue is resolved if nontrivial islands are considered. In particular, [19] discusses how
the minimal entropy after the Page time t = t, counts an entanglement island which goes
outside of the black hole interior, so at t = t, there is a phase transition. This is explicitly
seen by a classical computation in (III) if we compare the Hartman-Maldacena area—a time-
dependent quantity—to the area of a minimized extremal surface residing solely outside of
the interior and ending on the brane—a time-independent quantity. The resulting late-time
entropy is thus constant, as found by [19]. This means that the Page curve is indeed encoded
by the semiclassical picture in which gravity resides on the brane and radiation escapes into a
bath.

Note that this phase transition depicted in the eternal Page curve (Figure 2) is analogous to
the typical Hartman-Maldacena phase transition seen with no branes [34]. With no branes, we
have an RT surface which is entirely homologous to the boundary interval and in the exterior,
so this surface would bound the late-time entropy and produce the same sort of entropy curve.
In fact, the setup with the tensionless brane is precisely a Z, orbifold [17,35], and so the phase
transition of interest is literally the one of Hartman and Maldacena when interpreted in the
bulk (as opposed to one which is informed by some nontrivial extremal surface boundary
condition at the brane).

Nonetheless, the important interpretation is that of the braneworld theory (II), not the
bulk theory (III). The former is where we may view this entropy curve as corresponding to a
phase transition of quantum extremal surfaces [6], while the latter is simply a classical phase
transition.

As an aside, the comparison can be done entirely on the t = 0 slice, for which there is no
interior contribution to a Hartman-Maldacena surface’s area. Fixing the endpoints of R' and
RER to be the same distance from the brane, one can find whether or not the island surface is
already minimal at t = 0 [17]—this would imply no phase transition and no Page curve. In
doing so, one finds that the radiation region cannot be too close to the brane to get a Page
curve (see Section 3.1).

1.3 Massive Gravity from the Bath

All of this begs the question—to what extent does the coupling of an external bath influence
the story? Previous work has explored the effect of the graviton mass. It is known thatind > 4,
by coupling the AdS; brane to a bath with a transparent boundary condition at the interface,
the localized gravitational theory on the brane becomes a theory of massive gravity with no
massless graviton [36,37]. In [17] the authors tuned the near-zero mass down, finding that
the nontrivial island candidate surface grows in response. This limit is essentially performed
by tuning the tension of the brane up towards its critical value; in response however, the
brane’s cosmological constant A, and dynamical gravity on the brane turns off. A way out
which preserves the massless graviton and dynamical gravity was found by [38], which puts
the critical brane at a cutoff surface in the AdS,,; bulk to keep G4 finite. This procedure saves
the islands for d = 2, although whether it works for d > 2 remains to be seen.’

A different way to introduce a zero-mass graviton [27] is to make the bath itself gravitat-
ing, but this gives a constant entropy curve if we follow a dynamical® island rule—a result in

>The case of d > 2 would also need to be reconciled with [39], which argues for incompatibility between
islands and massless gravitons in d > 2 using the Hamiltonian constraints of gravity.

®Here, “dynamical" simply means that the higher-dimensional classical island surface has Neumann boundary
conditions on both branes.
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agreement with [40]. Note however that there is disagreement in the literature on whether
the flat curve of [27,40] actually depicts the appropriate entropy for a black hole in the first
place; [41] argues for a different factorization from [40] as being relevant to the radiating
black hole while [42] uses the gravitating bath of [27] with alternate (Dirichlet) boundary
conditions for the island surface. [41,42] both find Page curves in their respective analyses,
with the presence of a bath potentially muddying the picture of how one should factorize.

Differences in the literature and pending questions aside, a lot can be learned by either
slightly deviating from or further probing the typical “brane and nongravitating half-space
BCFT bath" construction, as done by [16,42-47].

1.4 Deforming the Bath

In this work we pursue a different way of altering (although not eliminating) the nongrav-
itating bath: we study a bath deformation corresponding to a scalar field in the bulk and
explore how it affects the Page curve. With no branes, it is known that introducing a scalar
deformation on the conformal boundary of an AdS black hole will change the near-singularity
geometry from AdS-Schwarzschild to a Kasner universe [24,48-50]. The Kasner universe met-
ric is essentially that of the Schwarzschild geometry but with some extra warp factors. Up to
pre-factors and in d + 1 bulk dimensions (d > 2), the near-singularity geometry and scalar
field behave as (restricting to isotropic gravity + scalar solutions),

ds? ~ —d 1% + 12Pedt? + 2Pxd X2, ¢(r)~—1/§p¢ log T, 3

where 7,t € R, ¥ € RY"!, and p,, p,, pg are the Kasner exponents. These exponents obey a set
of constraints,

pe+(d—1p,=1, )
py+pi+(d—1)pi=1, (5)

so there is only one free exponent.

Notably, these exponents affect the entanglement velocity—the speed of the late-time linear
growth of the Hartman-Maldacena surface spanning the interior. As this is also the early-time
entanglement surface when a brane is present, it is natural to think that the Page curve and,
in particular, the Page time will also change.”

The deformed geometries studied by [24] are called Kasner flows because, from the holo-
graphic RG flow program [20], the scalar deformation induces an RG flow from a UV fixed
point state on the conformal boundary to a late-time singularity in the black hole’s inte-
rior [51, 52], with the scaling changing from spacelike to timelike at the horizon. Thus as
mentioned above, the flow is to an IR state at the horizon then gets analytically-continued to
a trans-IR flow towards the Kasner universe.

The flows are labeled by a dimensionless parameter on the boundary. Each of these flows
thus describes a particular coarse-graining of the UV state, controlled by a corresponding ra-
dial scale rpg which is probed by the Hartman-Maldacena surface. This scale is roughly de-
fined such that the UV physics dominates between the conformal boundary and rgg, while the
IR/trans-IR physics becomes more important between the singularity and rpg. Concretely, we
get a more rapidly coarse-grained state as rgyg approaches the boundary:.

"There is a subtlety regarding d = 2 when adding a brane: the lowest order terms in the brane’s induced
gravity action are a nondynamical Einstein-Hilbert term and a nonlocal Polyakov Rlog |R| term [14]. As we are
assuming an effective dynamical description on the brane, any of our statements about Page curves only work for
d>2.
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Upon adding a brane, each flow becomes one of a BCFT thermal state [53, 54], and we
must account for the island surface. This introduces an independent radial scale r—the inter-
section depth of the island surface with the brane—which is directly determined by the metric
functions and the size of the radiation region R. This radial scale is tied to how many bath
degrees of freedom we trace out when directly computing the entropy of Hawking radiation.
It is thus related to the “dynamics" of the entanglement entropy; a larger r; corresponds to
tracing-out more degrees of freedom and thus a higher saturation value of the entropy.

From this perspective, when adding a brane the resulting Page curves found by the island
rule probe both the coarse-graining and the entanglement dynamics. Purely from a BCFT
perspective, we would heuristically expect two things: (1) that strong IR effects in the bath
should increase the Page time by decreasing the ¢y, [53] and (2) that the dynamical part
of the Page curve can only be seen after integrating away a minimum number of degrees of
freedom. We indeed find both to be the case at least within the numerical range we explore.

2 Kasner Flows as AdS/CFT Solutions

We start with a review of the Kasner flows, following [24] but generalizing their equations.
We take (d + 1)-dimensional Einstein gravity (d > 2) with negative cosmological constant
A =—d(d —1)/2 (setting the AdS radius to 1) and coupled to a scalar field ¢ with potential
V(¢). With 16mG4,, = 1, the action is,

I= J d™xy/~g (R+d(d—1)—%[va¢va¢ +V(¢)]) . ©)

As in [24], we consider the minimal case of a free massive scalar field—the potential being
V(¢) = m?¢2. Note that the flows solving this action with an additional higher-order A¢*
coupling have been studied by [55].

The bulk equations of motion are the usual Einstein + scalar equations and the Klein-
Gordon equations (defining 0 =V ,V%),

d(d —
Guy— %guv = 411 [ZVM(PVV(P _guv(va¢va¢ + m2¢2)] > ™)
(@—m2)¢p =0. ®

For the metric, we take solutions of the form,

2
ds? = % [—f(r)e—%(r>dt2 + ]% + d?cz} , )

where t € R, r > 0, and ¥ € R9™L. For ¢, we consider a radial ansatz: ¢ = ¢(r). The dual
scalar operator O is then a constant boundary deformation. By the AdS/CFT dictionary [56],
its conformal dimension A satisfies a mass-dimension relation,

m? =A(A—d). (10)

Plugging this into the Klein-Gordon equation and combining the result with the tt and rr
components of the Einstein + scalar equations yields a set of ODEs,
od—1 o A(d—A)
”+(f—————) s =0, 11
A P Lt an
, 2f A(d—A)p? 2d N 2d

fd-vrf rf 1

i T AL
¥ =7 () =0, (13)

0, (12)
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in agreement with [24] when d = 3 and m? = —2.

We are concerned with black holes, so we suppose that f has a simple root at r = r_ —this
is the horizon. Furthermore while the conformal boundary is located at r = 0, the singularity
in our coordinates is at r = 0o. We must also have regularity of the metric (9) at the horizon.
To emphasize this point, we note the existence of infalling coordinates in which the metric
takes the form,

ds® = rl—z [—f (e du? + 2¢ I 2du dr + d%?] . (14)

Lastly observe that the above ansatz with a particular choice of the radial functions becomes
the AdS-Schwarzschild black hole—take f(r) =1—(r/ r+)d and y(r) = 0. The equations of
motion (specifically (12)) then imply,

¢(r)=0, (15)

so AdS-Schwarzschild is indeed the vacuum solution with no backreaction from ¢.

We now describe the asymptotic behavior of the radial functions as well as the correspond-
ing field theoretic data both near the UV boundary theory (r — 0) and near the IR singularity
theory (r — ©00). Additionally we discuss how the bulk represents an RG flow from one to the
other, allowing us to treat the near-singularity data as emergent from the near-boundary data.

2.1 Near-Boundary Expressions and Data

The near-boundary (r — 0) expressions are standard to AdS/CFT. While there is some sub-
tlety upon which we expand in Appendix A, the key point is that a relevant scalar operator
with conformal dimension A < d is precisely dual to a bulk scalar field with negative m? but
satisfying the Breitenlohner-Freedman stability bound [57],

d2
7 <m?<0. (16)

However, we restrict to operator dimension above the unitarity bound,

d—2
A> 5 17
Thus for any value of m? between —d?/4 and 1—d?/4, the mass-dimension relation (10) gives
us two possibilities for A depending on the boundary conditions of ¢ [58,59].% [24] uses the
“canonical" quantization in which the larger candidate (which is more strictly bounded from
below by d/2) is chosen, but we can still take any A above the unitarity bound. While the
bulk equations of motion are only sensitive to m?, this choice will affect our interpretations of
the leading-order and next-to-leading-order modes in the near-boundary expressions.
With that in mind, we now write the A # d/2 near-boundary mode expansion of the field
¢ (r) in terms of the boundary source ¢ and the one-point function (O),

i-a, (O) A
r)~ ¢gr + re. 18
B(r)~ or' =2 + (8)
Next, we use the fall-off of the tt component of the metric to write,
2o = =20 o1 — (T ) 1
r°gu. = f(re ~ (Tee) 9, (19)
8For the edge case m? = —d?/4, we only consider the Dirichlet boundary condition to avoid a double root in

the CFT two-point function when taking A = d/2.
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where (T,,) is the energy density of the thermal state. These expressions are enough to write
the near-boundary expansion of y (r) by plugging into the equation of motion (13) and noting
that y(0) =0,

—A 2 2d-2) 2A(d —A)
2(d—1)"° d(d—1)(2A—d)

A 2 _2A
T Xd—Dea—ag O

2 (r)~ b0 (O) 1

(20)

For A = d/2 however, while we still have (19), we now write the Dirichlet expression [59],
¢(r) ~ dpor'/logr, (21)
and integrating the differential equation (13) yields,

2
¢—O_1)rd [2 +2dlogr + dz(log r)z] . 22)

x(r)~4d(d

There is one more aspect of the boundary state left—the temperature T. Because (9) is
time-independent, we may easily compute the surface gravity x to get T. Defining K = &,,
f{ = f'(r}) (nonzero by assumption), and y, = y(r),

F1le

41 (23)

1
T=—=—\|-2(VeKB)(V K
oy 2n\J 5 )(VoKp)

r=r,

Imposing regularity on the radial functions at the horizon, the near-boundary data—(T,,) and
(O) in particular—can be written in terms of the dimensionless ratio ¢,/T¢ *—the defor-
mation parameter. As this data determines the rest of the bulk geometry by the equations of
motion, the entire holographic RG flow (for each d and A and including the near-singularity
data in the IR) is labeled by ¢o/T92.

2.2 Near-Singularity Expressions and Data

We now write the near-singularity (r — o0) expressions for the radial functions. The scalar
field is dominated by a logarithmic divergence [60,61] which we write as,

¢(r)~(d—1)clogr. (24)

Here c is a constant with ¢ = O corresponding to the Schwarzschild solution to the Einstein +
scalar theory. Plugging this into (13) yields the near-singularity behavior of y,

x(r)~(d—1)czlogr+xl, (25)

where y; is a constant. We then use the remaining equations of motion to write f, bearing in
mind that it is negative in the interior.

f(r) ~—frP, p=d+(d;1)c2. (26)

Note that these expressions all coincide with [24] at d = 3. Plugging these into the metric (9)
and reparameterizing the now-timelike radial coordinate as,

r=r1"2P 27)
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|| Near-boundary (r — 0) | Near-singularity (r — ©0)
_ (@)
90 e VEA=Tp—Dlogr
A#d/2 -
(¢(dr/)) por?/*logr v2(d—1)(p —d)logr
A=d/2
—_— 2(p—d)l
(Axg/)z) 2" d(d—l)(2A—d)¢0(O>r (p—d)logr + x1
A 2 _2A
+ (@)
2d—Daa—ae T
¢2
(Ax—((;/)z) Wo—l)rd [2+2d logr+d2(logr)2] 2(p —d)logr+ x;
f(r) eX(r)(1_<Ttt> rd) —farP

Table 1: The near-boundary and near-singularity expressions for the radial func-
tions characterizing a Kasner flow ansatz for the Einstein + scalar theory. The near-
boundary data is controlled by the deformation parameter ¢,/ T 9~ while all of the
near-singularity data is determined by the Kasner exponent p,.

yields (up to rescalings of the spacelike coordinates and an overall factor) the Kasner universe
and corresponding scalar field (3),

ds? ~ —d7? + 12Pedt? + 12PxdX2 ) p(1) ~ —1/§p¢ log T, (28)
with the Kasner exponents being (in terms of p),

2(d—1 2 24/ (d—1 —d
p=1— ( )’ pe=2, py= V( )p )_ (29)
P P P
These indeed satisfy the Kasner constraints (4) and (5). Furthermore at the Schwarzschild

value c =0 = p =d, we get,

2 2
Schwarzschild: p, =—1+ 3 Dx = 3 py =0. (30)

2.3 Emergent Kasner Exponents from Flow

We summarize the results of Sections 2.1 and 2.2 in Table 1. While these results seem dis-
connected, we now discuss how these different asymptotic limits are linked by the bulk RG
flow.

From studying the near-boundary and near-singularity data, we have that, independently
of the holographic RG flow, the former is fixed by ¢/ T 9~ while the latter is fixed by any one
of the Kasner exponents—we use p, as done in [24,55]. However, when equipped with both
the near-boundary data and the equations of motion, the entire flow is already fixed and thus
sets a value for p,. Thus the Kasner exponents are emergent from the deformation parameter
and the flow.

The most concrete way to examine this relationship is to plot the value of p, as a function of
$o/T22. For the Einstein + scalar theory, we do so for various dimensions in Figure 3. These
plots are numerically determined, requiring d and A as inputs. The details of our methodology
are discussed in Appendix B.

While the numerical values depend on d—even the exactly-known Schwazrschild value for
p; depends on dimension—the qualitative behavior of the emergent p, appears to satisfy an
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inversion-like symmetry. Specifically there is a value of ¢,/T¢~* for which p, is maximized,
whereas ¢,/T9™® — oo appears to give the Schwarzschild value.® However there is still
a problem of fine-tuning—it is unclear how the maximum is actually set. As a preliminary
observation, the numerics indicate that the corresponding A = A, and A = A_ (same m?)
flows attain the same maximum p,.

The work done in a self-interacting scalar theory [55] finds the qualitative behavior to hold
more generally, but the fine-tuning problem persists—the value and location of the maximum
depends on the details of the theory. How these flows may exhibit universal behavior is an
interesting open question which we intend to revisit.

3 Page Curves as Probes of Flows

Taking (9), we add a Karch-Randall (KR) brane and excise space beyond it. We then study the
entanglement surfaces in the resulting geometry. Before discussing the details however, we
briefly review the set-up (also discussed in the Introduction).

We consider the action (6) with an additional term (with 167G, = 1),

Q

Q is a Randall-Sundrum (RS) brane with tension Tgg, induced metric h,;, and extrinsic cur-
vature K,;. In RSII models characterized by end-of-the-world branes, Q is the boundary of a
manifold solving (6) and satisfying a Neumann condition,

Kab = (K - TRS)hab . (32)

With no scalar field, Q is a KR brane specifically when the induced geometry is AdS;. This
occurs precisely when the tension is subcritical, satisfying the bound,

|Trs| <d—1. (33)

In practice, we find such KR branes by taking some foliation of AdS,;,; into AdS; slices, then
computing their respective tensions [36]. However in our work, we are considering (scalar)
backreacted geometries, so the induced geometry on the brane is not a vacuum solution.
Nonetheless we still have a KR brane so long as we find a boundary for which (32) is sat-
isfied.

°This is also stated by [24, 55], but it is not immediate from the plots. Rather, this is assumed asymptotic
behavior based on running the numerics to large ¢,/T¢ 2.
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Figure 3: The emergent Kasner exponent p, versus the dimensionless deformation
parameter ¢,/ T9 2 for various d and A, computed via a numerical shooting method
outlined in Appendix B. We show the results for (a) d =2, (b) d =3, and (c) d =4.
The dashed lines correspond to A =d/2.
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Einstein gravity in the bulk “localizes" to “induced" quantum gravity on the brane [11,12,
14], although what localization means is a matter of interpretation. Agnostically, the original
Karch-Randall story [11] considers the transverse-traceless (TT) modes of linearized fluctu-
ations arising from the backreaction of the brane. Generically, these TT modes satisfy the
Schrodinger equation with a “volcano" potential containing a weighted 6-function term cen-
tered at the brane (see Figure 4). However, the weight of the 6-function smoothly vanishes
as Trg — O (i.e. the probe limit), resulting in the loss of the volcano’s “crater." Regardless of
the tension however, solving for the KK tower of spin-2 modes becomes a quantum mechanics
problem—computing the eigenstates (labeled by their masses) of the Schrédinger equation
with the volcano potential.

In the near-critical-tension regime when (33) is nearly saturated, the lowest-mass (“almost-
zero") mode has a positive mass which is nonetheless much smaller than the masses in the rest
of the tower [11,62,63]. Furthermore, the almost-zero mode’s wavefunction is sharply peaked
at the brane. Thus we think of the almost-zero KK mode as a graviton that is “localized" to
the brane in the sense of its wavefunction dying off quickly in the bulk. The higher modes
meanwhile dualize to a CFT on the brane. This gives description (II) in the Introduction for
the near-critical branes.

However, we remark that there is not necessarily a problem with maintaining this inter-
pretation as we leave the critical limit. As we tune the tension down by O(1) factors, the
mass spacing between the almost-zero mode and the first excited state will decrease, and the
former’s corresponding wavefunction will broaden. In other words, the almost-zero mode no
longer has an obvious interpretation as a localized graviton. Nonetheless, these changes are
quantitative rather than qualitative, and there is no sign of a discontinuity in the bulk analysis.
Thus, one may advocate (as we do so here) that viewing the almost-zero mode as a graviton
coupled to a CFT obtained from the higher modes is still a valid holographic interpretation of
the picture.'® Indeed, [13] considers such a scenario at a tension which is certainly subcriti-
cal.!’ However, the theory of gravity here would be far more unusual than in the near-critical
limit in that there is stronger mixing between the graviton and the CFT, since the states of the
KK tower are all “closer together."

The fine-tuning which pushes the limits of this reasoning the most is the tensionless case,
in which we lack both the almost-zero-mode wavefunction’s sharp peak and, as stated above
and shown in Figure 4, the crater of the volcano potential. Both features might be viewed
as signals of “localization." However, there is still no discontinuity when going from nonzero
to zero tension; indeed, the crater vanishes smoothly as seen in the volcano potential written
in [11] for d = 4. Along the reasoning of [27] (which, as we do here, studies entanglement
islands), the tensionless braneworld theory is then “no worse" than that of nonzero tension,
at least away from the near-critical regime.

With dynamical gravity on the brane, the conformal boundary acts as a “bath" into which
information may flow from the brane theory. We thus have a natural arena in which to explore
black hole information—simply put a black hole on the brane itself. Furthermore as we have
a scalar deformation on the bath controlled by ¢,/T9~2, we can observe how tuning the
deformation affects information.

To further take a semiclassical approximation, we consider the leading-order effective in-
duced action—identified as d-dimensional Einstein gravity from the series worked out by [14].
The induced Einstein action is dynamical for d > 2 but not for d = 2 (for which having a dy-
namical effective theory would require inclusion of the next-to-leading order Polyakov term
~ Rlog|R|). We thus only consider d > 2 and leave explorations of the relationship between
scalar deformations and Page curves in d = 2 to future work.

1%We thank Andreas Karch for clarifying this point and its corresponding rationale to us.
117113] considers d = 4. The critical tension is 3, but they use a brane with tension 3/+/2.
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Figure 4: A sketch of the AdS volcano potential V(w) in [11] for d = 4, depicted as
a function of a coordinate w which is normal to the brane. We show both the T > 0
case (which has a crater) and the T = 0 case (which lacks a crater).

Concretely, we compute holographic entanglement entropy. We assume that the appropri-
ate semiclassical holographic prescription is still the island rule [2-5] but in the backreacted
geometry—for some radiation region R on the boundary as shown in Figure 1, its entangle-
ment entropy to leading order as G4,; — 0 is given as,

Aly)
4Gg41

Here v is the minimal-area surface in the island rule, so it can either be entirely homologous
to R or be homologous to R UZ where 7 is an entanglement island residing on the brane. We
specifically study two-sided black holes, so the radiation region consists of a left piece R! and
right piece R as in Figure 2.

Using (34) however requires fixing a particular KR brane and thus setting a tension Tyg.
For mathematical simplicity, we consider the probe limit Tpg = 0; islands with nonzero tension
have been studied by [13-15,17,27] but we leave how this part of the story interacts with scalar
deformations of the bath open to exploration. We also reiterate that, although the holographic
interpretation of the tensionless “brane + bath" theory is highly nonstandard gravity due to the
lack of separation between the almost-zero and excited spin-2 KK modes, in following [27] we
proceed on the basis of this scenario being not particularly worse than those of nonzero-tension
braneworlds.

Regarding the position of the brane, picking-out a transverse coordinate

xtin ¥ = (x1,...,x%71) as shown in the metric (9), we take the slice,

x'=0. (35)

S(R) =

(34)

We must ensure that this is a proper KR brane—that given the full action (6) plus the RS term,
both the geometry (9) and the radial scalar field ansatz ¢ = ¢ (r) discussed in Section 2 satisfy
boundary conditions on Q. Starting with the former, we note that the normal unit vector is,

1
My =61, (36)

where 6, is the Kronecker delta and 1 denotes the x! coordinate. The resulting extrinsic
curvature on the (35) slice is then,
K., =0, (37)

14


https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.033

Scil SciPost Phys. Core 5, 033 (2022)

so this is certainly a tensionless KR brane.
As for the scalar field ¢ = ¢ (r), it clearly satisfies a Neumann boundary condition because
it is independent of x!,

n"9,¢(r)=rd ¢(r)=0. (38)

The punchline is that, for a particular scalar deformation—that is some deformation parameter
¢o/ T2 —there exist radiation regions for which the entanglement entropy between the left
and right parts of a two-sided black hole with a KR brane obeys a Page curve (Figure 2).
There are technically three parameters which can be tuned given d: ¢,/T? 2, the operator
dimension A, and the endpoint of the radiation region x5 (on both sides—we take R! and
RR to start at x! = xp).

The primary parameter of interest is ¢o/T% " because, by keeping A and x5 fixed, the
resulting Page curves correspond directly to bulk RG flows from the same equations of motion.
We also study how changing A affects the Page curve. The underlying motivation behind this
analysis is to understand how changing the bath deformation may alter the physics, so we
leave x5 alone (although we need to justify that such a radiation region which can be kept
stable despite tuning the deformation indeed exists—see Section 3.1 for details).

Nonetheless, it is also interesting to understand what happens when we tune x5 . To do so
meaningfully, we fix d = 3 and A = 2, comparing the AdS-Schwarzschild solution (¢,/T = 0)
to a solution for a nontrivial deformation. We find that larger x5 correspond to more direct
probes of backreaction in the interior specifically.

3.1 The Page Point

When tuning the scalar deformation, a natural question arises: can we definitively choose a
radiation region R which yields a Page curve regardless of the values of ¢o/T¢™> and A? We
thus define the Page point x, as the value of x for which,

OSX'RSX

XR>X

= no Page curve for S(R), (39)
= Page curve for S(R). (40)

p
p

The analysis below essentially follows [17] but for a probe brane (35), general blackening fac-
tor f(r), and various dimensions. [17] confirms the existence of Page points in AdS-Schwarz-
schild for d = 4.

Specifically, we restrict our attention to the ¢t = 0 slice on which the interior is trivial. Given
some radiation region, we will ultimately find two candidates for the entanglement surface
(Figure 5): Hartman-Maldacena surfaces [34] which span the black hole without hitting the
brane and island surfaces which hit the brane outside of the horizon [19]. The Hartman-
Maldacena surfaces grow away from the t = 0 slice because of the growth in the Einstein-
Rosen bridge, whereas the island surfaces are time-independent and thus maintain a constant
area.

For a particular radiation region defined by x5, we can identify which of these surfaces
is “initially” minimal and deduce whether or not we get a Page curve—this happens if the
Hartman-Maldacena surface is minimal at t = 0.'> We will ultimately compute the Page point
for various dimensions as a function of ¢, /T2,

Jumping into the calculation, the geometry of the t = 0 slice is,

o _fdrt L) 1[drt
ds lt:o_rz[f(r)+dx]_r2|:f(r)+z(dx) . (41)

i=1

2Note that in our calculations, we will be computing the portions of the area in just one of the exterior patches
and multiplying by 2 to get the t = 0 areas.
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Figure 5: The candidate RT surfaces in one of the exterior regions. The orange line
entering the horizon is the Hartman-Maldacena surface, whereas the blue arc which
ends perpendicularly on the brane is the island-producing exterior surface.

1

Parameterizing an arbitrary surface as x* = x1(r), its area functional is,

dr 1 dx!
A= | dx?--dx®T | ——\| == +x1(r)?, x'=-—". 2
f X X er—l f(r) Xy, x dr (42)

Integrating over (x2, ..., x4~1) produces an overall volume factor V,_, which is irrelevant when
comparing different surfaces x!(r) together, so we only care about the area density (also called
“area" for convenience) A and its Lagrangian L,

A dr 1
A Vs J i \ o) + x1(r) Jdrﬁ. (43)

We want to minimize A. The Euler-Lagrange equations indicate that 3 £/3x! is a constant of
motion. In fact, defining the turnaround point r = r; > 0 as the rootof 1/x'(r) (sodr/dx! =0
here), we have that minimal surfaces satisfy,

.1 1 d—1
Xl (T) =4+ ] - Xl(r) =+ d . (44)
— . - d—
Y Rt S G \/f(r) [r%( D rz(d—l)]

These surfaces must also satisfy boundary conditions at the conformal boundary (r = 0) and
at the brane (x! = 0). Because of the branching in (44), the conditions must be derived
by assuming a more general parameterization (r(s),x(s)) with s € [0,1] [27]. They are
respectively a Dirichlet condition and a Neumann condition,

Boundary: x'(0) = xz, (45)

Brane: =0. (46)

X 1 (r) x1=0
So for some x5, the minimal surfaces in the presence of a probe brane are those which satisfy
(44) and either do not end on the brane (Hartman-Maldacena),

rr=00 = xl(r) =Xr, 47

or do end on the brane (island surfaces). For the latter case, the turnaround point is precisely
along the brane, i.e.,'®
x'(rp) =0, (48)

3These statements come from viewing the tensionless braneworld as orbifolded AdS,,; [17,35].
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but the above equations of motion constrain the value of r; to depend on xg. Specifically
by integrating (44) (noting that the only branch which reaches the brane from x5 > 0 is the
negative one), we have,

(49)

JrT rd—l
dr =
0 \/ F [ — 2w

We now use (43) to write the t = 0 areas of both the Hartman-Maldacena surface and the
island surface given some x5 . Respectively they are (taking the area in one exterior patch and
multiplying by 2),

(50)

Apm(0) = f \/JT

rd-1
A2 't ) (51)
I J;) rd—1 \/f(r) \/r%(d_l) — r2(d-1)

Both of these are divergent at the boundary, so we will need to renormalize them. We use the
standard holographic renormalization—integrating from a cutoff r/r, = € < 1 then adding
the appropriate counterterm before taking e — 0. For both of these areas, the integrands go
to 1/r?! as r — 0, so the counterterm is the same as for areas in empty AdS,,; and only

depends on the dimension,
2 1

(d—2)ed—2"
While this is important for evaluating Page curves, in determining whether or not there is a
Page curve to begin with we only need to use the area difference,

rji__zACT = (52)

AA0) = A; — Ay (0)

pd=1_ \/ri(d_l) — 2(d-1) (53)

T

f Y f(" \/ri(d—l) — r2(d-1) f \/f(r

which is UV-finite. There is then a Page curve if and only if A.A(0) > 0.

If we have AdS-Schwarzschild—that is f(r) = 1 — (r/r,)?—then it is straightforward to
plot AA(0) as a function of x using (49) and (53). We do this for various dimension in
Figure 6, thus finding the Page points x,, in such geometries. Numerically, these Page points
(in dimensionless coordinates) for d = 3,4 are,

X 0.589, ifd=3,
P { ! (54)

r. 0444, ifd=4.

U
We now extend this analysis to nonzero ¢,/T9 “—increasing the deformation parameter
changes f(r) and thus the calculation of 4. We again utilize a shooting method, this time
numerically solving for f(r) in the exterior. Doing so allows us to compute the Page points in
a particular d as a function of ¢o/T4* (Figure 7).

Observe that the Page point decreases as we increase ¢/ —a large scalar deforma-
tion results in Page curves for larger radiation regions. Notably, if we take a radiation region
xg > x, with zero deformation (i.e. in AdS-Schwarzschild), then we may tune ¢,/ Td=A
up while keeping x5 fixed without losing the Page curve. This justifies the viewpoint of our
work—that the Page curves for a particular radiation region probe Kasner flows.

Td—A
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Figure 6: (a) The area difference AA(0) (53) versus xr (49) for d = 3,4,5 and
(b) the Page point x, as a function of (analytically-continued) d > 2, all in the AdS-
Schwarzschild geometry and in r, units. The area difference in each dimension
monotonically increases with x5, crossing O at a particular value beyond which we
have Page curves. The Page point thus approaches the brane as we increase d.
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Figure 7: The Page point X, as a function of ¢,/ T2 for(aA)d =3 and (b) d = 4
(the cases in Section 3.2). The horizontal lines are at the AdS-Schwarzschild Page
points shown in Figure 6. The Page point decreases as ¢,/T¢ > increases.
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3.2 Entanglement Entropy and Page Curves

We now compute the Page curves for various dimensions d and conformal dimensions A. To
reiterate, the endpoint x5, of the radiation region is also a tunable parameter, but in studying
the effect of changing the scalar deformation we start by keeping it fixed. For much of the
analysis below, we will assume,

Xp =2X,, (55)

which ensures that we always have a Page curve with finite Page time. We subsequently briefly
touch on the physics of increasing x5 .

However, while the island surfaces are constant in time, the Hartman-Maldacena surfaces
are not—we merely know them to be constant-x' surfaces. In Section 3.1 we computed the
areas of these surfaces at t = 0, so we now consider the areas as functions of time. Only then
can we plot the Page curves themselves.

3.2.1 Growth of the Hartman-Maldacena Surfaces

The procedure for computing the time-dependent Hartman-Maldacena surfaces is outlined
by [34]. Since the analysis in this particular section is blind to KR branes, we include d = 2
here. For a constant-x! slice,'* the induced metric from (9) is,

d52|x1:XR= ! [ —f(r)e *Md¢? + +Z(dx 2. (56)

For a surface r = r(t), the area functional is then,

A=V, J d—t—\J_f[r(t)]e_Z[r(f)]+ MO (57)

r(6)d1 fIro1” T de

with the area (density) functional and corresponding Lagrangian being,

:f%\l_f[r(t)]e—x[r(r)] ff[(t())] fdtc (58)

The lack of explicit t-dependence in this Lagrangian gives us a constant of motion which we
identify as the “energy" E of the minimal surface (suppressing t),

—x(r)
E= f%_gz f(r)e
rd—l\/—f(r)e X(r)+f()

so the minimal trajectories are defined by,

(r)
= if(r)e_"(r)/z\ f((rd)elEl)z (60)

We may conventionally take the sign of E to match the sign of (60). Now observe that 7 =0
in the interior (when f < 0) if there is a radius r = r, such that,

_fr e

— 2
2D =E-. (61)
I

14The analysis below is blind to which constant-x? slice we take.
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So for a surface with such an energy E, this is the maximal value of r assumed. In full, the
surface starts at the conformal boundary, reaches r = r,, then goes to the other side of the
black hole. Thus (reparameterizing as t = t(r) and using dt/dr = 1/#), we have that the area
is,

Ty

dr
A =2
am(tp) J;) rd=1,/f(r) + ex("(rd-1E)2

Here, we refer to the Hartman-Maldacena area as being a function of the boundary time t.
This is to avoid confusion with the bulk time coordinate.'®> We find it by considering the

integral,
"dr
f — =t ty, (63)
o T

which computes the time difference between t; and t, = t(r,). By restricting our attention
to symmetric surfaces—those for which ¢, is purely imaginary—we get the boundary time in
terms of E [24] (removing the pole at the horizon),

" sgn(E)eX/?
=—p . 64
0 L FVI+F(r)e 20 /(ri-1E)? 4

To summarize, E is a parameter for the Hartman-Maldacena surfaces which determines the
maximal radius r,, the boundary time t;,, and the area Ag,;. We restrict consideration to
E > 0—this keeps us in the t; > 0 regime.

To conclude this discussion, we analyze the late-time (t; — ©0) behavior of these surfaces.
It is first necessary to observe that the function,

—2(r)
g(r)= —% ; (65)

= |-, =0. (62)

has a maximum at some critical radius r = r, in the interior. This is because,®

g(ry)=0, lim g(r)= lim fie#r *?=0, g(r)>,, >0. (66)

We have used the asymptotic expressions for f and y (Table 1). Denoting the corresponding
energy for the surface with r, = r. by E = E., (61) indicates that,

f(rc)e_l(rc)
1+ CETA? =0, (67)
so the integral for the boundary time diverges, i.e. t; — 00 as r, — r.. This surface is in a
sense the “maximal” one.

Now by plugging into (58) as in [34], we can obtain the linear-growth term for 4;,, and
hence for the entanglement entropy S = V;_5. Ay /(4G441). Specifically for late boundary
times, we use the integrand to write,'”

OAum flroe e 1 _
oty p2d- - E| a

(68)

15The specific case of t, = 0 coincides exactly with the analysis on the t = 0 slice. We can confirm this by noting
that the corresponding energy is E = 0.

16This argument breaks down for d = 2 in AdS-Schwarzschild—c = 0 and thus p = 2. Instead, the “maximum"
is at infinity, so we take r, = 0o. The late-time Hartman-Maldacena surfaces here are thus geodesics which probe
the singularity itself.

7When writing the late-time linear behavior of entropy, one typically uses an entropy density s in conjunction
with the transverse volume. We find it to be ~ 2/ ri’l.
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Figure 8: Entanglement velocity v as a function of p, and ¢o/T? 2 for (a) d = 2,
(b) d =3, and (c) d = 4. Each plot starts at its AdS-Schwarzschild value from (69).

The p, curves obey a A «» d — A symmetry—they are sensitive to m?.

where v is the entanglement velocity—a dimensionless factor which captures the speed of
entropy growth—as written by [24]. In AdS-Schwarzschild [34],

B 1/E(d _ 2)(d—2)/(2d)
"5 T Ta(d — ]@ v

[24] plots v in the Kasner metric in terms of p, for d = 3, A = 2. As we care about boundary
data, we present analogous plots for various d and A in Figure 8.

For all relevant deformations used in our numerics—including A > d/2, A < d/2, and
A = d/2—as a function of ¢,/T?™* the entanglement velocity decreases from the AdS-
Schwarzschild value v,¢ until reaching a minimal value, then slowly increases back towards
v4s- This is much like what we see in the behavior of the Kasner exponent p, (Figure 3). Essen-
tially this indicates a nontrivial relationship between the scalar deformation and the “speed"
of entanglement in the bath.

Regarding the Page time, we still need to compare the Hartman-Maldacena surfaces to the
island surfaces. These also change under the scalar deformation but additionally depend on
x5 (whereas the Hartman-Maldacena surfaces alone do not).

(69)
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1 2 3 4 5 oy — ®/T=350

Figure 9: The Page curves for ¢o/T = 0 and ¢,/T ~ 35.0 with d = 3, A = 2,
presented in terms of the area .4 and boundary time t; in units of r,. The orange
curves are Hartman-Maldacena surface areas while the blue curves are island surface
areas. For both, we observe a phase transition from the former to the latter at finite
boundary times—the respective Page times given these deformations.

3.2.2 Initial Area Difference and the Page Time

We are now equipped to compute Page curves given some d, A, and x5 (returning to the KR
model and d > 2). As we wish to understand the physics of the scalar deformation, we first
keep the radiation region fixed at xi = 2x, (55), thus ensuring a Page curve regardless of the
deformation. We present our numerics in terms of the area and boundary time in units of r..

As a preliminary exercise, we numerically compute the Page curve for d = 3, A = 2 for both
¢o/T =0and ¢,/ T ~ 35.0 (the latter being close to the minimum for v). To do so, we simply
use the expressions from Section 3.2.1 to acquire the entropy from the Hartman-Maldacena
surface and those of Section 3.1 to get its upper bound—the entropy from the island surface.
We renormalize both of the areas using the standard counterterm (52). The result is shown in
Figure 9.

To confirm that our numerics are appropriately tuned, we perform two checks. The first
is to compare the initial area rfi_zAHM(O) of the ¢o/T = 0 curve to the analytical result
(Appendix C). Indeed for d = 3, we have,

24/l (2
r92 A (0)l g jr=0 = —‘/——1(3) ~ —0.862, (70)
r(s)
which closely aligns with Figure 9.

The second check is to compare the entanglement velocities (found from halving the late-
time slope of the Hartman-Maldacena surface areas (68)) against both each other and the
values seen in previous sections. According to our numerics,

V|¢0/T:o ~ 0.687, V|¢0/T~35_0 ~ 0.653. (71)

These match Figure 8, with v|¢0 /T=0 also being the AdS-Schwarzschild value found from (69).

Observe that the entanglement velocity is not the only thing which changes—the scalar
deformation also affects the initial difference A.4(0) between the Hartman-Maldacena and
island surfaces to O(1071),

AA(0)|p,/r=0 ® 1.43, AA(0)|g,/ras5.0 ~ 1.72. (72)
Furthermore the Page times read from Figure 9 are,

tp tp
— ~134, — ~ 1.52. (73)
T+ $o/T=0 't $0/T~35.0
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Indeed, we may ask which effect is more significant in influencing the Page time: the change
to the entanglement velocity or the change to the area difference. Assuming linear be-
havior by the Hartman-Maldacena area—a loose but apparently safe approximation within
ty/r. ~ O(1)—we can estimate the Page time as,

. AA(0)
Py
so the “first-order" variation in the Page time 6¢, is related to the variations in initial area
difference and entanglement velocity by,

N 6(AA(0)) _ AA(O)EV
P 2v 2v2 ’

; (74)

ot

(75)

So for the numbers above and using the average values of AA(0) and v, this estimation yields
(writing both terms individually and setting r, = 1),

§t, ~ 0.22+0.06 = 0.28. (76)

The point is not exactness, but to demonstrate that the contribution from &(A.A(0)) (of
0(1071)) is more significant than the contribution from v (of O(1072). The former comes
from backreaction in the exterior while the latter comes from backreaction in the interior. As
our numerics indicate that 6 ¢, is actually closer to 0.19 ~ 0(1071), it is the former effect—the
exterior backreaction—which has a greater influence on the Page time.

To obtain a more complete picture, we numerically compute two additional sets of plots,
expanding our analysis to d = 3,4 and a range of A. The first set is the initial area difference
AA(0) as a function of ¢o/T9™2. The second is the Page time t, as a function of ¢/ T4,
We present our results in Figure 10.

The numerics are unstable at larger values of ¢/ , Which is why we restrict to ~ 1500.
In spite of this limitation, there are lessons in how the plots for different A relate to one another.
Firstly, the ¢o/T?~® = 0 values—when the deformation is turned off—has no dependence on
A. There is no backreaction and thus, unsurprisingly, the geometry is just AdS-Schwarzschild.

Td—A

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
- 3-A
B/ T34 to/ T

0 200 400 600 800 1000 1200 1400 0 200 400 600 800 1000 1200 1400
4- 4-n
Qo/ T Po/ T

Figure 10: The initial area difference A.A(0) and the Page time ¢, plotted as functions
of ¢/ T9=2 for (a) d = 3 and (b) d = 4, all for various A. The axes are in 4 units.
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For all A, as we increase the deformation parameter both the initial area and the Page
time grow, seemingly together with the range of variation being O(10™!). This is evidence for
the statement above: the changes to the entanglement velocity are so small that it is indeed
the changes to the initial area difference which more strongly inform the changes in the Page
time.

Noteworthy is the large ¢o/T9™* behavior. The Page time t,/ry curves in particular
appear to fall into two “families" of behavior—the A < d/2 curves (corresponding to the
“Neumann" A = A_ quantization) and the A > d/2 curves (corresponding to the “Dirichlet"
A = A, quantization)'® seem to separate from another. This is most evident for the Page time
plot in d = 4, in which the curves in the same family actually approach one another.

Taking this behavior seriously, we may claim that upon introducing a large scalar defor-
mation, the Page time is not sensitive to A—only the quantization (as viewed by [58]) of the
deformation, which we recall is related to the boundary condition of the scalar field [59].

3.2.3 Interior Versus Exterior Backreaction

In the previous section we present our results across a variety of d and A but keeping x5
fixed at twice the Page point x,. While we were able to probe the effect of simply tuning
the deformation on the Page time, we found that the exterior backreaction influenced the
quantitative results more than the interior backreaction. We thus now keep d =3 and A =2,
again comparing ¢,/T =0 to ¢/T ~ 35.0 but tuning xx.

The numbers of interest are the variation in the initial area difference and the variation in
the Page time. Respectively we recall them to be,

6(AA(0)) = AA(0)l g, /350 — AA(O) gy /7=0 5 (77)
Sty =tylpy/Ta35.0 = tplgy/T=0> (78)

and these are plotted as functions of x5 (in units of r,) in Figure 11.

We again look at (75) in r, = 1 units. To reiterate, the variation in the initial area surface
can be thought of as coming from the backreaction in the exterior, whereas 6 v—the variation
in entanglement velocity—comes from the backreaction of the interior. For x ~ x,, the first

Otylr.
r2 5(BA0) b
0.5
0.5
0.4 0.4
0.3 0.3F
0.2 0.2¢
0.1 0.1"
XR XR
000 - ~ 0.0 : ‘ ‘ : ™
1 2 3 4 5 6 Xp 1 2 3 4 5 6 Xp
(a) Variation in initial area difference (b) Variation in Page time

Figure 11: The variations in the (a) initial area difference and the (b) Page time as
functions of the radiation region. We compute these quantities up to xz/x, = 6, at
which point our numerics become too noisy to be taken as reliable. Nonetheless, even
within this range the numerics indicate that the variation in initial area difference
monotonically falls while the variation in the Page time drops then rises.

18We reiterate that there technically exists a Neumann A = d/2 quantization which we do not include here.
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term is much closer to the order of 5¢, than the second term. This is seen in our previous
analysis and again in the early part of the plots in Figure 11.

However, taking the behavior in Figure 11 seriously would indicate that 6(A.4(0)) remains
0(1071) even as x5 > x,, whereas ¢, increases and is eventually orders of magnitude larger.
(75) would imply that the 6v term is responsible—specifically the initial area difference A.4(0)
itself is what grows and thus more heavily weights the effect of 6v on 6¢,,.

Physically, we interpret this is as the existence of two regimes: xg & X, in which the
exterior backreaction plays a significant, leading-order role in determining the Page time and
xR > x, in which the interior backreaction has a stronger influence on Page time. Nonetheless
these numerics still indicate that, regardless of the regime of x5, the Page time with a scalar
deformation is longer than with no scalar deformation.

4 Conclusions and Outlook

In this paper, we use a doubly holographic setup to investigate the effect of a bath deformation
on the fine-grained entanglement dynamics of a gravitating black hole. We add a relevant
scalar operator in the bath and study the change of the Page curve, Page point, and Page time
as functions of the deformation parameter ¢,/T? 2. Performing two analyses, we find the
following:

(1) Keeping the radiation region R fixed, we increase the deformation parameter and find,
within our numerics, that the Page time monotonically increases. Similarly, the initial
area difference also increases, so scalar backreaction on the geometry both outside and
inside of the black hole informs the Page curve.

(2) Comparing two fixed values of the deformation parameter, we find that the difference
in Page time increases as R is pushed away from the interface with the brane, i.e. as we
trace out more boundary degrees of freedom. The change in the initial area difference
meanwhile levels-off, so backreaction in the interior—the trans-IR effects—appears to
become more important.

There are several different aspects to the physics of our setup and findings. We list them below,
as well as some potential avenues of future exploration.

Parameterization of Coarse-Graining

We observe that for any generic value of the deformation parameter ¢,/ T2, the fine-grained

entropy curve for the black hole is accessible, even though the bath undergoes some coarse-
graining. Increasing ¢,/T9 ™ affects the radial scale, denoted by rgg, at which the scalar
backreaction becomes significant.

This radial scale can be identified with an energy scale in the bath; we denote this by Epg.
For any fine-grained physical question above this energy scale, the UV CFT state should be a
good description, while for more coarse-grained physics below this scale, IR/trans-IR states
reached by the holographic RG flow should dominate.

That being said, given the RT surface ending on the brane, its intersection with the brane r;
can be compared to ryg. These are two independent scales which define separate procedures.
While ry¢ defines the regime of dominance of the UV fixed point in the holographic RG flow,
rr is related to the size of the radiation region by (49) and is thus reflective of how much of
the bath is traced out.

Comparing these two scales can shed light on whether there is any sense in which the island
could be made ignorant about the scalar backreaction, in terms of (1) when the entanglement

25


https://scipost.org
https://scipost.org/SciPostPhysCore.5.2.033

Scil SciPost Phys. Core 5, 033 (2022)

wedge contains a part of the black hole interior and (2) whether the island depends crucially on
the coarse-graining of the bath. On the other hand, by construction, the Hartman-Maldacena
surface can never be ignorant about the scalar backreaction, since it probes the entire geometry.
There is thus a question of which part of the Page curve is affected more by the tracing-out
of the bath versus the coarse-graining tied to the RG flow, particularly as the deformation is
tuned. We have most directly addressed this question, but a simple and potentially informative
extension to our analysis would be to keep r; fixed (which would lead to x5 changing with
the deformation) and study the resulting behavior of the Page time.

RG-Flowing the BCFT State

If we put aside the black hole information paradox, our results can be interpreted purely in
terms of the boundary degrees of freedom and are relevant for our understanding of the QFT
dynamics at strong coupling. Note that here we are momentarily adopting the vocabulary
of [53]; “bulk" in the BCFT context refers to the continuous d-dimensional CFT degrees of
freedom while “boundary" refers to the degrees of freedom localized to the (d —1)-dimensional
“defect" CFT. We start with the expectations set by a simple model which, although potentially
different from our setup, is nonetheless instructive.

Usually in the BCFT context, an RG flow is considered within the CFT bulk degrees of
freedom, keeping the boundary unaltered.'® However, the bulk RG flow gets related to an
RG flow in the boundary conditions such that the corresponding boundary states change. In
fact, mapping out all possible fixed points under all possible relevant deformations to a CFT is
equivalent to classifying all possible boundary conditions for that CFT; see [64] for a detailed
proposal regarding this point.

If we imagine turning on the relevant deformation to the bulk CFT (the bath) at the same
time as coupling it with the boundary CFT, a coarse-grained count of the microstates in the
boundary CFT can be obtained by computing entanglement entropy and waiting sufficiently
long in time. The Page time is then governed by the ratio of central charges cpgyy/Cpyix as
demonstrated by [53].

Along an individual real RG flow of the bulk CFT, ¢, decreases by the usual c-theorem.
If the boundary CFT is indeed kept unaltered—so cy,qyy stays fixed—then the ratio of central
charges increases under the RG flow. The result would then be an increasing Page time as
the deformation parameter is increased, assuming the UV physics is dominant or the IR is
stable with respect to ¢o/T9™2.2° This is because larger values of ¢,/T% > correspond to
RG flows for which rzg approaches the boundary, thus the IR physics—which sets a minimum
Cpuk—dominates.

However, note that our procedure does not actually keep the boundary CFT fixed. Thereis a
nontrivial tower of scalar fields localized to the brane which should then be dual to a nontrivial
tower of scalar operators in the boundary CFT—such operators arise naturally from the bulk
CFT operator by a boundary operator product expansion (BOPE) [65]. If the boundary-localized
modes are irrelevant or even marginally irrelevant, then this is not a problem; the boundary
CFT is still not undergoing a nontrivial RG flow and being coarse-grained. Nonetheless, it is
possible that these modes are relevant in our setup. Regardless, within the regime probed by
out numerics, we still see an increase in the Page time, indicating two possibilities:

°Note, however, that we are considering the RG flow of a state in the theory and not the theory itself. While
we do not associate a central charge with the particular state of the system, it is nevertheless true that the IR
description is arrived at by integrating out UV modes. Therefore, the accessible degree of freedom, even for the
given state, is expected to decrease.

20The subtlety here lies in the UV fixed point being the same for all of the flows labeled by the deformation
parameter, but the IR points generically being different. If the UV physics dominates, then these differences do not
matter. If the UV physics does not dominate, then a lack sensitivity of the IR regimes to ¢,/T¢ ™ would allow for
increasing Page time, since ry is still monotonically approaching the boundary.
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(1) For some reason, ¢y decreases faster than cyqry, such that cpgry/cpy ultimately in-
creases anyway.

(2) While our discussion assumes that the ratios of central charges provide good, leading-
order approximations for the Page time, perhaps the real story is more complicated and
the Page time depends more nontrivially on other parameters.

Additionally, we reiterate that there is an analytically-continued part of the RG flow beyond
the IR, as well. This trans-IR flow is also probed by the Page curves (albeit only up to r, (61))
and could further complicate the intuition gained from the simpler model.

Our observation regarding the lack of sensitivity of the Page time to A for large deformation
parameter is consistent with the Page time being determined by a ratio of the central charges,
and for a massive QFT as a bath, in the infinite deformation limit, depends only the ratio of
the number of degrees of freedom.

Large Deformations and Significance of the Page Point

We also note the physical significance of the Page point; it essentially sets a critical lower bound
for the degrees of freedom which must be traced out to see nontrivial time-dependence in the
Page curve. Our numerical observations suggest that as ¢o/T9~2 is tuned to larger values, the
Page point seems to decrease and ultimately asymptote to a nonzero value in the supergravity
limit.

A priori there are three possibilities for the asymptotic behavior?! of the Page point as
b0/ T2 5 oo, It may either (1) approach 0, (2) indeed level-off at a finite value, or (3)
increase without bound. Each result would have its own physical interpretation and potential
questions:

(1) For large deformations, the need to trace out the bath would become less and less signif-
icant. We would observe the full fine-grained Page curve of the Hawking radiation while
not needing to integrate out bath degrees of freedom after taking ¢o/T% 2 — oo.

(2) There would be a nontrivial lower bound for the amount of tracing-out needed to observe
a Page curve. It would then be natural to wonder what parameters of the theory set such
a value.

(3) For large deformations, we would essentially need to trace out all bath degrees of free-
dom to see a Page curve. However in this extreme limit, we do not actually expect to see a
Page curve because, without a bath, Hawking radiation simply leaves the gravitating sys-
tem due to the transparent boundary conditions at the interface. We thus get a nonuni-
tary entropy curve and therefore an information paradox in the ¢o/T¢™® — oo limit.
There would also necessarily be a minimum Page point for some finite deformation—the
tuning of this value would be important to understand.

It would thus be interesting to perform an agnostic analysis to figure out which of these three
pictures actually happens. Relatedly, our numerics also suggest that the Page time becomes
independent of A, as long as A < d, in the ¢o/T? ™ — oo limit. However, we require more
robust numerics capable of probing larger ¢/T?2 to state this conclusively.

2 There could also be interesting behavior leading up to the asymptotic limit, such as saddles, but what such
behavior would mean in principle is unclear.
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Future Directions

There are several additional questions related to our work beyond those mentioned above that
are worth exploring:

In our setup, the scalar field ¢ dual to the boundary operator is supported both on the
bulk and on the brane. Thus, our results encode a deformation of the bath and the brane.
To isolate the effects on the bath we need a scalar field qg(r, x1) such that ¢; vanishes at
x! = 0. Then in the brane plus bath theory, we will only be deforming the bath. The
brane physics could still be influenced through the scalar field in the extra dimension,
but a braneworld-restricted observer would be expected to be blind to it.

Adding higher-curvature terms, either in induced gravity or as done with JT/DGP grav-
ity [14], would change the theory on the brane and would allow d = 2 to be studied.
Another possibility is to add higher-order interaction terms to the scalar action. Study-
ing such Kasner flows is interesting in itself, beyond the context of entanglement islands,
since there are hints of universal behavior when one considers more general scalar ac-
tions [55].

In this work, we have considered tensionless branes. Extending our work to nonzero-
tension branes adds an extra parameter to the picture. Such work, however, would likely
require a modified ansatz and more intricate numerics, but this would be a necessary
step in extending our exploration to the case of near-critical braneworlds where the
localization of gravity is more “sharp" [11].

Due to existence of critical brane angles [15, 16,27, 66] dictating the appearance of a
Page curve as xp — 0, we expect that any sufficiently large (but still subcritical) tension
would eliminate the Page point entirely. Thus, we should be able to take xp — 0 for
braneworlds with “sharper" localization of gravity.

We consider higher-dimensional braneworld constructions, but a natural question would
be to examine the other well-studied class of toy models—2-dimensional dilatonic grav-
ity. A natural follow-up would be to deform the bath in the original 2-dimensional evap-
oration model [3] so as to study the dependence of the Page time on the deformation.
Another follow-up in this vein but closer to our own work would be to deform the bath
in the 2-dimensional eternal model [19].

It would be interesting to sharpen the observation of how the Page time depends on the
ratio of the bulk and the boundary CFT central charges, specifically along an RG flow in
the bulk CFT. This calculation can be performed from a top-down model by considering
Karch-Randall branes in a supergravity geometry (as in [66]) that encodes such an RG
flow.

That our results are done in a supergravity limit makes the following question natural:
What happens if we perform an RG flow in the bath, going away from the supergravity
limit? It would be particularly interesting to study the asymptotics of both the Page point
and the Page time.

We may ask how rotation affects the picture. Note that solving for the KR brane in even a
vacuum solution with nontrivial angular momentum and working through the standard
island construction would be an interesting avenue to pursue. Rotation would allow for
a broader class of flows.

We can add to the bulk a U(1) gauge field coupled to the scalar field, such that the
gauge symmetry spontaneously breaks. This effect is holographic superconductivity. It
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is interesting to ask how it may be probed by Page times. Note that Kasner flows have
been linked to holographic superconductivity by [67].

We hope to return to some of these questions in the near future.
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A Ambiguity in the Dual Operator Dimension

We can generically consider the near-boundary (r — 0) mode expansion of a scalar field with
in AdS,,; to be,

P(r)~ p_r-+ P+, (79)

where A, are distinct roots of (10),
1
Ar=7 (d+ Va2 +4m2). (80)

From the mass-dimension relation, the conformal dimension A of the scalar operator will be
relevant (assuming it is physical—A > 0), i.e.,

A<d, (81)

if and only if m?> < 0. However, we must also consider the Breitenlohner-Freedman stability

bound [57],
2

—%sm2<o. (82)

Meanwhile the roots (80) satisfy,
d
O<A_S§§A+<d, (83)

with A, = d/2 when m? = —d?/4. Thus when this bound is satisfied, (79) breaks down.
Above the bound, modes in (79) are normalizable.

Based on value of m?, there is a choice to be made for which root is taken to be A (related
to the boundary conditions of ¢ [59]). The only choice for m? > 1—d?/4is A = A_ because
selecting A = A_ would violate the unitarity bound,

d—2
A>———o:.
> 2 (84)

Meanwhile, m? < 1 — d?/4 gives us both as options [58]. While the canonical choice
A = A, used by [24] restricts us to A > d/2 (stricter than unitarity), using the quantiza-

tion for which A = A_ instead allows us to reach (d —2)/2. So for a bulk scalar field with
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—d?/4 < m? < 1—d?/4, we have two CFTs—one with A = A, and one with A = A_—related
by a Legendre transform of the generating functional.

For A = A,, in (79) we now identify the leading-order coefficient ¢_ as the source ¢,
and the next-to-leading-order coefficient ¢, as (proportional to) the one-point function (O),

©)
2A, —d
However this interpretation is flipped if A = A_. Now the ¢ is the source while ¢_ is
proportional to the one-point function. Either way, a generic way to write the near-boundary
expansion is as,
B(r) ~ portd+ 2 _ra, (86)
2A—d

since A, + A_ = d. We use this expression in the main text.

As for A = d /2, there is a divergence which appears in the r* term, making the breakdown
of this mode expansion more evident. [59] resolves this problem by performing an expansion
of the relevant Bessel function K, ultimately writing,

o(r) ~ pori?logr. (87)

P(r) ~ por®-+ (85)

B Numerical Determination of Emergent p,

The numerical plots are obtained by shooting the radial functions from the horizon r = r to
both the boundary r — 0 and the singularity r — 00.2? By assuming regularity at the horizon,
we may expand ¢, f, and y as,

P(r) =, + ¢ (r—r ) +0[(r—ry)?], (88)
fr)=fl(r=r)+0[(r—ry), (89)
x(r)= x4+ 2 (r—r)+0[(r—r.)°]. (90)

The subscript + denotes values at the horizon as in (23). Plugging these into the equations of
motion (11)-(13)?? and taking r — ., we have the constraints,

o Ald=2),

+rofidl, (91)
Iy
A(d—A)p?
=———— 2+ f)), (92)
r+(¢;)2 ,
=% _ 4. 3
71 X+ (93)
We can solve these equations to obtain the series coefficients,?*
5 iv2vd—14/d + flr, o)
= :F ,
" VA —A)
iV2vVd—14/d + flr./A(d—A
i_—:l:l \/ /f;—r-i-\/ ( )’ (95)
+T¥
2(d + flr)[A(d —A)]
X =" . +/2 3 : (96)
+ T+

2Technically, we integrate up to cutoffs near these limits to obtain our plots.

BWe multiply (11) and (12) by rf(r) so as to avoid poles and obtain a finite result.

%4 There is a branching of the ¢, and ¢, coefficients. Note that these branches go together. For example the —
expression for ¢, is paired with the + expression for ¢/,.
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Even with these coefficients, we still have the freedom to set a scale by numerically fixing f
so long as we keep it negative. In doing so, we further set y, = 0. Then for each value of r
and taking some comparatively small € > 0, we can integrate the radial functions either from
r = r, — € (outside of the horizon) to the boundary or from r = r, + € (inside of the horizon)
to the singularity.

By integrating to the boundary, we obtain ¢ (r) and y(r) in the exterior. The field is used
to get ¢, but how we do so depends on whether A > d/2 (the A = A, quantization) or
A < d/2 (the A = A_ quantization). This is because the power of the source term is only
leading (d — A < A) in the former case. From (18) we find,

lirrcl)rA_d¢>(r), if A> g,
Po=1" F2A—d+1 A d (97)
;%—ZA_dar[r o], 1fA<§.

The different branches of (94) and (95) will yield either ¢5 > 0 or ¢, < 0. We are concerned
with the former case and neglect the latter. The relevant branch to obtain a positive source
depends on whether A > d/2 or A < d/2.

We remark that this method breaks down for A = d/2 because the expansion (18) also
breaks down. We instead use the (Dirichlet) logarithmic expression [59],

r=d/2 d
¢ = lim o(r), ifA=—. (98)
r—0 logr 2

For y(r) in the exterior, as we set y, = O at the horizon, y(0) may not be O despite this
being the expected near-boundary behavior—we have solved for y(r) backwards. However
by simply evaluating y(0) and shifting the entire function by this amount, we can obtain
the “true" y(r) for which y(0) = 0. In doing so, we also obtain the “true" y, and thus the
temperature T.

When integrating to the singularity, we obtain ¢ (r), from which we extract the coefficient
c in (24). We then use ¢ to obtain the Kasner exponent p,.

For each r,, we get a particular ordered pair (¢o/T¢ %, p,) of dimensionless quantities. By
plotting the interpolating functions for a large number of points, we obtain Figure 3. Addition-
ally by numerically computing the radial functions in this manner, we can compute geometric
quantities such as the area of RT surfaces.

C Initial Hartman-Maldacena Area in AdS-Schwarzschild

It is a straightforward exercise to compute the area of the Hartman-Maldacena surface at t =0
analytically when the geometry is AdS-Schwarzschild. We present the calculation here.

For a (d + 1)-dimensional AdS-Schwarzschild black hole with blackening factor
fr)y=1- (r/r+)d, the integral (50) becomes,

L (99)

Ay (0) =2 J ,—1 G r+ f ,—l—rd e

The antiderivatives of the integrand for d > 2 and d = 2 are,

2 1 1 2—d 2 _ .
_ d 2]"d22 1(2 —d ,d,rd) 1fd>2,

dF
g —
Fa=l14/1—d —2Tanh~'v/1—72 ifd=2.

(100)
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However both diverge for # = 0. Taking a cutoff # = € < 1, the respective divergent terms in
(99) take the form,

2 1 )
T o ifd>2, (101)
—2loge, ifd=2, (102)

which are both precisely canceled by the counterterms (52). Thus after renormalizing, the
initial Hartman-Maldacena surface areas are,

247l (2
d—2 _f—(iit—)(i’ ifd>2,
rd2 Ay (0)=5 (d—2)T (%) (103)
log4, ifd=2.
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