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Abstract

We study the problem of training named en-
tity recognition (NER) models using only
distantly-labeled data, which can be automat-
ically obtained by matching entity mentions
in the raw text with entity types in a knowl-
edge base. The biggest challenge of distantly-
supervised NER is that the distant supervi-
sion may induce incomplete and noisy labels,
rendering the straightforward application of
supervised learning ineffective. In this pa-
per, we propose (1) a noise-robust learning
scheme comprised of a new loss function
and a noisy label removal step, for training
NER models on distantly-labeled data, and
(2) a self-training method that uses contextual-
ized augmentations created by pre-trained lan-
guage models to improve the generalization
ability of the NER model. On three bench-
mark datasets, our method achieves superior
performance, outperforming existing distantly-
supervised NER models by significant mar-
gins!.

1 Introduction

Named entity recognition (NER), which aims at
identifying real-world entity mentions (e.g., per-
son, location and organization names) from texts,
is a fundamental task in natural language process-
ing with a wide range of applications, including
question answering (Khalid et al., 2008), knowl-
edge base construction (Etzioni et al., 2005), text
summarization (Aramaki et al., 2009) and dialog
systems (Bowden et al., 2018). In recent years,
deep neural models (Devlin et al., 2019; Huang
et al., 2015; Lample et al., 2016; Ma and Hovy,
2016) have achieved enormous success for NER,
thanks to their strong representation learning power
that accurately captures the entity semantics in tex-
tual contexts. However, a common bottleneck of
applying deep learning models is the acquisition
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Distantly-Labeled

PER
Miguel Angel Jimenez is a professional golfer.

PER PER
Coopers and Lybrand emigrates to Basque Country for fiscal reasons.

Ground Truth

PER
Miguel Angel Jimenez is a professional golfer.

Loc
Coopers and Lybrand emigrates to Basque Country for fiscal reasons.

Figure 1: Distant labels obtained with knowledge bases
may be incomplete and noisy, resulting in wrongly-
labeled tokens.

of abundant high-quality human annotations, and
this is especially the case for training NER models,
which require every entity mention to be labeled in
a sequence.

To eliminate the need for human annotations,
one direction is to use distant supervision for au-
tomatic generation of entity labels. The common
practice is to match entity mentions in the target
corpus with typed entities in external gazetteers
or knowledge bases. Unfortunately, such a distant
labeling process inevitably introduces incomplete
and noisy entity labels, because (1) the distant su-
pervision source has limited coverage of the entity
mentions in the target corpus, and (2) some entities
can be matched to multiple types in the knowledge
bases—such ambiguity cannot be resolved by the
context-free matching process. Figure 1 shows that
some “person” mentions may be partially labeled
(or not labeled at all in other cases), and some
entities with multiple possible types may be misla-
beled.

Due to the existence of such noise, straightfor-
ward application of supervised learning to distantly-
labeled data will yield deteriorated performance,
because neural models have the strong capacity to
fit to the given (noisy) data. Some previous studies
on distantly-supervised NER directly treat distant
labels as if ground truth for model training and
rely on simple tricks such as applying early stop-
ping (Liang et al., 2020) and labeling entities with
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multiple types (Shang et al., 2018) to handle the
noise. Others require an additional manually la-
beled training set for building a noise classification
model (Onoe and Durrett, 2019).

In this paper, we study the distantly-supervised
NER problem without requiring any human annota-
tions. Our method consists of two steps: (1) noise-
robust learning, and (2) language model augmented
self-training. In the first step, we explicitly address
the label noise by using a noise-robust loss func-
tion and removing noisy labels. In the second step,
we use the model’s high-confidence predictions for
self-training to improve generalization, wherein
a pre-trained language model is used to not only
initialize the NER model, but also generate con-
textualized augmentations. Our method is named
RoSTER, for Robust learning and Self-Training
for distantly-supervised Entity Recognition.

The contributions of this paper are as follows:

* We propose a noise-robust learning scheme for
distantly-supervised NER, comprised of a noise-
robust loss function and a noisy label removal
step.

* We propose a new unsupervised contextual-
ized augmentation approach for NER using pre-
trained language models. Combined with self-
training, the created augmentations improve the
model’s generalization ability.

* On three benchmark datasets, RoSTER out-
performs existing distantly-supervised NER ap-
proaches by significant margins.

2 Method

In this section, we (1) briefly describe how to ob-
tain distantly-labeled data, (2) introduce our noise-
robust learning scheme and (3) propose a self-
training method with a new contextualized aug-
mentation generation technique. We assume the
pre-trained RoBERTa (Liu et al., 2019) model is
used as our backbone model, but our proposed
methods can be integrated with other architectures
(e.g., LSTM-based (Ma and Hovy, 2016)) as well.

2.1 Distant Label Generation

Given an unlabeled corpus, the distant labels are
usually obtained by matching entities in the cor-
pus with those in the external knowledge bases or
gazetteers with typing information. In this work,
instead of introducing new distant label generation
methods, we follow the previous work (Liang et al.,

2020) for this step: (1) potential entities are de-
termined via POS tagging and hand-crafted rules,
(2) their types are acquired by querying Wikidata
using SPARQL (Vrandeci¢ and Krotzsch, 2014),
and (3) additional gazetteers from multiple online
resources are used for matching more entities in
the corpus.

2.2 Noise-Robust Learning

We first overview the common setup for training
NER models, and then propose two designs that
work jointly for distantly-supervised NER, moti-
vated by the challenges of learning with noisy la-
bels: (1) a new loss function, and (2) noisy label
removal. Finally, ensembling multiple models is
helpful for stabilizing the model performance.

NER systems are usually trained as a sequence
labeling model that classifies every token in
a sequence into a set of entity types or non-
entity. The label space depends on the tagging
scheme used (e.g., the BIO format distinguishes
begin/inside/outside of named entities). Specif-
ically, given a sequence * = [x1,...,x,] of n
tokens and their corresponding categorical labels
Yy = [y1,.-.,Yn], an NER model parameterized by
0 is trained to minimize some classification loss
that encourages the model to correctly predict the
given labels. The cross entropy (CE) loss is most
commonly used for such a purpose:
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where f; j(x; @) is the model’s predicted probabil-
ity of token z; belonging to class j (i.e., the softmax
layer outputs).

The gradient of Lc¢g is (via the chain rule):
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Due to the f;, (x; @) term as the denominator,
the tokens on which the model’s prediction is less
congruent with the provided labels (i.e., f;, (x; 0)
is smaller) will be implicitly weighed more dur-
ing the gradient update. Such a mechanism grants
better model convergence when trained with clean
data (i.e., y are ground truth labels), because more
emphasis is put on difficult tokens. However, when
the labels are noisy, training with the cross entropy
loss can cause overfitting to the wrongly-labeled
tokens (e.g., the two sentences in Figure 1).



Contrary to cross entropy loss which is sensi-
tive to noise, the mean absolute error (MAE) loss,
which is commonly used in regression tasks, has
been shown inherently noise-tolerant when used
for classification (Ghosh et al., 2017) and is defined
as follows (omitting the constant scale factor 2):

n
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and its gradient is given by
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By comparing Eq. (2) with Eq. (1), we observe
that LyvAg is more noise-robust than Lcg because
Eq. (2) treats every token equally for gradient up-
date, allowing the learning process to be dominated
by the correct majority in distant labels. However,
using Lpag for training deep neural models gener-
ally worsens the convergence efficiency and effec-
tiveness due to the inability of adjusting for chal-
lenging training samples, and leads to suboptimal
model performance compared to using Lcg (Zhang
and Sabuncu, 2018).

Generalized Cross Entropy. To balance be-
tween model convergence and noise-robustness,
we propose to use the generalized cross entropy
(GCE) loss (Zhang and Sabuncu, 2018) for training
distantly-supervised NER models, inspired by the
g-order entropy (Ferrari et al., 2010), defined as
follows:
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where 0 < ¢ < 1 is a hyperparameter: When
q — 1, Lgce approximates Lyag; When ¢ — 0,
Lgce approximates Lcg (using L’Hopital’s rule;
see Appendix A for the derivation). The gradient
is computed as:
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Comparing Eq. (4) to Eq. (1), it can be observed
that Lgcg is more noise-robust than Lcg because
less weights are given to tokens on which the model
prediction is less consistent with the given labels
(note f;,,(x;0)179 > f;,.(x;0) for ¢ > 0 and
fiy:(x;0) < 1). Comparing Eq. (4) to Eq. (2), it
can be seen that Lgcg facilitates better learning
dynamics than Lyag because difficult tokens are
given more attention to.

Noisy Label Removal. Even when a noise-
robust loss is used, mislabeled tokens still dete-
riorate the model performance as long as they are
included in training. Unfortunately, without any
prior knowledge about which tokens are mislabeled,
it is challenging to automatically detect them. We
propose a simple threshold-based strategy to re-
move noisy labels: At first, all tokens along with
their distant labels will be used for model training;
later, those tokens on which the model prediction
does not strongly agree with its distant label (i.e.,
fiy:(x;0) < 7 where 7 is a threshold value) will
be excluded from the training set (i.e., not calcu-
lated in the loss). The intuition is straightforward:
Since our loss function is noise-robust, the learned
model will be dominated by the correct majority in
the distant labels instead of quickly overfitting to
label noise; if the model prediction disagrees with
some given labels, they are potentially wrong.
Specifically, we extend Eq. (3) to incorporate the
aforementioned design, as follows:
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where w; = 1 at the start of training and is pe-
riodically updated once every several batches as
w; = 1 (fiy,(x;6) > 7), where 1(-) is the indica-
tor function.

Model Ensemble for Better Stability. Due to
the stochasticity involved in training neural net-
works (e.g., dataset shuffling, network random ini-
tialization and dropout), models trained with the
same algorithm will have different predictions on
the same dataset, and this is especially true when
inconsistent noisy signals from the distant labels
may further disturb model training. As such, model
ensemble is commonly used to suppress the noise
and provide better stability, by combining the pre-
dictions of multiple models (Laine and Aila, 2017;
Nguyen et al., 2019). The rationale is that the
model’s predictions are likely to be consistent on
clean data while inconsistent and oscillating on
wrongly-labeled data, and ensembling multiple
models enhances consistent predictions and neu-
tralizes inconsistent ones.

We perform model ensemble by simply train-
ing K models {0;}5 , via Eq. (5) on the same
distantly-labeled corpus with different random
seeds controlling the randomness of the training
process. A new model @gns is finally trained to ap-
proximate the average prediction of the K models



on all tokens by minimizing the Kullback—Leibler
(KL) divergence loss:

LENs = ZKL (fi (@5 {0k}izy) || fiz; Orns))
=1

(6)
where f; (m;{@k}szl) = %Zfﬂ fi(x; 0y,) is
the K models’ averaged prediction, and we find
that K = 5 is sufficient to provide stable ensem-
bled model performance.

Remarks. While our methods introduce two ad-
ditional hyperparameters ¢ and 7, their values can
be kept same for different datasets to avoid param-
eter tuning. We will also show in Section 3 that
the model performance is rather insensitive to these
hyperparameter values within a reasonable range.

2.3 Language Model Augmented
Self-Training

After the noise-robust learning step, we further fine-
tune the resulting model (i.e., trained with Eq. (6))
via a self-training step on the same corpus, but
without the distant labels, for two reasons: (1) The
clean signals in the distant supervision have been
exploited via noise-robust learning, but some to-
kens may have not been fully leveraged by the
model since they are excluded by the noisy label re-
moval step. The self-training step aims to bootstrap
on all tokens using the model’s own predictions
to improve its generalization ability. Similar self-
training ideas have been explored in classification
tasks (Meng et al., 2018, 2019, 2020). (2) The pre-
trained language model (PLM) has only been used
to initialize the NER model for fine-tuning, while
PLMs (without fine-tuning) encode factual and re-
lational knowledge through pre-training (Petroni
et al., 2019) that may complement the NER model
training. The self-training step thus also brings
additional pre-trained knowledge for better model
generalization by creating contextualized augmen-
tations using a PLM. Figure 2 shows an overview.

Contextualized Augmentations with PLMs.
Many PLMs (Devlin et al., 2019; Lan et al., 2020;
Liu et al., 2019) are pre-trained with the masked
language modeling (MLM) task on large-scale
text corpora carrying general knowledge like the
Wikipedia. Previous studies (Jiang et al., 2020;
Petroni et al., 2019) have shown that entity-related
knowledge can be extracted from a PLM (without
any fine-tuning) by querying it via cloze templates
and gathering the PLM’s MLLM outputs.

Given that the MLM task shares high similar-
ity with the NER task (i.e., both leverage the
contextual information within the sequence for
token-level classification) and that the MLLM out-
puts contain general knowledge acquired during
pre-training, we propose to use the pre-trained
RoBERTa model (without fine-tuning) @prg for
creating label-preserving augmentations (i.e., not
changing the entity type label or non-entity label)
of the original sequences in the corpus in order
to complement the NER learning with pre-trained
knowledge. Specifically, for each sequence x in the
corpus, we randomly mask out 15% of its tokens
(i.e., replace them with the [MASK] token), and
feed the partially masked sequence & into the pre-
trained ROBERTa model. Finally, the augmented
sequence &’ = [z, ...,z ] is created by sampling

rn

from the MLM output probability for each token:
z; ~ py"™ (&; Opre) (7

where p?/ILM (Z; Oprg) is the MLM probability of
the pre-trained ROBERTa model on the ith token.

The augmented sequence x’ will be semanti-
cally similar to the original sequence x, and the
replaced tokens in &’ that are different from those
in x are likely to be label-preserving because
PLM:s are good at predicting missing words in the
given context, which are usually interchangeable
to the original ones. To further enforce the label-
preserving constraint of the augmented sequence,
we (1) sample z, only from the top-5 terms given by
pi-VILM (; Oprg) to avoid low-quality replacements,
and (2) require z to have the same capitalization
and tokenization with x; (i.e., if x; is capitalized or
is a subword, so should ).

Using PLMs to perform augmentation for NER
has the major benefit of being unsupervised and
contextualized. Without PLMs, one may still per-
form augmentation by replacing an entity in the se-
quence with another of the same type in the distant
supervision source (Dai and Adel, 2020). However,
such an approach requires prior knowledge about
the entity type in the sequence (i.e., it does not work
for non-entities or entities not matched with distant
labels), and the augmentation is context-free, which
may create low-quality and invalid sequences (e.g.,
it does not fit the context to replace a technology
company with a news agency although they both
belong to the “organization” entity type).

Self-Training. The goals of self-training (ST)
are two-fold: (1) use the model’s high-confidence
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Figure 2: Overview of language model augmented self-training. Only a part of the sequence is shown; the original
sequence is “Renzo Furlan was eliminated by Todd Martin in the tournament.” We feed the partially masked
original sequence into a pre-trained ROBERTa model and sample from its MLM output probability to obtain an
augmented sequence (replaced tokens are marked in blue). Then the NER model is trained with both original and
augmented sequences as inputs to approximate the soft labels.

predictions that are likely to be reliable for guiding
the model refinement on all tokens, and (2) encour-
age the model to generate consistent predictions
on original sequences and augmented ones, based
on the principle that a generalizable model should
produce similar predictions for similar inputs. To
fulfill these goals, we iteratively use the model’s
current predictions to derive soft labels and grad-
ually update the model so that its predictions on
both the original and the augmented sequences ap-
proximate the soft labels.

Specifically, at the beginning of self-training,
the model 8% is initialized to be the model trained
with Eq. (6). Then at each iteration ¢, we derive new
soft labels y(*t1) that enhance high-confidence
predictions while demote low-confidence ones via
squaring and normalizing the current predictions on
the original sequence x, following the soft labeling
formula by (Xie et al., 2016):

fij (w;H(t)>2/gj
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Then the model 81 at the next iteration is
updated by approximating the soft labels with both
the original sequence and the augmented sequence
as inputs, via the KL divergence loss:
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Using Eq. (9) to train the model not only guides
the model learning with its high-confidence predic-
tions, but also encourages consistent predictions be-
tween the original and augmented sequences. From
another perspective, such a training process grad-
ually propagates confident label information from
original examples to augmented ones so that the
model is trained with more data for better general-
ization.

We note that the soft labels in Eq. (8) are com-
puted on all entity types, excluding the non-entity
class (i.e., the “O” class). This is because the “O”
class usually has many more tokens than any en-
tity type class, while Eq. (8) encourages balanced
assignments of target soft labels.

2.4 Overall Algorithm

We summarize the entire training procedure in Al-
gorithm 1. Lines 2-9: We train K models with
different seeds on the distantly-labeled data using
the noise-robust loss. At the end of each iteration,
noisy labels are removed based on the model’s pre-
dictions (Line 9). Line 10: An ensembled model
is trained. Line 12: Contextualized augmentations
are created with the pre-trained ROBERTa model.
Lines 16-18: The soft labels are iteratively com-
puted, and the model is updated to approximate the
soft labels on both the original and the augmented
sequences.

3 Experiments

3.1 Datasets

We use three benchmark datasets for NER:
CoNLLO3 (Sang and De Meulder, 2003),
OntoNotes5.0 (Weischedel et al., 2013) which we



Algorithm 1: RoSTER training.

Input: An unlabeled text corpus {x};
external knowledge bases ;
pre-trained RoOBERTa model Opgg.

QOutput: A trained NER model 6.

{y} < Distant label generation with ® ;

// Train K models for ensemble;

for k< 0to K —1do

0 < OprE;

{witi, < 1

// Train for M iterations;

for m < 1t M do

0. < Train with Eq. (5);
{w; <1 (fi,yi(mS 0r) > 7_)}?:1;

10 Opns < Train with Eq. (6);

1 // Augmentation;

12 {2’} + Eq. (7);

13 // Self-training;

14 9(0) — 9ENS§

15 // Train for T iterations;

16 fort < 0toT —1do

v |y «— Eq. (8);

18 0+« Train with Eq. (9);

19 Return 6 = H(T);

e 0 N U R W N =

Dataset # Types # Train # Test

CoNLLO03 4 14,041 3,453

OntoNotes5.0 18 59,924 8,262
Wikigold 4 1,142 274

Table 1: Dataset statistics with the number of entity
types and the number of training/test sequences.

follow the pre-processing of (Chiu and Nichols,
2016), and Wikigold (Balasuriya et al., 2009). The
dataset statistics are shown in Table 1. All datasets
are in English language.

3.2 Compared Methods

We compare with a wide range of state-of-the-art
distantly-supervised methods and supervised meth-
ods. Fully supervised methods use the ground
truth training set for model training. Distantly-
supervised methods use the distantly-labeled train-
ing set obtained as in (Liang et al., 2020). All
methods are evaluated on the test set.

Distantly-supervised methods:

 Distant Match: This is the baseline that reports

the distant supervision quality (i.e., compares
distantly-labeled results with the ground truth).

* Distant RoOBERTa: We fine-tune a pre-trained
RoBERTa model on distantly-labeled data as if
they are ground truth with the standard super-
vised learning.

* AutoNER (Shang et al., 2018): It trains the neu-
ral model with a “Tie or Break” tagging scheme.

Ambiguous tokens are assigned with all possible
labels.

* BOND (Liang et al., 2020): It first trains a
RoBERTa model on distantly-labeled data with
early stopping, and then uses a teacher-student
framework to iteratively self-train the model.

Supervised methods:

e BiLSTM-CNN-CRF (Ma and Hovy, 2016): It
was one of the state-of-the-art NER models be-
fore the appearance of pre-trained language mod-
els, using bidirectional LSTM, CNN and CRF.
It is trained from scratch on the training data
without any pre-trained knowledge.

* RoBERTa: We fine-tune a pre-trained RoBERTa
model on the ground truth training data.

3.3 Experiment Settings

We use the pre-trained RoBERTa-base model as the
backbone model (for our method and baselines).
For the three datasets CoNLLO03, OntoNotes5.0,
and Wikigold, the maximum sequence lengths are
set to be 150, 180, and 120 tokens. For all three
datasets: The training batch size is 32; the hyper-
parameters 7 and q used by Eq. (5) are both set as
0.7; the number of models for ensemble K = 5;
we use Adam (Kingma and Ba, 2015) as the opti-
mizer. The peak learning rate is 3e — 5, 1e — 5 and
5e — 7 for noise-robust training, ensemble model
training and self-training, respectively, with linear
decay. The model is run on 2 NVIDIA GeForce
GTX 1080 Ti GPUs. More implementation details
can be found at Appendix C.

3.4 Main Results

Table 2 presents the performance of all meth-
ods measured by precision, recall and F1 scores.
On all three datasets, ROSTER achieves the best
performance among distantly-supervised methods.
Specifically, (1) the Distant ROBERTa baseline
only slightly improves the distant labeling results,



Methods CoNLLO3 OntoNotes5.0 Wikigold
Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1
a Distant Match 0.811 0.638 0.714 0.745* 0.693* 0.718* 0479 0476 0478
& Distant ROBERTa 0.837* 0.633* 0.721* 0.760* 0.715* 0.737* 0.603* 0.532* 0.565*
‘é AutoNER 0.752 0.604 0.670 0.731* 0.712* 0.721* 0.435 0.524 0.475
% BOND 0.821 0.809 0.815 0.774* 0.701* 0.736* 0.534 0.686 0.600
A RoSTER (Ours) 0.859 0.849 0.854 0.753 0.789 0.771 0.649 0.710 0.678
a. BILSTM-CNN-CRF 0.914 0911 0.912 0.888* 0.887* 0.887* 0.554 0.543 0.549
& RoBERTa 0.906* 0.917* 0.912* 0.886* 0.890* 0.888* 0.853 0.876 0.864

Table 2: Performance of all methods on three datasets measured by precision (Pre.), recall (Rec.) and F1 scores.
Baseline results marked with * are our own runs; others are reported by (Liang et al., 2020).

Ablations Pre. Rec. F1

RoSTER 0.859 0.849 0.854
w/o GCE 0.817 0.843 0.830
w/o NR 0.830 0.836 0.833
w/o ST 0.844 0.812 0.828

Table 3: Ablation study on CoNLLO03 dataset. We com-
pare our full method with ablations (see texts for the
abbreviation meanings).

Ablations Mean (Std.) F1

0.828 (0.009)
0.817 (0.025)

w. ensemble
w/o ensemble

Table 4. Mean and standard deviation (std.) F1 scores
of 5 runs (before self-training) with and without model
ensemble on CoNLLO3 dataset.

showing that directly applying supervised learn-
ing to distantly-labeled data will lead to overfit-
ting to label noise and poor model generalization;
(2) RoSTER consistently outperforms AutoNER
and BOND, demonstrating the superiority of our
proposed noise-robust learning and self-training
approach when trained on distantly-labeled data.
For further comparison with supervised meth-
ods, we vary the number of ground truth training
sequences used for supervised RoBERTa, and show
its performance in Figure 3(a). The performance
of RoSTER is equivalent to using 1, 000 cleanly
annotated sequences for supervised ROBERTa.

3.5 Ablation Study

To further validate the effectiveness of each com-
ponent, we compare RoOSTER with the following
ablations by removing one component at a time: (1)
replace the GCE loss in Eq. (5) with cross entropy

loss (w/o GCE); (2) do not perform noisy label
removal (w/o NR); (3) do not perform self-training
(w/o ST). The results are shown in Table 3. It can
be seen that w/o GCE and w/o NR both lead to
worse performance than the full model, confirming
the necessity of jointly using both designs in noise-
robust learning; w/o ST also reduces performance,
showing that bootstrapping the model with its own
high-confidence predictions benefits the model’s
generalization.

We also study the effect of model ensemble by
running noise-robust training (without subsequent
self-training) with 5 different seeds and reporting
the mean and standard deviation F1 in Table 4.
Ensembling multiple models slightly improves the
mean result and greatly reduces the variance.

3.6 Parameter Study

We study the effect of two important hyperparam-
eters ¢ and 7 used in Eq. (5) on the model per-
formance. We separately vary the value of ¢ or 7
in range [0.1,0.3,0.5,0.7,0.9] while keeping the
other’s value as default (both use 0.7 as the de-
fault value). The change in model performance
(measured by F1) is shown in Figure 3(b). Over-
all, the performance is rather insensitive to the two
hyperparameters in the 0.5 — 0.9 range. When
q — 1, Lgce approximates Lyvag, having good
noise-robustness but poor convergence effective-
ness; when ¢ — 0, Lgcg approximates Lcg, hav-
ing good convergence but weak noise-robustness.
Setting ¢ = 0.7 achieves a good balance between
convergence and noise-robustness. When 7 — 0,
all distant labels will be used for model training,
and the model performance will suffer from the
noise in them; when 7 — 1, many correct labels
will be removed, and there will be insufficient train-
ing data. Setting 7 = 0.7 allows removing noisy
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Figure 3: (a) (On CoNLLO03) Supervised RoBERTa with different number of ground truth training sequences.
RoSTER trained on distantly-labeled data is equivalent to supervised RoBERTa using around 1, 000 ground truth
sequences. (b) (On CoNLLO03) Parameter study. (c) (On Wikigold) Self-training with and without augmentation.

Original: Swiss Bank Corp sets warrants on
DTB-Bund-Future.

Augmentation: Swiss Investment Corp sets
warrants for HTB-Bund-Future.

Original: Chelsea Clinton was carefully
shielded from the exposure of public life.
Augmentation: Hillary Clinton was largely
shielded from the spotlight of public life.

Table 5: Original sequences and generated augmenta-
tions. Replaced words are marked in blue.

labels while keeping enough reliable training data.

3.7 Study of Augmentation

We study the effectiveness of the generated con-
textualized augmentations for the self-training step.
We run the self-training step with and without us-
ing the augmentations (i.e., including or excluding
the second term in Eq. (9)) on the Wikigold dataset
and show the results in Figure 3(c). Even with-
out augmentations, the self-training improves the
model by using high-confidence predictions for
self-refinement; with augmentations, the model is
trained with more data and eventually generalizes
better with higher test set performance. Two con-
crete augmentation examples are shown in Table 5.

3.8 Case Study

Finally, we perform case study to understand the
advantage of RoSTER with a concrete example
in Table 6. We show the prediction of AutoNER,
BOND and RoSTER on a training sequence with
label noise. AutoNER mainly learns from the
given distant labels and slightly generalizes (labels
“China” separately as a location entity); BOND is
able to generalize better for more complete entity

detection because it has a self-training step that
bootstraps the model on the training set without
completely overfitting to distant labels; however, it
is still impacted by label noise. ROSTER is able to
detect the noisy labels via the noise-robust learning
step, and then it further re-estimates the true labels
in the self-training step with the help of the reliable
signals it learns from the clean data as well as the
pre-trained knowledge from PLMs via augmenta-
tion, instead of relying purely on distant labels.

4 Related Work

The effectiveness of deep neural models for NER
usually comes with the cost of annotating large
amounts of training data. To alleviate the hu-
man annotation burden when applying deep mod-
els, several studies propose to train NER models
with weakly/distantly-labeled data. For weakly-
supervised NER, previous studies have explored
cross lingual knowledge transfer from high re-
source languages to low resource languages (Feng
et al., 2018; Ni et al., 2017; Xie et al., 2018), ag-
gregating multiple weak labeling functions (Lison
et al., 2020; Safranchik et al., 2020) or leverag-
ing sentence-level labels (Kruengkrai et al., 2020).
Few-shot approaches (Huang et al., 2021) have also
been explored to leverage very few labeled data for
NER model training.

Our work is more closely related to distantly-
supervised NER which uses external gazetteers
or knowledge bases to automatically derive en-
tity labels. Along this line, different methods
have been proposed to leverage the distant super-
vision, such as propagating reliable type informa-
tion on graphs (Ren et al., 2015), designing new
model components to handle multiple possible la-
bels (Shang et al., 2018), employing additional
models to classify noisy data (Onoe and Durrett,



Distant Match: Shanghai-Ek [Chor]pgr is jointly owned by the Shanghai Automobile Corporation

and [Ek Chor]pgr China Motorcycle.
Ground Truth:
and

is jointly owned by the

AutoNER: Shanghai-Ek [Chor]pgr is jointly owned by the Shanghai Automobile Corporation

and [Ek Chor]pgr [China]roc Motorcycle.

BOND: [Shanghai-Ek Chor]pgr is jointly owned by the [Shanghai]; oc

and [Ek Chor]pgr
RoSTER:
and

is jointly owned by the

Table 6: Case study with RoOSTER and baselines. The sentence is from CoNLLO03.

2019), formulating the task as a positive-unlabeled
learning problem (Peng et al., 2019), and adopting
early stopping to prevent the model from overfit-
ting to distant labels (Liang et al., 2020). However,
previous methods either do not explicitly address
the noise in the distantly-labeled data (i.e., treat-
ing them as if they are ground truth), or require an
additional set of manually-labeled data to train a
denoising model. Our method addresses the label
noise with a noise-robust learning scheme and a
self-training step for better generalization, without
using any ground truth data.

Our study is also related to data augmentation
techniques. In NLP, data augmentation is well de-
veloped for text classification, by either creating
real text sequences (Xie et al., 2020) via back trans-
lation (Sennrich et al., 2016) or in the hidden states
of the model via perturbations (Miyato et al., 2017)
or interpolations by mixing up labels (Chen et al.,
2020). However, these techniques cannot be read-
ily used for the NER task. (Dai and Adel, 2020)
study a set of simple augmentation methods for
the NER task, like synonym replacement, mention
replacement or segment shuffling. Nevertheless,
these augmentations are context-free which may
generate unreasonable sequences or require addi-
tional sources like the WordNet. Our proposed
augmentation method is unsupervised and contex-
tualized, generating high-quality sequences thanks
to the pre-trained knowledge of PLMs and reliably
improving model generalization.

5 Conclusion and Future Work

In this paper, we study the distantly-supervised
NER problem without using any human annota-
tions but only distantly-labeled data. For better
model training with noisy data, we propose a noise-
robust learning scheme, consisting of a new loss

function and a noisy label removal step. To further
improve the model generalization, we propose a
self-training method that guides model refinement
with its own high-confidence predictions and en-
forces the model to make consistent predictions
on original and augmented sequences generated by
PLMs. Our method achieves strong performance
on three benchmark datasets, outperforming previ-
ous distantly-supervised NER methods.

The techniques proposed in this paper are gener-
alizable for future studies: The noise-robust learn-
ing scheme may also be applied to other NLP prob-
lems where labels may contain noise (e.g., obtained
via crowdsourcing from non-experts); the augmen-
tation and self-training method may be helpful
for other settings like semi-supervised or few-shot
learning. One may also consider exploring larger
pre-trained language models (e.g., RoOBERTa-large)
or more recent pre-trained language models (e.g.,
COCO-LM (Meng et al., 2021)) for the distantly-
supervised NER task.
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A Generalized Cross Entropy

The Generalized Cross Entropy (GCE) loss
(Eq. (3), also shown below),

"1 — fiy (x50)0
ﬁGCEZZf’y;( ),

i=1

is a generalized version of the cross entropy (CE)
loss, as ¢ — 0, Lgce — LcE, shown as follows:
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The second line is obtained by applying L’'Hopital’s
rule.

B Baseline Sources

We use the following sources for baseline imple-
mentation:

* Distant ROBERTa: We use the Huggingface
Transformer library for the RoBERTa model:
https://huggingface.co/transformers/.

¢ AutoNER: We use the authors’ released code:
https://github.com/shangjingbol226/
AutoNER.

* BOND: We use the authors’ released code:
https://github.com/cliangl453/BOND/.

The results reported in Table 2 are obtained by
taking the higher value of (1) our own run and (2)
the corresponding performance reported in (Liang
et al., 2020).
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C Implementation Details

Tagging Scheme for Distantly-Supervised NER.
Instead of using BIO/BIOES tagging scheme, we
use the binary 10 format (i.e., only distinguish
whether a token is a part of an entity or not) fol-
lowing previous work (Peng et al., 2019), mainly
because the distant labeling process may induce
partially matched entities (e.g., the first sentence in
Figure 1), and the beginning/ending token of the
entity can be inaccurate.

Dropping Non-Entity Tokens From Distant La-
bels. We find it beneficial to randomly exclude
a portion of distantly-labeled non-entity tokens
(we dropped 50% non-entity tokens for all three
datasets in the experiments) from training. This is
probably because the distant labeling process fails
to detect some entities which will be mislabeled as
the “O” class, and randomly dropping non-entity
tokens reduces the number of such false negative
labels.

Implementation of the NER Head. Different
from the common setup of fine-tuning PLMs for
NER, we implement the NER head in Figure 2 as
two linear layers instead of one: One linear layer
classifies entity tokens against non-entity ones (i.e.,
binary classification), and the other linear layer
classifies all entity type classes. During the self-
training step, the former is trained to maintain its
predictions, while the latter is trained to approxi-
mate the soft labels.

Noisy Label Removal for Minority Types.
Some minority types may have very few labeled
tokens and the model will output low-confidence
predictions on them due to insufficient training. To
make sure those tokens are not treated as noisy
ones and removed from training, we do not per-
form noisy label removal on entity type classes
(i.e., keep all tokens labeled as those classes) of
which > 90% tokens are predicted with confidence
lower than the threshold.



