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Abstract

We propose a new task, Text2Mol, to re-
trieve molecules using natural language de-
scriptions as queries. Natural language and
molecules encode information in very differ-
ent ways, which leads to the exciting but chal-
lenging problem of integrating these two very
different modalities. Although some work has
been done on text-based retrieval and structure-
based retrieval, this new task requires integrat-
ing molecules and natural language more di-
rectly. Moreover, this can be viewed as an
especially challenging cross-lingual retrieval
problem by considering the molecules as a
language with a very unique grammar. We
construct a paired dataset of molecules and
their corresponding text descriptions, which
we use to learn an aligned common semantic
embedding space for retrieval. We extend this
to create a cross-modal attention-based model
for explainability and reranking by interpret-
ing the attentions as association rules. We also
employ an ensemble approach to integrate our
different architectures, which significantly im-
proves results from 0.372 to 0.499 MRR. This
new multimodal approach opens a new per-
spective on solving problems in chemistry lit-
erature understanding and molecular machine
learning.'

1 Introduction

Discovering new properties and applications of dif-
ferent molecules is critical for accelerating discov-
ery in medicine and science. Existing databases
contain tens of millions of molecules; PubChem
(Kim et al., 2016, 2019) alone has 110 million com-
pounds. Many information retrieval (IR) tools for
chemistry rely on queries based on natural language
descriptions of the molecules and existing chem-
ical reactions. Hundreds of millions of possible
molecules cannot all possibly undergo laboratory

'The programs and data are publicly available at
github.com/cnedwards/text2mol for research purposes.
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Water is an oxygen hydride consisting of an oxygen atom that is
covalently bonded to two hydrogen atoms.

H,0, C,H,0

Figure 1: Given a natural language description of water,
we want to rank the corresponding molecule H,O first
among all the possible molecules.

experimentation and be given attention by experts
in order to create a description. To address this
issue, it is critical to retrieve molecules directly
from natural language descriptions. This approach
allows newly discovered molecules to be easily
integrated into the proposed IR framework. Our
framework also allows for semantic-level search be-
tween natural language descriptions and molecules
as well as for query expansion within traditional
chemistry information retrieval systems.

Over the past several years, chemists have begun
to rely increasingly on computational techniques
for cataloging molecules and predicting chemical
reactions, products, and properties, such as yield,
toxicity, and water solubility (Wu et al., 2018;
Glavatskikh et al., 2019; Coley et al., 2017; Ah-
neman et al., 2018; Fooshee et al., 2018). However,
natural language and molecules are very different
modalities of data, which makes integrating them
together a challenging task. We argue that these
two modalities are complementary and should be
considered together.

Much current work focuses on images and lan-
guage (Mogadala et al., 2020), but it is beneficial
for the community to consider modalities beyond
traditional ones, increasing their work’s impact
and efficacy. For example, integrating NLP and
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Molecule

An electrically neutral group of atoms bonded together.

Compound

Two or more elements held together by chemical bonds.

Chemical fingerprint

Represents a molecule or substructure using a bitstring. This allows for
efficient substructure search and similarity calculation.

Morgan fingerprint

A specific type of chemical fingerprint also known as ECFP.

SMILES string

A character-based sequence representation of a molecule.
(for example, C1=CC=CC=C1 is the SMILES string for benzene)

Canonical SMILES

A unique SMILES string for a molecule.

Table 1: Relevant Terminology

molecules could improve drug discovery and de-
sign.

In pursuit of this goal, we propose a multimodal
embedding approach for constructing an aligned
semantic space between these two types of data to
allow for cross-modal retrieval. No previous work
has studied this retrieval problem. The closest is
(Zhou et al., 2010), which uses a hybrid approach to
document retrieval by replacing chemicals in text
with canonical keywords in order to standardize
different chemical synonyms. However, this does
not take the semantic information of the molecule
(properties beyond the atoms and graph structure,
such as being a pollutant or hydrophobic) into ac-
count.

Additionally, incorporating cross-modal atten-
tion can lead to insights on the relations between
molecule substructures and text keywords. For ex-
ample, we find that given “pollutant,” the model
focuses on the substructure F — C. This contributes
to higher-level explainability between molecules
and their descriptions.

Our molecular encoder is based on the Mol2vec
(Jaeger et al., 2018) algorithm, which creates “sen-
tences” of substructure identifiers from molecules;
we frame Text2Mol as a new, particularly chal-
lenging type of cross-lingual information retrieval
(CLIR). This problem is much more challenging
than traditional CLIR since the gap between the
query and target is much larger. It also provides
a useful benchmark for extending CLIR to incor-
porate multiple data modalities. Molecules are es-
sentially a different language with a uniquely chal-
lenging grammar. In fact, several techniques apply
models developed for natural language processing
to SMILES strings—machine-readable character-
based representations for molecules (Weininger,
1988; Weininger et al., 1989).

The major novel contributions of this paper are:

¢ A new task Text2Mol: Cross-modal Text-

Molecule Information Retrieval directly from
natural language descriptions to molecules.

¢ Cross-modal attention-based association rules
between molecules and text are used to im-
prove results and for explainability.

* A new benchmark dataset with 33,010
text-compound pairs for cross-modal text-
molecule IR which can be used for cross-
lingual, multimodal, and explainable IR.

2 Task Definition

To push the boundaries of multimodal models, we
present a new IR task: Text2Mol.

Given a text query and list of molecules with-
out any reference textual information (represented,
for example, as SMILES strings, graphs, or other
equivalent representations) retrieve the molecule
corresponding to the query. Figure 1 shows an
example of this task. From a text description of
a molecule, the model must incorporate the infor-
mation in the description into a semantic represen-
tation which can be used to directly retrieve the
molecule.

This requires the integration of two very differ-
ent types of information: the structured knowledge
represented by text and the chemical properties
present in molecular graphs. We assume there is
only one correct (relevant) molecule for each de-
scription, so we consider two measures for this task:
Hits@1 and mean reciprocal rank (MRR).

3 Related Work

3.1 Multimedia Representation

Much recent work in this area has fallen into the
category of vision-language models which lever-
age transformers (Chen et al., 2019; Su et al., 2020;
Lu et al., 2019). There are also more fine-grained




multimedia embedding approaches, such as inte-
grating events from images and their descriptions
(Li et al., 2020) or multimodal pattern mining (Li
et al., 2016). CLIP (Radford et al., 2021) uses nat-
ural language to train a zero-shot image classifier
which can be easily applied to different datasets.
Specifically, their loss function, which follows
Sohn (2016), serves as a very efficient version of
binary cross-entropy loss by comparing all samples
in a mini-batch with each other. To our knowledge,
we are the first to apply this technique to molecules
and text, and we also extend this loss function to
incorporate negative samples to allow for cross-
modal attention between the two encoders.

3.2 Molecule Representation

One critical problem in the field of molecular ma-
chine learning is molecule representation. Fin-
gerprinting methods have long been employed
in cheminformatics to featurize molecule struc-
tural representations (Cereto-Massagué et al., 2015;
Sandfort et al., 2020). However, this approach
does not allow these representations to be learned
from the data. Other representations include tech-
niques such as kernel PCA using Tanimoto sim-
ilarity (Rensi and Altman, 2017; Mallory et al.).
Recent advances in machine learning have begun
to be applied to this problem. Jaeger et al. (2018)
use the Morgan fingerprinting algorithm to convert
each molecule into a ‘sentence’ of its substructures.
A dataset of molecules can be interpreted as a cor-
pus, and Mol2vec then applies Word2vec (Mikolov
et al., 2013a,b) to create molecule representations.
Additionally, other recent advances such as BERT
(Devlin et al., 2019) have been applied to the do-
main such as MolBERT (Fabian et al., 2020) and
ChemBERTa (Chithrananda et al., 2020), which
use SMILES strings (Weininger et al., 1989) as
inputs to pretrain a BERT-esque model.

3.3 Substructure or Description Retrieval

Although the biomedical domain has been more
popular than chemistry (Zheng et al., 2014; Li et al.,
2019; Li and Ji, 2019; Islamaj Dogan et al., 2019;
Zhang et al., 2021; Lai et al., 2021), information
retrieval in chemistry has long been studied and
is summarized by Krallinger et al. (2017). Most
work has focused on only a single modality: text
or molecules. Text-based retrieval includes tasks
such as finding relevant papers for a chemical or
reaction and chemical entity recognition. Much
work has also been done in graph and molecule-

based retrieval (Hagadone, 1992; Barnard, 1993;
Yan et al., 2005; Kratochvil et al., 2018; Qu et al.,
2019; Kratochvil, 2019; Goyal et al., 2020). Hy-
brid approaches have also been attempted; Zhou
et al. (2010) replace chemical entities in text with
a unique canonical key (thus standardizing syn-
onyms). This also allows them to perform query
expansion by including similar molecules from
their database. In contrast to this, we perform
direct semantic cross-modal retrieval task in our
approach, as opposed to just augmenting queries.
Work in chemical entity recognition has also in-
corporated hybrid approaches, mostly as chemical
name to structure converters such as ChemSpot
(Rocktischel et al., 2013) and OPSIN (Lowe et al.,
2011).

3.4 Cross-Lingual Retrieval

Cross-lingual information retrieval (CLIR) is a
technique to retrieve documents from a target lan-
guage given a query in a different source language.
Two common strategies are either translating the
query into the target language or translating the
document corpus into the source language (Zhang
and Zhao, 2020). Further, work exists combin-
ing these approaches using interlingual semantics,
such as via bilingual word embeddings (Vulic and
Moens, 2015) or word embeddings and a dictionary
(Bhattacharya et al., 2016).

Our problem, cross-modal molecule retrieval
from text, can be considered as a CLIR task which
we approach using an interlingual semantic ap-
proach. The model is trained on a parallel corpus
of molecules and descriptions.

4 Methodology
4.1 Model

To accomplish this retrieval task, we need to con-
nect text to molecules. To do so, we build an
aligned semantic embedding space. Our approach
consists of two distinct submodels: a text encoder
and a molecule encoder. Both submodels create an
embedding in the aligned space, and cosine similar-
ity is used to rank the embeddings. A description
embedding can be compared against a database of
existing molecule embeddings, and this process
scales easily using an approximate nearest neigh-
bor search algorithm such as (Johnson et al., 2017).
For the text encoder, we use SciBERT (Beltagy
et al., 2019) and a linear projection to the embed-
ding space followed by layer normalization (Ba
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Figure 2: Example of Morgan Fingerprinting from
(Rogers and Hahn, 2010) for Butyramide. The algo-
rithm updates the identifiers from radiusr = Otor = 1,
as shown by the green circles.

et al., 2016). For the molecule encoder, we con-
sider two architectures. First, we use a multi-layer
perceptron (MLP) that takes Mol2vec embeddings
as input. Second, we integrate a graph convolu-
tional network (GCN) (Kipf and Welling, 2017)
into Mol2vec.

Mol2vec (Jaeger et al., 2018) converts molecule
graph structures into “sentences” of substructures.
These substructures are created using Morgan fin-
gerprinting (Rogers and Hahn, 2010), which is a
type of topological fingerprint, which were histor-
ically used for quick substructure lookup. Mor-
gan fingerprints incorporate a number of molecular
properties based on the Daylight atomic invariants
rule (Weininger et al., 1989). Atomic invariants
such as the number of connections, number of non-
hydrogen bonds, and atomic number are used to
create the initial identifier for an atom. By using a
circular hashing technique, they are able to create
a unique identifier for a molecular substructure of
some radius r centered around a central atom, as
shown in Figure 2. The algorithm starts with a ra-
dius of zero which is iteratively increased until the
desired substructure size is obtained. In Mol2vec,
these fingerprints are used as tokens for each atom.
In this work, we use a default value of r = 1,
which gives two tokens for each atom (r = 0 and
r = 1). This set of tokens is canonicalized in the
same way as the canonical SMILES representation
(Weininger et al., 1989). This list of tokens can be
interpreted as a “sentence”, and Mol2vec builds a

corpus of such sentences. It then uses the Word2vec
skip-gram (Mikolov et al., 2013a,b) algorithm to
create “word” embeddings, which it averages to-
gether to create molecule representations. We use
a two-layer MLP followed by a linear projection
and layer normalization to create a trainable repre-
sentation from the Mol2vec embedding, followed
by layer normalization.

While the Morgan fingerprints (substructure to-
kens) incorporate some implicit graph information,
we explicitly introduce the molecule graph struc-
ture using a GCN that takes a molecular graph as
input with Mol2vec token embeddings as features.
For example, rings are very important substruc-
tures in molecules. If the description mentions
“aromatic ring” or “phenyl group,” we want to be
able to match this substructure in the molecule. We
could potentially do so by increasing the maximum
radius of the Morgan fingerprinting algorithm, but
then there might not be enough examples of the
resulting large-radius tokens to create a good rep-
resentation given our corpus size. Particularly for
large molecules, to capture the global structural in-
formation, we might need a very large radius which
will create a lot of rare tokens (that get replaced by
the UNK token). Instead, we explicitly incorporate
the graph structure by using a GCN.

The Mol2vec token features are input to a three-
layer GCN to create node representations for each
atom in the molecule. These representations are
combined using global mean pooling, and passed
through two more hidden layers to produce a
molecule representation. Since Mol2vec produces
multiple tokens based on Morgan fingerprints of
different radii, we select the corresponding token
with the largest radius.

4.2 Cross-Modal Attention Model

To improve the explainability of our approach, we
introduce a model with cross-modal attention by
modifying the base model to use a transformer de-
coder (Vaswani et al., 2017). This decoder uses the
SciBERT output as a source sequence and the node
representations from the Mol2vec GCN model as a
target sequence, and the attentions can be used to
learn multimodal association rules. The architec-
ture is shown in Figure 3.

4.3 Loss

To optimize the models, we base our loss on the
symmetric contrastive loss presented by Radford
et al. (2021). The loss takes the output embed-
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Figure 3: Model architecture for the cross-modal atten-
tion extension and association rules.

dings of both submodels, multiplies by the expo-
nent of a learned temperature parameter, 7, and
then takes the outer product of the mini-batch. The
identity matrix I is used as labels. Categorical
cross-entropy (CCFE) is then applied along both
axes, and the two losses are summed. This im-
proves efficiency by allowing all the other samples
in a mini-batch to serve as negatives. It corresponds
to cosine similarity because the normalized dot
product is minimized or maximized, for positives
and negatives respectively. For batch embedding
m and t of length n,

L(m,t) = CCE(e"mt™ | I,)+CCE(e"tm™ | I,,)
We find this loss to be ineffective for training the
cross-modal attention model because it encourages
the model to ignore the textual information—i.e.
information can leak from one encoder to the other.
To remedy this problem, we modify this loss func-
tion to incorporate a matching task by introducing
negative samples. We randomly sample new de-
scriptions and replace their respective ones in the
diagonal of the identity matrix with zeros, creating
a binary classification task—does the description
match the molecule? Since the rows with all zeros
are no longer probability distributions, we instead
use binary cross-entropy loss. This modified loss
provides more signal than a pure matching task
since it also receives signal from the other nega-
tives, and it enforces the constraint that the model
consider both the molecule and text description.

4.4 Cross-Modal Reranking

We want to better understand how the base net-
works work, so we introduce a modified model
with cross-modal attention, which we also use to
rerank the output of the base models. Given a train-
ing set of molecule-text pairs, P, we first train the

cross-modal matching model. We collect the at-
tention weights of the final layer for each of these
pairs. Next, the attention weights for molecule to-
ken, m, and text token, ¢, are aggregated to create
association rules. We define the support for a rule
r from ¢ to m as the sum of all attentions,
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where a; ; is the attention weight between tokens
1 and j and p; and p,,, are the multisets of text and
molecule tokens in p, respectively.

This produces association rules from every text
token ¢ to every molecule token m. We calculate
the confidence for each of these rules by taking the
support of the rule and dividing by the support of
all the rules using ¢,

supp(t, m)
Y ver supp(t',m)

conf(t = m) =

where 7' is the set of all text tokens.

Following this, given a molecule and text pair,
we consider all association rules that can produce it,
and we take the average of the top k confidence val-
ues. For association-rule based reranking, Bharad-
waj et al. (2014) takes the average of all confi-
dence values. However, they have a comparatively
smaller number of confidence rules. On the other
hand, AnyBURL (Meilicke et al., 2019, 2020) finds
maximum aggregation to be most effective. It also
shows rule-based approaches can be very efficient
(Ottetal., 2021). For our approach, we want to con-
sider multiple one-to-one rules because we only use
rules from one text token to one molecule token
since the computational costs scale significantly
due to the combinatorial number of many-to-many
rules. By taking an average of only the top confi-
dence values, we incorporate multiple one-to-one
rules but ignore unimportant rules. This combines
the two approaches to reranking while keeping in
mind efficiency. We calculate a score by interpolat-
ing between the cosine similarities with association
rule-based scores (AR) linearly,

S(a,b) = acos(a,b) + (1 — a)AR(a,b)

where « € [0, 1] is selected on the validation set.



4.5 Ensemble Approach

Upon investigation of the baseline models, we
found that the correct molecule was very frequently
found in the top molecules. However, many of
the molecules ranked above the correct molecule
did not occur in the top results of the same model
trained with different parameter initialization. We
found that by taking an average of these rankings,
the correct molecule’s average rank would stay
roughly the same, but the average rank of false
positives increases. When these average ranks are
used to reorder the results, the order of the incor-
rect and correct molecule switches. We find this
method to be surprisingly effective, and we con-
nect this to committee of neural networks (Drucker
et al., 1994) in ensemble learning (Polikar, 2012).
Additionally, we draw comparisons to Mixture of
Experts-based models (Masoudnia and Ebrahim-
pour, 2014) such as Fan et al. (2006) and the Switch
Transformer which contains 1.6 trillion parameters
(Fedus et al., 2021). We compute the score, S, as a
weighted average,

S(m) = ZwZR,(m) s.t. Zwi =1

for some molecule m where R; is the rank assigned
to that molecule by model 7 and wj; is the model
weight. A lower score is more desirable.

5 Experiments

5.1 Data and Evaluation

For our task, we create a dataset using PubChem
(Kim et al., 2016, 2019) and Chemical Entities
of Biological Interest (ChEBI) (Hastings et al.,
2016). We collect ChEBI annotations of com-
pounds scraped from PubChem, which consists
of 102,980 compound-description pairs. Using this
data, we create a dataset consisting of 33,010 pairs,
which we call ChEBI-20, that contains descrip-
tions of more than 20 words. We find that longer
descriptions tend to be less noisy and more infor-
mative. We remove compounds which cannot be
processed by RDKit (Landrum, 2021).

We separate these datasets into 80%/10%/10%
train-validation-test splits. The alignment models
are trained on the training data, and the results are
evaluated by searching all molecules in the dataset.
The molecules in the training set are processed by
Mol2vec using default parameters: a radius of 1, a

threshold for unknown tokens of 3, an embedding
dimension of 300, and a window size of 10.

5.2 Results

To train the models, we use Adam optimizer
(Kingma and Ba, 2015) and two different learning
rates. The SciBERT model uses a finetuning learn-
ing rate of 3e-5, as used by Devlin et al. (2019).
The rest of the model uses 1e-4 as used by Vaswani
et al. (2017). We use a linear annealing rate for the
learning rate with 1,000 steps of warmup. We train
for 40 epochs with a batch size of 32. We also use a
temperature value of 0.07 as suggested by Radford
et al. (2021). We use the first 256 text tokens for
the text encoder.

5.2.1 Baseline Models

The MLP and GCN encoder models both show sim-
ilar performance. Three results for both are shown
in Table 2. We believe the performance similarity
between MLP and GCN is because the description
is a bottleneck. However, they appear to be effec-
tive at different tasks. In the test set, the mean rank
is significantly lower for the MLP models than the
GCN models; however, the MRR values are fairly
similar. This indicates that these two architectures
have different strengths. Further, the difference in
mean rank is much smaller in the validation set;
the validation mean rank is 30.60 and 28.89 for
the MLP and GCN ensembles respectively. This
indicates that the GCN architecture is more effec-
tive for retrieving the most difficult examples in
the validation set (since there are not outlier ranks
to increase the mean), but the MLP is more effec-
tive at difficult examples in the test set. We further
examine this in Section 5.4.

5.2.2 Ensemble

We find that the ensemble method shows signif-
icant performance improvements. The ensemble
of the three GCN models increases Test Hits@1
by roughly 8% from the baseline models. It is no-
table that the hyperparameters for these models are
exactly the same, and the models are learning differ-
ent ways of ranking which are complementary. To
combine the different models, we find the heuristic
of using uniform weights to be very effective.

A further advantage of the ensemble approach
is that it can incorporate different encoder archi-
tectures and retrieval schemes, which may have
different understandings of how to solve the prob-
lem. We find that combining both architectures is



Training Test

Model Mean Rank | MRR | Hits@1 | Hits@10 | Mean Rank | MRR | Hits@1 | Hits@10
MLPI 9.55 0.428 | 26.5% 77.5% 30.38 0.372 | 22.4% 68.6%
MLP2 9.82 0.425 | 26.4% 77.1% 30.72 0.369 | 22.3% 68.9%
MLP3 9.53 0.431 | 26.9% 77.8% 36.30 0372 | 22.3% 67.9%
GCNI1 10.22 0.432 | 27.2% 76.5% 42.28 0.366 | 21.7% 68.2%
GCN2 9.67 0423 | 26.7% 77.4% 41.90 0371 | 22.3% 68.9%
GCN3 10.12 0.420 | 25.8% 76.7% 39.11 0.366 | 22.3% 67.9%
MLP-Ensemble 5.81 0.520 | 35.1% 86.4% 20.78 0.452 | 29.4% 77.6%
GCN-Ensemble 6.09 0.516 | 35.0% 86.1% 28.77 0.447 | 29.4% 77.1%
All-Ensemble 4.67 0.568 | 40.2% 89.8% 20.21 0.499 | 34.4% 81.1%
MLP1+Attn 30.37 0.375 | 22.8% 68.7%
MLP1+FPGrowth 30.37 0.374 | 22.6% 68.6%

Table 2: Results. FPGrowth is the frequent pattern growth algorithm (Han and Pei, 2000). Models 1, 2, and 3 only

differ in initial parameter initialization.

Average MRR

0.46

0.44

0.42

0.40

Number of GCN Models

- 038

Number of MLP Models

Figure 4: Validation MRR values for different combi-
nations of architectures. The axes indicate the number
of each architecture used. Ensembles with both archi-
tectures are more effective.

more effective than either alone; this is shown in
Figure 4. Ensembles that only incorporate one ar-
chitecture are consistently outperformed by models
that incorporate both. For example, using 3 MLP
models has an MRR of 0.442 but using 2 MLP and
1 GCN model has an MRR of 0.449.

5.3 Cross-Modal Attention and Reranking

To better understand the behavior of the model, we
apply cross-modal attention using a transformer
decoder with 3 layers, and we rerank the top 10
of MLP1 using the 10 most confident association
rules. We find cross-modal reranking to slightly
improve our baseline model and to outperform tra-
ditional association rule mining, which can be ac-
complished by the FPGrowth algorithm (Han and
Pei, 2000). Hits@1 for the baseline MLP model is

Token Substructure  Supp  Conf
Titanium Ti=0 1.29 0.65
Aluminium AT 431 0.23
Manganese Mn?+ 10.08 | 0.30
Toluene C-C=C 12.93 | 0.231
Toluene C7Hg 23.79 | 0.425
##chloro Cl-C 18.81 | 0.207
pollutant F-C 3.097 | 0.208
chromatography C-Si 2976 | 0.271
acid C—-0—H | 2398.7 | 0.078
crown c-C-0 4.18 | 0.325

Table 3: Examples of interesting learned association
rules from token to substructure. C;Hg is the chemical
formula of toluene.

increased by about 0.4%, but normal association
rules only improve it by 0.2%.

Mining these rules using attention also allows us
to understand the connections the model is making.
Examples of these rules are shown in Table 3. We
primarily examine one-to-one rules; however, these
one-to-one rules will often “split” the confidence
among themselves. For example, toluene is a ring
containing different substructures, so there will be
multiple one-to-one rules required to capture the
substructure. The rule from toluene to the three
common substructure tokens in toluene has an in-
creased confidence and support. Since we average
the confidence values of all applicable rules, this is
accounted for in reranking.

One interesting phenomenon we find is that the
model is very interested in O-H structures (hy-
droxyl groups). It is also interested in positively
charged metal ions in salts. The token “acid” has
many different rules; however, the most confident
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alanine, L-arginine, glycine, °
L-tyrosine, L-serine, L-
serine, L-phenylalanine, L-
arginine, L-tyrosine, L-
trytophan, L-phenylalanine
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in sequence by peptide AT
linkages.

Inositol: Myo-inositol is an
inositol having myo-
configuration. It has a role as a
member of compatible
osmolytes, a nutrient, an EC
3.1.4.11 (phosphoinositide
phospholipase C) inhibitor, a
human metabolite, a Daphnia
magna metabolite, [...]

Cannabidiolate is a
dihydroxybenzoate that is the
conjugate base of cannabidiolic
acid, obtained by deprotonation
of the carboxy group. It derives
from an olivetolate. It is a
conjugate base of a
cannabidiolic acid.

Figure 5: Example queries that are predicted correctly
by All-Ensemble.

is a hydroxyl (-OH) group, which matches basic
chemical properties of acids. Rules involving rare
tokens can result in high confidence values. For
example, the rule “crown” implies C — C — O has
a confidence of 0.325. This is because the dataset
contains two “crown ether” molecules which have
multiple occurrences of C — C — O.

5.4 Qualitative Analysis

Our technique is capable of retrieving large, com-
plicated molecules as well as small ones. For ex-
ample, it successfully retrieves both Argyssfrywff
(C79Hg9N907) and Inositol (CgH120¢), shown in
Figure 5. Argyssfrywff shows that the model is
capable of composing molecules from constituent
parts mentioned in the description.

The MLP and GCN models capture different
aspects of the molecules leading to different rank-
ings. For example, MLP-ensemble ranks an alpha-
mycolic acid (C;5H,403) at 43; GCN-ensemble
ranks it 3. The compound contains cyclopropyl

Fura red is a 1-benzofuran |
substituted at position 2 by * 1.
a (5-0x0-2-
thioxoimidazolidin-4-
ylidene)methyl group, and
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Clondronate(2-) is the
dianion resulting from the
removal of two protons
from clondronic acid. It is
a conjugate base of a
clodronic acid.

An alpha-mycolic acid is a
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cyclopropyl groups in the
meromycolic chain. It is an
organic molecular entity and
a mycolic acid. [...]

Figure 6: Example queries that are ranked incorrectly
by All-Ensemble.

groups (the triangles), shown in Figure 6, which the
GCN captures. On the other hand, Clondronate(2-)
(CH,C1,04P5?) is ranked 4,915 by the GCN but
61 by the MLP, showing large differences exist
between the architectures. The models are also
mutually beneficial; 2-Methylideneglutaric acid
(C¢HgO,) is ranked 2nd by MLP and 3rd by GCN,
but it is ranked 1st by All-Ensemble. Individual
models trained identically (but with different initial
parameters) also show this phenomenon. GCN 1,
2, and 3 rank Pierreione C (C,;H,30¢) 2nd. GCN1
ranks Aspernidine A 1st, but it is ranked 49 and 64
by GCN 2 and 3, respectively. The average rank
of Aspernidine A becomes 38, so GCN-Ensemble
ranks Pierreione C 1st.

The model is able to ignore irrelevant descrip-
tion information. For example, MLP achieves rank
1 for Rostratin D (C18H20N20gS4), whose descrip-
tion includes the unique and likely unuseful sec-
tion “isolated from the whole broth of the marine-
derived fungus Exserohilum rostratum.” Instead,
the model successfully identifies it from the fol-
lowing attributes: “bridged compound, a cyclic
ketone, a lactam, an organic disulfide, an organic
heterohexacyclic compound, a secondary alcohol,
a dithiol and a diol.”



There are some very challenging queries where
multiple molecules are very similar. For exam-
ple, Pro-Arg and Arg-Pro share the same chemical
formula C11H21N503. Fura red (C41H44N4OZOS)
is the most challenging query for the model; it is
ranked at 8,320 by All-Ensemble. Its entire descrip-
tion is based off of 1-benzofuran, but the substitu-
tions are each larger than the original molecule and
poorly defined.

5.5 Remaining Challenges

One further challenge is integrating external do-
main knowledge. Many current errors can be elim-
inated by applying this information, such as as-
suming “oxide” means the molecule should con-
tain an oxygen. Although our association rule ap-
proach learns some of these, external knowledge
can provide stronger rules. We observe that descrip-
tions appear to be the limiting factor in this model,
which is consistent with the similar performance
of the GCN and MLP encoders. Comprehensive
techniques for extracting information from external
knowledge could lead to significant improvements,
which we leave for future work.

6 Conclusions and Future Work

In this work, we present Text2Mol: a novel and
challenging cross-modal information retrieval task
to retrieve molecules using natural language de-
scriptions. To tackle this problem, we apply
contrastive representation learning to a BERT-
based text encoder and both MLP and GCN-based
molecule encoders. We show that these models
are complementary and that an ensemble approach
combines them very effectively. We also show that
the ensemble approach is effective for combining
identically trained neural networks (with different
parameter initialization), and we consider attention-
based association rules. Improved encoder archi-
tectures will likely yield improvements, and further
investigation of how model architectural choices af-
fect these rules and their interactions for reranking
may be interesting as well. In the future, we plan
to further improve results by integrating external
knowledge as constraints. It should also be noted
that this task is possible in the reverse direction,
from molecules to descriptions. This has many
possible applications, such as finding relevant de-
scriptions for newly discovered molecules.
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Figure 7: This figure shows the ensemble validation
MRR from different weighted averages of the three
GCN models. GCN3_weight = 1 — GCN1_weight —
GCN2_weight. The MRR is clearly lower in the cor-
ners, where only rankings from one model are used be-
cause the others have zero weight. This figure illus-
trates that using uniform weights is an effective heuris-
tic.

B Reproducibility

The MLP and GCN models were each run three
times. The GCN and MLP use 600 hidden units.
The mol2vec input and the model outputs are
300-dimensional. GCN uses the substructure rep-
resentations with the largest radius. MLP con-
tains 110,871,865 parameters. GCN contains
111,953,665 parameters. The cross-modal atten-
tion model contains 128,978,441 parameters and
attends the first 512 molecule substructures. It
achieves about 97% classification accuracy for the
matching task from the negative samples. The num-
ber of one-to-one association rules with confidence
greater than 0.1 and support greater than 2 is 1,835.
The MLP and GCN take approximately 7 hours
on a NVIDIA V100 and the cross-modal attention
model takes approximately 9 hours. We find that
early stopping is not useful and that layer normal-
ization increases training speed. The value of «
for reranking was selected by grid search for high
validation MRR. For the metrics, given a list of
rankings R,

1 n
MeanRank = — R;
eanRan - Z_Zl

1~ 1

Validation

Model Mean Rank | MRR | Hits@1 | Hits@10
MLP1 43.66 0.374 | 22.5% 68.8%
MLP2 47.42 0.360 | 22.1% 68.9%
MLP3 41.15 0.376 | 21.2% 68.2%
GCNI1 41.78 0.367 | 22.2% 68.4%
GCN2 41.23 0.367 | 22.1% 68.9%
GCN3 42.19 0.360 | 21.2% 68.2%
MLP-Ensemble 30.60 0.442 | 28.7% 76.5%
GCN-Ensemble 28.89 0.435 | 27.7% 76.6%
All-Ensemble 24.95 0.479 | 31.7% 80.2%

Table 4: Reproducibility results for the validation set.
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