ARTICLE IN PRESS – Acta Cryst. E

Cryst	
\cta (E

CRYSTALLOGRAPHIC COMMUNICATIONS Crystal structure of *cis*-7,8-dihydroxy-5,10,15,20-tetraphenylchlorin and its zinc(II)–ethylenediamine complex

ISSN 2056-9890

Proof instructions

Proof corrections should be returned by **17 March 2022**. After this period, the Editors reserve the right to publish your article with only the Managing Editor's corrections.

Please

(1) Read these proofs and assess whether any corrections are necessary.

(2) Check that any technical editing queries highlighted in **bold underlined** text have been answered.

(3) Send corrections by e-mail to **checkin@iucr.org**. Please describe corrections using plain text, where possible, giving the line numbers indicated in the proof. Please do not make corrections to the pdf file electronically and please do not return the pdf file. If no corrections are required please let us know.

If you wish to purchase printed offprints, please complete the attached order form and return it by e-mail as soon as possible.

Please check the following details for your article

Abbreviated author list: Chaudhri, N.; Brückner, C.; Zeller, M.

Thumbnail image for contents page

How to cite your article in press

Your article has not yet been assigned page numbers, but may be cited using the doi:

Chaudhri, N., Brückner, C. & Zeller, M. (2022). Acta Cryst. E78, https://doi.org/10.1107/S2056989022002729.

You will be sent the full citation when your article is published and also given instructions on how to download an electronic reprint of your article.

Acta Cryst. (2022). E78

Files: e/dj2044/dj2044.3d e/dj2044/dj2044.sgml DJ2044 GM IU-226/0(14)3 229/13(12)3 (100)

CRYSTALLOGRAPHIC

COMMUNICATIONS

2

3

4

5

6

8

9

Acta

ISSN 2056-9890

Crystal structure of *cis*-7,8-dihydroxy-5,10,15,20tetraphenylchlorin and its zinc(II)–ethylenediamine complex

Nivedita Chaudhri,^a Christian Brückner^{a*} and Matthias Zeller^b

^aDepartment of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA, and ^bDepartment of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, IN, 47907-2084, USA. *Correspondence e-mail: c.bruckner@uconn.edu

The title chlorin, 2^{Ph}H₂, hydrogen-bonded to dimethylaminopyridine (DMAP), $C_{44}H_{32}N_4O_2 \cdot C_7H_{10}N_2$, and its corresponding zinc(II) complex, $2^{Ph}Zn$, axially coordinated to ethylenediamine (EDA), $[Zn(C_{44}H_{30}N_4O_2)]\cdot C_2H_8N_2$, were isolated and crystallized by adventitious reduction of the corresponding osmate esters by DMAP and EDA, respectively. Known since 1996 and, inter alia, used for the preparation of a wide range of (planar and non-planar) chlorin analogues (so-called pyrrole-modified porphyrins), their conformational analyses in the solid state are important benchmarks. Both macrocycles are only modestly distorted from planarity and both are slightly more non-planar than the corresponding dimethoxy-derivative, but less planar than a free-base mesopentafluorophenyl-based osmate ester. NSD analyses provide quantitative and qualitative analyses of the distortion modes. One origin of the non-planarity is presumably the avoidance of the eclipsed configuration of the two vic-cis diols on the pyrroline moiety; the resulting deformation of the pyrroline translates in some cases into the macrocycle. The structure of $2^{Ph}H_2$ features voids making up ca 26% of the unit-cell volume filled with highly disordered solvate molecules (chloroform and hexanes). 2^{Ph}Zn crystallized with a 13.6 (4)% occupied solvate methanol molecule.

1. Chemical context

The study of synthetic chlorins as functional, spectroscopic, or structural models for nature's premiere light-harvesting pigment chlorophyll is one of the central aspects in contemporary porphyrinoid chemistry (Flitsch, 1988; Liu *et al.*, 2018; Taniguchi & Lindsey, 2017; Lindsey, 2015). Because of the facility of the synthesis of a wide range of *meso*-tetraaryl-porphyrins, their conversion to chlorins has been widely studied (Flitsch, 1988; Taniguchi & Lindsey, 2017).

We contributed to the field the description of the OsO_4 mediated dihydroxylation of *meso*-tetraarylporphyrins $1^{Ar}M$, generating the corresponding chlorin diols $2^{Ar}M$ (Fig. 1) (Brückner & Dolphin, 1995*a*; Brückner *et al.*, 1998). Depending on the stoichiometric ratio of OsO_4 used and whether the porphyrin metal complex or free base is used, the reaction may also lead to the regioselective formation of tetrahydroxymetalloisobacteriochlorins or tetrahydroxybacteriochlorins, respectively (Brückner & Dolphin, 1995*b*; Samankumara *et al.*, 2010; Hyland *et al.*, 2012; Bruhn & Brückner, 2015). Chlorin diols $2^{Ar}H_2$ have shown efficacy as photosensitizers in photodynamic therapy (Macalpine *et al.*, 2002) or are substrates toward their oxidation to the corresponding diones (Starnes *et al.*, 2000, 2001; Daniell *et al.*, 2003).

research communications

Synthetic pathways towards $2^{Ph}H_2 \cdot DMAP$ and $2^{Ph}Zn \cdot EDA$ and their methoxy ethers.

Importantly, chlorin diols $2^{Ar}M$ are the starting materials for the generation of a wide range of planar and non-planar chlorin analogues (so-called pyrrole-modified porphyrins) (Brückner, 2016; Sharma et al., 2017; Hewage et al., 2019; Brückner et al., 2020; Luciano et al., 2020; Wu et al., 2020), whereby the parent chlorin diols $2^{Ph}H_2$ and $2^{Ph}Zn$ generally serve as spectroscopic benchmarks. Since the conformation of a porphyrinic macrocycle greatly influences its electronic structure, the structural characterization of the benchmark compounds $2^{Ph}H_2$ and $2^{Ph}Zn$ is important. Curiously, however, even though these fundamental compounds are known since 1996, crystals suitable for single X-ray crystal structure analyses could not be grown to date. However, related derivatives, such as osmate ester 3^FH₂ (Hewage *et al.*, 2019), a number of tetrahydroxybacteriochlorins and isobac-teriochlorins (Samankumara et al., 2010), and a number of

¹⁶⁹ Figure 2

170X-ray structure of $2^{Ph}H_2$ ·DMAP with the atom-labeling scheme for non-171H atoms. 50% probability ellipsoids.

alkylated diol free base and metal complexes $4^{Ar}M$ (M = 2H, Ni, Cu, Zn, Pd) (Samankumara *et al.*, 2010; Sharma *et al.*, 2017) could be structurally characterized.

In due course of working with the intermediate osmate esters and attempts to form crystals of the amine adducts, we inadvertently reduced the osmate ester and the long-sought parent free base *meso*-phenyl chlorin diol $2^{Ph}H_2$, as $2^{Ph}H_2$ ·DMAP hydrogen-bonded to DMAP (4-dimethyl-aminopyridine) and the zinc(II) complex $2^{Ph}Zn$, in the form $2^{Ph}Zn$ ·EDA in which the metal is axially coordinated to ethylenediamine (EDA), crystallized in single-crystal X-ray diffraction quality.

2. Structural commentary

The structures of both $2^{Ph}H_2$ ·DMAP and $2^{Ph}Zn$ ·EDA confirm the *cis–vic* stereochemistry of the diol functionality and the near-perpendicular arrangement of the *meso*-phenyl groups – structural features well known for these types of *meso*-arylchlorin diols (Hewage *et al.*, 2019; Samankumara *et al.*, 2010; Sharma *et al.*, 2017) or *meso*-arylporphyrinoids, in general (Senge, 2000) (Figs. 2 and 3).

Importantly, the structures allow the determination of the conformation of their chromophores. The dissection of the

Figure 3

X-ray structure of the zinc(II) complex $2^{Ph}Zn$ -EDA, with the atomlabeling scheme for non-H atoms. 50% probability ellipsoids. Dashed bonds indicate the minor disordered amine [11.8 (12)% occupancy], and the partially occupied MeOH solvate [13.6 (4)% occupancy]. Atom labels for the backwards pointing phenyl ring (C21–C26) are omitted for clarity. conformation of 2^{Ph}H₂·DMAP using a normal mode structural decomposition (NSD) analysis (Kingsbury & Senge, 2021; Shelnutt et al., 1998) shows that its chromophore exhibits a considerable saddling distortion. In comparison, the dimethoxy derivative $4^{Ph}H_2$ (Samankumara *et al.*, 2010) is more planar, with only very modest distortions evenly spread over a number of distortion modes (Fig. 4*a*). In $4^{\mathbf{Ph}}\mathbf{H}_2$, both

methoxy substituents point toward the outside, whereas the 236 corresponding hydroxy groups in 2^{Ph}H₂·DMAP point in opposite directions, with only the hydrogen-bonded (to 238 DMAP) hydroxy group pointing outwards. A slight defor-239 mation of the pyrroline moiety in 2^{Ph}H₂·DMAP alleviates the 240 steric interactions between the two hydroxy groups 241 $[26.65 (13)^{\circ} \text{ O}-\text{C}-\text{C}-\text{O} \text{ torsion angle}]$ that would be 242 otherwise forced to be eclipsed. The corresponding torsion 243 angle in $4^{Ph}H_2$ is slightly smaller [17.23 (17)°; Samankumara *et* 244 al., 2010]. This vic--cis-substituents-induced pyrroline defor-245 mation was also observed previously (Sharma et al., 2017; 246 Hewage et al., 2019). 247

229

230

231

233

237

248

249

251

253

281

284

285

The out-of-plane plots (Kingsbury & Senge, 2021) of the two free-base chlorins 2^{Ph}H₂·DMAP and 4^{Ph}H₂ also illustrate the qualitative and quantitative differences in the conformations of the two (Fig. 5a).

The saddling deformation is more pronounced in the corresponding zinc(II) complexes but the deformation modes observed in either of the complexes are very similar (Fig. 4b and 5b). This (small) B_{2u} deformation mode is typical for penta-coordinated, square-pyramidal porphyrinoid zinc(II) complexes (Kingsbury & Senge, 2021). The differences in conformation quality and quantity is only minimal between the parent compound 2^{Ph}Zn·EDA and its *p*-aryl-substituted and methylated analogue 4^{CF3}Zn·py. In addition, both molecules carry their axial ligand on the same hemisphere defined by the macrocycle the diol/dimethoxy moieties are located. Nonetheless, there are differences. For instance, a smaller O-C-C-O torsion angle was observed in the diol zinc complex $2^{\mathbf{Ph}}\mathbf{Zn}\cdot\mathbf{EDA}$ [O-C_{\beta}-C_{\beta}-O dihedral angle = 7.86 (17)°], whereas the corresponding angle in the dimethoxy derivative 4^{CF3} Zn is much larger at 28.1 (4)°(Sharma *et al.*, 2017).

In neither the free base nor the zinc complex of the diol chlorins are any significant in-plane deformations observed. The change in the macrocycle conformation upon methylation and/or hydrogen bonding to an amine acceptor reiterates the conformational malleability of the chlorin chromophore (Kratky et al., 1985), as previously also shown in the varying conformations of a range of transition-metal complexes (Sharma et al., 2017).

Senge, 2021) of (a), the chromophore conformations of dihydroxychlorin $2^{Ph}H_2 \cdot DMAP$ (hydrogen-bonded to DMAP) in comparison to the conformation of the chromophore of dimethoxychlorin 4^{Ph}H₂ (Samankumara et al., 2010), and (b), the equivalent chromophore conformation analysis of 2^{Ph} Zn EDA in comparison to the closely related dimethoxy derivative 4^{CF3} Zn (Sharma *et al.*, 2017).

Out-of-plane plots (Kingsbury & Senge, 2021) of the chromophore

conformations of (a), dihydroxychlorin $2^{Ph}H_2$ DMAP and dimethoxychlorin 4^{Ph}H₂ (Samankumara et al., 2010), and (b), the equivalent plots of 2^{Ph}Zn·EDA and 4^{CF3}Zn·py (Sharma *et al.*, 2017). The atoms indicated in red are the pyrroline β -carbons carrying the *cis*-hydroxy or methoxy groups.

A

z-position (A)

-0.8

180

-0.8

lable 1 Hydrogen-bond geometry (Å, °) for 2^{Ph}H₂ .						
$D - \mathbf{H} \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$			
$01 - H1O \dots N5$	0.973 (17)	1 727 (17)	2 6968 (14			

3

3

2

354

355

356

371

$OI - HIO \cdots NS$	0.973(17)	1./2/(1/)	2.0908 (14)	1/4.1 (14)
$O2-H2O\cdots O1^{i}$	0.927 (17)	1.882 (17)	2.7798 (12)	162.5 (14)
$N1 - H1N \cdot \cdot \cdot N2$	0.925 (15)	2.346 (15)	2.9064 (13)	118.7 (11)
$N1 - H1N \cdot \cdot \cdot N4$	0.925 (15)	2.383 (15)	2.9518 (13)	119.6 (11)
$N3 - H3N \cdot \cdot \cdot N2$	0.915 (16)	2.292 (16)	2.8868 (13)	122.3 (12)
$N3 - H3N \cdot \cdot \cdot N4$	0.915 (16)	2.458 (15)	2.9766 (14)	116.1 (12)
$C37 - H37 \cdot \cdot \cdot O2^{ii}$	0.95	2.51	3.3840 (16)	153
$C38-H38\cdots C48^{ii}$	0.95	2.77	3.6779 (19)	161
$C50-H50B\cdots N4^{ii}$	0.98	2.57	3.544 (2)	171

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) -x + 2, -y + 1, -z + 1.

actions between the hydroxyl functions of the chlorin molecules. and the DMAP and EDA bases incorporated into the crystal structure.

In $2^{Ph}H_2$ DMAP one of the hydroxyl groups acts as a donor 359 towards the DMAP with $O1 - H1O \cdot \cdot \cdot N5 = 2.6968$ (14) Å. O1 360 in turn acts as acceptor for an $O-H \cdots O$ bond originating 361 from O2 of a neighboring molecule. A symmetry-equivalent 362 interaction (by inversion) connects the other two oxygen 363 atoms of the same two molecules with each other, creating an 364 inversion-symmetric dimer (Fig. 6). A number of additional 365 interactions that augment the strong hydrogen bonds, among 366 them C-H···O, C-H···N and C-H··· π interactions, are 367 listed in the hydrogen-bonding Table 1. 368

The structure of $2^{Ph}H_2 \cdot DMAP$ also contains 647 Å³ (ca 369 26% of the unit-cell volume) of solvent-accessible voids 370 occupied by highly disordered solvent molecules that could not be properly modeled or refined (Fig. 7). The content of 372 these voids, presumably chloroform and hexane, the crystallization solvents, were instead included in the model via 374 reverse-Fourier-transform methods using the SQUEEZE 375 routine (van der Sluis & Spek, 1990; Spek, 2015) as imple-

Figure 6

Hydrogen bonding and packing of $2^{Ph}H_2{\cdot}DMAP$. 50% probability 399 ellipsoids. Symmetry code: (i) 1 - x, 1 - y, 1 - z.

Files: e/dj2044/dj2044.3d e/dj2044/dj2044.sqml DJ2044 GM IU-226/0(14)3 229/13(12)3 (100)

Figure 7

 $D - H \cdot \cdot \cdot A$

.

Solvent-accessible voids in 2^{Ph}H₂·DMAP. The void volume is 647 Å³, or ca 26% of the unit-cell volume.

mented in the program PLATON (Spek, 2020), and added as additional not-model-based structure-factor contributions. The procedure corrected for 162 electrons within the solventaccessible voids.

Hydrogen bonding in 2^{Ph}Zn·EDA is similar to that of $2^{Ph}H_2$ DMAP, but more complex. In contrast to the DMAP molecule in 2^{Ph}H₂·DMAP, the amino NH₂ groups of the ethylene diamine in 2^{Ph}Zn EDA can act as both hydrogenbond acceptors as well as hydrogen-bond donors. One of the two amine moieties of the EDA base is axially coordinated to the zinc center of the chlorin complex, and is thus not available as a hydrogen-bond acceptor. The partially occupied methanol molecule also takes part in hydrogen-bonding interactions, and the disorder of the not-metal-coordinated amino group further complicates the hydrogen-bonding network of 2^{Ph}Zn·EDA.

The two hydroxyl groups again both act as hydrogen-bond donors, and similar to in 2^{Ph}H₂·DMAP they form an inversion-symmetric dimer (Fig. 8). O1 again acts as a hydrogenbond donor towards the base, here the disordered amino group, of the other molecule of the dimer. Different from the DMAP molecule, which lacks acidic H atoms, the amines also act as hydrogen-bond donors. The metal-coordinated amine

Figure 8

Hydrogen bonding and packing of 2^{Ph}Zn·EDA. 50% probability ellipsoids. Symmetry code: (i) 1 - x, 1 - y, 1 - z. 50% ellipsoids for fully occupied and major occupancy non-H atoms. Others in capped stick mode. Phenyl and pyrrole H atoms are omitted for clarity.

457 Table 2
 458 Hydrogen-bond geometry (Å, °) for 2^{Ph}Zn

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$O1-H1\cdots N6^{i}$	0.99	1.73	2.710 (3)	168
$O1 - H1 \cdots N6B^{i}$	0.99	1.54	2.510 (17)	165
$O2-H2A\cdots O1^{i}$	0.99	1.82	2.8056 (18)	171
$C2-H2\cdots O3^{i}$	1.00	2.53	3.460 (14)	155
$N5-H5A\cdotsO1^{i}$	0.88(2)	2.38 (2)	3.2442 (18)	166 (2)
$C46 - H46A \cdots N2$	0.99	2.49	3.368 (2)	148
$N6-H6A\cdots O3$	0.90(2)	2.08 (2)	2.932 (14)	159 (3)
$C46B - H46C \cdots N2$	0.99	2.68	3.368 (2)	126
O3−H3O···N4 ⁱⁱ	0.84	2.20	2.992 (14)	157

Symmetry codes: (i) -x + 1, -y + 1, -z + 1; (ii) x - 1, y, z.

468

469

470 471

472

499

500

501

creates an $N-H\cdots O$ bond that provides an additional connection within the dimer to create a 3D hydrogen-bonding network between the two molecules (Fig. 8).

473 Several 'terminal' hydrogen bonds or hydrogen-bond-like 474 interactions cap off the not yet used acidic and basic atoms, 475 which are listed in the hydrogen-bonding Table 2 (interactions 476 not shown). The second amine H atom of the metal-coordin-477 ated NH₂ group is engaged in an N-H··· π interaction 478 towards the π -density of C29 of the phenyl ring of a neigh-479 boring molecule. The major moiety of the disordered amino 480 group hydrogen bonds with the partially occupied methanol 481 molecule. However, this interaction is not always present, as 482 the occupancy of the MeOH molecule is only 13.6 (4)%, while 483 that of the amino group is 88.2 (12)%. The second amino H 484 atom is not involved in any directional interactions. One of the 485 H atoms of the minor amino moiety might be engaged in 486 another N-H··· π interaction towards the π -density of C43 487 and C43 of a phenyl ring of the second dimer molecule, but the 488 exact positions of the amino H atoms are not determined 489 accurately given the low occupancy of the amino fragment 490 [11.8 (12)%]. The same is true for the position of the methanol 491 hydroxyl H atom, which appears to be engaged in a weak O-492 H··· π interaction with the porphyrinic π -system of a molecule 493 at -1 + x, y, z. O3, the methanol oxygen atom, acts as acceptor 494 for a $C-H \cdot \cdot \cdot O$ interaction originating from a phenyl C atom 495 of a molecule not part of the dimer. The H...O distance is 496 unusually short for a C-H···O interaction, 2.53 Å, which 497 could be an artifact of the low occupancy of the methanol 498 molecule.

4. Database survey

A search of the Cambridge Structural Database (CSD Version 503 5.43, Nov 2021; Groom et al., 2016) for meso-tetraarylchlorins or their metal(II) complexes revealed in excess of 75 struc-505 506 tures, but few are directly comparable to the title compounds: Most examples contain a variety of bulky substituents or 507 annulated rings at the pyrroline positions [the closest being an 508 imidazolone-annulated dihydroxychlorin, TAKDUI (Luciano 509 et al. 2020)] or contain other (sterically encumbering) subs-510 511 tituents at the pyrrolic β -positions or on the *meso*-aryl groups. Most metallochlorins contain also a different metal than 512 zinc(II). Only a few compounds are structurally closely related 513

to $2^{Ph}H_2$ ·DMAP or $2^{Ph}Zn$ ·EDA. Among them is the parent non-hydroxylated chlorin zinc chelate [5,10,15,20-tetraphenylchlorinato]zinc(II)·pyridine complex (HPORZN10; Spaulding *et al.*, 1977), the bis- β -*n*-butylated free base and zinc(II) chlorins (QAKLUJ and QAKMAQ, respectively; Senge *et al.*, 2000), free base 5,10,15,20-tetraphenyl-7-hydroxychlorin (SAZSAP; Samankumara *et al.*, 2010), the β nitrated analogue of $2^{Ph}H_2$ (TIPBIF; Worlinsky *et al.*, 2013), dimethoxy derivatives $4^{Ph}H_2$ (SAZROC; Samankumara *et al.*, 2010) and $4^{CF3}Zn \cdot py$ (PEDKER; Sharma *et al.*, 2017), osmate ester $3^{F}H_2$ (SIZFUF; Hewage *et al.*, 2019), and *trans*-7,8-diol-7,8-dimethyltetraphenylchlorin (ZAZNIZ; Banerjee *et al.*, 2012).

5. Synthesis and crystallization

The OsO₄-mediated dihydroxylation of porphyrin $1H_2$ is a two-step sequence: the formation of the osmate ester $3^{Ar}H_2$ in the first step is followed by the reduction of the osmate ester to the target dihydroxychlorin $2^{Ar}H_2$ (often performed as a twostep, one-pot process) (Brückner & Dolphin, 1995*b*; Samankumara *et al.*, 2010; Hyland *et al.*, 2012). Here, we prepared the intermediate *meso*-tetraphenyl-2,3-*vic*-dihydroxychlorin osmate ester according to the established oxidation of *meso*tetraphenylporphyrins $1^{Ph}H_2$ (Brückner *et al.*, 1998). Metalation of the free base $1^{Ph}H_2$ using Zn(OAc)₂·2H₂O under standard conditions (Buchler, 1978) (refluxing CHCl₃/MeOH for 35-40 min) formed the corresponding Zn^{II} osmate ester $3^{Ph}Zn$.

While crystallizing the osmate esters in CH_2Cl_2 and layering with the non-solvent hexane in the presence of DMAP (for $3^{Ph}H_2$) or by allowing a solution of the ester in $CH_2Cl_2/MeOH$ to slowly evaporate in the presence of EDA (for $3^{Ph}Zn$), both osmate esters adventitiously reduced and diols $2^{Ph}H_2 \cdot DMAP$ and $2^{Ph}Zn \cdot EDA$ crystallized, respectively. The spectroscopic data of both known chromophores are as described previously (Brückner *et al.*, 1998).

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 3. C–H bond distances were constrained to 0.95 Å for aromatic and alkene C–H groups, and to 1.00, 0.99 and 0.98 Å for aliphatic C–H, CH₂ and CH₃ groups, respectively. Positions of N–H and NH₂ hydrogen atoms were refined. N–H distances within NH₂ groups in **2^{Ph}Zn·EDA** were restrained to 0.88 (2) Å and H–N–H and H–N–C angles were restrained to be similar to each other. Methyl CH₃ and hydroxyl H atoms were allowed to rotate but not to tip to best fit the experimental electron density. The hydroxyl H atom of the partially occupied methanol molecule in **2^{Ph}Zn·EDA** was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. $U_{iso}(H)$ values were set to a multiple of $U_{eq}(C/O/N)$ with 1.5 for CH₃ and OH, and 1.2 for C–H, CH₂, N–H and NH₂ units, respectively.

In the structure of **2^{Ph}Zn·EDA**, disorder of the not-metalcoordinated amino group of the ethylene diamine molecule is

570

514

515

516

517

518

519

research communications

Table 3 571

600

601 602

Experimental details

	$2^{Ph}H_2$	2 ^{Ph} Zn
Crystal data		
Chemical formula	$C_{44}H_{32}N_4O_2 \cdot C_7H_{10}N_2 \cdot [+solvent]$	$[Zn(C_{44}H_{30}N_4O_2)]\cdot C_2H_8N_2\cdot 0.136CH_4O$
M _r	770.90	776.57
Crystal system, space group	Triclinic, P1	Monoclinic, $P2_1/c$
Temperature (K)	150	150
a, b, c (Å)	10.0193 (4), 15.2554 (8), 17.7983 (10)	10.1249 (3), 13.5400 (4), 27.0447 (8)
α, β, γ (°)	69.918 (2), 74.926 (2), 84.140 (2)	90, 95.1464 (11), 90
$V(A^3)$	2466.9 (2)	3692.64 (19)
	2 M - K	4 0 <i>K</i>
Radiation type (mm^{-1})	Μο Κα	
μ (mm)	0.00 $0.23 \times 0.21 \times 0.10$	1.52 0.27 × 0.25 × 0.18
Crystar size (mm)	0.55 × 0.21 × 0.19	$0.27 \times 0.25 \times 0.18$
Data collection		
Diffractometer	Bruker AXS D8 Quest diffractometer with	Bruker AXS D8 Quest diffractometer with
	PhotonII charge-integrating pixel array detector (CPAD)	PhotonIII-C14 charge-integrating and photon counting pixel array detector
Absorption correction	Multi-scan (SADABS; Krause et al., 2015)	Multi-scan (SADABS; Krause et al., 2015)
T_{\min}, T_{\max}	0.665, 0.746	0.606, 0.754
No. of measured, independent and observed $[I > 2\sigma(I)]$ reflections	48645, 14738, 9891	21319, 7551, 7037
R _{int}	0.060	0.024
$(\sin \theta / \lambda)_{\max} (\dot{A}^{-1})$	0.714	0.638
Refinement		
$R[F^2 > 2\sigma(F^2)], wR(F^2), S$	0.048, 0.133, 1.04	0.031, 0.088, 1.04
No. of reflections	14738	7551
No. of parameters	549	549
No. of restraints	0	17
H-atom treatment	H atoms treated by a mixture of independent	H atoms treated by a mixture of independent
• • • • • • -3	and constrained refinement	and constrained refinement
$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} ({\rm e \ A}^{-5})$	0.45, -0.21	0.31, -0.44

Computer programs: APEX4 (Bruker, 2021), APEX3 and SAINT (Bruker, 2019), SHELXT (Sheldrick, 2015a), SHELXS97 (Sheldrick, 2008), SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011), Mercury (Macrae et al., 2020), and publCIF (Westrip, 2010).

observed and a methanol solvate molecule is partially occu-603 pied. The C-N bonds were restrained to be similar in length. 604 A partially occupied methanol molecule is located nearby the 605 major disordered amino group and hydrogen-bonded to it. 606 The hydroxyl H atom was restrained to hydrogen bond to a 607 porphyrin N atom of a neighboring complex. Subject to these 608 conditions, the occupancy ratio for the amino groups refined 609 to 0.882 (12): 0.118 (12), and the occupancy rate for the 610 methanol molecule refined to 0.136 (4). The occupancy of the 611 methanol molecule is not correlated with the disorder of the 612 amino group (the major 88% occupied amino group is 613 hydrogen-bonded to the 14% occupied methanol molecule). 614

The structure of 2^{Ph}H₂·DMAP contains 647 Å³ of solvent-615 accessible voids occupied by highly disordered solvate mol-616 ecules (presumably chloroform and hexane, the crystallization 617 solvents). The residual electron-density peaks are not 618 arranged in an interpretable pattern and no unambiguous 619 disorder model could be developed. The structure factors 620 were instead augmented via reverse-Fourier-transform 621 methods using the SQUEEZE routine (van Sluis & Spek, 622 1990; Spek, 2015), as implemented in the program PLATON 623 (Spek, 2020). The resultant .fab file containing the structure-624 factor contribution from the electron content of the void space 625 was used in together with the original hkl file in the further 626 627

refinement. The SQUEEZE procedure accounted for 162 electrons within the solvent-accessible voids.

Funding information

Funding for this research was provided by: National Science Foundation (grant No. CHE-1625543 to M. Zeller; grant No. CHE-1800361 to C. Brückner).

References

- Banerjee, S., Zeller, M. & Brückner, C. (2012). J. Porphyrins Phthalocyanines, 16, 576-588.
- Brückner, C. (2016). Acc. Chem. Res. 49, 1080-1092.
- Brückner, C., Atoyebi, A. O., Girouard, D., Lau, K. S. F., Akhigbe, J., Samankumara, L., Damunupola, D., Khalil, G. E., Gouterman, M., Krause, J. A. & Zeller, M. (2020). Eur. J. Org. Chem. pp. 475-482.
- Brückner, C. & Dolphin, D. (1995a). Tetrahedron Lett. 36, 3295-3298.
- Brückner, C. & Dolphin, D. (1995b). Tetrahedron Lett. 36, 9425-9428.
- Brückner, C., Rettig, S. J. & Dolphin, D. (1998). J. Org. Chem. 63, 2094-2098.
- Bruhn, T. & Brückner, C. (2015). J. Org. Chem. 80, 4861-4868.
- Bruker (2019). APEX3 and SAINT. Bruker Nano Inc., Madison, Wisconsin, USA.
- Bruker (2021). APEX4. Bruker Nano Inc., Madison, Wisconsin, USA.
- Buchler, J. W. (1978). The Porphyrins, edited by D. Dolphin, pp. 389-483, New York: Academic Press.

- Daniell, H. W., Williams, S. C., Jenkins, H. A. & Brückner, C. (2003).
 Tetrahedron Lett. 44, 4045–4049.
- Flitsch, W. (1988). Adv. Heterocycl. Chem. 43, 73–126.
- Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta
 Cryst. B72, 171–179.
- Hewage, N., Daddario, P., Lau, K. S. F., Guberman-Pfeffer, M. J.,
 Gascón, J. A., Zeller, M., Lee, C. O., Khalil, G. E., Gouterman, M.
 & Brückner, C. (2019). J. Org. Chem. 84, 239–256.
 - Hübschle, C. B., Sheldrick, G. M. & Dittrich, B. (2011). J. Appl. Cryst.
 44, 1281–1284.
 - Hyland, M. A., Morton, M. D. & Brückner, C. (2012). J. Org. Chem.
 77, 3038–3048.
- Kingsbury, C. J. & Senge, M. O. (2021). Coord. Chem. Rev. 431, 213760.
- Kratky, C., Waditschatka, R., Angst, C., Johansen, J. E., Plaquevent, J. C., Schreiber, J. & Eschenmoser, A. (1985). *Helv. Chim. Acta*, 68, 1312–1337.
- Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J.
 Appl. Cryst. 48, 3–10.
 - Lindsey, J. S. (2015). Chem. Rev. 115, 6534-6620.

- Liu, Y., Zhang, S. & Lindsey, J. S. (2018). *Nat. Prod. Rep.* 35, 879–901.
 Luciano, M. P., Atoyebi, A. O., Tardie, W., Zeller, M. & Brückner, C.
 (2020) J. O. Charles, 25, 15232, 15232.
- (2020). J. Org. Chem. 85, 15273–15286.
 Macalpine, J. K., Boch, R. & Dolphin, D. (2002). J. Porphyrins Phthalocyanines, 06, 146–155.
- Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P.,
 Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. &
 Wood, P. A. (2020). J. Appl. Cryst. 53, 226–235.
- Samankumara, L. P., Zeller, M., Krause, J. A. & Brückner, C. (2010).
 Org. Biomol. Chem. 8, 1951–1965.

- Senge, M. O. (2000). *The Porphyrin Handbook*, edited by K. M. Kadish, K. M. Smith & R. Guilard, pp. 1–218. San Diego: Academic Press.
- Senge, M. O., Kalisch, W. W. & Bischoff, I. (2000). *Chem. Eur. J.* 6, 2721–2738.
- Sharma, M., Ticho, A. L., Samankumara, L., Zeller, M. & Brückner, C. (2017). *Inorg. Chem.* 56, 11490–11502.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
- Sheldrick, G. M. (2015*a*). Acta Cryst. A**71**, 3–8.
- Sheldrick, G. M. (2015b). Acta Cryst. C71, 3-8.
- Shelnutt, J. A., Song, X.-Z., Ma, J.-G., Jentzen, W. & Medforth, C. J. (1998). *Chem. Soc. Rev.* 27, 31–41.
- Sluis, P. van der & Spek, A. L. (1990). Acta Cryst. A46, 194–201.
- Spaulding, L. D., Andrews, L. C. & Williams, G. J. B. (1977). J. Am. Chem. Soc. 99, 6918–6923.
- Spek, A. L. (2015). Acta Cryst. C71, 9-18.
- Spek, A. L. (2020). Acta Cryst. E76, 1-11.
- Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2000). Org. Lett. 2, 1995–1998.
- Starnes, S. D., Rudkevich, D. M. & Rebek, J. Jr (2001). J. Am. Chem. Soc. 123, 4659–4669.
- Taniguchi, M. & Lindsey, J. S. (2017). Chem. Rev. 117, 344-535.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.
- Worlinsky, J. L., Zarate, G., Zeller, M., Ghandehari, M., Khalil, G. & Brückner, C. (2013). *J. Porphyrins Phthalocyanines*, **17**, 836–849.
- Wu, Z.-Y., Xue, H., Wang, T., Guo, Y., Meng, Y.-S., Li, X., Zheng, J., Brückner, C., Rao, G., Britt, R. D. & Zhang, J.-L. (2020). ACS Catal. 10, 2177–2188.

¹ supporting information

- ² Crystal structure of *cis*-7,8-*vic*-dihydroxy-5,10,15,20-tetraphenylchlorin and its
- ³ zinc(II)–ethylenediamine complex
- 4 Nivedita Chaudhri, Christian Brückner* and Matthias Zeller
- 5 **Computing details**
- 6 Data collection: APEX4 (Bruker, 2021) for 2PhH2; APEX3 (Bruker, 2019) for 2PhZn. For both structures, cell
- 7 refinement: SAINT (Bruker, 2019); data reduction: SAINT (Bruker, 2019). Program(s) used to solve structure: SHELXT
- 8 (Sheldrick, 2015a) for 2PhH2; SHELXS97 (Sheldrick, 2008) for 2PhZn. For both structures, program(s) used to refine
- 9 structure: SHELXL2018/3 (Sheldrick, 2015b), ShelXle (Hübschle et al., 2011); molecular graphics: Mercury (Macrae et
- al., 2020); software used to prepare material for publication: *publCIF* (Westrip, 2010).
- 11 cis-7,8-vic-Dihydroxy-5,10,15,20-tetraphenylchlorin dimethylaminopyridine monosolvate (2PhH2)
- 12 Crystal data
- 13 $C_{44}H_{32}N_4O_2 \cdot C_7H_{10}N_2 \cdot [+solvent]$
- 14 $M_r = 770.90$
- 15 Triclinic, $P\overline{1}$
- $16 \quad a = 10.0193 (4) \text{ Å}$
- 17 b = 15.2554 (8) Å
- $_{18}$ c = 17.7983 (10) Å
- 19 $\alpha = 69.918 (2)^{\circ}$
- 20 $\beta = 74.926 (2)^{\circ}$
- 21 $\gamma = 84.140 (2)^{\circ}$
- 22 $V = 2466.9 (2) \text{ Å}^3$
- 23 Data collection
- 24 Bruker AXS D8 Quest diffractometer with PhotonII charge-integrating pixel array detector (CPAD)
- 25 Radiation source: fine focus sealed tube X-ray source
- 26 Triumph curved graphite crystal monochromator
- 27 Detector resolution: 7.4074 pixels mm⁻¹
- $_{28}$ ω and phi scans
- 29 Refinement
- 30 Refinement on F^2
- 31 Least-squares matrix: full
- $R[F^2 > 2\sigma(F^2)] = 0.048$
- $wR(F^2) = 0.133$
- $S_{34} S = 1.04$
- 35 14738 reflections

Z = 2 F(000) = 812 $D_x = 1.038 \text{ Mg m}^{-3}$ Mo K α radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 9960 reflections $\theta = 2.4-31.9^{\circ}$ $\mu = 0.06 \text{ mm}^{-1}$ T = 150 K Fragment, black $0.33 \times 0.21 \times 0.19 \text{ mm}$

Absorption correction: multi-scan (*SADABS*; Krause *et al.*, 2015) $T_{\min} = 0.665$, $T_{\max} = 0.746$ 48645 measured reflections 14738 independent reflections 9891 reflections with $I > 2\sigma(I)$ $R_{int} = 0.060$ $\theta_{\max} = 30.5^{\circ}$, $\theta_{\min} = 2.2^{\circ}$ $h = -14 \rightarrow 14$ $k = -21 \rightarrow 21$ $l = -25 \rightarrow 25$

549 parameters
0 restraints
Primary atom site location: dual
Secondary atom site location: difference Fourier map
Hydrogen site location: mixed

36	H atoms treated by a mixture of independent	$(\Delta/\sigma)_{\rm max} = 0.001$
	and constrained refinement	$\Delta \rho_{\rm max} = 0.45 \text{ e} \text{ Å}^{-3}$
37	$w = 1/[\sigma^2(F_o^2) + (0.0604P)^2 + 0.2687P]$	$\Delta \rho_{\min} = -0.21 \text{ e } \text{\AA}^{-3}$
	where $P = (F_o^2 + 2F_c^2)/3$	

38 Special details

- **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
- 40 Refinement. The structure contains 647 A ng3 of solvent accessible voids occupied by highly disordered solvate molecules (presumably chloroform and hexane, the crystallization solvents). The residual electron density peaks are not arranged in an interpretable pattern and no unambiguous disorder model could be developed. The structure factors were instead augmented *via* reverse Fourier transform methods using the SQUEEZE routine (P. van der Sluis & A·L. Spek (1990). Acta Cryst. A46, 194–201) as implemented in the program *PLATON*. The resultant FAB file containing the structure factor contribution from the electron content of the void space was used in together with the original *hkl* file in the further refinement. (The FAB file with details of the Squeeze results is appended to this cif file). The Squeeze procedure corrected for 162 electrons within the solvent accessible voids.

41 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters $(Å^2)$

	x	у	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	
01	0.62197 (8)	0.52783 (6)	0.53614 (5)	0.03032 (18)	
H1O	0.6812 (16)	0.5788 (11)	0.4973 (10)	0.045*	
O2	0.65897 (9)	0.42954 (6)	0.42876 (5)	0.03175 (18)	
H2O	0.5704 (17)	0.4513 (11)	0.4458 (10)	0.048*	
N1	0.43218 (10)	0.14254 (6)	0.68820 (6)	0.02595 (19)	
H1N	0.4495 (15)	0.1795 (10)	0.7162 (9)	0.039*	
N2	0.37812 (10)	0.12770 (6)	0.86064 (6)	0.02649 (19)	
N3	0.55460 (10)	0.28307 (7)	0.82259 (6)	0.0283 (2)	
H3N	0.5129 (16)	0.2577 (11)	0.7949 (10)	0.042*	
N4	0.59891 (9)	0.30953 (6)	0.64424 (6)	0.02597 (19)	
N5	0.79133 (13)	0.66232 (8)	0.42197 (8)	0.0513 (3)	
N6	1.09618 (14)	0.82611 (9)	0.22875 (8)	0.0542 (3)	
C1	0.48576 (12)	0.15869 (8)	0.60568 (7)	0.0272 (2)	
C2	0.43926 (14)	0.08451 (8)	0.58748 (8)	0.0344 (3)	
H2	0.461662	0.076127	0.535118	0.041*	
C3	0.35751 (13)	0.02790 (8)	0.65773 (7)	0.0329 (3)	
H3	0.312720	-0.026520	0.662782	0.039*	
C4	0.35068 (11)	0.06429 (7)	0.72235 (7)	0.0261 (2)	
C5	0.27900 (11)	0.02833 (7)	0.80485 (7)	0.0258 (2)	
C6	0.28682 (11)	0.06218 (8)	0.86799 (7)	0.0258 (2)	
C7	0.20051 (12)	0.02932 (8)	0.95097 (7)	0.0292 (2)	
H7	0.128291	-0.014687	0.970852	0.035*	
C8	0.24279 (12)	0.07350 (8)	0.99458 (7)	0.0300 (2)	
H8	0.206040	0.066657	1.051130	0.036*	
C9	0.35477 (11)	0.13318 (8)	0.93846 (7)	0.0270 (2)	
C10	0.42982 (12)	0.18860 (8)	0.96202 (7)	0.0282 (2)	
C11	0.52658 (12)	0.25542 (8)	0.90752 (7)	0.0293 (2)	
C12	0.60953 (13)	0.31160 (9)	0.92638 (8)	0.0349 (3)	

71	H12	0.614596	0.307363	0.980081	0.042*
72	C13	0.68056 (13)	0.37261 (9)	0.85413 (8)	0.0344 (3)
73	H13	0.742769	0.418500	0.848983	0.041*
74	C14	0.64544 (12)	0.35568 (8)	0.78779 (7)	0.0290 (2)
75	C15	0.69121 (11)	0.40654 (7)	0.70330 (7)	0.0266 (2)
76	C16	0.66552 (11)	0.38612 (7)	0.63837 (7)	0.0256 (2)
77	C17	0.71366 (11)	0.44961 (8)	0.54998 (7)	0.0269 (2)
78	H17	0.810994	0.469724	0.538272	0.032*
79	C18	0.70357 (11)	0.38542 (8)	0.50137 (7)	0.0271 (2)
80	H18	0.798257	0.359268	0.485428	0.033*
81	C19	0.61540 (11)	0.30561 (7)	0.56736 (7)	0.0258 (2)
82	C20	0.56811 (11)	0.23380 (8)	0.54904 (7)	0.0267 (2)
83	C21	0.18885 (12)	-0.05389 (8)	0.82851 (7)	0.0277 (2)
84	C22	0.21160 (13)	-0.13703 (8)	0.88883 (8)	0.0340 (3)
85	H22	0.286768	-0.142088	0.913483	0.041*
86	C23	0.12514 (15)	-0.21243 (9)	0.91308 (9)	0.0418 (3)
87	H23	0.141490	-0.268761	0.954185	0.050*
88	C24	0.01525 (14)	-0.20589 (10)	0.87763 (9)	0.0428 (3)
89	H24	-0.044311	-0.257364	0.894713	0.051*
90	C25	-0.00731 (13)	-0.12454 (10)	0.81758 (9)	0.0392 (3)
91	H25	-0.082307	-0.120161	0.792940	0.047*
92	C26	0.07881 (12)	-0.04862 (9)	0.79264 (8)	0.0321 (2)
93	H26	0.062527	0.007135	0.750918	0.039*
94	C27	0.40379 (12)	0.17673 (9)	1.05123 (7)	0.0306 (2)
95	C28	0.42357 (13)	0.09033 (9)	1.10829 (8)	0.0350 (3)
96	H28	0.453285	0.038015	1.090474	0.042*
97	C29	0.39991 (14)	0.08048 (11)	1.19136 (8)	0.0438 (3)
98	H29	0.413317	0.021333	1.230008	0.053*
99	C30	0.35704 (17)	0.15613 (13)	1.21802 (9)	0.0518 (4)
100	H30	0.341547	0.149010	1.274766	0.062*
101	C31	0.33677 (18)	0.24209 (12)	1.16204 (9)	0.0532 (4)
102	H31	0.307152	0.294134	1.180274	0.064*
103	C32	0.35962 (15)	0.25240 (10)	1.07935 (8)	0.0409 (3)
104	H32	0.345099	0.311659	1.041196	0.049*
105	C33	0.77693 (12)	0.48962 (8)	0.68495 (7)	0.0277 (2)
106	C34	0.71456 (13)	0.57598 (9)	0.68111 (8)	0.0357 (3)
107	H34	0.617350	0.583199	0.687579	0.043*
108	C35	0.79380 (15)	0.65217 (10)	0.66780 (9)	0.0435 (3)
109	H35	0.750570	0.711286	0.664713	0.052*
110	C36	0.93499 (15)	0.64211 (10)	0.65908 (9)	0.0443 (3)
111	H36	0.988404	0.693901	0.651294	0.053*
112	C37	0.99855 (14)	0.55681 (11)	0.66166 (9)	0.0444 (3)
113	H37	1.095810	0.549926	0.655054	0.053*
114	C38	0.91967 (13)	0.48109 (9)	0.67397 (9)	0.0379 (3)
115	H38	0.963808	0.422699	0.674888	0.045*
116	C39	0.61114 (12)	0.23285 (8)	0.46200 (7)	0.0285 (2)
117	C40	0.51769 (14)	0.25180 (9)	0.41304 (8)	0.0353 (3)
118	H40	0.424591	0.267589	0.434044	0.042*

119	C41	0.55892 (15)	0.24792 (10)	0.33351 (8)	0.0408 (3)
120	H41	0.494024	0.261266	0.300357	0.049*
121	C42	0.69418 (15)	0.22468 (9)	0.30227 (8)	0.0405 (3)
122	H42	0.722094	0.221702	0.247937	0.049*
123	C43	0.78742 (14)	0.20604 (10)	0.35014 (9)	0.0424 (3)
124	H43	0.880424	0.190326	0.328850	0.051*
125	C44	0.74671 (13)	0.20998 (9)	0.42957 (8)	0.0369 (3)
126	H44	0.812284	0.196878	0.462273	0.044*
127	C45	0.89678 (18)	0.69732 (11)	0.43549 (10)	0.0546 (4)
128	H45	0.901928	0.682842	0.491021	0.065*
129	C46	0.99821 (17)	0.75277 (10)	0.37465 (10)	0.0504 (4)
130	H46	1.069780	0.775754	0.388603	0.060*
131	C47	0.99487 (15)	0.77500 (9)	0.29192 (9)	0.0435 (3)
132	C48	0.88343 (15)	0.73985 (10)	0.27753 (10)	0.0484 (4)
133	H48	0.873990	0.753889	0.222851	0.058*
134	C49	0.78732 (15)	0.68461 (10)	0.34342 (11)	0.0504 (4)
135	H49	0.713560	0.661011	0.331852	0.060*
136	C50	1.20258 (17)	0.86988 (12)	0.24494 (12)	0.0637 (5)
137	H50A	1.267695	0.901455	0.192839	0.096*
138	H50B	1.252073	0.822161	0.281093	0.096*
139	H50C	1.159873	0.915591	0.271836	0.096*
140	C51	1.09541 (19)	0.84148 (13)	0.14456 (10)	0.0656 (5)
141	H51A	1.184094	0.867545	0.108436	0.098*
142	H51B	1.020473	0.885300	0.129652	0.098*
143	H51C	1.081150	0.782071	0.138165	0.098*

144 Atomic displacement parameters $(Å^2)$

145		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
146	01	0.0308 (4)	0.0229 (4)	0.0316 (4)	-0.0034 (3)	-0.0017 (3)	-0.0053 (3)
147	02	0.0346 (4)	0.0310 (4)	0.0244 (4)	-0.0029 (4)	-0.0022 (3)	-0.0055 (3)
148	N1	0.0303 (5)	0.0227 (4)	0.0226 (4)	-0.0058 (4)	-0.0006 (4)	-0.0074 (4)
149	N2	0.0297 (5)	0.0251 (4)	0.0228 (5)	-0.0050 (4)	-0.0019 (4)	-0.0075 (4)
150	N3	0.0328 (5)	0.0262 (5)	0.0241 (5)	-0.0088 (4)	-0.0024 (4)	-0.0070 (4)
151	N4	0.0278 (4)	0.0240 (4)	0.0237 (5)	-0.0044 (4)	-0.0022 (4)	-0.0068 (4)
152	N5	0.0458 (7)	0.0300 (6)	0.0536 (8)	-0.0030 (5)	0.0108 (6)	0.0007 (5)
153	N6	0.0464 (7)	0.0388 (6)	0.0517 (8)	-0.0073 (6)	0.0050 (6)	0.0067 (6)
154	C1	0.0315 (5)	0.0248 (5)	0.0230 (5)	-0.0046 (4)	-0.0009 (4)	-0.0078 (4)
155	C2	0.0451 (7)	0.0297 (6)	0.0270 (6)	-0.0103 (5)	0.0010 (5)	-0.0120 (5)
156	C3	0.0430 (6)	0.0273 (5)	0.0275 (6)	-0.0102 (5)	-0.0015 (5)	-0.0103 (5)
157	C4	0.0301 (5)	0.0214 (5)	0.0244 (5)	-0.0051 (4)	-0.0025 (4)	-0.0062 (4)
158	C5	0.0265 (5)	0.0230 (5)	0.0256 (5)	-0.0041 (4)	-0.0028 (4)	-0.0066 (4)
159	C6	0.0267 (5)	0.0248 (5)	0.0231 (5)	-0.0036 (4)	-0.0025 (4)	-0.0061 (4)
160	C7	0.0281 (5)	0.0315 (6)	0.0243 (5)	-0.0077 (5)	-0.0002 (4)	-0.0072 (5)
161	C8	0.0309 (5)	0.0335 (6)	0.0222 (5)	-0.0056 (5)	0.0002 (4)	-0.0082 (5)
162	C9	0.0287 (5)	0.0258 (5)	0.0240 (5)	-0.0027 (4)	-0.0026 (4)	-0.0071 (4)
163	C10	0.0323 (5)	0.0263 (5)	0.0240 (5)	-0.0040 (4)	-0.0032 (4)	-0.0073 (4)
164	C11	0.0339 (6)	0.0281 (5)	0.0250 (5)	-0.0048 (5)	-0.0044 (5)	-0.0083 (4)

165	C12	0.0417 (7)	0.0355 (6)	0.0280 (6)	-0.0111 (5)	-0.0069 (5)	-0.0091 (5)
166	C13	0.0386 (6)	0.0351 (6)	0.0308 (6)	-0.0118 (5)	-0.0062 (5)	-0.0107 (5)
167	C14	0.0324 (5)	0.0251 (5)	0.0285 (6)	-0.0063 (4)	-0.0035 (5)	-0.0087 (4)
168	C15	0.0277 (5)	0.0227 (5)	0.0270 (5)	-0.0051 (4)	-0.0025 (4)	-0.0069 (4)
169	C16	0.0252 (5)	0.0229 (5)	0.0250 (5)	-0.0037 (4)	-0.0020 (4)	-0.0053 (4)
170	C17	0.0256 (5)	0.0242 (5)	0.0256 (5)	-0.0048 (4)	-0.0006 (4)	-0.0044 (4)
171	C18	0.0264 (5)	0.0264 (5)	0.0238 (5)	-0.0039 (4)	0.0002 (4)	-0.0059 (4)
172	C19	0.0256 (5)	0.0238 (5)	0.0236 (5)	-0.0023 (4)	-0.0004 (4)	-0.0059 (4)
173	C20	0.0290 (5)	0.0251 (5)	0.0227 (5)	-0.0032 (4)	-0.0009 (4)	-0.0071 (4)
174	C21	0.0289 (5)	0.0266 (5)	0.0256 (5)	-0.0062 (4)	0.0013 (4)	-0.0102 (4)
175	C22	0.0375 (6)	0.0303 (6)	0.0303 (6)	-0.0087 (5)	-0.0032 (5)	-0.0063 (5)
176	C23	0.0463 (7)	0.0291 (6)	0.0406 (7)	-0.0117 (5)	0.0022 (6)	-0.0059 (5)
177	C24	0.0380 (7)	0.0378 (7)	0.0496 (8)	-0.0173 (6)	0.0082 (6)	-0.0198 (6)
178	C25	0.0302 (6)	0.0460 (7)	0.0463 (8)	-0.0084 (5)	-0.0011 (6)	-0.0252 (6)
179	C26	0.0308 (6)	0.0334 (6)	0.0328 (6)	-0.0036 (5)	-0.0025 (5)	-0.0146 (5)
180	C27	0.0324 (6)	0.0347 (6)	0.0242 (5)	-0.0088 (5)	-0.0044 (5)	-0.0084 (5)
181	C28	0.0312 (6)	0.0395 (7)	0.0312 (6)	-0.0064 (5)	-0.0076 (5)	-0.0061 (5)
182	C29	0.0402 (7)	0.0565 (9)	0.0297 (7)	-0.0134 (6)	-0.0135 (6)	-0.0006 (6)
183	C30	0.0581 (9)	0.0730 (11)	0.0286 (7)	-0.0243 (8)	-0.0086 (7)	-0.0167 (7)
184	C31	0.0709 (10)	0.0573 (9)	0.0370 (8)	-0.0205 (8)	-0.0013 (7)	-0.0256 (7)
185	C32	0.0537 (8)	0.0374 (7)	0.0320 (7)	-0.0110 (6)	-0.0038 (6)	-0.0139 (5)
186	C33	0.0295 (5)	0.0276 (5)	0.0239 (5)	-0.0075 (4)	-0.0009 (4)	-0.0079 (4)
187	C34	0.0327 (6)	0.0314 (6)	0.0412 (7)	-0.0070 (5)	0.0012 (5)	-0.0153 (5)
188	C35	0.0499 (8)	0.0330 (6)	0.0470 (8)	-0.0116 (6)	0.0020 (6)	-0.0193 (6)
189	C36	0.0509 (8)	0.0459 (8)	0.0363 (7)	-0.0257 (7)	-0.0007 (6)	-0.0140 (6)
190	C37	0.0332 (6)	0.0545 (8)	0.0392 (7)	-0.0189 (6)	-0.0025 (6)	-0.0072 (6)
191	C38	0.0301 (6)	0.0364 (6)	0.0413 (7)	-0.0054 (5)	-0.0036 (5)	-0.0076 (6)
192	C39	0.0349 (6)	0.0239 (5)	0.0237 (5)	-0.0080 (4)	0.0015 (5)	-0.0081 (4)
193	C40	0.0376 (6)	0.0368 (6)	0.0296 (6)	-0.0028(5)	-0.0023 (5)	-0.0121 (5)
194	C41	0.0533 (8)	0.0402 (7)	0.0308 (7)	-0.0056 (6)	-0.0090 (6)	-0.0134 (6)
195	C42	0.0548 (8)	0.0362 (7)	0.0292 (6)	-0.0141 (6)	0.0052 (6)	-0.0165 (5)
196	C43	0.0393 (7)	0.0483 (8)	0.0418 (7)	-0.0106 (6)	0.0071 (6)	-0.0272 (7)
197	C44	0.0352 (6)	0.0403 (7)	0.0374 (7)	-0.0039(5)	-0.0009(5)	-0.0204 (6)
198	C45	0.0650 (10)	0.0410 (8)	0.0440 (8)	-0.0082 (7)	0.0077 (8)	-0.0101 (7)
199	C46	0.0550 (9)	0.0366 (7)	0.0508 (9)	-0.0091 (6)	0.0013 (7)	-0.0117 (6)
200	C47	0.0415 (7)	0.0234 (6)	0.0466 (8)	-0.0005(5)	0.0051 (6)	0.0006 (5)
201	C48	0.0431 (8)	0.0367 (7)	0.0486 (8)	0.0037 (6)	-0.0048 (6)	0.0013 (6)
202	C49	0.0368 (7)	0.0340 (7)	0.0629 (10)	0.0013 (6)	-0.0042 (7)	-0.0005 (7)
203	C50	0.0418 (8)	0.0402 (8)	0.0829 (13)	-0.0060 (7)	-0.0022 (8)	0.0046 (8)
204	C51	0.0553 (10)	0.0607 (10)	0.0467 (9)	0.0059 (8)	0.0061 (8)	0.0095 (8)

205 Geometric parameters (Å, °)

206	O1—C17	1.4214 (14)	C23—C24	1.384 (2)
207	01—H10	0.973 (17)	С23—Н23	0.9500
208	O2—C18	1.4016 (14)	C24—C25	1.375 (2)
209	O2—H2O	0.927 (17)	C24—H24	0.9500
210	N1—C1	1.3692 (14)	C25—C26	1.3909 (17)

211	N1C4	1.3797 (14)	С25—Н25	0.9500
212	N1—H1N	0.925 (15)	C26—H26	0.9500
213	N2—C9	1.3737 (14)	C27—C28	1.3929 (18)
214	N2—C6	1.3740 (14)	C27—C32	1.3986 (17)
215	N3—C14	1.3714 (14)	C28—C29	1.3916 (18)
216	N3—C11	1.3811 (15)	C28—H28	0.9500
217	N3—H3N	0.915 (16)	C29—C30	1.382 (2)
218	N4—C19	1.3565 (14)	С29—Н29	0.9500
219	N4—C16	1.3639 (14)	C30—C31	1.381 (2)
220	N5C49	1.331 (2)	С30—Н30	0.9500
221	N5	1.340 (2)	C31—C32	1.3843 (19)
222	N6—C47	1.3669 (18)	C31—H31	0.9500
223	N6—C51	1.437 (2)	С32—Н32	0.9500
224	N6—C50	1.450 (2)	C33—C34	1.3867 (17)
225	C1—C20	1.4062 (15)	C33—C38	1.3910 (17)
226	C1—C2	1.4284 (16)	C34—C35	1.3924 (17)
227	C2—C3	1.3602 (17)	C34—H34	0.9500
228	C2—H2	0.9500	C35—C36	1.381 (2)
229	C3—C4	1.4232 (16)	С35—Н35	0.9500
230	С3—Н3	0.9500	C36—C37	1.381 (2)
231	C4—C5	1.3970 (15)	С36—Н36	0.9500
232	C5—C6	1.4101 (16)	C37—C38	1.3891 (19)
233	C5—C21	1.4958 (15)	С37—Н37	0.9500
234	C6—C7	1.4478 (16)	C38—H38	0.9500
235	C7—C8	1.3508 (16)	C39—C40	1.3840 (18)
236	С7—Н7	0.9500	C39—C44	1.3905 (17)
237	C8—C9	1.4445 (16)	C40—C41	1.3879 (17)
238	C8—H8	0.9500	C40—H40	0.9500
239	C9—C10	1.4119 (16)	C41—C42	1.384 (2)
240	C10—C11	1.3977 (16)	C41—H41	0.9500
241	C10—C27	1.4895 (16)	C42—C43	1.368 (2)
242	C11—C12	1.4233 (16)	C42—H42	0.9500
243	C12—C13	1.3651 (18)	C43—C44	1.3864 (18)
244	C12—H12	0.9500	C43—H43	0.9500
245	C13—C14	1.4243 (17)	C44—H44	0.9500
246	C13—H13	0.9500	C45—C46	1.377 (2)
247	C14—C15	1.4094 (16)	C45—H45	0.9500
248	C15—C16	1.3846 (16)	C46—C47	1.402 (2)
249	C15—C33	1.4977 (15)	C46—H46	0.9500
250	C16—C17	1.5166 (16)	C47—C48	1.402 (2)
251	C17—C18	1.5380 (16)	C48—C49	1.383 (2)
252	С17—Н17	1.0000	C48—H48	0.9500
253	C18—C19	1.5298 (15)	C49—H49	0.9500
254	C18—H18	1.0000	С50—Н50А	0.9800
255	C19—C20	1.4008 (15)	С50—Н50В	0.9800
256	С20—С39	1.5008 (15)	С50—Н50С	0.9800
257	C21—C26	1.3937 (17)	C51—H51A	0.9800
258	C21—C22	1.3951 (17)	C51—H51B	0.9800

259	C22—C23	1.3884 (17)	C51—H51C	0.9800
260	C22—H22	0.9500		
261				
262	C17—O1—H1O	103.8 (9)	C25—C24—H24	120.2
263	C18—O2—H2O	105.0 (10)	C23—C24—H24	120.2
264	C1—N1—C4	110.47 (9)	C24—C25—C26	120.52 (13)
265	C1—N1—H1N	123.8 (9)	С24—С25—Н25	119.7
266	C4—N1—H1N	125.7 (9)	С26—С25—Н25	119.7
267	C9—N2—C6	104.78 (9)	C25—C26—C21	120.38 (12)
268	C14—N3—C11	110.47 (10)	С25—С26—Н26	119.8
269	C14—N3—H3N	126.2 (10)	C21—C26—H26	119.8
270	C11—N3—H3N	123.2 (10)	C28—C27—C32	118.61 (12)
271	C19—N4—C16	108.59 (9)	C28—C27—C10	120.80 (11)
272	C49—N5—C45	115.86 (13)	C32—C27—C10	120.58 (11)
273	C47—N6—C51	120.56 (15)	C29—C28—C27	120.15 (13)
274	C47—N6—C50	120.85 (15)	С29—С28—Н28	119.9
275	C51—N6—C50	118.52 (14)	С27—С28—Н28	119.9
276	N1—C1—C20	127.44 (10)	C30—C29—C28	120.47 (14)
277	N1—C1—C2	106.31 (10)	С30—С29—Н29	119.8
278	C20-C1-C2	126.24 (10)	C28—C29—H29	119.8
279	C3—C2—C1	108.53 (10)	C31—C30—C29	119.90 (13)
280	C3—C2—H2	125.7	С31—С30—Н30	120.1
281	С1—С2—Н2	125.7	С29—С30—Н30	120.1
282	C2—C3—C4	108.18 (10)	C30—C31—C32	119.99 (14)
283	С2—С3—Н3	125.9	C30—C31—H31	120.0
284	C4—C3—H3	125.9	C32—C31—H31	120.0
285	N1-C4-C5	125.72 (10)	$C_{31} - C_{32} - C_{27}$	120.88 (14)
286	N1-C4-C3	10647(10)	$C_{31} = C_{32} = H_{32}$	119.6
287	$C_{5}-C_{4}-C_{3}$	127.81 (10)	C27—C32—H32	119.6
207	C4-C5-C6	125.26 (10)	C_{34} C_{33} C_{38}	118.83 (11)
280	C4-C5-C21	11743(10)	C_{34} C_{33} C_{15}	120.39(10)
200	C6-C5-C21	117.30 (10)	C_{38} C_{33} C_{15}	120.35(10) 120.75(11)
201	N2-C6-C5	125 47 (10)	C_{33} C_{34} C_{35}	120.79(11) 120.29(12)
291	N2-C6-C7	110.91 (9)	C_{33} C_{34} H_{34}	119.9
292	$C_{5} - C_{6} - C_{7}$	123 59 (10)	C35—C34—H34	119.9
295	$C_{8} - C_{7} - C_{6}$	106 56 (10)	C_{36} C_{35} C_{34} C_{34}	120.24 (13)
294	C8—C7—H7	126.7	C36—C35—H35	119.9
295	С6—С7—Н7	126.7	C_{34} C_{35} H_{35}	119.9
290	C7 - C8 - C9	106.62 (10)	C_{37} C_{36} C_{35} C_{35}	120.02(12)
297	$C_{7}^{-}C_{8}^{-}H_{8}^{-}$	126.7	$C_{37} - C_{36} - H_{36}$	120.02 (12)
290	$C_{9}^{0} - C_{8}^{0} - H_{8}^{0}$	126.7	C_{35} C_{36} H_{36}	120.0
299	$N_2 = C_0 = C_{10}$	120.7 125.32(10)	$C_{35} = C_{30} = 1130$	120.0 110.72(13)
201	$N_2 = C_2 = C_{10}$	123.32(10) 111.05(10)	$C_{36} C_{37} H_{37}$	119.72 (13)
301	112 - 0 - 0 = 0	123 63 (10)	С38_С37_ Н37	120.1
302	$C_{10} - C_{2} - C_{0}$	123.03(10) 124.84(11)	$C_{30} - C_{37} - C_{1137}$	120.1 120.87 (12)
303	$C_{11} = C_{10} = C_{7}$	127.07(11) 116.86(10)	$C_{37} = C_{30} = C_{33}$	120.07 (13)
304	$C_{11} = C_{10} = C_{27}$	110.00 (10)	$C_{37} = C_{30} = H_{30}$	119.0
305	10 - 10 - 12	110.30(10) 125.20(10)	Сло С20 Слл	119.0
306	N3-CII-CIU	123.39 (10)	U40-U39-U44	118.45 (11)

307	N3—C11—C12	106.27 (10)	C40—C39—C20	121.53 (10)
308	C10-C11-C12	128.27 (11)	C44—C39—C20	120.02 (11)
309	C13—C12—C11	108.35 (11)	C39—C40—C41	120.53 (12)
310	C13—C12—H12	125.8	C39—C40—H40	119.7
311	C11—C12—H12	125.8	C41—C40—H40	119.7
312	C12—C13—C14	108.32 (11)	C42—C41—C40	120.31 (13)
313	C12—C13—H13	125.8	C42—C41—H41	119.8
314	C14—C13—H13	125.8	C40—C41—H41	119.8
315	N3—C14—C15	127.08 (10)	C43—C42—C41	119.60 (12)
316	N3—C14—C13	106.53 (10)	C43—C42—H42	120.2
317	C15-C14-C13	126.34 (10)	C41—C42—H42	120.2
318	C16—C15—C14	126.44 (10)	C42—C43—C44	120.28 (12)
319	C16-C15-C33	118.94 (10)	C42-C43-H43	119.9
320	C14-C15-C33	114.62 (10)	C44-C43-H43	119.9
321	N4—C16—C15	126.10 (10)	C43—C44—C39	120.86 (13)
322	N4—C16—C17	112.44 (9)	C43—C44—H44	119.6
323	$C_{15} - C_{16} - C_{17}$	121.45 (10)	C39—C44—H44	119.6
324	01-C17-C16	108.57 (9)	N5-C45-C46	124.66 (17)
325	01 - C17 - C18	112 64 (9)	N5-C45-H45	1177
326	$C_{16} - C_{17} - C_{18}$	101.86 (9)	C46-C45-H45	117.7
327	O1-C17-H17	111.1	C45-C46-C47	119.36 (16)
328	C_{16} C_{17} H_{17}	111.1	C45-C46-H46	120.3
320	$C_{18} - C_{17} - H_{17}$	111.1	C47-C46-H46	120.3
330	$O^2 - C_{18} - C_{19}$	117 07 (9)	N6-C47-C46	121.97 (15)
331	$O_2 - C_{18} - C_{17}$	115.00 (9)	N6-C47-C48	121.97(15) 121.83(15)
337	$C_{19} - C_{18} - C_{17}$	102 30 (9)	C46-C47-C48	116 18 (13)
332	$O^2 - C_{18} - H_{18}$	107.3	C49-C48-C47	119 59 (16)
334	C_{19} C_{18} H_{18}	107.3	C49-C48-H48	120.2
335	C17-C18-H18	107.3	C47-C48-H48	120.2
336	N4—C19—C20	125 15 (10)	N5-C49-C48	124.33 (16)
337	N4-C19-C18	112.16 (9)	N5-C49-H49	117.8
338	C_{20} C_{19} C_{18}	122.51 (10)	C48—C49—H49	117.8
330	$C_{19} - C_{20} - C_{1}$	126.08(10)	N6-C50-H50A	109.5
340	$C_{19} - C_{20} - C_{39}$	118 64 (10)	N6-C50-H50B	109.5
341	C1 - C20 - C39	115 24 (10)	H50A—C50—H50B	109.5
342	$C_{26}^{$	118 64 (11)	N6-C50-H50C	109.5
343	$C_{26} = C_{21} = C_{5}$	121.07(11)	H50A - C50 - H50C	109.5
344	C^{22} C^{21} C^{21} C^{5}	120.27(11)	H50B-C50-H50C	109.5
345	C^{23} C^{22} C^{21} C^{21} C^{21}	120.27(11) 120.46(12)	N6-C51-H51A	109.5
346	C^{23} C^{22} C^{22} H^{22}	119.8	N6-C51-H51B	109.5
347	C_{21} C_{22} H_{22}	119.8	H51A—C51—H51B	109.5
348	C_{24} C_{23} C_{22}	120 31 (13)	N6-C51-H51C	109.5
340	$C_{24} = C_{23} = C_{22}$	119.8	H_{51A} C_{51} H_{51C}	109.5
350	C^{22} C^{23} H^{23}	119.8	H51B-C51-H51C	109.5
351	C_{25} C_{24} C_{23}	119.69 (12)		
352		119.09 (12)		
352	C4—N1—C1—C20	176.83 (11)	C18—C19—C20—C1	-179.31 (11)
354	C4-N1-C1-C2	-2.11 (13)	N4—C19—C20—C39	-171.75(10)
001		· · · · ·		

355	N1—C1—C2—C3	1.49 (14)	C18—C19—C20—C39	2.90 (16)
356	C20—C1—C2—C3	-177.46 (12)	N1-C1-C20-C19	2.4 (2)
357	C1—C2—C3—C4	-0.35 (15)	C2-C1-C20-C19	-178.88 (12)
358	C1—N1—C4—C5	-179.30 (11)	N1-C1-C20-C39	-179.76 (11)
359	C1—N1—C4—C3	1.91 (13)	C2-C1-C20-C39	-1.02 (18)
360	C2—C3—C4—N1	-0.92 (14)	C4—C5—C21—C26	-60.11 (15)
361	C2—C3—C4—C5	-179.68 (12)	C6—C5—C21—C26	121.08 (12)
362	N1—C4—C5—C6	-5.13 (19)	C4—C5—C21—C22	121.51 (12)
363	C3—C4—C5—C6	173.41 (12)	C6—C5—C21—C22	-57.30 (15)
364	N1-C4-C5-C21	176.17 (10)	C26—C21—C22—C23	-0.72 (18)
365	C3—C4—C5—C21	-5.30 (18)	C5—C21—C22—C23	177.70 (11)
366	C9—N2—C6—C5	-175.53 (11)	C21—C22—C23—C24	0.0 (2)
367	C9—N2—C6—C7	2.71 (12)	C22—C23—C24—C25	0.6 (2)
368	C4C5C6N2	-8.48 (18)	C23—C24—C25—C26	-0.5(2)
369	C21—C5—C6—N2	170.23 (10)	C24—C25—C26—C21	-0.30 (18)
370	C4—C5—C6—C7	173.50 (11)	C22—C21—C26—C25	0.88 (17)
371	C21—C5—C6—C7	-7.80 (16)	C5-C21-C26-C25	-177.52 (10)
372	N2—C6—C7—C8	-1.69(13)	C11—C10—C27—C28	-122.22 (13)
373	C5—C6—C7—C8	176.58 (11)	C9—C10—C27—C28	58.57 (16)
374	C6—C7—C8—C9	-0.05 (13)	C11—C10—C27—C32	57.43 (16)
375	C6—N2—C9—C10	176.68 (11)	C9—C10—C27—C32	-121.78 (13)
376	C6—N2—C9—C8	-2.75 (12)	C32—C27—C28—C29	-0.18 (18)
377	C7—C8—C9—N2	1.78 (13)	C10—C27—C28—C29	179.47 (11)
378	C7—C8—C9—C10	-177.66 (11)	C27—C28—C29—C30	-0.2 (2)
379	N2-C9-C10-C11	9.00 (19)	C28—C29—C30—C31	0.3 (2)
380	C8—C9—C10—C11	-171.64 (11)	C29—C30—C31—C32	-0.1 (2)
381	N2-C9-C10-C27	-171.86 (11)	C30—C31—C32—C27	-0.3 (2)
382	C8—C9—C10—C27	7.50 (17)	C28—C27—C32—C31	0.4 (2)
383	C14—N3—C11—C10	174.45 (11)	C10-C27-C32-C31	-179.25 (13)
384	C14—N3—C11—C12	-2.57 (13)	C16—C15—C33—C34	91.51 (14)
385	C9-C10-C11-N3	5.97 (19)	C14—C15—C33—C34	-89.12 (14)
386	C27—C10—C11—N3	-173.17 (11)	C16—C15—C33—C38	-90.45 (15)
387	C9-C10-C11-C12	-177.67 (12)	C14—C15—C33—C38	88.92 (14)
388	C27—C10—C11—C12	3.18 (19)	C38—C33—C34—C35	-1.03 (19)
389	N3-C11-C12-C13	1.97 (14)	C15—C33—C34—C35	177.04 (12)
390	C10-C11-C12-C13	-174.93 (12)	C33—C34—C35—C36	-0.6 (2)
391	C11—C12—C13—C14	-0.69 (15)	C34—C35—C36—C37	1.5 (2)
392	C11—N3—C14—C15	-175.45 (11)	C35—C36—C37—C38	-0.7 (2)
393	C11—N3—C14—C13	2.16 (13)	C36—C37—C38—C33	-0.9 (2)
394	C12-C13-C14-N3	-0.87 (14)	C34—C33—C38—C37	1.8 (2)
395	C12-C13-C14-C15	176.76 (12)	C15—C33—C38—C37	-176.26 (12)
396	N3-C14-C15-C16	-7.9 (2)	C19—C20—C39—C40	-110.08 (13)
397	C13—C14—C15—C16	174.91 (12)	C1—C20—C39—C40	71.89 (14)
398	N3—C14—C15—C33	172.75 (11)	C19—C20—C39—C44	71.77 (15)
399	C13—C14—C15—C33	-4.41 (17)	C1—C20—C39—C44	-106.26 (13)
400	C19—N4—C16—C15	-169.25 (11)	C44—C39—C40—C41	0.02 (18)
401	C19—N4—C16—C17	9.77 (12)	C20—C39—C40—C41	-178.16 (11)
402	C14—C15—C16—N4	-4.65 (19)	C39—C40—C41—C42	0.2 (2)

403	C33—C15—C16—N4	174.64 (10)	C40—C41—C42—C43	-0.4 (2)
404	C14—C15—C16—C17	176.41 (11)	C41—C42—C43—C44	0.3 (2)
405	C33—C15—C16—C17	-4.31 (16)	C42—C43—C44—C39	0.0 (2)
406	N4-C16-C17-O1	103.05 (10)	C40—C39—C44—C43	-0.12 (19)
407	C15—C16—C17—O1	-77.88 (13)	C20—C39—C44—C43	178.09 (12)
408	N4-C16-C17-C18	-16.00 (12)	C49—N5—C45—C46	-0.4 (2)
409	C15—C16—C17—C18	163.07 (10)	N5-C45-C46-C47	-0.6 (2)
410	O1—C17—C18—O2	26.65 (13)	C51—N6—C47—C46	175.09 (14)
411	C16—C17—C18—O2	142.76 (9)	C50—N6—C47—C46	-8.1 (2)
412	O1—C17—C18—C19	-101.33 (10)	C51—N6—C47—C48	-3.3 (2)
413	C16—C17—C18—C19	14.78 (10)	C50—N6—C47—C48	173.57 (13)
414	C16—N4—C19—C20	176.25 (10)	C45—C46—C47—N6	-176.90 (14)
415	C16—N4—C19—C18	1.12 (12)	C45—C46—C47—C48	1.6 (2)
416	O2-C18-C19-N4	-137.49 (10)	N6-C47-C48-C49	176.77 (13)
417	C17—C18—C19—N4	-10.83 (12)	C46—C47—C48—C49	-1.7 (2)
418	O2-C18-C19-C20	47.23 (15)	C45—N5—C49—C48	0.2 (2)
419	C17—C18—C19—C20	173.89 (10)	C47—C48—C49—N5	0.9 (2)
420	N4—C19—C20—C1	6.04 (19)		

421 Hydrogen-bond geometry (Å, °)

422	D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
423	O1—H1 <i>O</i> …N5	0.973 (17)	1.727 (17)	2.6968 (14)	174.1 (14)
424	O2—H2 <i>O</i> …O1 ⁱ	0.927 (17)	1.882 (17)	2.7798 (12)	162.5 (14)
425	N1—H1 <i>N</i> ···N2	0.925 (15)	2.346 (15)	2.9064 (13)	118.7 (11)
426	N1—H1 <i>N</i> ····N4	0.925 (15)	2.383 (15)	2.9518 (13)	119.6 (11)
427	N3—H3 <i>N</i> ····N2	0.915 (16)	2.292 (16)	2.8868 (13)	122.3 (12)
428	N3—H3 <i>N</i> ···N4	0.915 (16)	2.458 (15)	2.9766 (14)	116.1 (12)
429	C37—H37…O2 ⁱⁱ	0.95	2.51	3.3840 (16)	153
430	C38—H38…C48 ⁱⁱ	0.95	2.77	3.6779 (19)	161
431	C50—H50B····N4 ⁱⁱ	0.98	2.57	3.544 (2)	171

432 Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) -x+2, -y+1, -z+1.

433 [cis-7,8-vic-Dihydroxy-5,10,15,20-tetraphenylchlorinato(2-)]zinc(II)-ethylenediamine-methanol (1/1/0.136)

```
434 (2PhZn)
```

435 Crystal data

436	$[Zn(C_{44}H_{30}N_4O_2)] \cdot C_2H_8N_2 \cdot 0.136CH_4O$	F(000) = 1618
437	$M_r = 776.57$	$D_{\rm x} = 1.397 {\rm ~Mg} {\rm ~m}^{-3}$
438	Monoclinic, $P2_1/c$	Cu $K\alpha$ radiation, $\lambda = 1.54178$ Å
439	a = 10.1249 (3) Å	Cell parameters from 9950 reflections
440	b = 13.5400 (4) Å	$\theta = 3.3 - 79.4^{\circ}$
441	c = 27.0447 (8) Å	$\mu = 1.32 \text{ mm}^{-1}$
442	$\beta = 95.1464 \ (11)^{\circ}$	T = 150 K
443	$V = 3692.64 (19) Å^3$	Block, black
444	Z = 4	$0.27 \times 0.25 \times 0.18 \text{ mm}$

445 Data collection

446	Bruker AXS D8 Quest diffractometer with PhotonIII-C14 charge- integrating and photon counting pixel array detector	Absorption correction: multi-scan (<i>SADABS</i> ; Krause <i>et al.</i> , 2015) $T_{min} = 0.606, T_{max} = 0.754$ 21319 measured reflections
447	Radiation source: I-mu-S microsource X-ray tube	7551 independent reflections 7037 reflections with $I > 2\sigma(I)$
448	Laterally graded multilayer (Goebel) mirror monochromator	$R_{\text{int}} = 0.024$ $\theta_{\text{max}} = 79.5^{\circ}, \ \theta_{\text{min}} = 3.3^{\circ}$
449	Detector resolution: 7.4074 pixels mm ⁻¹	$h = -12 \rightarrow 11$
450	ω and phi scans	$k = -16 \rightarrow 15$
	-	$l = -29 \rightarrow 34$
451	Refinement	
452	Refinement on F^2	Secondary atom site location: difference Fourier
453	Least-squares matrix: full	map
454	$R[F^2 > 2\sigma(F^2)] = 0.031$	Hydrogen site location: mixed
455	$wR(F^2) = 0.088$	H atoms treated by a mixture of independent
456	S = 1.04	and constrained refinement
457	7551 reflections	$w = 1/[\sigma^2(F_o^2) + (0.0454P)^2 + 1.8191P]$
458	549 parameters	where $P = (F_0^2 + 2F_c^2)/3$
459	17 restraints	$(\Delta/\sigma)_{\rm max} = 0.001$
460	Primary atom site location: structure-invariant	$\Delta \rho_{\rm max} = 0.31 \text{ e} \text{ Å}^{-3}$
	direct methods	$\Delta \rho_{\rm min} = -0.44 \text{ e} \text{ Å}^{-3}$
		•

461 Special details

- 462 **Geometry**. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.
- **Refinement**. The not metal coordinated amino group of an ethylene diamine ligand was refined as disordered. The C—N bonds were restrained to be similar in length. Amine H atom positions were refined and N—H distances were restrained to 0.88 (2) Angstrom. Equivalent H…H and C…H distances were restrained to be similar to each other. Subject to these conditions the occupancy ratio refined to 0.882 (12) to 0.118 (12).

A partially occupied methanol molecule is located nearby the major disordered amino group and H-bonded to it. The hydroxyl H atom was restrained to hydrogen bond to a porphyrin N atom of a neighboring complex. Subject to these conditions the occupancy rate refined to 0.136 (4).

464 Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

465		x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
466	Zn1	0.70722 (2)	0.44915 (2)	0.36168 (2)	0.01832 (7)	
467	O1	0.62030 (12)	0.47166 (9)	0.54271 (4)	0.0308 (2)	
468	H1	0.6482 (10)	0.4528 (15)	0.5775 (9)	0.046*	
469	O2	0.56022 (12)	0.65470 (9)	0.51056 (4)	0.0328 (3)	
470	H2A	0.4922 (17)	0.6092 (15)	0.4949 (8)	0.049*	
471	N1	0.73694 (12)	0.51455 (9)	0.43385 (4)	0.0204 (2)	
472	N2	0.68821 (12)	0.58909 (9)	0.33244 (4)	0.0202 (2)	
473	N3	0.73798 (12)	0.39779 (9)	0.29110 (4)	0.0192 (2)	
474	N4	0.80823 (12)	0.32619 (9)	0.39012 (4)	0.0201 (2)	
475	C1	0.76495 (14)	0.46245 (11)	0.47647 (5)	0.0211 (3)	
476	C2	0.72768 (15)	0.51995 (12)	0.52170 (5)	0.0247 (3)	

477	Н2	0 805841	0 525874	0 546886	0.030*
478	C3	0.68812 (16)	0.62230(12)	0.49999(5)	0.0256(3)
470	Н3	0.755257	0.671994	0.513274	0.0250 (5)
479	C4	0.70045(14)	0.60845(11)	0.313274 0.44448(5)	0.0217(3)
400	C5	0.70045(14)	0.68419(11)	0.41046(5)	0.0217(3)
401	C5	0.07803(14)	0.00419(11) 0.67471(11)	0.41040(5)	0.0221(3)
482	C0 C7	0.07411(14) 0.65058(16)	0.07471(11) 0.75574(11)	0.33810(3)	0.0214(3)
483	U7	0.03038 (10)	0.75574 (11)	0.32390 (0)	0.0273(3)
484	П/ С9	0.038090	0.823080	0.332269	0.033°
485		0.04800(10)	0.7172(11)	0.27743(0)	0.0274(3)
486	H8	0.635401	0./55565	0.24/193	0.033*
487	C9	0.67021 (14)	0.61307 (11)	0.28244 (5)	0.0216 (3)
488	C10	0.66810 (14)	0.54655 (11)	0.24303 (5)	0.0212(3)
489		0.69457 (14)	0.44448 (11)	0.24/58 (5)	0.0207 (3)
490	C12	0.68/55 (15)	0.37502 (12)	0.20/41 (5)	0.0255 (3)
491	H12	0.658048	0.388023	0.173700	0.031*
492	C13	0.73118 (15)	0.28702 (11)	0.22677 (5)	0.0246 (3)
493	H13	0.737737	0.226813	0.209116	0.030*
494	C14	0.76550 (14)	0.30210 (11)	0.27891 (5)	0.0200 (3)
495	C15	0.82584 (14)	0.23173 (11)	0.31236 (5)	0.0205 (3)
496	C16	0.85130 (14)	0.24664 (11)	0.36358 (5)	0.0221 (3)
497	C17	0.92352 (17)	0.17956 (12)	0.39728 (6)	0.0295 (3)
498	H17	0.965688	0.120098	0.388676	0.035*
499	C18	0.92010 (17)	0.21707 (13)	0.44358 (6)	0.0304 (3)
500	H18	0.958959	0.188554	0.473521	0.036*
501	C19	0.84659 (14)	0.30825 (11)	0.43899 (5)	0.0227 (3)
502	C20	0.81842 (14)	0.36856 (11)	0.47976 (5)	0.0222 (3)
503	C21	0.66512 (16)	0.78725 (11)	0.42976 (5)	0.0257 (3)
504	C22	0.54419 (18)	0.83574 (13)	0.42621 (7)	0.0343 (4)
505	H22	0.466488	0.801861	0.413263	0.041*
506	C23	0.5353 (2)	0.93293 (15)	0.44131 (8)	0.0464 (5)
507	H23	0.451780	0.965418	0.438633	0.056*
508	C24	0.6477 (2)	0.98287 (14)	0.46029 (8)	0.0492 (5)
509	H24	0.641627	1.049810	0.470365	0.059*
510	C25	0.7680 (2)	0.93559 (14)	0.46454 (8)	0.0478 (5)
511	H25	0.845182	0.969597	0.477894	0.057*
512	C26	0.77712 (19)	0.83764 (13)	0.44927 (7)	0.0370 (4)
513	H26	0.860658	0.805211	0.452263	0.044*
514	C27	0.63996 (15)	0.58672 (11)	0.19152 (5)	0.0222 (3)
515	C28	0.51396 (15)	0.62173 (12)	0.17514 (6)	0.0271 (3)
516	H28	0.445274	0.620404	0.196869	0.033*
517	C29	0.48819 (17)	0.65857 (12)	0.12724 (6)	0.0303 (3)
518	H29	0.401410	0.680622	0.116268	0.036*
519	C30	0.58747 (18)	0.66344 (12)	0.09542 (6)	0.0317 (3)
520	H30	0.569838	0.689923	0.062973	0.038*
521	C31	0.71357 (18)	0.62906 (15)	0.11152 (6)	0.0376 (4)
522	H31	0.782543	0.632158	0.089955	0.045*
523	C32	0.73909 (16)	0.59025 (14)	0.15896 (6)	0.0323 (4)
52.4	H32	0.825091	0.565819	0.169340	0.039*

525	C33	0.86940 (14)	0.13604 (11)	0.29145 (5)	0.0213 (3)	
526	C34	0.95353 (15)	0.13496 (11)	0.25326 (5)	0.0233 (3)	
527	H34	0.982623	0.195715	0.240408	0.028*	
528	C35	0.99553 (16)	0.04640 (12)	0.23368 (6)	0.0274 (3)	
529	H35	1.052341	0.047091	0.207570	0.033*	
530	C36	0.95451 (17)	-0.04261 (12)	0.25227 (7)	0.0313 (3)	
531	H36	0.982821	-0.103132	0.238932	0.038*	
532	C37	0.87209 (17)	-0.04298 (12)	0.29037 (7)	0.0309 (3)	
533	H37	0.844492	-0.104022	0.303371	0.037*	
534	C38	0.82924 (16)	0.04546 (11)	0.30982 (6)	0.0263 (3)	
535	H38	0.772140	0.044189	0.335840	0.032*	
536	C39	0.85297 (15)	0.32409 (12)	0.53006 (5)	0.0237 (3)	
537	C40	0.78919 (17)	0.23834 (13)	0.54385 (6)	0.0313 (3)	
538	H40	0.720053	0.210821	0.522050	0.038*	
539	C41	0.8254 (2)	0.19268 (15)	0.58903 (7)	0.0394 (4)	
540	H41	0.782257	0.133703	0.597723	0.047*	
541	C42	0.92487 (19)	0.23337 (16)	0.62148 (6)	0.0419 (5)	
542	H42	0.949622	0.202435	0.652456	0.050*	
543	C43	0.98729 (17)	0.31836 (16)	0.60868 (6)	0.0381 (4)	
544	H43	1.054483	0.346547	0.631109	0.046*	
545	C44	0.95294 (15)	0.36380 (13)	0.56300 (6)	0.0291 (3)	
546	H44	0.997849	0.422012	0.554307	0.035*	
547	N5	0.50664 (13)	0.40837 (10)	0.36913 (5)	0.0271 (3)	
548	H5A	0.480 (2)	0.4337 (14)	0.3967 (7)	0.041*	
549	H5B	0.509 (2)	0.3447 (11)	0.3761 (8)	0.041*	
550	C45	0.40746 (17)	0.42549 (15)	0.32609 (7)	0.0385 (4)	
551	H45A	0.329199	0.383047	0.329539	0.046*	
552	H45B	0.446349	0.405890	0.295254	0.046*	
553	C46	0.36344 (16)	0.53096 (14)	0.32166 (6)	0.0326 (4)	0.882 (12)
554	H46A	0.442264	0.574411	0.322569	0.039*	0.882 (12)
555	H46B	0.311072	0.540812	0.289330	0.039*	0.882 (12)
556	N6	0.2830 (4)	0.5585 (2)	0.36180 (8)	0.0361 (8)	0.882 (12)
557	H6A	0.2073 (19)	0.5235 (18)	0.3589 (9)	0.054*	0.882 (12)
558	H6B	0.257 (3)	0.6185 (13)	0.3606 (9)	0.054*	0.882 (12)
559	C46B	0.36344 (16)	0.53096 (14)	0.32166 (6)	0.0326 (4)	0.118 (12)
560	H46C	0.428985	0.56//14	0.303754	0.039*	0.118 (12)
561	H46D	0.27/978	0.532993	0.300800	0.039*	0.118 (12)
562	N6B	0.346 (3)	0.5839 (15)	0.3685 (6)	0.046 (5)	0.118 (12)
563	H6C	0.305 (16)	0.640(6)	0.3622(17)	0.068*	0.118 (12)
564	H6D	0.425(5)	0.604(12)	0.382(4)	0.068*	0.118(12)
565	03	0.0708 (14)	0.4152 (11)	0.3732 (6)	0.070 (4)	0.136 (4)
566	H3O	-0.010618	0.402558	0.3/1916	0.084*	0.136 (4)
567	U4/	0.1402 (18)	0.3301 (13)	0.3/39(/)	0.000 (3)	0.130(4)
568	H4/A	0.11/34/	0.291039	0.343830	0.072*	0.130(4)
569	H4/B	0.11824/	0.292480	0.403043	0.072*	0.130(4)
570	H4/C	0.233366	0.344884	0.3/88/4	0.072*	0.136 (4)

571 Atomic displacement parameters $(Å^2)$

572		U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	<i>U</i> ²³
73	Zn1	0.02239 (11)	0.01794 (11)	0.01494 (10)	0.00134 (6)	0.00332 (7)	-0.00039 (6)
74	01	0.0343 (6)	0.0355 (6)	0.0240 (6)	0.0011 (5)	0.0097 (4)	0.0021 (5)
75	O2	0.0390 (6)	0.0310 (6)	0.0299 (6)	0.0063 (5)	0.0107 (5)	-0.0054 (5)
76	N1	0.0240 (6)	0.0202 (6)	0.0175 (6)	0.0000 (4)	0.0033 (4)	-0.0014 (4)
77	N2	0.0242 (6)	0.0190 (6)	0.0179 (6)	0.0007 (4)	0.0041 (4)	-0.0005 (4)
78	N3	0.0241 (6)	0.0187 (6)	0.0153 (5)	0.0017 (4)	0.0038 (4)	0.0000 (4)
79	N4	0.0235 (6)	0.0220 (6)	0.0148 (5)	0.0035 (4)	0.0027 (4)	-0.0006 (4)
80	C1	0.0224 (7)	0.0249 (7)	0.0161 (6)	-0.0013 (5)	0.0029 (5)	-0.0024 (5)
81	C2	0.0277 (7)	0.0281 (8)	0.0182 (7)	0.0010 (6)	0.0019 (5)	-0.0036 (6)
82	C3	0.0332 (8)	0.0245 (7)	0.0191 (7)	-0.0008 (6)	0.0021 (6)	-0.0044 (6)
83	C4	0.0229 (6)	0.0229 (7)	0.0196 (7)	-0.0010 (5)	0.0032 (5)	-0.0048 (5)
84	C5	0.0238 (7)	0.0202 (7)	0.0226 (7)	0.0005 (5)	0.0040 (5)	-0.0036 (5)
85	C6	0.0230 (7)	0.0184 (7)	0.0233 (7)	-0.0002 (5)	0.0044 (5)	-0.0012 (5)
86	C7	0.0372 (8)	0.0170 (7)	0.0282 (8)	0.0009 (6)	0.0059 (6)	0.0012 (6)
87	C8	0.0368 (8)	0.0211 (7)	0.0249 (7)	0.0012 (6)	0.0055 (6)	0.0042 (6)
88	C9	0.0251 (7)	0.0203 (7)	0.0198 (7)	0.0012 (5)	0.0045 (5)	0.0031 (5)
89	C10	0.0229 (7)	0.0230 (7)	0.0182 (7)	0.0014 (5)	0.0038 (5)	0.0024 (5)
90	C11	0.0239 (7)	0.0220 (7)	0.0164 (6)	0.0013 (5)	0.0027 (5)	0.0008 (5)
91	C12	0.0329 (8)	0.0270 (8)	0.0163 (6)	0.0017 (6)	0.0003 (5)	-0.0013 (6)
92	C13	0.0322 (8)	0.0224 (7)	0.0190 (7)	0.0008 (6)	0.0008 (6)	-0.0042 (5)
93	C14	0.0229 (6)	0.0203 (7)	0.0172 (6)	-0.0002 (5)	0.0044 (5)	-0.0020 (5)
94	C15	0.0223 (6)	0.0203 (7)	0.0193 (7)	0.0012 (5)	0.0040 (5)	-0.0015 (5)
95	C16	0.0244 (7)	0.0225 (7)	0.0198 (7)	0.0047 (5)	0.0038 (5)	-0.0003(5)
96	C17	0.0366 (8)	0.0292 (8)	0.0223 (7)	0.0136 (6)	0.0008 (6)	-0.0007 (6)
97	C18	0.0377 (8)	0.0332 (9)	0.0197 (7)	0.0148 (7)	-0.0009 (6)	0.0018 (6)
98	C19	0.0254 (7)	0.0247 (7)	0.0179 (7)	0.0034 (6)	0.0015 (5)	0.0000 (5)
99	C20	0.0241 (7)	0.0262 (7)	0.0162 (6)	0.0008 (5)	0.0021 (5)	-0.0002 (5)
00	C21	0.0355 (8)	0.0209 (7)	0.0210 (7)	0.0014 (6)	0.0048 (6)	-0.0030 (5)
01	C22	0.0375 (9)	0.0282 (9)	0.0377 (9)	0.0053 (7)	0.0059 (7)	-0.0034 (7)
02	C23	0.0566 (12)	0.0319 (10)	0.0513 (12)	0.0176 (9)	0.0074 (9)	-0.0057 (8)
03	C24	0.0779 (15)	0.0224 (9)	0.0467 (11)	0.0083 (9)	0.0025 (10)	-0.0114 (8)
04	C25	0.0609 (13)	0.0278 (9)	0.0529 (12)	-0.0050 (8)	-0.0042 (10)	-0.0136 (8)
05	C26	0.0414 (9)	0.0290 (9)	0.0397 (10)	0.0009 (7)	-0.0015 (7)	-0.0101 (7)
06	C27	0.0290 (7)	0.0188 (7)	0.0188 (7)	0.0006 (5)	0.0023 (5)	0.0021 (5)
07	C28	0.0280 (7)	0.0274 (8)	0.0261 (7)	0.0034 (6)	0.0027 (6)	0.0002 (6)
08	C29	0.0342 (8)	0.0270 (8)	0.0286 (8)	0.0055 (6)	-0.0041 (6)	0.0016 (6)
09	C30	0.0430 (9)	0.0290 (8)	0.0219 (7)	-0.0030 (7)	-0.0037 (6)	0.0071 (6)
10	C31	0.0352 (9)	0.0543 (11)	0.0239 (8)	-0.0044 (8)	0.0059 (6)	0.0111 (7)
11	C32	0.0269 (8)	0.0463 (10)	0.0240 (8)	0.0030 (7)	0.0039 (6)	0.0084 (7)
12	C33	0.0238 (7)	0.0219 (7)	0.0179 (6)	0.0036 (5)	-0.0002 (5)	-0.0017 (5)
13	C34	0.0266 (7)	0.0226 (7)	0.0207 (7)	0.0018 (5)	0.0032 (5)	-0.0014 (5)
14	C35	0.0271 (7)	0.0319 (8)	0.0236 (7)	0.0058 (6)	0.0044 (6)	-0.0044 (6)
15	C36	0.0329 (8)	0.0237 (8)	0.0369 (9)	0.0081 (6)	0.0015 (7)	-0.0072 (6)
16	C37	0.0329 (8)	0.0208 (8)	0.0390 (9)	0.0026 (6)	0.0036 (7)	0.0029 (6)
17	C38	0.0275 (7)	0.0250 (8)	0.0270 (8)	0.0037 (6)	0.0058 (6)	0.0022 (6)

618	C39	0.0260 (7)	0.0289 (8)	0.0164 (6)	0.0067 (6)	0.0038 (5)	-0.0004 (6)
619	C40	0.0390 (9)	0.0319 (9)	0.0230 (7)	0.0024 (7)	0.0037 (6)	0.0014 (6)
620	C41	0.0496 (10)	0.0411 (10)	0.0290 (8)	0.0103 (8)	0.0120 (7)	0.0109 (7)
621	C42	0.0438 (10)	0.0636 (13)	0.0191 (8)	0.0266 (9)	0.0067 (7)	0.0104 (8)
622	C43	0.0298 (8)	0.0623 (12)	0.0212 (8)	0.0162 (8)	-0.0031 (6)	-0.0050 (8)
623	C44	0.0247 (7)	0.0396 (9)	0.0232 (7)	0.0067 (6)	0.0024 (6)	-0.0034 (6)
624	N5	0.0246 (6)	0.0233 (7)	0.0341 (7)	0.0007 (5)	0.0062 (5)	0.0004 (5)
625	C45	0.0281 (8)	0.0444 (10)	0.0419 (10)	-0.0002 (7)	-0.0037 (7)	-0.0157 (8)
626	C46	0.0270 (8)	0.0478 (10)	0.0229 (8)	0.0033 (7)	0.0011 (6)	0.0014 (7)
627	N6	0.0404 (17)	0.0460 (14)	0.0224 (9)	0.0156 (12)	0.0061 (10)	0.0046 (8)
628	C46B	0.0270 (8)	0.0478 (10)	0.0229 (8)	0.0033 (7)	0.0011 (6)	0.0014 (7)
629	N6B	0.035 (12)	0.049 (10)	0.052 (10)	-0.002 (8)	0.002 (8)	-0.006 (7)
630	O3	0.064 (8)	0.067 (9)	0.078 (10)	-0.017 (7)	-0.003 (7)	0.016 (7)
631	C47	0.054 (10)	0.072 (12)	0.056 (10)	-0.017 (9)	0.011 (8)	-0.011 (9)

632 *Geometric parameters (Å, °)*

633	Zn1—N2	2.0556 (12)	С25—Н25	0.9500
634	Zn1—N4	2.0660 (12)	С26—Н26	0.9500
635	Zn1—N3	2.0812 (11)	C27—C32	1.394 (2)
636	Zn1—N5	2.1315 (13)	C27—C28	1.395 (2)
637	Zn1—N1	2.1399 (12)	C28—C29	1.391 (2)
638	O1—C2	1.4294 (19)	C28—H28	0.9500
639	O1—H1	0.99 (2)	C29—C30	1.382 (3)
640	O2—C3	1.4204 (19)	С29—Н29	0.9500
641	O2—H2A	0.99 (3)	C30—C31	1.392 (3)
642	N1—C1	1.3593 (19)	С30—Н30	0.9500
643	N1—C4	1.3618 (19)	C31—C32	1.389 (2)
644	N2—C6	1.3661 (18)	C31—H31	0.9500
645	N2—C9	1.3865 (18)	С32—Н32	0.9500
646	N3—C14	1.3716 (18)	C33—C34	1.397 (2)
647	N3—C11	1.3731 (18)	C33—C38	1.397 (2)
648	N4—C19	1.3654 (18)	C34—C35	1.393 (2)
649	N4	1.3863 (18)	С34—Н34	0.9500
650	C1—C20	1.382 (2)	C35—C36	1.384 (2)
651	C1—C2	1.5257 (19)	С35—Н35	0.9500
652	C2—C3	1.544 (2)	C36—C37	1.383 (3)
653	С2—Н2	1.0000	С36—Н36	0.9500
654	C3—C4	1.5292 (19)	C37—C38	1.393 (2)
655	С3—Н3	1.0000	С37—Н37	0.9500
656	C4—C5	1.383 (2)	C38—H38	0.9500
657	C5—C6	1.417 (2)	C39—C44	1.395 (2)
658	C5—C21	1.500 (2)	C39—C40	1.395 (2)
659	C6—C7	1.442 (2)	C40—C41	1.389 (2)
660	C7—C8	1.356 (2)	C40—H40	0.9500
661	С7—Н7	0.9500	C41—C42	1.389 (3)
662	C8—C9	1.438 (2)	C41—H41	0.9500
663	С8—Н8	0.9500	C42—C43	1.372 (3)

664	C9—C10	1.394 (2)	C42—H42	0.9500
665	C10—C11	1.411 (2)	C43—C44	1.396 (2)
666	C10—C27	1.4990 (19)	C43—H43	0.9500
667	C11—C12	1.434 (2)	C44—H44	0.9500
668	C12—C13	1.359 (2)	N5—C45	1.486 (2)
669	C12—H12	0.9500	N5—H5A	0.884 (15)
670	C13—C14	1.4364 (19)	N5—H5B	0.882 (15)
671	C13—H13	0.9500	C45—C46B	1.498 (3)
672	C14—C15	1.414 (2)	C45—C46	1.498 (3)
673	C15—C16	1.401 (2)	C45—H45A	0.9900
674	C15-C33	1.4960(19)	C45—H45B	0.9900
675	$C_{16} - C_{17}$	1 439 (2)	C46—N6	1463(2)
676	C17-C18	1.354(2)	C46—H46A	0.9900
677	C17—H17	0.9500	C46—H46B	0.9900
679	C18-C19	1441(2)	N6—H6A	0.898 (16)
670	C18H18	0.9500	N6—H6B	0.853(16)
6.00	C_{10} C_{20}	1.421(2)	C46B N6B	1.479(14)
000	$C_{19} = C_{20}$	1.421(2) 1 5001(10)	C_{40} B_{10} B_{10} B_{10} C_{40} B_{10} B	0.0000
601	$C_{20} = C_{33}$	1.3001(19) 1 385(2)	$C_{46B} = H_{46D}$	0.9900
682	$C_{21} = C_{22}$	1.303(2) 1.397(2)	NAD HAC	0.9900
683	$C_{21} = C_{20}$	1.307(2) 1.383(3)	NOD-HOC NGB HGD	0.88(2)
684	C22—C23	1.385 (3)	$O_3 C_47$	0.89(2)
685	C_{22} C_{23} C_{24}	1.392(2)	$O_3 = U_4$	1.33(2)
686	$C_{23} = C_{24}$	1.362 (3)		0.8400
687	$C_{23} = H_{23}$	0.9300	C47 = H47R	0.9800
688	$C_{24} - C_{23}$	1.372(3)	C47 = H47C	0.9800
689	C24—H24	0.9500	С4/—Н4/С	0.9800
690	C25—C26	1.394 (3)		
691	N2 7-1 N4	155 01 (5)	C25 C24 U24	120.1
692	$N_2 = Z_{11} = N_4$	155.81(5)	C_{23} C_{24} H_{24}	120.1
693	$N_2 - Zn_1 - N_3$	88.38 (5)	C_{23} — C_{24} — H_{24}	120.1
694	N4— $Zn1$ — $N3$	87.85 (5)	$C_{24} = C_{25} = C_{26}$	120.1 (2)
695	N_2 — Zn_1 — N_5	102.59 (5)	C24—C25—H25	120.0
696	N4—Zn1—N5	101.54 (5)	C26—C25—H25	120.0
697	N3—Zn1—N5	102.84 (5)	C21—C26—C25	120.47 (18)
698	N2—Zn1—N1	88.29 (5)	C21—C26—H26	119.8
699	N4—Zn1—N1	88.25 (5)	C25—C26—H26	119.8
700	N3—Zn1—N1	162.66 (5)	C32—C27—C28	118.52 (14)
701	N5—Zn1—N1	94.49 (5)	C32—C27—C10	120.79 (13)
702	C2—O1—H1	109.5	C28—C27—C10	120.69 (13)
703	C3—O2—H2A	109.5	C29—C28—C27	120.48 (15)
704	C1—N1—C4	110.22 (12)	C29—C28—H28	119.8
705	C1—N1—Zn1	124.07 (10)	C27—C28—H28	119.8
706	C4—N1—Zn1	124.07 (9)	C30—C29—C28	120.72 (15)
707	C6—N2—C9	106.70 (12)	С30—С29—Н29	119.6
708	C6—N2—Zn1	126.63 (10)	С28—С29—Н29	119.6
709	C9—N2—Zn1	126.20 (10)	C29—C30—C31	119.17 (15)
710	C14—N3—C11	106.58 (11)	С29—С30—Н30	120.4
711	C14—N3—Zn1	125.90 (9)	С31—С30—Н30	120.4

712	C11—N3—Zn1	124.72 (9)	C32—C31—C30	120.32 (16)
713	C19—N4—C16	106.72 (12)	С32—С31—Н31	119.8
714	C19—N4—Zn1	126.30 (10)	С30—С31—Н31	119.8
715	C16—N4—Zn1	126.97 (9)	C31—C32—C27	120.76 (15)
716	N1-C1-C20	125.66 (13)	C31—C32—H32	119.6
717	N1—C1—C2	111.54 (12)	С27—С32—Н32	119.6
718	C20—C1—C2	122.79 (13)	C34—C33—C38	118.04 (13)
719	O1—C2—C1	109.69 (12)	C34—C33—C15	120.58 (13)
720	O1—C2—C3	112.41 (12)	C38—C33—C15	121.37 (13)
721	C1—C2—C3	103.15 (12)	C35—C34—C33	121.16 (14)
722	O1—C2—H2	110.5	С35—С34—Н34	119.4
723	C1—C2—H2	110.5	С33—С34—Н34	119.4
724	С3—С2—Н2	110.5	C36—C35—C34	119.99 (15)
725	O2—C3—C4	113.06 (12)	С36—С35—Н35	120.0
726	O2—C3—C2	114.25 (13)	С34—С35—Н35	120.0
727	C4—C3—C2	102.83 (12)	C37—C36—C35	119.65 (14)
728	O2—C3—H3	108.8	С37—С36—Н36	120.2
729	С4—С3—Н3	108.8	С35—С36—Н36	120.2
730	С2—С3—Н3	108.8	C36—C37—C38	120.50 (15)
731	N1—C4—C5	125.69 (13)	С36—С37—Н37	119.7
732	N1—C4—C3	111.67 (12)	С38—С37—Н37	119.7
733	C5—C4—C3	122.63 (13)	C37—C38—C33	120.65 (15)
734	C4—C5—C6	125.81 (13)	С37—С38—Н38	119.7
735	C4—C5—C21	118.21 (13)	С33—С38—Н38	119.7
736	C6—C5—C21	115.86 (13)	C44—C39—C40	118.47 (14)
737	N2—C6—C5	126.18 (13)	C44—C39—C20	121.42 (14)
738	N2—C6—C7	109.70 (12)	C40—C39—C20	120.03 (14)
739	C5—C6—C7	124.10 (13)	C41—C40—C39	120.89 (17)
740	C8—C7—C6	107.13 (13)	C41—C40—H40	119.6
741	С8—С7—Н7	126.4	C39—C40—H40	119.6
742	С6—С7—Н7	126.4	C42—C41—C40	119.91 (18)
743	C7—C8—C9	107.28 (13)	C42—C41—H41	120.0
744	С7—С8—Н8	126.4	C40—C41—H41	120.0
745	С9—С8—Н8	126.4	C43—C42—C41	119.83 (16)
746	N2	125.87 (13)	C43—C42—H42	120.1
747	N2	109.15 (13)	C41—C42—H42	120.1
748	C10—C9—C8	124.93 (13)	C42—C43—C44	120.60 (17)
749	C9—C10—C11	125.20 (13)	C42—C43—H43	119.7
750	C9—C10—C27	117.69 (13)	C44—C43—H43	119.7
751	C11—C10—C27	117.08 (13)	C39—C44—C43	120.28 (17)
752	N3-C11-C10	124.71 (13)	C39—C44—H44	119.9
753	N3—C11—C12	109.73 (12)	C43—C44—H44	119.9
754	C10-C11-C12	125.48 (13)	C45—N5—Zn1	117.93 (11)
755	C13—C12—C11	106.91 (13)	C45—N5—H5A	111.4 (15)
756	C13—C12—H12	126.5	Zn1—N5—H5A	110.1 (15)
757	C11—C12—H12	126.5	C45—N5—H5B	108.8 (14)
758	C12—C13—C14	107.17 (13)	Zn1—N5—H5B	105.3 (14)
759	С12—С13—Н13	126.4	H5A—N5—H5B	101.8 (18)

760	C14—C13—H13	126.4	N5-C45-C46B	112.77 (14)
761	N3-C14-C15	124.61 (12)	N5-C45-C46	112.77 (14)
762	N3-C14-C13	109.49 (12)	N5—C45—H45A	109.0
763	C15—C14—C13	125.79 (13)	C46—C45—H45A	109.0
764	C16—C15—C14	124.48 (13)	N5—C45—H45B	109.0
765	C16—C15—C33	117.67 (13)	C46—C45—H45B	109.0
766	C14—C15—C33	117.82 (12)	H45A—C45—H45B	107.8
767	N4—C16—C15	125.85 (13)	N6-C46-C45	111.44 (17)
768	N4	109.14 (12)	N6—C46—H46A	109.3
769	C15—C16—C17	124.99 (13)	C45—C46—H46A	109.3
770	C18—C17—C16	107.17 (13)	N6—C46—H46B	109.3
771	C18—C17—H17	126.4	C45—C46—H46B	109.3
772	С16—С17—Н17	126.4	H46A—C46—H46B	108.0
773	C17—C18—C19	107.31 (13)	C46—N6—H6A	109.2 (15)
774	C17—C18—H18	126.3	C46—N6—H6B	114.0 (16)
775	C19—C18—H18	126.3	H6A—N6—H6B	104 (2)
776	N4	126.10 (13)	N6B—C46B—C45	116.8 (7)
777	N4	109.61 (13)	N6B—C46B—H46C	108.1
778	C20-C19-C18	124.29 (13)	C45—C46B—H46C	108.1
779	C1—C20—C19	125.69 (13)	N6B—C46B—H46D	108.1
780	C1—C20—C39	119.08 (13)	C45—C46B—H46D	108.1
781	C19—C20—C39	115.23 (13)	H46C—C46B—H46D	107.3
782	C22—C21—C26	118.74 (15)	C46B—N6B—H6C	110 (3)
783	C22—C21—C5	121.41 (15)	C46B—N6B—H6D	109 (3)
784	C26—C21—C5	119.76 (14)	H6C—N6B—H6D	102 (4)
785	C23—C22—C21	120.74 (18)	С47—О3—НЗО	109.5
786	С23—С22—Н22	119.6	O3—C47—H47A	109.5
787	C21—C22—H22	119.6	O3—C47—H47B	109.5
788	C24—C23—C22	120.11 (19)	H47A—C47—H47B	109.5
789	C24—C23—H23	119.9	O3—C47—H47C	109.5
790	С22—С23—Н23	119.9	H47A—C47—H47C	109.5
791	C25—C24—C23	119.88 (17)	H47B—C47—H47C	109.5
792				
793	C4—N1—C1—C20	-172.69 (14)	C14—C15—C16—C17	-173.90 (15)
794	Zn1—N1—C1—C20	21.5 (2)	C33—C15—C16—C17	4.1 (2)
795	C4—N1—C1—C2	8.29 (16)	N4—C16—C17—C18	1.83 (19)
796	Zn1—N1—C1—C2	-157.56 (10)	C15—C16—C17—C18	-176.45 (15)
797	N1-C1-C2-O1	113.02 (14)	C16—C17—C18—C19	-0.5 (2)
798	C20-C1-C2-O1	-66.03 (18)	C16—N4—C19—C20	-177.20 (14)
799	N1—C1—C2—C3	-6.94 (16)	Zn1—N4—C19—C20	3.4 (2)
800	C20—C1—C2—C3	174.00 (14)	C16—N4—C19—C18	2.20 (17)
801	O1—C2—C3—O2	7.86 (17)	Zn1—N4—C19—C18	-177.24 (11)
802	C1—C2—C3—O2	125.94 (13)	C17—C18—C19—N4	-1.09 (19)
803	O1—C2—C3—C4	-115.04 (13)	C17—C18—C19—C20	178.32 (15)
804	C1—C2—C3—C4	3.04 (15)	N1—C1—C20—C19	-3.6 (2)
805	C1—N1—C4—C5	173.14 (14)	C2—C1—C20—C19	175.28 (14)
806	Zn1—N1—C4—C5	-21.0 (2)	N1—C1—C20—C39	175.45 (13)
807	C1—N1—C4—C3	-6.09 (17)	C2—C1—C20—C39	-5.6 (2)

808	Zn1—N1—C4—C3	159.75 (10)	N4—C19—C20—C1	-10.3 (2)
809	O2—C3—C4—N1	-122.20 (14)	C18—C19—C20—C1	170.36 (15)
810	C2-C3-C4-N1	1.50 (16)	N4—C19—C20—C39	170.55 (14)
811	O2—C3—C4—C5	58.54 (19)	C18—C19—C20—C39	-8.8 (2)
812	C2—C3—C4—C5	-177.76 (13)	C4—C5—C21—C22	-108.81 (18)
813	N1-C4-C5-C6	7.8 (2)	C6—C5—C21—C22	74.97 (19)
814	C3—C4—C5—C6	-173.08 (14)	C4—C5—C21—C26	74.7 (2)
815	N1—C4—C5—C21	-168.03 (14)	C6—C5—C21—C26	-101.57 (18)
816	C3—C4—C5—C21	11.1 (2)	C26—C21—C22—C23	0.7 (3)
817	C9—N2—C6—C5	176.68 (14)	C5—C21—C22—C23	-175.87 (17)
818	Zn1—N2—C6—C5	4.2 (2)	C21—C22—C23—C24	-0.1 (3)
819	C9—N2—C6—C7	-1.77 (16)	C22—C23—C24—C25	-0.6 (3)
820	Zn1—N2—C6—C7	-174.29 (10)	C23—C24—C25—C26	0.7 (4)
821	C4C5C6N2	1.8 (2)	C22—C21—C26—C25	-0.6(3)
822	C21—C5—C6—N2	177.74 (14)	C5-C21-C26-C25	176.01 (18)
823	C4—C5—C6—C7	-179.92 (15)	C24—C25—C26—C21	-0.1 (3)
824	C21—C5—C6—C7	-4.0 (2)	C9—C10—C27—C32	110.01 (18)
825	N2—C6—C7—C8	0.94 (18)	C11—C10—C27—C32	-68.0(2)
826	C5—C6—C7—C8	-177.54 (15)	C9—C10—C27—C28	-69.78 (19)
827	C6—C7—C8—C9	0.26 (18)	C11—C10—C27—C28	112.19 (17)
828	C6—N2—C9—C10	-175.80 (14)	C32—C27—C28—C29	0.5 (2)
829	Zn1-N2-C9-C10	-3.2 (2)	C10-C27-C28-C29	-179.74 (14)
830	C6—N2—C9—C8	1.93 (16)	C27—C28—C29—C30	-1.6 (2)
831	Zn1—N2—C9—C8	174.49 (10)	C28—C29—C30—C31	1.3 (3)
832	C7—C8—C9—N2	-1.36 (18)	C29—C30—C31—C32	0.1 (3)
833	C7—C8—C9—C10	176.39 (15)	C30—C31—C32—C27	-1.2 (3)
834	N2-C9-C10-C11	-5.4 (2)	C28—C27—C32—C31	0.9 (3)
835	C8—C9—C10—C11	177.25 (15)	C10—C27—C32—C31	-178.87 (16)
836	N2-C9-C10-C27	176.78 (13)	C16—C15—C33—C34	-123.99 (15)
837	C8—C9—C10—C27	-0.6 (2)	C14—C15—C33—C34	54.12 (19)
838	C14—N3—C11—C10	-173.52 (14)	C16—C15—C33—C38	55.03 (19)
839	Zn1—N3—C11—C10	24.5 (2)	C14—C15—C33—C38	-126.86 (15)
840	C14—N3—C11—C12	3.29 (16)	C38—C33—C34—C35	0.5 (2)
841	Zn1—N3—C11—C12	-158.64 (10)	C15—C33—C34—C35	179.57 (14)
842	C9—C10—C11—N3	-6.2 (2)	C33—C34—C35—C36	-0.4 (2)
843	C27—C10—C11—N3	171.62 (13)	C34—C35—C36—C37	-0.2 (3)
844	C9—C10—C11—C12	177.44 (15)	C35—C36—C37—C38	0.6 (3)
845	C27—C10—C11—C12	-4.7 (2)	C36—C37—C38—C33	-0.4 (3)
846	N3—C11—C12—C13	-1.97 (17)	C34—C33—C38—C37	-0.1 (2)
847	C10-C11-C12-C13	174.82 (15)	C15—C33—C38—C37	-179.16 (14)
848	C11—C12—C13—C14	-0.14 (17)	C1—C20—C39—C44	-65.50 (19)
849	C11—N3—C14—C15	173.12 (13)	C19—C20—C39—C44	113.68 (16)
850	Zn1—N3—C14—C15	-25.2 (2)	C1—C20—C39—C40	117.69 (17)
851	C11—N3—C14—C13	-3.37 (16)	C19—C20—C39—C40	-63.13 (19)
852	Zn1—N3—C14—C13	158.29 (10)	C44—C39—C40—C41	-0.9 (2)
853	C12—C13—C14—N3	2.20 (17)	C20—C39—C40—C41	176.05 (15)
854	C12—C13—C14—C15	-174.24 (14)	C39—C40—C41—C42	1.1 (3)
855	N3—C14—C15—C16	7.9 (2)	C40—C41—C42—C43	-0.2 (3)

856 857	C13-C14-C15-C16 N3-C14-C15-C33	-176.19 (14) -170.08 (13)	C41—C42—C43—C44 C40—C39—C44—C43	-0.8 (3) -0.2 (2)
858	C13—C14—C15—C33	5.8 (2)	C20—C39—C44—C43	-177.06 (14)
859	C19—N4—C16—C15	175.79 (14)	C42—C43—C44—C39	1.0 (2)
860	Zn1—N4—C16—C15	-4.8 (2)	Zn1—N5—C45—C46B	-78.92 (16)
861	C19—N4—C16—C17	-2.47 (17)	Zn1-N5-C45-C46	-78.92 (16)
862	Zn1—N4—C16—C17	176.96 (11)	N5-C45-C46-N6	-69.5 (3)
863	C14—C15—C16—N4	8.1 (2)	N5-C45-C46B-N6B	-38.3 (15)
864	C33—C15—C16—N4	-173.93 (13)		

865 Hydrogen-bond geometry (Å, °)

866	D—H···A	D—H	H···A	$D \cdots A$	D—H···A
867	01—H1…N6 ⁱ	0.99	1.73	2.710 (3)	168
868	$O1$ — $H1$ ···N6 B^{i}	0.99	1.54	2.510 (17)	165
869	O2—H2A···O1 ⁱ	0.99	1.82	2.8056 (18)	171
870	C2—H2···O3 ⁱ	1.00	2.53	3.460 (14)	155
871	N5—H5A···O1 ⁱ	0.88 (2)	2.38 (2)	3.2442 (18)	166 (2)
872	C46—H46A…N2	0.99	2.49	3.368 (2)	148
873	N6—H6A···O3	0.90 (2)	2.08 (2)	2.932 (14)	159 (3)
874	C46 <i>B</i> —H46 <i>C</i> ···N2	0.99	2.68	3.368 (2)	126
875	O3—H3O····N4 ⁱⁱ	0.84	2.20	2.992 (14)	157

876 Symmetry codes: (i) -x+1, -y+1, -z+1; (ii) x-1, y, z.

⁸⁷⁷ other supporting information

- 878 The following files will be made available to readers when your article is published. Unless otherwise stated, these files
- 879 will be the same as those submitted during the review process.
- 880 Crystal structure: contains datablocks 2PhH2, 2PhZn. dj2044sup1.cif
- 881 Structure factors: contains datablock 2PhH2. dj20442PhH2sup2.hkl
- 882 Structure factors: contains datablock 2PhZn. dj20442PhZnsup3.hkl

CRYSTALLOGRAPHIC COMMUNICATIONS

ISSN: 2056-9890

YOU WILL AUTOMATICALLY BE SENT DETAILS OF HOW TO DOWNLOAD AN ELECTRONIC REPRINT OF YOUR PAPER, FREE OF CHARGE. PRINTED REPRINTS MAY BE PURCHASED USING THIS FORM.

Please scan your order and send to checkin@iucr.org

INTERNATIONAL UNION OF CRYSTALLOGRAPHY

5 Abbey Square

Chester CH1 2HU, England.

VAT No. GB 161 9034 76

Article No.: E220272-DJ2044

Title of article Crystal structure of cis-7,8-dihydroxy-5,10,15,20-tetraphenylchlorin and its zinc(II)-ethylenediamine complex

Name Christian Bruckner

Address Department of Chemistry, University of Connecticut, Storrs, CT 06269-3060, USA,

E-mail address (for electronic reprints) c.bruckner@uconn.edu

DIGITAL PRINTED REPRINTS

I wish to order paid reprints

These reprints will be sent to the address given above. If the above address or e-mail address is not correct, please indicate an alternative:

PAYMENT

	An official purchase order made out to INTERNA	TIONAL UNION OF CRYSTALLOGRAPHY	is enclosed	will follow
	Purchase order No.			
	Please invoice me			
	I wish to pay by credit card			
EU au	thors only: VAT No:			

Date Signature

DIGITAL PRINTED REPRINTS

An electronic reprint is supplied free of charge.

Printed reprints without limit of number may be purchased at the prices given in the table below. The requirements of all joint authors, if any, and of their laboratories should be included in a single order, specifically ordered on the form overleaf. All orders for reprints must be submitted promptly.

Prices for reprints are given below in United States dollars and include postage.

		Size of paper (in printed pages)			
Number of reprints required	1–2	3–4	5–8	9–16	Additional 8's
50	184	268	372	560	246
100	278	402	556	842	370
150	368	534	740	1122	490
200	456	664	920	1400	610
Additional 50's	86	128	178	276	116

PAYMENT AND ORDERING

Official purchase orders should be made out to INTERNATIONAL UNION OF CRYSTALLOGRAPHY.

Orders should be returned by email to checkin@iucr.org

ENQUIRIES

Enquiries concerning reprints should be sent to support@iucr.org.