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4 ABSTRACT: The replacement of one or more pyrrolic building block(s) of a porphyrin by a
s nonpyrrolic heterocycle leads to the formation of so-called pyrrole-modified porphyrins (PMPs),
6 porphyrinoids of broad structural variability. The wide range of coordination environments (type,
7 number, charge, and architecture of the donor atoms) that the pyrrole-modified frameworks
8 provide to the central metal ions, the frequent presence of donor atoms at their periphery, and /
9 their often observed nonplanarity or conformational flexibility distinguish the complexes of the
10 PMPs clearly from those of the traditional square-planar, dianionic, N,-coordinating (hydro)-
11 porphyrins. Their different coordination properties suggest their utilization in areas beyond which
12 regular metalloporphyrins are suitable. Following a general introduction to the synthetic
13 methodologies available to generate pyrrole-modified porphyrins, their general structure, history,
14 coordination chemistry, and optical properties, this Review highlights the chemical, electronic (optical), and structural differences of
15 specific classes of metalloporphyrinoids containing nonpyrrolic heterocycles. The focus is on macrocycles with similar “tetrapyrrolic”
16 architectures as porphyrins, thusly excluding the majority of expanded porphyrins. We highlight the relevance and application of
17 these metal complexes in biological and technical fields as chemosensors, catalysts, photochemotherapeutics, or imaging agents. This
18 Review provides an introduction to the field of metallo-PMPs as well as a comprehensive snapshot of the current state of the art of
19 their synthesis, structures, and properties. It also aims to provide encouragement for the further study of these intriguing and

20 structurally versatile metalloporphyrinoids.
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1. INTRODUCTION

1.1. Porphyrins, Hydroporphyrins, and Pyrrole-Modified
Porphyrins (PMPs)

Porphyrins and hydroporphyrins are tetrapyrrolic macrocycles
with an 18 7-electron aromatic system and two, one, or no cross-
conjugated double bonds, respectively (Figure 1)." The vast
majority of (hydro)porphyrins occurring in nature and a large
fraction of the porphyrins found in biological and technical
applications are coordinated to a metal jon in their center, where
the porphyrinic ligands provide idealized square-planar,
dianionic, Nj,-coordination environments.” Variations of out-
of-plane coordinating double- and triple-decker complexes
involving synthetic porphyrins are known, but they also rely
on the Nj-coordination environment of the constituent
porphyrins.”*

Next to classic (hydro)porphyrins, contemporary porphyrin
chemistry also generated families of pyrrole-based macrocycles
with porphyrin-like structures and z-systems, including
porphyrin isomers or analogues that contain a different number
of pyrrolic building blocks: three in the so-called contracted
porphyrins and five, or more, in the so-called expanded
porphyrins (Figure 1).>° Framework contraction may also be
accomplished by a reduction of the number of carbon atoms
between the pyrrolic moieties, as present in corroles.”

The metalloporphyrinoids subject to this Review are the
metal complexes of those (hydro)porphyrin-analogues that
contain one, or more, nonpyrrolic building blocks in their
macrocycle framework in place of one, or more, pyrroles. These
building blocks may be, for example, carbacycles’™'" or 4- to 6-
membered (or larger) heterocycles (such as azetes, oxazoles,
imidazoles, triazoles, benzenes, pyridines, or morpholines, etc.;
Figure 2).271

We also included here select porphyrin isomers and
contracted or expanded porphyrins that contain nonpyrrolic
carba- or heterocycles. For simplicity, we will refer to all of these
macrocycles as pyrrole-modified porphyrins (PMPs)."” Others
have referred to a select group among them as heteroporphyrins
(or their expanded analogues)'” or as core-modified porphys-
ins.'®"” Irrespective of their naming, the group of PMPs is
inherently different from heterocycle-appended porphyrins
(that are not subject of this Review).'®"?

A number of general reviews on the syntheses and properties
of PMPs are available.”~"* Likewise, timely and comprehensive
reviews of hydroporphyrins,* flexible ?orphyrinoids,21 or core-
modified expanded porphyrins'®**~*° that also include some
pyrrole-modified hydroporphyrin-analogues, as well as dedi-
cated reviews on specific PMP classes, such as carbaporphyr-
ins”~""?**” or heteroporphyrins,'®**"*" are available. In
contrast to the existing reviews, however, we focus here
exclusively on the metal complexes of the PMPs, with a
particular aim on the structural, electronic (optical), and
chemical differences between complexes of the corresponding
regular porphyrins and hydroporphyrins. Our focus is on
macrocycles of similar “tetrapyrrolic” architectures as porphyy-
ins.

Thusly, we will not include pyrrole-modified derivatives for
which no metal complexes were reported, the metal complexes
of nonconjugated macrocycles, such as the calixpyrroles (and
derivatives),”**° phlorins,”” isophlorinoids,”® porphodime-
thenes,” corroles,”* heterocorroles,**' or PMP-type analogues
of the macrocycles with meso-nitrogen atoms, % such as
phthalocyanine or porphyrazines.”' Inner N-substituted por-
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Figure 1. Structures of the classic porphyrins, hydroporphyrins, and metalloporphyrins and examples of porphyrin isomers and contracted and

expanded porphyrins.
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Figure 2. Structures of general examples of the metalloporphyrinoids containing nonpyrrolic heterocycles discussed here.

184 phyrinoids may also be regarded as “pyrrole-modified”
185 porphyrins. Indeed, they are an important class of porphyrinoids
186 of biological relevance and of emerging technical impor-
187 tance.> > >* N-Alkylation or N-arylation affects their conforma-
188 tion, metal complexing abilities, and electronic struc-
189 tures;>>**73¢ porphyrin N-alkylation may even elicit the
190 rearrangement of the porphyrin to a PMP.”” Nonetheless,
191 they are not specifically reviewed here, but N-alkylated
192 derivatives of the PMPs are discussed together with their parent
193 macrocycles.

Select examples of carbaporphyrins and heteroporphyrins 194
have been known longer and were studied more intensely than ;s
most other examples, including their coordination chemistry. 196
Examples include N-confused and N-fused porphyrins,sg_62 197
benzocarbaporphyrins,”® and their heteroanalogues.'”** o4
They have been thoroughly reviewed in the contemporanesus 199
literature; consequently, we provide only an abbreviated 200
overview, with reference to the detailed accounts. 201

When compared to the square-planar, dianionic, N,-donor >0,
environment of the regular metalloporphyrins, the metal 203
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Scheme 1. Principal Pathways toward Metallo-PMPs
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204 complexes of PMPs may exhibit a range of different donor
205 environments in terms of donor atom types, charges, numbers,
206 and geometries. Thus, following the introductory sections, this
207 Review is organized according to the coordination environments
208 that the PMPs provide to the central metal. The metal ions are
209 also frequently crucial in the formation of the macrocycles, as are
210 the expression of their conformations, electronic properties, or
211 function. We highlight the roles of the metals in their formation
212 or properties that inspire their recommendation for a number of
213 applications.

1.2. General Synthetic Methods toward PMP Macrocycles

214 We can distinguish two principally different methods toward the
215 synthesis of PMPs: total syntheses and modifications of a
216 p ed macrocycle (Scheme 14)."

217 @?frequently pursued are total syntheses, many of which
218 were adopted from methodologies toward the synthesis of
219 regular porphyrins, These total syntheses may be classified
220 according to the number of “pyrrolic” units—we also include
221 here the nonpyrrolic stand-ins for pyrroles—present in the
222 building blocks used for the macrocycle formation step; thus, [4
223 X 1] (also known as Rothemund condensations), [2 + 2], [3 +
224 1],°° [3 + 2], etc. syntheses can be distinguished. The [4 X 1]-
225 type syntheses are the condensation of pyrrole and a suitable
226 aldehyde (or equivalent) or the self-condensation of a suitably
227 substituted pyrrole. While these reactions are very popular for
228 the synthesis of symmetric porphyrins,”’ " only few PMPs are
229 formed in this way and generally only because of a productive
230 side reaction to the regular, expected porphyrin formation, as is

the case for the so-called N-confused porphyrins (see also 231
Section 2.4.1).”'77* Those [2 + 2] syntheses comprising the 232
acid-catalyzed condensation of a dipyrromethane (also known 233
as dipyrrylmethanes) and a dipyrromethane bisaldehyde (or 234
their analogues) are referred to as MacDonald condensa- 235
tions.”*”> The condensation reactions are often acid-induced, 236
followed by an oxidative step to convert the initially formed 237
nonconjugated macrocycle to the final conjugated (or even 238
aromatized) product. In select cases, the fully conjugated 239
systems are formed upon metalation.”*”’® As the examples 240
below will demonstrate, these methods have consistently and 241
efficiently been utilized to make a range of porphyrinoids 242
containing S-, 6-, and 7-membered carba- and heterocycles (see, 243
e.g., most examples in Sections 2.3—2.8)."” Total syntheses were 244
also suitable for the insertion of more than one nonpyrrolic 245
building block. However, few of the reactions lend themselves 246
naturally to upscaling, an important aspect when considering 247
practical applications for the products. Generally, the metal ion 248
is inserted once the free-base porphyrinoid is formed, though 249
exceptions are known (see below for a discussion of the 250
metalation reaction step). 251

Less frequently applied, but nonetheless standing out as a 252
versatile approach, the synthesis of metallo-PMPs can also be 253
achieved via the conversion of a preformed porphyrin, chlorin, 254
or subporphyrin (see, e.g., many examples in Sections 2.1 and 255
2.2)."2717 Often, several distinct steps in these processes can 256
be distinguished (Scheme 1B): The porphyrin is functionalized 257
at its pyrrolic #-positions. This functionalization is the synthetic 258
handle for an oxidative pyrrole ring-opening/activation step, 259
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followed by a (ring-closing) step that generates the nonpyrrolic
heterocycle of the same or different ring size as the S-membered
pyrrole from which it is derived. At times, multiple elementary
steps may take place in a single reaction. Also, the reaction
sequence can be performed twice on the same molecule, either
in parallel or in succession, to generate dimodified systems.
PMPs of one class are susceptible to conversion into other
classes of PMPs using functional group interconversion
strategies."”~'*”* PMP syntheses and modifications may also
not involve the f-positions altogether (see, for example, the
vacataporphyrins, Section 2.1.2). The metal ion may be inserted
once the free-base PMP is formed, or at any other stage. In some
instances, the metal plays an important role in stabilizing the
intermediates of the ring-opening step, a point highlighted
below with specific examples.

1.3. Metal Insertion Reactions

The formation of metalloporphyrinoids is key for their broad
utilization in, for example, catalysis,80 biomedicine,®' molecular
electronics,®” or artificial Iight-harvesting.83 The formation of
metalloporphyrinoids from their free-base compounds is a
classic metathesis reaction.” In its simplest form, the reaction of a
divalent metal salt (ML, ) with a dibasic porphyrinoid forms the
metalloporphyrinoid [and the corresponding acid of the metal
salt anion (HL); Scheme 2].>%*

Scheme 2. Generalized Metathesis-Type Metal Insertion
Reaction into a PMP-Type Porphyrinoid

M“Lg
+ 2HL

Free base porphyrinoid Metalloporphyrinoid

Many variations of this reaction are known, such as involving
metals of oxidation states lower than the final oxidation state of
the metal found in the PMP, implyin% the involvement of redox
reactions during the metal insertion.”®**®° Furthermore, a varied
selection of mono- and multidentate axial ligands to the
metalloporphyrinoid may be present, or double-decker or
multinuclear complex assemblies may form.>**%*”

Regular (hydro)porphyrins generally provide dianionic
idealized square-planar N,-coordination environments to metals
located in their central cavity. (Hydro)porphyrins are also
typical noninnocent ligands, able to partake in redox events at
the metal.**® Many PMPs also provide porphyrin-like N,-
donor sets (see Section 2.2). Those that are planar and of similar
basicity are expected to also possess coordination chemistry
properties that are similar to those of metalloporphyrins. Others
that are nonplanar or have much altered donor atoms show the
corresponding variations in their coordination behavior. In
addition, PMPs may provide neutral, monoanionic, dianionic, or
trianionic coordination environments with S,, N5C, N,C,, NS,
NCNS, N4—N4,90 etc., donor sets in a conformationally
malleable framework,”' as the examples below will illustrate.
This changes their coordination chemistry in fundamental ways
compared to those of the N -porphyrins and N,-porphyrinoids
(such as corroles” or porphyrin isomers such as porphy-
cenes,”' ™ etc.). To which degree some PMPs (or porphyrin-
like macrocycles likes corroles)’® are noninnocent only began to
be studied more recently.”

Upon the insertion of a metal ion into all carbaporphyrin-type
PMPs, i.e., PMPs containing one (Section 2.4) or two (Section
2.5) inner carbon atom(s) in place of a (pyrrolic) nitrogen atom
of the regular (hydro)porphyrins,'®”” the potential for the
formation of a metal—-C bond is §iven (see, e.g, N-confused
porphyrins,98 azuliporphyrins,gg’10 or benziporphyrins101).9’28
By definition, these M—C bond-containing entities are organo-
metallic species. To some extent, the potential for the formation
of an organometallic complex is also given for some metal-
loethyneporphyrins (e.g., Section 2.3.5) or PMPs containing
inverted building blocks (e.g., Sections 2.4.3, 2.4.4, or 2.4.7),
allowing in the latter case pyrrolic #-carbon atoms to coordinate
to the central metal ion.

Generally, the rate-limiting steps in the metal insertion
reaction into a porphyrin are determined by the considerable
kinetic barrier of the initial metal insertion step into the planar
and relatively rigid macrocycle.** The porphyrin points its

(protonated) donor atoms of low basicity toward the center of 327

its (small) central cavity; the nitrogen atoms are thusly shielded
from facile deprotonation and/or coordination to metal ions.
Nature overcomes these barriers with the help of metal (iron,
magnesium, or cobalt) insertion enzymes that induce a
deformation of the porphyrin (or related tetrapyrroles) from
planarity upon binding to the enzyme, thereby exposing the
inner NH/N atoms; these deformation enzymes therefore
catalyze the formation of the complexes.'””™'** Since some
PMPs are intrinsically nonplanar or conformationally more
flexible than a native porphyrin,”" it is not surprising that many
traditionally slow metal insertion reactions take place more
readily,'” though detailed kinetic analyses are not available.
Above and beyond the conformational effects, there are also the
intrinsic kinetic barriers inherent to any specific metal ion that
need to be overcome.'*

328
329
330
331
332
333
334
335
336
337
338
339
340
341
342

Therefore, traditional approaches toward the formation of 343

metalloporphyrins frequently employ the reaction of the
porphyrin and a metal salt in a (relatively) kinetically labile
(often low) oxidation state in a high-boiling donor solvent
(pyridine, bp 115 °C; DMF, bp 153 °C; PhCN, bp 191 °C)
under reflux conditions over extended periods of time.”'"’
Microwave-assisted heating methods and mechanochemical
approaches are also available.'*™"'* The use of M(0) sources at
low temperatures may also offer milder insertion conditions for
sensitive porphyrinoids,””''" but we are not aware of the
utilization of these methods for the formation of metal
complexes of pyrrole-modified derivatives. The stable oxidation
state of the metal in the metalloporphyrin is then frequently
reached by a subsequent (air) oxidation step.”™""’

1.4. Role of the Coordinated Metal lons

The coordination chemistry of porphyrins is exceedingly rich,
with nearly all metals (and many metalloids—largely ignored
here) shown to coordinate to the porphyrin nitrogen atoms,
forming a large variety of metal—ligand architectures.” %>
Also, the electrochemistry of the metalloporphyrins is well-
studied and serves as a benchmarks for PMP metal complex
electrochemical studies.''”""* In comparison, much fewer metal
complexes of the PMPs have been studied."””"* Among those, a
small number of metal ions have been used frequently, mostly
for practical reasons: When metal ions are needed as protection
groups to prevent either the protonation of the inner imine
nitrogen atoms or the formation of deprotonated forms of the
free-base ligand, the use of the diamagnetic metal ion Zn** (74
pm, d'°, square-planar, square-pyramidal, or octahedral)''* is

https://doi.org/10.1021/acs.chemrev.1c00694
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Dihydroporphyrin
Chlorin

Porphyrin-mimic PMPs

|

Non-macrocycle-aromatic PMPs
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I Tetrahydroporphyrins

Bacteriochlorin

Isobacteriochlorin

Chlorin-mimic PMP

&

Anti-aromatic PMP

Bacteriochlorin-mimic PMP

Figure 3. Graphical representation of the macrocycle-aromatic 7-systems (in bold red); conjugated, but nonmacrocyclic-aromatic z-systems (in bold
green); and macrocyclic antiaromatic 7-systems (in bold blue) within the porphyrinoids shown.

371 advantageous as this complex generally forms readily, but the
372 metal ions can also be removed readily (using acid).”'®” Other
373 practical considerations like availability, cost, (low) toxicity,
374 solubility of the salts in the solvents suitable for porphyrins, etc.,
375 also play into zinc’s favor. The choice of diamagnetic metal ions
376 retains the option to obtain regular NMR spectra. More robust
377 than Zn?* toward adventitious (acid-induced) removal is Ni**
378 (63 pm, d° Ls.)"'* or the larger Pd** (78 pm, d*);'"* both form
379 diamagnetic, square-planar complexes that are overall neutral
380 (with dianionic ligands, like porphyrins),”*® also making them
381 the metals of choice for many porphyrinoids.'>"* Alas, Ni** and
382 Pd*" generally cannot be removed from the ligand without
383 ligand destruction. Also, in the presence of high concentrations
384 of other N-donor ligands (like when dissolved in pyridine), Ni**
38s complexes frequently lead to the formation of octahedral
386 paramagnetic high-spin complexes. The Ni** ion is typically a
387 little bit too small to fit perfectly into a porphyrin-sized cavity
388 and thus introduces some strain that generally leads to
389 nonplanar (ruffled) conformation modes of the porphyrinic
390 macrocycle.'>~''® Nonetheless, the presence of Ni** was often
391 observed to lead to a great stabilization of the porphyrinoids,””
392 and thus, their Ni** complexes are routinely prepared; their
393 redox chemistry is well-studied.''””"*" Nickel complexes of
304 PMPs were also used in electrocatalytic proton reduction
395 reactions. ~”'*> The copper ion Cu?* (71 pm, d° 1s.)"'* also
396 inserts readily into many porphyrinoids and may have similarly
397 stabilizing effects without introducing as many (or any)
398 distortions as nickel, but it renders the complexes paramagnetic.
399 This makes this metal ion a less preferred choice for the
400 synthetic chemist reliant on diamagnetic NMR spectroscopy,
401 albeit the NMR spectroscopic investigation of paramagnetic

Ni(II), Ni(III), and Cu(II) complexes of carbaporphyrin-based 402
PMPs is practiced.'”* As many examples presented below will 403
show, many copper PMP complexes contain the metal in the 404
+III oxidation state; the copper(IlI) d* ion is diamagnetic. 4o0s
Though more costly, the use of Pt** (74 pm, d*)''* is also 406
popular; the complexes are similar to the corresponding Pd** 407
complexes, but this nonlabile metal ion is much harder to insert 408
into any ligand, including porphyrins.*® The 4d and 5d group 10 409
metal ions also readily form organometallic complexes with the 410
inner carbon atoms of the carbaporphyrinoids and are therefore 411
advantageous to be used if a carbon atom is part of the PMP 412
donor set.'”"" The strong spin—orbit coupling (heavy atom 413
effect) between the porphyrinic chromophore and the 414
luminescence and long-lived triplet states of the Pd** and Pt** 415
ions is the basis for several applications of the Pd/Pt- 416
porphyrinoids.'*>”'*” Regular Nj-dianionic porphyrin and 417
porphyrinoids form freely paramagnetic complexes with Ag>" 418
(&, 93 pm).""* On the other hand, many porphyrinoids— 419
particularly from the family of carbaporphyrins with “regular 420
tetrapyrrole-like” architectures and N3;C donor sets—are 421
trianionic ligands. Because of the higher charge density of 422
these carbaporphyrins, they were shown to form neutral, 423
diama§netic, and fairly stable complexes with Ag®* (d®, 81 424
pm)."* Hence, this otherwise unusual oxidation state of silver is 425
frequently found in the metallocarbaporphyrinoid literature.'”'" 426
Most other metals used were chosen as synthons to saturate bi- 427
or tridentate coordination sites (Rh'(CO),, Re!(CO);, 428
respectively) or for their specific catalytic (Fe?*/3*, Mn**, 429
Co**/3*) or optical (Ln** like Yb*, Eu?*, Nd**)"**7'% 40
properties. Examples presented below will illustrate the use of 431
these metal ions. 432
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Figure 4. Normalized UV—vis spectra (CH,Cl,) of the four archetype classes of free-base porphyrin and hydroporphyrins (solid trace) and their zinc

complexes (broken trace). Spectra are of the meso-tetraphenyl-di/tetrahydroxy-chlorin/isobacterio/bacteriochlorin series,'* """

respectively,

illustrating the relative appearance of the archetype spectra of the free-bases and metal complexes; the absolute peak positions vary with different meso-

or f3-substituents and particularly with the specific metal inserted.

433 Lastly, many of the PMPs are more chemically reactive than
434 regular porphyrins or N,-porphyrinoids. Thus, insertion of the
435 metal ions may also induce framework modifications. These
436 reactions—not all of which were metal-induced—have been
437 reviewed.'” We will point out only those reactions that can be
438 directly linked to the presence of a metal.

1.5. z-System of Porphyrinoids and PMPs

439 Regular (tetrapyrrolic) porphyrins are characterized by the
440 presence of a Hiickel-aromatic 18 7-electron system, cross-
conjugated with two additional double bonds, resulting in what
442 is typically described as an 18 + 4 z-system. Figure 3 shows a
443 graphical representation of the macrocycle-aromatic 7-systems
444 (in bold red) and conjugated, but non-macrocyclic-aromatic 7-
445 systems (in bold green), and macrocyclic antiaromatic 7-
446 systems (in bold blue) within the porphyrinoids.'** Sequential
447 reactions that convert one or both cross-conjugated f,'-double
448 bonds to single bonds—i.e., that convert the pyrrole building
449 blocks to pyrrolines—generate chlorins, bacteriochlorins, or
450 isobacteriochlorins, respectively.””'*>'3® In all cases, their
451 resonance structures preferably take the so-called “inner—
452 outer—inner—outer” pathways indicated."** The aromatic 18 +
453 4, 18 + 2, or 18 z-electron systems of the (hydro)porphyrins are
454 primarily responsible for their characteristic electronic proper-
4ss ties, discussed in more detail below."*”

456 The replacement of one or more pyrroles by nonaromatic
457 building blocks can have many different outcomes on the 7-
458 system of the resulting PMP (Figure 3B): In the simplest case,
459 the nonpyrrolic building block electronically mimics the
460 presence of a pyrrole—and the resulting PMP has a
461 porphyrin-like 18 + 4 z-system and expresses a porphyrin-like
462 optical spectrum. This is the case with, e.g., the imidazolopor-
463 phyrins (Section 2.2.7)"**7'*° or porpholactones (Section

£

=

—

2.2.4)."*" If the nonpyrrolic building block is an electronic 464
stand-in for a pyrroline, then a chlorin-like 7-system with a 465
chlorin-like optical spectrum is expressed; two pyrroline stand- 466
ins form bacterio- or isobacteriochlorins (Section 2.2.5)." 7' 4
The interaction of multiple substituents in conjugation with the 468
macrocycle-aromatic system may lead to strong interactions and 469
distortions of these ideal cases (cf, e.g, Sections 2.2.4 and 470
2.4.1) 81467148 471

In other cases, a nonpyrrolic building block may not be able to 472
carry a macrocycle-aromatic 77-system, even though (or because) 473
these building blocks carry themselves local aromatic 7-systems 474
(Figure 3C). In these cases, no macrocycle-aromatic z-system is 475
expressed, and the optical properties of these PMPs resemble 476
linear, conjugated, but nonaromatic oligopyrroles. The benzi- 477
and pyriporphyrins are an archetypical example (Sections 2.4.6 478
and 2.2.10)."*"°° However, substituents on the nonpyrrolic 479
moieties may break the local aromaticity to enable a (partial) 4s0
ring-current (see, e.g., Sections 2.4.6 and 2.2.10).150 481

Nonpyrrolic building blocks that enforce a macrocycle 4s2
conjugation pathway involving 4n 7-electrons are antiaromatic 483
(Figure 3D). Albeit rare, they have been formed and are 4s4
surprisingly stable (see Section 2.4.6)."%" 485

Importantly, the removal of a third cross-conjugated double 4s6
bond from the tetrahydroporphyrins results in the interruption 487
of the classic Hiickel-aromatic 18 7-electron system. Thus, the 4ss
reduction of (hydro)porphyrins may lead to the formation of 4s9
their leuco-form, the porphyrinogens.>”'>* While their free- 490
bases are preferentially in the porphyrinogen tautomeric form 491
(5,10,15,20,22,24-hexahydroporphyrin), their nickel(II) com- 492
plexes are in the pyrrocorphin form (2,3,7,8,12,13-hexahydro- 493
porphyrin).'** Tris-modified (or even tetrakis-modified)'>*~"°" 4
PMPs are rare (even including PMPs with pyrrolines as well as 495

o

https://doi.org/10.1021/acs.chemrev.1c00694
Chem. Rev. XXXX, XXX, XXX—=XXX


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00694?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

4

Chemical Reviews

pubs.acs.org/CR

REVIEY

496 nonpyrrolic moieties), and only comparatively little is known

497 about their metal complexes and electronic structures.”>'®*

498  Inall cases, functionalizations/substitutions, metalation, and/

499 or protonation of the macrocycles may alter their conjugation
. ) 9,163,164

s00 pathways and, thus, their electronic structures.

1.6. Optical Properties

so1 The aromatic 18 r-electron systems of porphyrins and
502 hydroporphyrins are reflected in their characteristic UV—vis
503 spectra (Figure 4)."%" Insertion of a central metal also results in
s04 diagnostic changes to the spectra that generally simplify (in
s0s some cases because of increased symmetry), often sharpen
s06 (because of increased rigidity of the macrocycle), and usually
507 (metallobacteriochlorins represent an important and systematic
sos exception'®>™'”) blue-shift (because of the higher electro-
509 negativity of the metal cation that displaced two protons).
510 Metal-based d—d transitions are generally not visible in the UV—
s11 vis spectra of any porphyrinoid as their intensities are several
s12 orders of magnitude smaller than the intense 7—7* transitions of
513 the ligand that dominate the spectra.”'*” The nonlinear optical
514 properties of porphyrins, including some porphyrin-analogues
515 and their metal complexes, have been reviewed.

s16  The metal ion is tightly interacting with the m-system:
517 Porphyrinoids are archetypical noninnocent ligands—as seen
s18 through strong spin—orbit couplings, the strong optical and
s19 bond length changes upon changes of the metal oxidation
520 states,*® changes in their electrochemical behavior,'"® or the
521 electronic changes in the number or type of axial ligands on the
522 metal, etc.” These effects are harnessed in the utilization of the
523 metalloporphyrinoids as chemosensors, for example."*”'”*

s24  All PMPs possess strong z—a* transition-based optical
525 spectra. The optical spectra of non-macrocycle-aromatic PMPs
526 frequently resemble those of linear, conjugated oligopyrroles.'”
527 Those that are macrocycle-aromatic sometimes resemble those
s28 of the (hydro)porphyrins, but as in the examples presented
529 below, they often also vary significantly from those of the
s30 (hydro)porphyrin archetypes.

s31  Metal insertion into PMPs has often diagnostic consequences
s32 for their optical properties, but again, the optical changes
533 observed upon metalation vary vastly and are frequently also not
s34 along the lines of their regular (hydro)porphyrin congeners. The
535 differences to the standard hydroporphyrin spectra—such as the
536 frequently much red-shifted optical spectra—are one of the
537 attractions of the metallo-PMPs.

538 The emission spectra of most metalloporphyrinoids are
539 generally ligand-based."*” However, as examples presented
s40 below will demonstrate, some porphyrinoids are good
s41 lanthanide sensitizers, and their emission spectra are therefore
s42 dominated by lanthanide f—f transitions.

—_

—

o

st

1.7. Historical Perspective

543 Heteroporphyrins have been known for longer than most other
s44 PMP classes.””'”* Pioneers in the total synthesis of hetero-
s4s porphyrins (and gorphyrin isomers) included the groups of
s46 Vogel.' 5717517 Their coordination chemistry was studied
547 early on by the groups of Balch and Latos-Grazynski.”® Most
548 other PMP classes were developed after the mid-1990s, with an
s49 exemption of the forays of the group of Flitch into the total
sso synthesis of annulenes to represent the basic frameworks of
ss1 isobacteriochlorins.'””~"”” The important porphyrin isomer N-
ss2 confused porphyrin was first re})orted contemporaneously by
ss3 the groups of Latos-Grazynski~ and Furuta’' in 1994. Their
ss4 discovery was the start of an unprecedented interest in the
sss synthesis, modification, and coordination chemistry of carba-

=

porphyrins and other PMP-type molecules derived from sss
them.” ™' 12758 76LI00OIS0 1t is surprising that it took as long as ss7
it did, as Aronoff and Calvin considered such isomers as early as sss
1943 as possible products from the Rothemund reaction ss59
(condensation of pyrrole and benzaldehyde)'®' as well as séo
Pauling in 1944 (though his studies remained unpublished, as sé1
Senge noticed, in 2011)."*” The rapid development of expanded s62
porphyrins by the groups of Sessler and Osuka (some of which se3
could be defined as PMPs) intersected with the synthetic work se4
by Maeda and Furuta on (fused and confused) PMPs**™®" and s6s
some of their heteroanalogues, particularly as many of these s¢s
conformational systems allowed the probing of fundamental s¢7
concepts of aromaticity (as frequently probed by the group of ses
Kim)."**'*7'%¢ The groups of Chandrashekar and (later s6
independently) Ravikanth explored a large number of so-called s70
core-modified expanded porphyrins, the PMP-analogues of the s71
expanded porphyrins, and their coordination chemis- 572
try.' 910253 VI8188 Other key events that enabled the field of 573
total synthesis of PMPs were the [3 + 1]-type synthetic s74
methodologies66'189 (and later [2 + 2] methods) that were s75
perfected by the group of Lash for their application in the s76
preparation of a structurally wide variety of (mostly 577
carbaporphyrin-type) PMPs.”'%*7'%%'%0 More generally, an s7s
early book on expanded porphyrins by Sessler'”’ certainly s79
inspired the field, as was the scientific success and general sso
resonance that his work on the Texas-sized texaphyrin-class of ss1
PMPs generated.”*””*'?"'** Even though the group of Lindsey ss2
was not engaged in the total synthesis of PMPs, many of the s83
strategies and building blocks developed have alse-undoubtedly ss4
influenced the field of PMP synthesis.””'”>™""” The field sss
continues to be very dynamic. 586

The preparations of the first PMPs (considering free-base as ss7
well as their metal complexes) by conversions of porphyrins sss
(and other porphyrinic compounds) were accidental. It took sso
decades (until 1977) until the earliest (1933) porphyrin-to- so0
PMP conversions described by the group of Fischer'™ were so1
interpreted correctly.'””*°’ The group of Callot reported the so2
first pyrrole expansion reaction by a carbon atom—named at the 593
time as a porphyrin homologation reaction—in 1978.”°"*°% 504
Even after further fortuitous discoveries of examples by the s9s
groups of Crossley (in 1984),”” Gouterman (in 1989), and s9
Chang (in 1992)°°* that converted (hydro)porphyrins into s97
PMPs, it took until 1993 for the group of Bonnett to describe the s98
first targeted preparation of a f,f'-ring-opened PMP (a s99
chlorophin) and its ring-closure to a PMP containing a 600
pyridinone moiety.””> A forward-thinking review by Latos- o1
Grazynski, in 1999, provided some early guidance in the 602
insertion of atoms into a (metalloporphyrin) framework and 603
reactions that would rearrange the framework.”*® After a co4
gestation period during the early aughts, porphyrin-to-PMP so0s
conversion papers became more common, with the majority of 606
the papers published in the recent decade.””™"* A variety of 607
groups have defined the field since, ranging from the expansion 608
of the synthetic methodologies by the groups of Briickner”” to 609
the creativity of the group of Latos-Grazynski that presented 610
new classes of PMPs and unprecedented PMP interconversion 611
strategies'”*" and to the group of Zhang'*® that can be credited 612
for their recognition—and subsequent imaginative exploita- 613
tion—of the utility of some PMPs in a wide range of 614
fundamental and applied fields. This field of porphyrin 615
conversions, complementary to the PMP total synthesis field, 616
is likewise very dynamic, and new chromophores and 617
applications emerge regularly. 618
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Scheme 3. Synthesis” of Pyrrole-Modified Subporphyrins

256,257

1. Bis(2,4,6-trimethylpyridine)bromonium PFg’,

THF, N,
2. PhCHNOH, NaH, DMSO, N,
3. PIFA, DMF/H,0, N,

4. NaH, CH,Cl,

Pb(OAc),,
AIBN

1.TsCl. Et3N,
DMAP

2. Pd(OAc),,
SPhos,
[NH4J*THCO,]~

(CprIrCly),,
NaOAc-3H,0, a

diphenylacetylene,
NaBArF, A

6ir

TIr

“Stick representations of the X-ray structures of 3, 4, and 7Ir adapted with permission from ref 256. Copyright 2018 Wiley-VCH.

619  Naturally, this overview is not comprehensive. Likewise, all of
620 the research groups mentioned stood on the shoulders of early
621 giants in the field of (hydro)porphyrins who provided important
622 touch points that guided the thinking and synthetic method-
623 ology in the PMP field. These include Fischer,”*” % the father
624 of all synthetic tetrapyrrole chemistry; Johnson,”'*~*"* who
625 introduced heteroporphyrins, expanded heteroporphyrins, and
626 presented early examples of expanded porphyrins; and
627 Vogel,>>'7>17%*13 whose work included the presentation of
628 porphyrin isomers and heteroporphyrins. Inhoffen,”'* "¢
629 Woodward,”"’~**° Eschenmoser,”*' ~*** Smith,né_232 and
630 Dolphin219’233_238 must be credited, inter alia, for their extensive
631 pioneering work on synthetic methodologies in tetrapyrrole
632 chemistry as well as on early expanded and ring-modified
633 systems. Buchler”>*>'"" systematized the understanding of
634 porphyrinoid coordination chemistry. A pioneer in the system-
635 atic study of the coordination chemistry of the heteroporphyrins
636 was Balch,””™*** including their paramagnetic NMR spectro-
637 scopic studies of a range of porphyrin metal complexes.
638 Gouterman”*~>** must be credited for the rationalization of
639 the porphyrin optical spectra but also for the discovery of the
640 direct conversion of porphyrins to porpholactones. Mon-

gortsms’pw_253 (and others) contributed extensive work on 41
the conversion of porphyrins to hydroporphyrins. The study of, 642
and appreciation for, the conformational malleability of 643
porphyrin conformations was formalized, for example, by 644
Shelnutt' 7> and, more recently, by Senge.“8 Their work 645
remains most relevant also for the description of PMP
conformations. Treatises on the aromaticity of porphyrinoids
by the groups of Latos-Grazynski, Osuka, and Lash are also

27,134,183,186

646
647
648

landmarks. 649

2. METALLOPORPHYRINOIDS CONTAINING
NONPYRROLIC BUILDING BLOCKS

650

2.1. Metalloporphyrinoids with N;-Coordination Spheres

2.1.1. Boron Subporphyrin-Based PMPs and Their
Iridium Complexes. Subporphyrins are a class of tripyrrolic
ring-contracted macrocycles with 14s-electron systems that
were assembled around a central boron(III) atom. These
aromatic compounds possess strained, bowl-shaped conforma-
tions and are characterized by high-intensity fluorescence
emissions.”**%*%° In subporphyrin-based PMPs, one of the

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 4. Synthesis and Coordination Chemistry of Vacataporphyrin®
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M(I1)Cl,

Ph

9IM-A 9M-B
9Ni: M = Ni(ll)

9Cd: M = Cd(ll)

9Zn: M = Zn(ll)

9Fe: M = Fe(ll)

“Stick representation of the X-ray structure of 9Pd-A adapted with permission from ref 261. Copyright 2008 American Chemical Society.

6s8 three pyrroles of a subporphyrin has been replaced by a
659 nonpyrrolic building block.

660  Osuka and co-workers detailed the degradation of a pyrrole
661 moiety in subporphyrin 1 to an imine functionality, generating
662 subchlorophin 2 (Scheme 3).***%7 This group also accom-
663 plished the formal replacements of a pyrrole by an oxazolone or
664 imidazolone moiety, generating subporpholactone 3 or
665 subporpholactam 4, respectively, by functionalization and
666 conversion of subporphyrin.”>® Subporpholactam 4 can be
667 further converted to imidazolosubporphyrin 5. The stepwise
668 oxidative and functional group transformation approaches used
669 are comparable to the pathways applied to regular porphyrins
670 toward their conversion to PMPs (cf. multiple examples in
671 Section 2.2)."*"71*2%% Parallel to the porphyrin-based con-
672 geners, the optical spectra of the subporpholactone 3,
673 subporpholactam 4, and imidazolosubporphyrins $ are similar
674 to those of the parent chromophore.””**® Also, the crystal
675 structures of all three pyrrole-modified subporphyrins 3—$ show
676 the retention of the pseudo-C;-symmetric bowl shape of the
677 parent subporphyrin 1.>%

678 Subimidazolosubporphyrin § carries an outer imine nitrogen,
679 capable of metal coordination at the macrocycle periphery, as
680 demonstrated with the formation of iridium complexes 6Ir and
681 7Ir.”*® Further transformation of this complex was shown to be
682 possible, extending the annulated metalla-carbon framework.
683 These subporphyrinoids have yet to show any applications but,
684 like their parent subporphyrins,50 were suggested to have

promise in photovoltaics, light-emitting diodes, and nonlinear
0ptics.256

2.1.2. Vacataporphyrin Metal Complexes. Vacatapor-
phyrins are a class of aza-deficient porphyrins that possess the
connectivity and aromatic macrocycle of a porphyrin but lack
one inner nitrogen atom; this vacancy is filled by two hydrogen
atoms, forming an annulene b1‘idge.259_261 The removal of one
nitrogen from a porphyrin was initially accomplished by the
conversion of a heteroporphyrin, namely, the acid-induced
removal of tellurium from meso-tetraaryl-21-telluraporphyrin 8
(Scheme 4).>°

meso-Tetraarylvacataporphyrin § can coordinate as a mono-
anionic Nj-ligand to a variety of metal ions, affording
diamagnetic complexes 9Cd, 9Zn, and 9Pd and the para-
magnetic nickel(I) complexes 9Ni and 9Fe.”*""**> The metal
ion coordination spheres are saturated through pseudoaxial
ligands, as shown in the crystal structure of 9Pd-A.**" This may
lead to the formation of stereoisomers, distinguished by the
downward (inward) or upward (outward) orientation of the
axial ligand. The macrocycle ligand is nonplanar, with the
butadiene fragment bent away from the chloride bound to the
coordinated central metal. Ligand exchange reactions of the axial
chloride and ligand addition reactions forming five-coordinated
metal species were reported.”” Palladium vacataporphyrin 9Pd
reveals conformational rearrangements involving Hiickel and
Mobius macrocyclic topologies; light converts this complex to
the organometallic species 10Pd, containing now a dianionic

J https://doi.org/10.1021/acs.chemrev.1c00694
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712 N3C donor set (cf. the class of carbaporphyrins featuring a
713 similar donor set, Section 2.4).”°" Protonation and methylation
714 reactions of 9Pd resulted in changes of the macrocycle
715 conformation and palladium coordination modes.”®" Thermally
716 induced conformational rearrangements of the iron complex
717 H4Fe were also studied using paramagnetic 'H NMR spectros-
718 copy.”®*

719 One intriguing reaction is the activation of O, by
720 [vacataporphyrinato Jiron(II) chloro complex 9Fe to form the
721 [monooxapor})hyrinato]iron(III) chloro complex 11Fe
722 (Scheme 5).”°* This reaction is principally the reversal of the

Scheme S. Oxidation/Oxygen Insertion Reaction of
Vacataporphyrin Iron(III) Complex 9Fe to Form
Oxaporphyrin Iron Complex 11Fe

Ph

Tol Ph —— Tol

Tol

723 formation reaction of vacataporphyrins b}r extrusion of the
724 heteroatom from monotelluraporphyrins.”>” It is also a unique
725 way of forming furan-based heteroporphyrins (cf. Section 2.3.3).
726  The vacataporphyrin modification has led to altered optical
727 spectra compared to those of the corresponding porphyrin
728 though, except for the reduced number of Q-bands and their
729 general blue-shift, the optical spectrum of 9 is aromatic
730 porphyrin-like (Figure 5).”>” The two spectra for the palladium

Normalized Absorbance [au]

| | | |
400 500 600 700 800
Wavelength [nm]

Figure 5. Normalized UV—vis spectra (toluene) of 9, 9Pd-A, and
10Pd. Spectra of 9Pd-A and 10Pd adapted from ref 261. Copyright
2008 American Chemical Society. Spectrum of 9 adapted from ref 262.
Copyright 2011 American Chemical Society.

=

731 complexes 9Pd—Cl and 10Pd are significantly red-shifted and
732 broadened metalloporphyrin-like spectra, with only some
733 differences in the position of the Soret band as a result of the
734 changes of the conformation of the ligand and the bonding mode
735 of the metal.**"?*

2.2. Metalloporphyrinoids with N,-Coordination Spheres

736 2.2.1. Chlorophin and Secochlorin Metal Complexes.
737 Both chlorophins and secochlorins are derived from regular
738 porphyrins by f,'-cleavage of the pyrrolic moiety."> While
739 secochlorins retain a C,—Cy bond, this bond is reduced in
740 chlorophins to a C,—H bond. While the first discovery of a
741 metallosecoporphyrin was by fortuity,”** a number of rational
742 oxidative f,’-bond cleavage reaction sequences have since been
743 developed to prepare metallosecochlorins from adequately
744 derivatized f-octaalkylchlorins as well as meso-tetraarylporphyr-

[

in/chlorin metal complexes (Scheme 6). For instance, classic 745
diol cleavage reactions of diols of 13Ni and 16M, made by 746
OsO,-mediated dihydroxylation of the corresponding porphyr- 747
ins, followed my metal insertion reactions, generated the 748
diketone®® and dialdehydem)’258 secochlorins 14Ni and 17M, 749
respectively. Metal insertion reactions into free-base secochlor- 7s0
ins are not known. meso-Tetraarylsecochlorin diketone 19Ni can 751
be prepared in several steps from the corresponding f3,4'-dione 752
18Ni, itself accessible by oxidation of diol 16Ni using either 2- 753
iodoxybenzoic acid (IBX)****** or 2,3-dichloro-5,6-dicyano- 754
1,4-benzoquinone (DDQ).**° Dinitrile-substituted metallose- 7ss
cochlorins 21M,*°” prepared by diacetoxyiodobenzene (DIB)- 756
mediated oxidation of the f3,'-diamine 20M, are, like the other 757
secochlorins, fairly reactive and stabilized in the presence of a 7ss
metal ion. Many metallosecochlorins have shown their utility for 7s9
the preparation of other PMP classes (see, e.g, Sections 760
2.2.2—2.2.4 and 2.2.8—2.2.12). 761

Historically, the first synthesis of chlorophins, including 762
metalloisobacteriochlorophin 24Cu, was a total synthesis 763
approach that formed a nonaromatic precursor macrocycle 23 764
that was then subjected to a rare flash pyrolysis step (Scheme 765
7)."”” Though some of the pioneering experiments failed to 766
produce enough free-base material for reliable characterization, 767
the preparation of copper complex 24Cu suggested that this 768
metal complex is much more stable and can be made in higher 769
yields compared to the corresponding free-bases.'”” This 770
prediction proved to be prescient. 771

All other metallochlorophin and metallosecochlorin syntheses 772
known to date convert a (hydro)porphyrin (or subporphyrin, 773
see Scheme 3), whereby a number of strategies have been 774
pursued: Either the p-carbons of a S-brominated metal- 775
loporphyrin 25Ni are removed in a single step (Scheme 776
8A),”*® or a secochlorin metal complex is first prepared and 777
subsequently decarbonylated (Scheme 8B).*****” The square- 778
planar copper(1I) or nickel(II) complexes significantly stabilize 779
these chromophores. In fact, these reaction sequences were 780
reported to be only feasible for these metal complexes. The 781
crystal structures of the nickel(II) complexes show them to be 782
much more ruffled than the corresponding nickel(Il) porphyrin 783
or hydroporphyrins, as expected for an analogue of broken 7s4
structural integrity. The removal of a f,#'-bond from a 7ss
(hydro)porphyrin creates a conformationally more flexible 7s6
analogue to the metalloporphyrin or metallochlorin from 787
which it was derived.”****

2.2.2. Indaphyrin Metal Complexes. Indaphyrins are a 7s9
class of secochlorin-like pyrrole-modified meso-arylporphyrins in 790
which one pyrrole moiety was cleaved and (one or two) of the 791
former f-carbons were linked to the o-positions of the 792
neighboring meso-phenyl groups (Scheme 9).'%%*"%*"! Inda- 793
phyrins 31M were synthesized in a one-pot, two-step process by 794
oxidative cleavage of a chlorin diol (cf. Scheme 6) and 795
subsequent intramolecular ring-formation reaction of the 796
secochlorin 17. Metal insertion into the conformationally 797
flexible macrocycle is, likely because of their nonplanarity and 798
increased flexibility, facile, and indaphyrin nickel(II), copper- 799
(11), zinc(11), and platinum(IT) complexes were described,"*>*”° soo
including a crystal structure of the platinum(II) complex.'” so1
Their persistent chiral helimeric conformations allow their so2
separation by chiral HPLC.””" This suggests that the s03
racemization barrier is larger than can be overcome at ambient so4
temperature; the metal-dependent racemization barrier was 8os
computed.””! 806

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 6. Examples of the Synthesis of Metallosecochlorins

(A)
1. 0sOy, py
2. H,S
12 13Ni
B
(B) on b
1. OsOy, py
2. H,S
3. M(ll
Ph Ph () Ph
15 DD
Ph orQ Ph
y
Ph O
le) 1.MeMgBr,
THF
2. Pb(OAc),
Ph Ph
18Ni
Ph
(©) A
Ar

OH

1. Ni(OAc)2,
pyridine, A
2. Pb(OAc)4

Pb(OAc), or
NalOy/silica

Ph

16M 17Ni: M = Ni(ll)
17Ag: M = Ag(ll)

Ar
20Zn: M = Zn(Il) 21Zn: M = Zn(ll)
20Ni: M = Ni(ll) 21Ni: M = Ni(ll)

Scheme 7. Total Synthesis Approach toward
Metalloisobacteriochlorophin 24Cu

CO,Et

— HoN
Ve o U
H HoN \ N, N

1. LAH

2. Cu(ll

3. flash pyrolysis,
450°C, 0.04 torr

807 The indanone moieties thusly fused to the chlorin-type
808 chromophore extend the conjugated z-system, altering it
809 substantially from that of regular (hydro)porphyrins, and force
810 the macrocycle into a ruffled conformation, even in its free-base
811 form.

As a direct consequence of the altered electronics and
conformation, the UV-—vis spectra of the free-base and
metalloindaphyrins are very much distorted from any of the
standard porphyrinoid spectra (Figure 6; cf. Figure 4). The
indaphyrin platinum(II) complexes 31Pt and its meso-
thiophene-analogue show emissions well beyond 1100 nm,
albeit at low emission yields and at cryogenic temperatures.'*

An analogue to nickel complex 31Ni lacking the ketone
groups could also be prepared by a desulfurization reaction of a
thiomorpholinochlorin (see Section 2.2.9).””* Because of the
absence of the ketone functionalities that are in conjugation with
the porphyrinic 7-system, the optical properties of the two
compounds are clearly distinct from each other.””

2.2.3. Azeteoporphyrin and Azeteochlorin Metal
Complexes. Azeteoporphyrins are compounds derived from
the contraction of a pyrrolic building block in a porphyrin to a 4-
membered azete ring. This f-atom ring loss allows the retention
of the porphyrinic 18 7-aromatic system without inducing undue
strain to the macrocycle; it also retains the porphyrin-like N,-
coordination environment. If the retained f-carbon atom in the
modified moiety is sp>-hybridized, we refer to these systems as
azeteoporphyrins; in azeteochlorins, it is sp>-hybridized. The
nomenclature also correctly reflects the principal characteristics

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 8. Synthesis of Metallochlorophins by Degradation of a Pyrrolic Moiety”

: Po_—= > -S4

(I)Na 26Ni 27Ni
Ph Br N Ph
Br
, CuBr
Ph Ph —m—— +
Br
25Ni
Br
[RhCI(PPh3)s],

PhCN, A

< !
/J UG
17Ni \ 28Ni 29Ni

“Stick representations of the X-ray structures of 17Ni and 29Ni adapted with permission from ref 258. Copyright 1999 American Chemical Society.
Stick representations of the X-ray structures of 26Ni and 27Ni adapted with permission from ref 268. Copyright 2009 American Chemical Society.
Stick representations of the X-ray structure of 28Ni adapted with permission from ref 269. Copyright 2005 Elsevier. meso-Phenyl groups on all
crystal structures removed for clarity.

Scheme 9. Synthesis of Metalloindaphyrins 31M by
Intramolecular Ring-Closure of Secochlorin Bisaldehyde 17

N
|

31
31Pt

o
©
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o
)
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o
N
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o

Figure 6. Normalized UV—vis spectra (CH,Cl,) of indaphyrin 31 and
its platinum complex 31Pt. Spectrum of 31 adapted with permission
from ref 270. Copyright 2004 Royal Society of Chemistry. Spectrum of
31Pt adapted with permission from ref 10S. Copyright 2009 American
Chemical Society.

preparations were more directed. For example, the oxidative 839

Ph  31Ni: M = Ni(ll)

31Cu: M = Cu(ll) cleava%e of dione 18M generated the 4-membered ketone g40

31Zn: M = Zn(lIl) 32M.””® The photochemical activation of the copper(II) and s41

1Pt M =Pull) nickel(II) complexes of an a-diazoketone 33M yielded the s

“Stick representation of the X-ray structure of 31Pt adapted with corresponding metalloazeteochlorins 34M via a Wolff rear- 843
permission from ref 10S. Copyright 2009 American Chemical Society. rangement pathway (Scheme 10A).””**”° The authors deduced s44 s10

this azeteoporphyrin to be an intermediate in the formation of 845

porpholactone 37 (Section 2.2.4). 846

83s of the ogtical properties of these azeteo-derived porphyr- Metalloazeteoporphyrins show a remarkable degree of 847

836 inoids.”""*”* planarity. This planarity is especially surprising in the nickel(II) s4s

837  The first discovery of an azeteoporphyrin was a fortuitous complex 32Ni as it could have been expected to be, analogous to 849

838 (formal) CO extrusion from porphyrin 3,4'-diones.”” Later the conformation of nickel porphyrins,"'®*”*”” ruffled (cf. also ss0

M https://doi.org/10.1021/acs.chemrev.1c00694

Chem. Rev. XXXX, XXX, XXX—XXX
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Scheme 10. Metalloazeteoporphyrin and Metalloazeteochlorin Syntheses”

(A)
Ph O Ph
o) /\
0] 9 x p \
Ph’se‘o’go 5 —= T
Ph Ph Ph Ph /—
18Ni: M = Ni(ll) 32Ni: M = Ni(ll) r‘/)’/\_r\
Ph 18Cu: M = Cu(ll) Ph  32Cu: M= Cu(ll) 32Ni
NH,NH-Ts
Ph N Ph
2 CO,R
o)
A > 300 nm,
ROH
Ph Ph Ph
33Ni: M = Ni(ll) 34Ni: M = Ni(ll) O/ 34Cu, R =Bu
Ph 33Cu: M = Cu(ll) Ph 34Cu: M = Cu(ll)
(B)
Ph
1. MeMgBr
2. TMSOTf
Ph Ph Ph
Bh 35Ni

“Stick representations of the X-ray structures of 32Ni and 34Cu adapted with permission from ref 274. Copyright 2006 Royal Society of

Chemistry.

gs1 the nickel(II) secochlorin conformations, Scheme 8). However,
gs2 the Ni—N bond lengths observed in the smaller-ring-size
853 macrocycle 32Ni are already in the regime of those of the
gs4 strongly ruffled porphyrins and close to those of unrestricted
gss Ni—Ng? bonds, alleviating all driving forces for the macrocycle
856 to ruffle to further reduce the lengths of the Ni—N bonds.

ss7  Secochlorin monoaldehyde 28Ni*®” could also be converted
858 to a secondary alcohol by a reaction with a methyl Grignard
8s9 reagent; the intermediate alcohol was not isolated but instead
s60 underwent an acid-induced intramolecular electrophilic aro-
61 matic substitution reaction to ring-close to form azeteochlorin
862 33Ni (Scheme IOB).269 The free-base analogues of these
863 metalloazeteochlorins were not reported, and it is believed that
4+ only the nickel(II) ion sufficiently stabilized the intermediates to

8
86s allow the reactions to proceed.

N

ss6  2.2.4. Porpholactone Metal Complexes. Porpholactones
867 are a class of PMPs incorporating an oxazolone moiety.
s6s Porpholactones were surmised to be a thermodynamic sink in
869 3, -centered (hydro)porphyrin degradation reactions.'*! Thus,
870 they have been efficiently prepared by oxidative conversion of
871 porphyrins and hydroporphyrins, whereby numerous substrates
872 and methods are suitable to affect this conversion (Scheme
If the metalloporpholactones are desired, the
874 metal ions can already be present in a metalloporphyrin/chlorin
875 to be oxidized. Alternatively, metal insertion reactions into free-
876 base porpholactones using standard methodologies for
877 porphyrins are adequate to prepare a range of metal

141,247,278—280
873 11).

141,281
878 complexes.

meso-Tetrakis(pentafluorophenyl)porphyrin 15 is a partic-
ularly suitable porphyrin for its direct conversion to the
corresponding porpholactone, as well as every isomer of the
dilactones using a number of oxidants (Scheme 12)."*"*#7*7
Stepwise, controlled methods toward the synthesis of all five
isomers of the dilactones (three with an isobacteriochlorin-type
and two with a bacteriochlorin-type substituent pattern) have
also been reported.'*” The zinc(II) and palladium(II)
complexes also became available by oxidation of the
corresponding metallochlorins.'*” Each methodology has its
unique product profile, making the methods highly comple-
mentary. Metal insertions into the dilactones is possi-
ble.128,147,283

Select metalloporpholactones (37Fe and 37Mn) have shown
their efficacy to catalyze aziridation reactions of alkenes as well as
sulfoxidation reactions.”***** In both cases, their activity was
higher than those of the corresponding metalloporphyrin. This
was attributed to the lower HOMO energy of the metal-
loporpholactones, resulting in higher stabilities toward oxidative
degradations. Metalloporpholactones, such as 37Pt, 37°Ga,
and 37FYb, have also found use as photosensitizers and oxygen
and halochromic (base) sensors in technical and biological
applications.'**"**

Surprisingly, the optical properties of the free-base
porpholactones resemble those of the corresponding free-base
porphyrins, while those of the metalloporpholactones resemble
more metallochlorins (Figure 7A)."*" Neither the isobacterio-
chlorindilactones nor the bacteriochlorindilactones show typical
isobacteriochlorin (Figure 7B) or bacteriochlorin spectra

128,203,247

N https://doi.org/10.1021/acs.chemrev.1c00694
Chem. Rev. XXXX, XXX, XXX—=XXX
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Scheme 11. Synthesis of Metalloporpholactones Using Direct Porphyrin Oxidations or the “Breaking and Mending Approach”,

Followed by Metal Insertion”

Ar  NH, Ar  OH Ar O
OH o
Ar Ar Ar Ar Ar Ar
36 16 18
Ar Ar Ar
RuCls, bipy, Oxone, oxidations

OH-, H,O-CH,Cl,, A
or
AgOAc, AcOH, A,
(oxalic acid)
or
cetylMesN*MnO,4~,
CH,Cly, r.t.

37Zn: M = Zn(ll)
37Ni: M = Ni(ll)
37Pd: M = Pd(ll)
37Pt: M = Py(ll)
37Mn: M = Mn(lll)CI
37Fe: M = Fe(lil)Cl

37Mn, Ar = phenyl

“Stick representation of the X-ray structure of 37Mn adapted with permission from ref 282. Copyright 2005 Royal Society of Chemistry.

Scheme 12. Synthesis of Dilactone Metal Complexes®

CeFs
CeFs CeFs
15F: M = 2H
CeF's 15FZn: M = Zn(ll)

15FPd: M = Pd(ll)

1. step-wise AgOAc, AcOH, A, .
synthesis  © (oxalic acid) or | RUCls, bipy, Oxone,
OH-, H,O-CH,Cly, A

2. for M = 2H: M(Il)/M(ll1) insertion

CeFs
isobacteriochlorin-type
+ all other dilactone isomers

bacteriochlorin-type

38F: M = 2H 39F: M = 2H
38Fzn: M = zn(Il) 39FZn: M = Zn(Il)
38FPd: M = Pd(ll) 39FPd: M = Pd(ll)

cetylMesN*MnO,~,
CH.Cly, it.

VA
ﬁ, 7///’
X

N1
# N

39FZn-py

“Stick representation of the X-ray structure of 39"Zn"py adapted with permission from ref 283. Copyright 2014 American Chemical Society.
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A tong eeds those of the corresponding porphyrins (Figure 933
3 1 8).1 '3% Again, this highlights the electronic influence of the 034 s
808 37 nonpyrrolic moiety and the opportunities presented by the o35
c V.07 . .« .

8 377Zn alteration of the porphyrinic framework. 936
3 0.6
< Ar O
E 0.4
3 R F
g 0.2 PEG
Ar=

2o T T T A T S

400 500 600 700 F F

B Wavelength [nm]
= . Ar 37FPt: M = Pt(ll)

& 1 37FGa: M = Ga(lll\Cl
3 3sF
€ 0.8 F
8 38FZn
§ 0.6
<
3044
N
0.2
£
§ P ‘A F
0 T T T T
400 500 600 700

C Wavelength [nm]
3T 44
‘o 39F Figure 8. Metalloporpholactone derivatives with technical and
§ 0.8 39°Zn biological applications.
g06
o4 2.2.5. Oxazolochlorin and Oxazoloisobacteriochlorin 937
T V.47 . . .

8 Metal Complexes. Oxazolochlorins, generally as their zinc 938
80.2 complexes 40Zn, were generated by reduction of the 939
S corresponding porpholactones, such as 37Zn (Scheme 940513
0 T T 123,141,142, 162 .
400 500 600 700 13). In some processes, they form directly from 941513

Wavelength [nm] )294

metalated (silver(II) or free-base nonporpholactone pre- 942

cursors.””® The hemiacetal hydroxy moiety on lactol 40Zn can 943

141

Fi 7.N lized UV—vi tra (CH,Cl,) of (A holact
1gure 7. Norma e vis spectra (CH,Cly) of (A) porpholactones be readily exchanged for alkoxides, amines, or thiolates, = 944

37 and 37Zn, (B) cis-dilactones 38" and 38"Zn, and (C) of trans-

dilactones 39F and 39¥Zn. Spectra of 37 and 37Zn adapted from refs creating a large variety of conjugates, some of which were Sho‘z"gg 945
141. Copyright 2012 American Chemical Society. Spectra of 38%, to be biologically active and suitable as MRI imaging agents.” " 946
38"Zn, 39%, and 39"Zn adapted from ref 283. Copyright 2014 The reduction leads to a large red-shift of their optical spectra 947
American Chemical Society. compared to those of the parent porpholactones and the 94s

establishment of a typical (metallo)chlorin spectrum (Figure 9). 949 o
The two pyrroline stereoisomers of an ytterbium(III) oso
chlorolactol complex 40°Yb with a large axial ligand (the os1
Klaui ligand) showed differentiated optical responses to 9s2
temperature (when embedded in a polymer matrix); they os3
were also utilized as optical viscosity sensors.' > 954
The reduction of pyrrolic moieties in the porpholactones is 955
also possible using a variety of reagents; the reaction is 956
regioselective (one example is shown in Scheme 14).133139162 g7 14
The porpholactol zinc complex 40Zn shows distinctly different 9ss
biological and photophysical properties compared to the 959
corresponding porpholactone or isobacteriochlorin zinc com- 960
plexes.'**'“> The nickel(II) complex 41¥Ni was shown to be a 961
much more effective catalyst for the hydrogen evolution reaction 962
(proton reduction) than the corresponding nickel porpholac- 963
tone or nickel chlorin complexes (Scheme 14).'** In addition, 964
the influence of the hemiacetal hydroxy group—generated 965
through reduction of the corresponding porpholactone 966
(Scheme 13)—on hydrogen evolution catalysis was also 967
demonstrated.'*” 968
2.2.6. Octaalkyloxazolochlorin Metal Complexes. The 969
conversion of f-alkylporphyrins into chlorin-like chromophores 970
using ozone was already reported in 1933 by Fischer and 971
DeZeli¢, but the products were misidentified.'”® The surprising 972
finding that oxidations of porphyrins lead to hydroporphyrin- 973
type chromophores was later investigated using octaethylpor- 974515

908 (Figure 7C), respectively. Thus, their naming describes only the
909 regiochemistry of the site of the lactone modifications, not their
910 electronic structures. The intriguing electronic influences of the
911 lactone moieties, including their distinct regioisomeric optical
o12 differences and the remarkably differentiated ability of the
913 regioisomers to sensitize lanthanides, were studied.'>*'3%>%%2%
914 The platinum(II) complexes of the meso-tetrakis-
915 (pentafluorophenyl)-substituted porpholactones (37°Pt)
916 show, because of a strong spin—orbit coupling, intense
917 phosphorescence; other metal complexes were also photophysi-
o18 cally characterized.”®" Their triplet states and associated
919 luminescence can be quenched with triplet oxygen (Stern—
920 Volmer quenching), §iving rise to their use as optical oxygen
921 pressure sensors. > Thus, polymer formulations of these
922 oxygen sensors have become known as pressure-sensitive
923 paints.”******* The platinum(II) complexes were also utilized
924 as optical cyanide or optical ratiometric high-pH sensors, relying
925 on the optical changes induced by nucleophilic attack on the
926 lactone carbonyl group.””' ~*%?

927  Lanthanides such as ytterbium(III) are attractive because they
928 possess NIR luminescence properties of potential value for
929 biological imaging applications. However, the direct excitation
930 of the lanthanides is quantum-forbidden, necessitating a
931 sensitizer. Porphyrins prove to be suitable sensitizers for
932 lanthanides, whereby the sensitization efficiency of porpholac-
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Scheme 13. Synthesis of the Metallooxazolochlorins by Reduction of a Metalloporpholactone and Structures of the Viscosity

Sensors 40°Yb“

40FYb-up

40FYb-up

R = OCD3, Ar = C¢Fs

40FYb-down

40FYb-down

“Stick representations of the X-ray structures of 40FYb-up and 40FYb-down adapted with permission from ref 133. Copyright 2018 American

Chemical Society.
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Figure 9. Normalized UV—vis spectra (CH,Cl,) of 37Zn and 40Zn.
Spectra adapted with permission from ref 141. Copyright 2012
American Chemical Society.

975 phyrin 12 (Scheme 15)."””?% Indeed, a reaction of 12 with
976 ozone generated the corresponding heptaethyloxazolochlorin
977 hemiacetal 42. Thus, a pyrrolic f-carbon with its alkyl
978 substituent was excised and replaced by an oxygen atom, and
979 the neighboring J-carbon was hydroxylated; the reaction
980 presumably proceeded via classic ozone-addition, rearrange-
981 ment, and oxidative cleavage steps.'””*%

982 Ina most surprising and as yet not fully rationalized reaction,
983 metal insertion under aerobic conditions generated furan-linked
984 bis([oxazolochlorinato]metal) dimer 43M and heptaethyl-2-
985 oxa-3-oxoporphyrinato]zinc(Il) 44Zn.”” The X-ray crystal of
986 the furan-linked 43Cu shows the symmetric dimer structure of
987 two essentially planar [oxazolochlorinato]copper(II) moieties
988 linked through an acetal oxygen and a direct carbon—carbon
989 linkage between two ethyl groups, forming a tetrahydrofuran.
990 The two oxazolochlorins are arranged trans to each other and are
991 connected by spiro-linkages to the 2- and S-positions of the

Scheme 14. Synthesis of Metalloisobacteriolactone
Derivatives 41"M

CeéFs 0o

. Se /52_ph
. P, P
/ \\ / N
Ph sé Se

toluene, A

2. M(Il)

41FZn: M = Zn(ll)
41FNi: M = Ni(ll)

tetrahydrofuran.””’ Thus, metal insertion evidently led to a C— 992
C coupling reaction involving an otherwise not activated alkane 993
side chain. 994

2.2.7. Imidazoloporphyrin (Including Porpholactams) 99s
and Triazoloporphyrin Metal Complexes. meso-Arylimida- 996
zoloporphyrins are derived from a regular meso-arylporphyrin by 997
replacement of a f-carbon by an sp*-hybridized nitrogen atom. 998
No one-step method to accomplish this transformation from a 999
porphyrin or chlorin is known, but three stepwise approaches 1000
have been reported (Scheme 16): reduction of porpholactam 1001 st6
46;'"" a complex reaction mechanism involving the collapse of 1002
an intermediate presumed 7-membered nonpyrrolic building 1003
block arising from the reaction of secochlorin dialdehyde 17 1004

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 185. Synthesis and Reaction of f-Alkyloxazolometallochlorins 43Zn and 43Cu”

O3, Zn(0OACc),,
CH,Cly/CeHe, THF, EtN,
1:20, rt A, 4h, Ny
12
M(OAG),,
MeOH, THF or CH3;CN
EtsN, A, air hv, air

43Zn: M = Zn(ll)
43Cu: M = Cu(ll)

“Stick representations of the X-ray structure of 43Cu adapted with permission from ref 200. Copyright 2016 Wiley-VCH.

Scheme 16. Alternate Syntheses of Metalloimidazoloporphyrin 45N,

H,NOH,
[H*]
two-step
37 reduction
(Ar=Ph) —= —
/ H,NOH, py, A
+—CO,H
Ph (o] 17
CO,H
o
Ph Ph
Ph 18
R https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 17. Total Syntheses of Metallomono- and Metallobisimidazoloporphyrins

(A)

Y —
~oN-H H-N
1. Hy/Pd-C
COBn  BnO,C 2. Zn(OAC),
48 DMF/THF, A

.

N/ N

N ke
N a9

(B)

NN

N &Ni
N
H 4o Zn(OAc),
¥ DMF/THF, 70°C
]\
N
H

Ar OH
OH
1047/silica,
ROH, [H*]
Ar Ar — > Ar
Ar  16Ni
Pb(OAc)4

10,47/silica,
EtsN, ROH

ROH or
ROH, EtzN
Ph

“Stick representation of the X-ray structure of 52Ni adapted with permission from ref 298. Copyright 2011 American Chemical Society.

or the reaction of a secochlorin
138

1005 With hydroxylamine;m9
1006 monoaldehyde 28Ni with hydroxylamine.
1007 A reaction of the secochlorin aldehyde 28Ni with hydroxyl-
1008 amine under acidic conditions leads to a dehydration with
1009 concomitant oxidative ring-closure to form imidazoloporphyrin
Lo10 4SNi without the observation of an intermediate.'*® Only the
1011 latter path was shown to directly deliver the metal complex
1012 45Ni. The other pathways generate the free-base imidazolopor-
1013 phyrin and therefore require subsequent metal insertion
1014 reactions. This reaction highlights the high driving force toward
1015 the formation of products with porphyrin-like framework
1016 architectures. The outside nitrogen atom can be protonated
1017 and was proposed to be utilized for metal recognition.l‘?’s’140
1018 Imidazoloporphyrins possess porphyrin-like optical properties.

The preparation of the subporphyrin-analogue to the
imidazoloporphyrins by reduction of the corresponding
subporphyrin lactone moiety is shown in Scheme 3.%%

By virtue of the presence of the basic imine nitrogen atom at
the periphery of the porphyrin ring, imidazoloporphyrin 45Ni
shows, unlike the corresponding nickel porphyrin complex
15Ni, a halochromic response upon protonation.]3 In an
attempt to utilize the potential coordination of this peripheral
nitrogen atom to metal ions, porpholactam 46 was converted to
the aminodiacetate derivative 47Ni (Scheme 16)."*" However,
it proved to be unsuitable as a chemosensor for metals,
presumably because of the small bite angle between the outer
ring nitrogen and the chelating group attached.'*’

Porpholactam 46 is accessible either through conversion of
porpholactone 37 over several steps or along an unusual (but

S https://doi.org/10.1021/acs.chemrev.1c00694
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efficient) reaction path starting from dioxo-compound
18,139,140,145

Only total synthesis approaches toward f-hexaalkylimidazo-
loporphyrins containing one or two imidazole moieties are
known (Scheme 17A).””” One approach is that, alonga [3+1]
pathway, a tripyrrane 48 is reacted with imidazole 49 derivatized
with two good leaving groups in the presence of zinc(Il),
providing imidazoloporphyrin S0Zn. Alternatively, the con-
densation of imidazole derivative 49 and diethylpyrrole in the
presence of zinc acetate (that may act as a template and Lewis
acid catalyst) generated a bisimidazoloporphyrin zinc(II)
complex $1Zn, in two regioisomeric forms $1Zn-A and 51Zn-
B (Scheme 17B). Note that the number of pyrrole replacements
does not change the central Ny-coordination sphere of the
ligand. The optical properties of these complexes are
surprisingly similar to those of the corresponding octaethylpor-
phyrin zinc complex.”””

2.2.8. Morpholinochlorin Metal Complexes. Morpholi-
nochlorins incorporate a 6-membered morpholine ring in place
of a pyrrole. They were synthesized by ring-closure of a
secochlorin dialdehyde (such as 17Ni, cf. Scheme 6) with an
oxygen nucleophile (Scheme 18).'79%%% Thus, the nickel(1I)-
templated, acid-catalyzed, and primary alcohol-induced ring-
closure of the stable secochlorin dialdehyde nickel(II) complex
17Ni (isolated or generated in situ) generated [meso-
tetraphenylmorpholinochlorinato ]Ni(II) double-acetal com-
plexes 52Ni.'”">*”® A range of alcohols proved suitable to affect
this reaction. The first formed acetal-hemiacetal compound
S3Ni can undergo an acid-catalyzed Friedel—Crafts-type
reaction with the o-position of an ad';acent meso-aryl group,
leading to the polycyclic system 54Ni.' ">

The strongly nonplanar, ruffled conformation of the
dialdehyde nickel complex 17Ni is preserved and leads to a
steric stereocontrol (in cooperation with an electronic, anomeric
effect-type of control) of the relative position of the alkoxy-
substituents to be trans to each other. The helimeric
enantiomers of the morpholinochlorins are persistent (i.e.,
they do not racemize) and thus can be resolved.””®*”” The
nonplanar, ruffled conformation of 53Ni leads to an ideal
accommodation of the small nickel(II) ion. This, in turn, leads
to an unusual electrochemical behavior of $3Ni compared to the
corresponding porphyrin or chlorin in that cathodic reduction
does not lead to the formation of a nickel(I) complex (like
observed for regular porphyrin or chlorin nickel(II) complexes)
but to a ligand anion radical nickel(II) species.”” Irrespective of
the involvement of the nickel ion, the synthesis of free-base
morpholinochlorins using in situ generated secochlorin
dialdehyde 17 is also feasible.””*"!

The optical properties of free-base morpholinochlorins
correspond to those of a bathochromically shifted (compared
to the corresponding free-based diolchlorin) chlorin-type
spectrum.’””*”® The spectrum of the nickel (II) complex mirrors
these characteristics; it is a red-shifted (compared to the
spectrum of 16Ni) metallochlorin spectrum (Figure 10).170298
These shifts can be attributed to conformational effects,
particularly the dihedral angle between the two C,—Cj; bonds
within the morpholine moiety.'**

2.2.9. Thiomorpholinochlorin Nickel Complexes. Seco-
chlorin 19Ni can also be ring-closed with a sulfur nucleophile,
such as by treatment with Lawesson’s reagent to form
thiomorpholinochlorin $5Nij, the thioanalogue to the morpho-
linochlorins (Scheme 19).°°> Since only the nickel(II)
secochlorin complex 19Ni was found to be stable under the

pubs.acs.org/CR
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Figure 10. Normalized UV—vis spectra (CH,Cl,) of morpholino-
chlorins 52 and 52Ni. Spectrum of 52 adapted with permission from ref
301. Copyright 2003 American Chemical Society. Spectrum of 52Ni
adapted with permission from ref 298. Copyright 2011 American
Chemical Society.

Scheme 19. Syntheses and Modification of
Metallothiomorpholinochlorin Derivatives”

Lawesson’s
reagent, toluene, A

56Ni

“Stick representations of the X-ray structures of SSNi and S6Ni
adapted with permission from ref 272. Copyright 2016 American
Chemical Society.

reaction conditions, the preparation of free-base thiomorpho-
linochlorin has not yet been accomplished. The thiomorpholino
framework could be altered by an acid-induced double
intramolecular cyclization reaction to form the annulated
polycyclic system 56Ni. Despite this framework alteration, the
optical properties of the two compounds S5Ni and 56Ni proved
to be very similar to each other and metallochlorin-like, as are
their conformations.””” Again, this serves as an example for a
central metal-induced conformational (and thus also largely
electronic) control of the macrocycle.

The thiomorpholine framework can be hydro-desulfurized,
generating compound $7Ni, a ketone-free, sp>-analogue to

1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108

indaphyrin 31Ni (cf. Scheme 9).””” The electronic properties of 1109
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1110 $7Ni are altered compared to those of the regular indaphyrins,
1111 showing the electronic influences of the z-conjugated ketone
1112 functionality.

1113 2.2.10. Pyri- and Oxypyriporphyrin Metal Complexes.
1114 In pyri- and oxypyriporphyrins, a pyrrole is replaced by a
1115 pyridine or pyridinone moiety, respectively, with the nitrogen of
1116 the heterocycle at the regular inner macrocycle position. The
1117 pyriporphyrins are the N,-analogues of the N;C-coordinating m-
1118 benziporphyrins (see Section 2.4.6). An example of a N-
1119 confused pyriporphyrin exhibiting the N3C-coordinating typical
1120 of a carbaporphyrin is also known and is discussed with the
1121 carbaporphyrins (see Section 2.4.7). Pyriporphyrins share with
1122 the benziporphyrins the disadvantage that macrocycle aroma-
1123 ticity is only possible upon interruption of the local aromaticity
1124 of the pyridine group. However, the introduction of ketone
1125 groups into the pyridine moiety, forming oxypyriporphyrins,
1126 perturbs the local nonpyrrolic 7-system sufficiently to enable the
1127 expression of a macrocycle-aromatic system.”***"*

1128 Synthetic approaches toward pyriporphyrins and oxypyripor-
1129 phyrins include established [3 + 1] routes for PMPs (Scheme
1130 20).°%% Unlike benziporphyrin, pyriporphyrins possess an

Scheme 20. Synthesis of Pyriporphyrins and Metal
Complexes”

1. NaBH, Me \4] 59Zn
2. Pyrrole _ ]
3. TFA/CH;CN Mes = 3@'\46 9
4. TEA, DDQ X
Me
Mes Mes
ZnCl,
Ph Mes Mes
59 59Z
Ph Ph "

“Stick representation of the X-ray structure of $9Zn adapted with
permission from ref 308. Copyright 2006 Wiley-VCH.

1131 inner nitrogen atom that readily engages in a coordination
1132 interaction with a central metal. Because of this, the resulting
1133 complexes of the monoanionic Ny-ligand are much more
1134 planarized compared to the corresponding benziporphyrin
1135 complexes; in this respect, they generally behave more like
1136 regular porphyrins. A comparison of the crystal structure of
1137 pyriporphyrin 59Zn with that of the corresponding benzipor-
1138 phyrin metal complex 112M (Section 2.4.6) illustrates this
1139 point.306’307

1140 The electronic spectrum of free-base pyriporphyrin 59
1141 resembles that of the structurally related benziporphyrin (Figure
1142 11; cf to Figure 17).2° The UV—vis spectrum of the zinc(1l)
1143 complex 59Zn is much red-shifted compared to its free-base
1144 spectrum, but the broad, featureless bands and the small
1145 intensity ratio of the Soret band to the Q-band region highlight
1146 the nonaromatic nature of this metal complex.
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Figure 11. Normalized UV—vis spectra (CH,Cl,) of free-base
pyriporphyrin 59, of its Zn(II) complex 59Zn, and of oxypyriporphyrin
Ni(II) complex 63Ni (2% TFA/CH,CL,). Spectra of 59 and 59Zn
adapted with permission from ref 307. Copyright 2006 Wiley-VCH.
Spectrum of 63Ni adapted with permission from ref 302. Copyright
2012 World Scientific.

Reactions that convert porphyrins into oxypyriporphyrins
(and related macrocycles) are available (Scheme 21A—C); this
distinguishes them from the structurally similar benziporphyrins
for which such conversions are not known (see Section 2.4.6). In
fact, oxypyriporphyrins are a rare group of PMPs for which both
types of syntheses are available.

These syntheses include the fortuitous migration of the N-
alkyl group of N-alkylated porphyrin 60 into a pyrrole upon its
metalation with nickel(II), forming PMP complex
61Ni.>"*****" A more rational synthesis of oxypyriporphyrins
is the aldol condensation of the octaalkylsecochlorin nickel
complex 14Ni (for its formation, see Scheme 6) to form
oxypyriporphyrin 62Ni (the latter two reactions represent some
of the earliest PMP syntheses, cf. Section 1.7).°°>*%* This
reaction was expanded to the free-base systems and the synthesis
of dioxypyribacteriochlorins.310 Similarly, the meso-aryl-por-
phyrin series can also be converted, via secochlorin 19Ni, to
oxypyriporphyrin nickel complex 63Ni. The nonpyrrolic moiety
of oxypyriporphyrin 63Ni can be reduced, generating metal-
lochlorin-analogue 64Ni.***

The metalloporphyrin-type UV—vis spectrum of oxypyripor-
phyrin 63Ni is, on account of its aromaticity, metalloporphyrin-
like, with much sharpened bands, including two well-defined Q-
bands compared to, for instance, the spectrum of the broad and
featureless spectrum of benziporphyrin complex 114Ru"
(Section 2.4.6).302

2.2.11. Pyrazinoporphyrin Metal Complexes. Pyrazino-
porphyrins are PMPs in which one pyrrole unit of a porphyrin
has been replaced by a (dihydro)pyrazine moiety. Similarly to
the morpholinochlorins, all pyrazinoporphyrins and pyrazino-
chlorins were made by conversion of porphyrins (Scheme
244) 300311

A reaction of nickel secochlorin dialdehyde 17Ni with
ammonia induced an amine-nitrogen-induced intramolecular
ring-closing reaction, generating a hydroxy-substituted pyrazi-
noporphyrin framework; this intermediate could be (formally)
alkylated using a substitution reaction with ethanol to generate
alkoxy derivative 65Ni.’"”*"" This reasonably chemically-stable
metallo-PMP possesses metalloporphyrin-like optical spectra.
Free-base pyrazinochlorins are accessible along equivalent
pathways from free-base secochlorin dialdehyde 17 but are
characterized by low chemical stability, but the nickel complexes
are reasonably stable.’’”*'" The ligand-centered electro-
chemical reduction of nickel(II) complex 65Ni was studied.*”’

A second reaction that expands the pyrrole of a porphyrin by a
nitrogen atom is a Beckmann-like ring expansion of oxime 66M,

V) https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 21. Synthesis of Oxy- and Hydropyriporphyrin Metal Complexes

(A) C(CHj3)CO,Et
Ph Ph (CHs)CO, ph CO-Et
1. NoC(CHg)COLEL, A
2. HCI Ni(OAc),
Ph Ph Ph Ph
Ph  45zn Ph 61Ni
acid or o
base
62Ni
Ph Ph
S o}
DBU - i
Ph Ph L-Selectride Ph Ph
Ph 63Ni Ph  64Ni
1193 itself made by stepwise modification of the corresponding meso- formation of a quinoline-annulated porphyrin,®'**'* a z- 1201

1194 tetraphenylporphyrin (OsO,-mediated dihydroxylation, oxida-
. . . 312 . . . .
1195 tion, oximation). This ring expansion resulted in the
22 119 formation of the pyrazine imide-type PMP 67M (Scheme
22 1197 22B). The metal plays a very important role guiding this reaction
1198 pathway: An application of the same reaction conditions to the
1199 free-base oxime fails to induce a ring expansion. Instead, it
1200 results in the reaction with a flanking meso-aryl group and the

Scheme 22. Ring Expansion Reactions to Generate
Metallopyrazinoporphyrins

(A)

1. aq. NH4OH,
THF
2. EtOH, [H*]

(B) OH
Ph l\/l’
°© p-TSA,
Toluene, A
Ph Ph

Ph
66Ni: M = Ni(ll) 67Ni: M = Ni(Il)
66Pd: M = Pd(Il) 67Pd: M = Pd(Il)
66Pt: M = Pt(1l) 67Pt: M = Pt(Il)

expanded porphyrin of utility,>'¥*'° but not belonging to the 1202
class of PMPs. What, other than metalation in general, controls 1203
the reaction, from a mechanistic point of view, to proceed along 1204
one path or the other is unknown. However, since small 1205
(nickel(II)) as well as large (platinum(II)) ions induced the 1206
formation of the pyrazine imide-type PMP 67M, simple 1207
conformational effects are unlikely controlling the reaction. 1208

2.2.12. Nickel(ll) Complexes of PMPs Incorporating an 1209
8-Membered Ring. Several “breaking and mending” ap- 1210
proaches toward PMPs planned to contain 7-membered rings 1211
failed because the large ring collapsed to form porphyrin-like 1212
architectures before they could be isolated and characterized (cf. 1213
Scheme 16)."***'” In a quest to prepare PMPs with larger than 1214
6-membered rings from a porphyrin, the “breaking and 1215
mending” steps (cf. Scheme 1) were inverted, and inspired by 1216
work on porphyrazines,*® the “mending and breaking” approach 1217
was developed (Scheme 23): A cis-vic-chlorin diol 68Ni was 1218
formed by an addition of N,N’-dimethylated urea to known 3,4'- 1219
porphyrin dione (available along multiple pathways, including 1220
the oxidation of diol 16Ni).****"® The diol functionality on the 1221
annulated species 68Ni thus formed was oxidatively cleaved, 1222
resulting in the fusion of the S-membered pyrroline with the 1223
three annulated atoms to form an 8-membered 1,3,6-triazocine- 1224
2,4,8-trione ring.HS’319 Using a nonmethylated urea, the 8- 1225
membered ring collapses to form a porpholactam (such as 46Ni 1226
from 18, cf. Scheme 16)."#%14317 1227

The crystal structure of 69Ni shows it to be severely ruffled,'** 122
as expected for a (flexible) nickel(II) porphyrinoid.'"® However, 1229
the structure of free-base analogue 69 (not shown) is similarly 1230
ruffled.>'”"** This presents another example in which the ruffled 1231
conformation of the PMP is intrinsic to the framework (cf. also 1232

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 23. “Mending and Breaking” Approach toward the
Generation of PMPs Containing an 8-Membered Ring”

l\‘/Ie
Ph PhHO (o]
(0] o N\(
o) Me\N)J\N_Me N—Me
SRR OH  Pb(OAc),
Ph — Ph ph R
pyridine, A
18Ni 68Ni
Ph

“Stick representation of the X-ray structure of 69Ni adapted with
permission from ref 14S. Copyright 2020 American Chemical Society.

to the indaphyrins, Scheme 9, or the indachlorins®*”) and not
determined by coordination to, for example, nickel(II).

The optical properties of the 8-membered PMPs 69 and 69Ni
resemble red-shifted chlorins and metallochlorins, respectively

1233
1234
1235
1236

1237 (Figure 12).'*
[0
§ 0.8 69
£
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<
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Figure 12. Normalized UV—vis spectra (CH,Cl,) of 8-membered PMP
69 and its nickel(II) complex 69Ni. Spectra adapted with permission
from ref 14S. Copyright 2020 American Chemical Society.

1238 2.2.13. N-Heterocycle-Fused Nickel Pyrrole-Modified
1239 Porphyrin Dimers. Interesting cases from structural as well as
1240 mechanistic points of view are the N-heterocycle-fused PMP
1241 dimer nickel(II) complexes 73Ni, through 75Ni, (Scheme
1242 24).7" A palladium-catalyzed Suzuki—Miyaura coupling re-
1243 action of meso-triaryl, meso-bromo nickel(II) porphyrin 70Ni
1244 with f-borylated meso-triaryl nickel(II) porphyrin 71Ni afforded
1245 a meso-to-f-linked porphyrin dimer. This could be nitrated and
1246 then reduced to form the meso-amino porphyrin dimer 72Ni,,
1247 the key precursor. Oxidation of this dimer with MnO, at room
1248 temperature formed dimers 73Ni,, 74Ni,, and 75Ni,; a PbO,-
1240 mediated oxidation only formed 74Ni, and 75Ni,. The
1250 formation of the 3-keto-4-imidopyrrole-based dimer 73Nij, is
1251 the result of an oxidative coupling/framework oxidation,
1252 without alteration of the porphyrin frameworks. However, the
1253 formation of the pyrrole-modified 6-membered dihydropyr-
1254r==Hline 74Ni, and imidazolinone 75Ni, involved the insertion
1255 e (former) amine nitrogen into the fused pyrrole or the
1256 formal replacement of a f-carbon atom by the amine nitrogen
1257 atom, respectively.””’ While the former reaction is unprece-
1258 dented among the reactions converting porphyrins to their
1259 pyrrole-modified analogues, the latter reaction resembles the

formation of porpholactams'*”*** by means of the collapse of a
larger ring (see Section 2.2.12)."*

All derivatives possess strong NIR absorbances, with the non-
pyrrole-modified dimer possessing absorbances well past 1000
nm. Conformational as well as electronic effects are responsible
for their electronic structure, with the linking heterocycles
determining the relative positions of the two nonplanar
nickel(II) porphyrinoid moieties.

2.3. Metalloheteroporphyrinoids with N;X and N,X, (X=0,
S, Se, N,S, N,CS, etc.) Coordination Spheres

2.3.1. Heteroporphyrins. Heteroporphyrins are porphyr-
“—ds where one or more pyrrole nitrogen atoms have been
ced by other heteroatoms, such as O, S, Se, Te, Si, or P (C-
based heteroporphyrins are discussed separately as carbapor-
phyrins; see below). Different synthetic strategies were
employed toward their formation, but the vast majority are
total syntheses. The most common method used for the
synthesis of monothia-, monooxa-, monoselena-, and mono-
telluraporphyrins is the copZ=ssation of a 2,5-bis-
(arylhydroxyrnethyl)heterocyclopiene with benzaldehyde
and pyrrole under mildly acidic conditions (Scheme 25).**
Functionalization of the heteroporphyrin at the meso-position is
also possible by using an appropriate functionalized (non-
symmetric) dicarbinol or aldehydes other than benzaldehyde.***

The replacement on an NH functionality of porphyrins (or
porphyrin isomers)”’ by an O, S, Se, etc, atom results in
different physicochemical properties compared to regular N,-
porphyrins, often expressed in bathochromically shifted optical
spectra. Most importantly, the heteroporphyrins possess much
differing coordination properties because the coordination
environment is of lower charge, and the cavity is smaller
(particularly in the case of the incorporation of relatively large

1260
1261
1262
1263
1264
1265
1266
1267

1268

1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290

atoms such as Te, Se, or even S). The increase in the number of 1291

heteroatoms induces nonplanarity, further eroding the metal
binding properties of the oligoheteroporphyrins.'® Nonetheless,
many metal complexes of the heteroporphyrins are known and
have been reviewed.'®*® We will discuss only a few
representative examples.

2.3.2. Thiaporphyrin Metal Complexes. A thiaporphyrin
is a monoheteroporphyrin where one pyrrole has been replaced
by a thiophene. The monoanionic N3S-coordination environ-
ment of 21-thiaporphyrins is suited to stabilize copper and nickel
in the +I oxidation state (Scheme 25),’° in contrast to the
stabilization of the +II oxidation states of these metals by N,-
porphyrins. Also, axial ligands are needed in the thiaporphyrin
complexes for the charge neutralization of metal ions in +II and
+I1I oxidation states. A wide range of metallothiaporphyrins
such as 77Li,”** 77Fe,*® 77Ni,”** 77Cu,’* 77Rh,** and
77de *” have been synthesized and structurally characterized."®

—For instance, the metal complexes of copper(1l),
iron(II), nickel(II), and mercury(Il) are five-coordinated
complexes carrying axial ligands and adopting a square-
pyramidal or distorted trigonal bipyramidal geometry.'®**®
The nickel(I)*** and palladium(T)**” ions are tetracoordinated
and located at the center of idealized square-planar coordination
geometries. The lithium(I) complex formed five-coordinated
square-pyramidal complexes with tetrahydrofuran as the axial
ligand,324 while the 77Ru,>*’ 77Rh,**° and 77Re**° complexes
are hexacoordinated.

The absorption spectrum of free-base thiaporphyrin 77 is
porphyrin-like with four well-defined Q-bands and one strong,

w https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 24. Syntheses of Nickel(II) Pyrrole-Modified Porphyrin Dimers 73Ni,, 74Ni,, and 75Ni,”

Ar
1. Pdy(dba)s,PPhs,
Ar A CeaCO, CsF
toluene/DMF, A
2. |, AgNO,,
. CH,Cl,/MeOH, r.t.
Br  7ONi 3 NaBH,, Pd/C
Ar + CH,Cl,/MeOH, r.t.
Bpin
Ar
71Ni
Ar
Ar = 3,5-t-BuCgH3
Ar
(o} N

2

Ar
Ar
Ar Ar
73Ni,

74Ni,
(Ar groups removed)

PbO, or MnO,

75Ni,
(Ar groups removed)

“Stick representations of the X-ray structures of 74Ni, and 75Ni, adapted with permission from ref 321. Copyright 2020 American Chemical

Society.

1321 albeit red-shifted, Soret band. The electronic absorption
1322 spectrum of the in-plane bound 77Pd-Cl shows a spectrum
1323 not unlike that of a metalloporphyrin but with a much
1324 broadened and split Soret-like band (Figure 13); the absence
1325 of any solvochromic effects was interpreted as an indication that
1326 the anion is not coordinated to the metal in solution.””” The
1327 spectrum of the out-of-plane-bound rhenium(I) complex of
1328 thiaporphyrin 77Re (not shown) is also broadened and vaguely
1320 metalloporphyrin-like*” and differs from that of 77Pd-CL**’
1330 Thus, metal type and coordination modes affect the optical
1331 spectra of the metallothiaporphyrins.

1332 The coordination chemistry of the heavier analogues to the
1333 thiaporphyrins, the selena- and telluraporphyrins, has also been
1334 described and follows similar principles as shown by the
1335 thiaporphyrins, with changes induced by the significantly larger
1336 size of the heavier chalcogen atoms.”****'™*** Telluraporphyr-
1337 ins also take on a special role for their transformation into other
1338 PMPs, such as vacataporphyrins (Section 2.1.2) or pallada- and

platinacyclopendadiene-modified porphyrins (Section 1339
2.3.6).17239334333 1340

2.3.3. Oxaporphyrin Metal Complexes. 21-Oxaporphyr- 1341
ins are heteroporphyrins in which one pyrrole has been replaced 1342
by a furan moiety. Their syntheses may follow the general 1343
heteroporphyrin synthesis principles, but important unique 1344
pathways, like the oxygen insertion reaction into vacataporphyr- 1345
in 9Fe, are also known (Scheme 4).”%> Metal insertion into the 1346
free-base oxaporphyrins forms the metal complexes (Scheme 1347
26). Similarly to the thiaporphyrins, the complexes of zinc- 134s
(I1),%*° nickel(I1),**” iron(1I),*** manganese(I1),** cobalt- 1349
(11),* and copper(I1)** possess an axial ligand and adopt a 1350
square-pyramidal geometry. The nickel(I)*” complex is a 1351
paramagnetic tetracoordinated species while the iron(II1)**" 1352
and rhenium (TI1)**° complexes are hexacoordinated octahedral 1353
complexes with two axial ligands. The ligand framework in the 1354
metallo-21-oxaporphyrins tends to adopt a more planar 13ss
conformation in comparison to the sterically more encumbered 1356

https://doi.org/10.1021/acs.chemrev.1c00694
Chem. Rev. XXXX, XXX, XXX—XXX
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Scheme 285. Syntheses of Metallothiaporphyrins®
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77Ni": M = Ni(l) 77Ni": M = Ni(ll), X = CI 77Ru: M = Ru(ll), X = (CO), Y = Cl

77Pd-Cl: M = Pd(ll)

77Ni: M = Ni(ll), X = Ph

-

77Re: M = Re(l), X = (CO)5

77Hg: M = Hg(ll), X = CI
77Fe: M = Fe(lll), X = CI

WA

77Pd-Cl \J

(Cl-not in bonding distance to Pd)

“Stick representation of the X-ray structure of 77Ru adapted with permission from ref 329. Copyright 2011 American Chemical Society. Stick
representation of the X-ray structure of 77Pd-Cl adapted with permission from ref 327. Copyright 1994 American Chemical Society. Stick
representation of the X-ray structure of 77Re adapted with permission from ref 330. Copyright 2012 American Chemical Society.
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Figure 13. Normalized UV—vis spectra of 77 (CH,CL,) and 77Pd-Cl
(CHCLy). Spectrum of 77 adapted with permission from ref 330.
Copyright 2012 American Chemical Society. Spectrum of 77Pd-Cl
adapted with permission from ref 327. Copyright 1994 American
Chemical Society.

1357 metallo-21-thiaporphyrin complexes. A description of the rare
1358 metal complexes of oxaporphyrins containing more than one
1359 furan ring is presented below.

1360 2.3.4. Diheteroporphyrin Metal Complexes. Diheter-
1361 hyrins are porphyrinoids where two pyrrole nitrogens
1362 been replaced with either two of the same heteroatoms

1363 (N,X,-type) or different heteroatoms (N,XY-type), whereby
1364 the two heteroatoms can be located at opposite positions
1365 (21,23-diheteroporphyrins) or adjacent positions (21,22-
1366 diheteroporphyrins). The syntheses of the N,X, porphyrinoids
1367 most frequently entailed the condensation of a larger
1368 stoichiometric ratio of 2,5-bis(aryl-a-hydroxymethyl)-

heterocycle with pyrrole under mildly acidic conditions while
the N,XY-type were prepared via condensation of hetero-
cyclopentadiene diols with modified heterotripyrranes ([3 + 1]-
type syntheses), some in a two-step, one-flask process (Scheme
27).%**! The diheteroporphyrins are neutral ligands, and thus,
coordinated metal ions require a larger number of axial ligands
(or noncoordinated counteranions) for charge neutralization
than do their monoheteroporphyrin congeners (or especially the
dianionic porphyrinoids). Dioxoporphyrin 79 is already “soft”
enough to stabilize nickel(I), thus allowing the octahedral
nickel(II) complex to be reduced to the nickel(I) complex
(Scheme 27A).7*" Alas, it was not isolated and reverted back to
the nickel(II) on addition of an oxidant.

The ruthenium(I1)*** and rhenium(I)*** complexes of 21,23-
dithiaporphyrin show that 80Ru exhibits a near-perfect
octahedral geometry (Scheme 27B). In order to accommodate
the large ruthenium(II) ion in the small (relative to regular
porphyrins containing the smaller nitrogen donors) dithiapor-
phyrin core, the thiophene rings are tilted out of plane into
opposite directions. On the other hand, in the rhenium(I) metal
complex 80Re, the metal ion resides on top of the macrocycle
plane, and the thiophene rings are tilted to the same side,
forming an overall domed macrocycle. A metric comparison of
the cationic dithiaporphyrin rhenium(I) triscarbonyl complex
80Re with its diselenaporphyrin-analogue was reported, high-
lighting the effects of the larger size of the selenium atoms.”™

21,23-Ditelluraporphyrin was prepared.”* As a response to
the steric repulsion of the two inner tellurium atoms, one of the

https://doi.org/10.1021/acs.chemrev.1c00694
Chem. Rev. XXXX, XXX, XXX—=XXX
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Scheme 26. Syntheses of Metallooxaporphyrins®

Ar

78

Ar
Ar
Ar Ar Ar
Ar
78Ni': M = Ni(l)

78Cu': M = Cu(ll), X = Cl

Ar

78Fe': M = Fe(lll), X = CI

78Ni'-Cl: M = Ni(ll), X = Cl
78Ni"-Ph: M = Ni(ll), X = Ph j
f 78Zn': M = Zn(ll), X = CI
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ada

78Ni'-Cl

“Stick representations of the X-ray structures of 78Ni' and 78Ni" adapted with permission from ref 337. Copyright 1997 Wiley-VCH. Stick

representation of the X-ray structure of 78Fe™

adapted with permission from ref 330. Copyright 2012 American Chemical Society.

1397 tellurophene moieties is almost completely flipped (the inverted
1398 tellurophene plane in the solid state possesses a 123.0(2)°
1399 dihedral angle with respect to the mean plane of the remainder
1400 of the macrocycle). In solution, this diheteroporphyrin is
1401 dynamic and interchanges between two energetically identical
1402 flipped forms. One aspect of the coordination chemistry of the
1403 21,23-ditelluraporphyrin is delineated in Section 2.3.6.

1404  2.3.5. Metallothiaethyneporphyrin Metal Complexes.
1405 The formal replacement of a pyrrolic building block within a
1406 meso-tetrarylthioporphyrin by an acetylene moiety is also
1407 possible, giving rise to the triphyrin(4.1.1) frame of
1408 thiaethyneporphyrin 82, an atypical arrangement for a
1409 contracted, but still 18 z-electron aromatic, porphyrin.**® 20-
1410 Thiaethyneporphyrin is formed by a simple modification of the
1411 [3 + 1] approach using the ethyne-analogue of tripyrrane 81 and
1412 2,5-bis(tolylhydroxymethyl)thiophene 76° (Scheme 28).

1413 The nickel 82Nij, palladium 82Pd, and copper 82Cu
1414 complexes of free-base 82 have been reported.””’ In these
1415 complexes, thiaethyneporphyrin 82 acts as a dianionic ligand
1416 coordinating through the two nitrogen and the sulfur atom
1417 (Scheme 28A). An interaction of the metal with the ethyne
1418 moiety is weak, but the bond distance is shorter than the sum of
1419 van der Waals radii.”*” The X-ray crystal structure reveals that
1420 coordination to nickel(II) and palladium(II) by a N,S-5*C,-
1421 donor set provides distorted pseudo-square-planar, low-spin
1422 diamagnetic nickel(II) and palladium(1I) complexes 82Ni and

82Pd, respectively. Axial coordination to 82Ni forms a high- 1423
spin, paramagnetic nickel(II) complex. Complex 82Pd reacts 1424
with sodium borohydride to form an aromatic palladium(II) 1425
thiaetheneporphyrin 83Pd in which the metal is coordinated by 1426
an idealized square-planar N,SC-donor set.”*’ 1427

Dithiaethyneporphyrin 85 has also been prepared by a [3 + 1] 1428
strategy (Scheme 28B).**® The potential monoanionic NS, 1429
ligand (with or without the involvement of the carbon atoms 1430
of the ethyne moiety) acts as a monoanionic, monodentate N- 1431
donor ligand when coordinated to ruthenjum(II). Dithiaethy- 1432
neazuliporphyrin and its ruthenium complexes have also been 1433
reported; here, the ligand acts as a monodentate, anionic C- 1434
donor ligand.349 1435

2.3.6. Pallada- and Platinacyclopentadiene-Modified 1436
Telluraporphyrin and Tellurachlorin. The reaction of 1437
21,23-ditelluraporphyrin 86 with platinum(II) led, at low 1438
temperatures, to an out-of-plane binding of the metal to form 1439
86PtCl, (Scheme 29).”** At higher temperatures, or assisted by 1440
silver(I), platinum replaced one tellurium atom in the 1441
ditellurophene forming a platinacyclopentadiene ring; concom- 1442
itantly, the remaining tellurophene inverts and presents the 1443
tellurium atom to the inside and within bonding distance to the 1444
neighboring nitrogen atom, forming in 87Pt a C,NTe distorted 144s
square-planar coordination sphere for the platinum ion.”” The 1445
aromatic metallaporphyrin 87Pt can be subjected to the 1447
(reversible) reduction of the f3,#’-bonds of one pyrrole, forming 1448

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 27. Examples of Diheteroporphyrins®
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“Stick representations of the X-ray structures of 79Ni" adapted with permission from Ref 337. Copyright 1997 Wiley-VCH. Stick representations
of the X-ray structure of 80Ru adapted with permission from ref 342. Copyright 2001 American Chemical Society. Stick representations of the X-
ray structure of 80Re adapted with permission from ref 343. Copyright 2014 American Chemical Society.

1449 the chlorin-analogue 88Pt. This can be subjected to (reversible)
1450 oxidative additions of XY to the platinum, forming the
1451 corresponding platinum(IV) complexes 87PtXY containing
1452 (idealized) octahedrally coordinated platinum centers. The
1453 deformations present in the structures of the platinatellur-
1454 hyrins are largely a result of the sizes and of the tellurium
1455 platinum atoms within the steric constraints of the
1456 porphyrinoid macrocycle.”*> While the DDQ-mediated oxida-
1457 tion of a chlorin (or other hydroporphyrins) to the
1458 corresponding porphyrin is also a standard reaction in
1459 porphyrinoid chemistry,” the reduction of metallaporphyrin
1460 87Pt or 87PtXY using aqueous dithionite (Na,$,80,) is
1461 unusual. This likely nongeneral method might only be applicable
1462 to platinatelluraporphyrins that appear to be particularly
1463 sensitive toward reduction.

1464 An equivalent palladacyclopentadiene incorporated into the
1465 porphyrinoid frame was formed by a transformation of 21,23-
1466 ditelluraporphyrin triggered by coordination to palladium-
1467 (I1).>" This resulted in the replacement of a tellurium atom
1468 by a palladium atom to form an aromatic 21-pallada-23-
1469 telluraporphyrin. The nonplanar molecule is in equilibrium
1470 between two forms.

AA

2.4. Metalloporphyrinoids with N;C-Coordination Spheres

2.4.1. N-Confused Porphyrin Metal Complexes. 2-Aza-
21-carbaporphyrins, also known as N-confused porphyrins, are
porphyrin isomers in which one of the pyrrole subunits was
inverted in place, resulting in a switch between an inner nitrogen
atom with a p-carbon atom.”” Curiously, these porphyrin
isomers were theoretically considered'®"'®* decades before the
meso-tetraaryl derivatives were first realized by means of [4 X 1]
condensation reactions under conditions that are similar to
those for syntheses of regular tetraarylporphyrins.”"’*> Over
time, a number of alternative [4 X 1]-,°**? [2+2]-,>**and [3 +
1]-type™ syntheses of the meso-aryl-, as well as fB-alkyl-, N-
confused porphyrin series were introduced and now dominate
their generation (Scheme 30). Since their discovery,”"”’” the
chemistry of N-confused porphyrins flourished and greatly
expanded in breadth and depth like no other PMP. Many aspects
of this field have been amply reviewed,'®*%5%0098356-358
including their coordination chemistry.”>’

The optical properties of tetraphenyl N-confused porphyrin
are porphyrin-like but significantly red-shifted compared to a
regular tetraphenylporphyrin. As a result of the existence of
different tautomers and the interaction of the solvent with the
outer nitrogen atom, their optical spectra are strongly tautomer-

https://doi.org/10.1021/acs.chemrev.1c00694
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Schem@ Syntheses and Reactions of Metallothiaethyneporphyrins®
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“Stick representations of the X-ray structure of 82Pd adapted with permission from ref 346. Copyright 2012 American Chemical Society.

1493 dependent, controlled by N-alkylation, and solvatochro-
1494 mic,35H360-363

1495 With respect to their coordination chemistry, N-confused
1496 porphyrins are an interesting class of PMPs as they are able to
1497 bind to a metal inside and outside of the macrocycle,”** leading
1498 to the formation of a multitude of homo- and heterobimetallic
1499 di-, oligo-, and polymeric supramolecular assemblies with metal
1500 ions such as palladium(II), platinum(I1), zinc(IT), cadmium(II),
1501 mercury(IL), and iron(II). 0,61,98,356,359,364=367 Participation of
1502 the outer nitrogen atom in atom transfer catalysis by a metallo-
1503 N-confused porphyrin was shown.’*® The metal coordination
1504 chemistry at the center of N-confused porphyrins shows
1505 differences from that of carbaporphyrins (inner C— but no f-
1506 N atom; discussed below) since the macrocycle may, dependent
1507 on solvents and pH, adopt two different tautomeric forms, both
1508 maintaining the aromatic 18 z-system (Scheme 31). However,
1509 both tautomeric forms vary in the number of inner hydrogens
1510 (two or three), thus switching the ligand properties from a
1511 dianionic N;C ligand (form A) to trianionic N;C ligand (form
1512 B), 360369370

1513 In cases of the square-planar copper(1l), palladium(1I), and
1514 platinum(II) complexes, the ligand acts as a dianionic N;C
1515 ligand.®"*** The macrocycle flattens upon metal coordination.
1516 These types of complexes bear a proton on the 2-aza atom of the
1517 ligand that can be deprotonated. Deprotonation of a neutral
1518 M(II) complex results in an anionic complex of the metal in the

AB

same oxidation state as the neutral complex, as illustrated with, 1519
e.g, the platinum(IT) complexes (Scheme 32A).%"" Alkylation of 1520 532
the external nitrogen fixes the ligand to be a dianionic N;C
donor ligand.*”*

The electronic states of isostructural porphyrin and N-
confused porphyrin molybdenum(II) and manganese(III)
complexes have been compared.””>*”* The functional con-
nection of the coordinating inner carbon to nucleophilic
8 was illuminated.”’”*”* In fact, all PMP carbapor-
phyrins variants that contain inverted or N-confused porphyrins
are of particular interest since they form metal complexes with 1529
stable metal—carbon bonds under mild conditions. Theoretical 1530
studies have been carried out to understand the carbon acidity 1531
and metal-complexing ability of inverted porphyrins.*”**”® Key 153
factors underlying the ease of formation of, for example, the 1533
organometallic nickel(II) complexes are the highly favorable 1534
covalent interaction between the empty d; orbital of the A8 Ni%* 1535
ion in a square-planar ligand field and the central carbon of the 1536
nonpyrrolic (or inverted pyrrolic) building block. Density 1537
functional calculations on various tautomers of inverted 1s3s
1539
1540
1541
1542
1543

1521
1522
1523
1524
1525
1526
1527
1528

carbenes®

porphyrins, carba-, oxacarba-, and thiacarbaporphyrins, corre-
lated the stabilities of their carbenic tautomers to their ability to
form metal complexes with metal—carbon bonds; these studies
also identified the central carbon atom as the most nucleophilic
carbon in the macrocycle.””” These factors are the basis for the

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 29. Formation and Interconversions of Platinatelluraporphyrins 87Pt and 87PtCl, and Platinatellurachlorin 88Pt“

Ph
o Ph
7
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Ph
Pt(PhCN),Cly, Pt(PhCN),Cly,
334K 384 K
o " \ Q
293 K >
86PICl, P P g7t \/\\\/ 87Pt
XY = Cly, Bry,
DDQ Zn/Hg CHjl,
Na,S50,/H,0 allyl-Cl
X
Ph Ph / //
H
H  NapS,0,/H,0
H )

H

PH Ph
88Pt 87PtXY 87PIXY

“Stick representations of the X-ray structures of 87Pt and 87PtCl, adapted with permission from ref 335. Copyright 2020 Wiley-VCH.

1544 organometallic chemistry of the carbaporphyrins; this topic has
1545 been reviewed.”' %%

1546 The copper(I) meso-C4Fs-derivative 91°Cu can be (rever-
1547 sibly) converted into the square-planar copper(IIl)-analogue
1548 83FCu via chemical oxidation (Scheme 32B).**® The silver(III)
1549 complex of 83Ag is an example in which the macrocycle acts as a
1550 trianionic N;C ligand,**”*””*7® distinguishing it from the stable
1551 silver(IT) complexes of the porphyrins (Scheme 32A).*”” The
1552 stabilization of the silver(III) oxidation state is a characteristic of
1553 trianionic carbaporphyrins'**** and corroles.”®"

1554  Comparing the UV—vis absorption spectra of the copper(II)
1555 complex 91FCu and the corresponding copper(III) complex
1556 99FCu, the change in the oxidation state of the central metal is
1ss7 primarily reflected in a change in the Q-band region of the
1558 spectrum, with much longer wavelength absorbances for the
1559 copper(IIT) complex (Figure 14A).**

1560  Some metals coordinated to N-confused porphyrins do not
1561 form a M—C bond. Instead, a N;-donor set is observed, and the
1s62 inverted pyrrole unit is slanted out of planarity, thus positioning
1s63 the C—H bond away from the coordinated metal. One example
1564 is the distorted tetrahedral and air-sensitive manganese(II)
1565 complex 91Mn", also carrying an additional monodentate
1566 ligand; this complex can also dimerize in a self-complementary
1567 fashion, forming (91),Mn (Scheme 33):*****¢ The outer
1568 nitrogen atom of one complex forms the axial ligand of another,
1s69 and vice versa. The coordination geometry observed in complex
1570 91Mn"" resembles those of other first row transition metals™” as
1571 well as those of vacataporphyrins or benziporphyrins (see
1572 Sections 2.1.2 and 2.4.6, respectively). Oxidation of 91Mn""
1573 formed the planarized manganese(III) complex 91Mn™ in

AC

which the N-confused porphyrin is forced to coordinate as a 1574
trianionic N;C ligand. Deprotonation of the inner CH moiety 1575
removes all steric interactions with the central metal, and a 1576
nearly perfectly planar macrocycle is obtained.””* 1577

The N-confused porphyrin in iron(IT) complex 99Fe'" also 1578
acts as a N-donor ligand.”®” However, oxidation of this ferrous 1579
complex by oxygen, iodine, or bromine leads to the formation of 1580
the corresponding ferric complex 99Fe' containing an Fe—C 1581
bond (Scheme 33).>* Further oxidation leads to the insertion of 1ss2
an oxygen into the Fe—C bond, forming complex 100Fe.”® A 1583
number of carbaporphyrins, such as O-confused oxaporphyrins 1584
or azuliporphyrins, have also shown similar metal-activated 1sss
inner carbon atom oxidations (cf. Sections 2.4.3 and 2.4.2, 1586
respectively). In some circumstances, oxidations may lead to a 1ss7
complete degradation of the confused pyrrole.””’ 1588

The manganese complex (91),Mn has a distinctly different 1589
optical spectrum compared to that of the free-base precursor: 1590
Both the Soret and Q-band regions are very broad and nearly 1501
featureless (Figure 14B). The Soret band also has a lower 1592
extinction coefficient, shifting the relative intensity ratios of the 1593
Soret and Q-bands from those typically observed in metal- 1594
loporphyrins. As a result of the axial coordination and the split of 1595
the dimer structure, the spectrum of monomer 99Mn" is much 1596
different, exhibiting a sharp and much red-shifted Soret band 1597
that is, relative to the Q-band, much more intense. Nonetheless, 1598
the Q bands are still unusually broad (for a metalloporphyr- 1599
in).>** 1600

The ability of the N-confused porphyrins for coordination 1601
using both the inner and outer nitrogen atoms is illustrated with 1602
the bis[rhodium-(I)] complex 91Rh, (Scheme 34) in which one

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 30. Total Synthesis Approaches toward N-Confused Porphyrins
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Scheme 31. Tautomeric Forms of N-Confused Porphyrins

‘I’H Q\l

tautomeric form A tautomeric form B

of the rhodium atoms has been placed at the peripheral position,
and a second one is located in the cavity.””' Additionally, the use
of the inner and outer nitrogen atoms was investigated for

neutral molecule and anion binding/anion recogni-
60,61,371,392,393

1608 tion.
1609 The conformational flexibility of NCPs extends to the relative
1610 orientation of the confused pyrrole—it can invert, brmgmg the

1611
1612
1613
1614
1615
1616

N-confused earbes back into the central cavity.”~ Large
substituents on the inner carbon or coordination interactions
can induce this inversion. Iridium dicarbonyl exhibits such a
mode when coordinated to 91, exemplified in the structure of
91Ir, (Scheme 34).%%*

2-Aryl- and 2-alky-substituted N-confused porphyrins were

Internal N—C bond formations within (suitably derivatized) 1622
N-confused porphyrins led to the formation of N-fused 1623
porphyrins. Their formation and rich and often unusual 1624
coordination chemistry (inter alia, the N-fused porphyrins 1625
form inner ruthenium complexes**® as well as a remarkable 1626
ruthenocene-like complex in which the N-fused porphyrin and 1627
cyclopentadiene sandwich a ruthenium(II) ion),** have been 1628
well-reviewed.*>¢>#03#10 1629

2.4.2. Azuliporphyrin Metal Complexes. Azuliporphyr- 1630
ins are azulene-based carbaporphyrins; i.e., one of the pyrrole 1631
rings of a porphyrin has been replaced with a cyclopentadiene 1632
moiety that is annulated to a 7-membered carbacycle. They are 1633
best synthesized along [3 + 1]-type pathways (Scheme 35A).*"" 1634
The azulene subunit interrupts the macrocycle aromaticity 1635
significantly (cf. the benzi- and pyriporphyrins, Sections 2.4.6 1636
and 2.2.10, respectively). Evidently, a resonance structure 1637
forming an aromatic tropylium and a macrocyclic aromatic 7- 1638
system does not dominate within the ensemble of canonical 1639
forms at ambient temperature. As a result, the UV—vis spectra of 1640
both the free-base chromophore and its metal complexes are not 1641
porphyrin-like. 1642

Syntheses of the nickel(II), palladium(II), and platinum(II) 1643
complexes of azuliporphyrins were accomplished via metal 1644
insertion into the free-base. In these complexes, the central 1645

1617 also prepared either by [3 + 1] approaches involving N-alkylated
1618 building blocks or by alkylation/arylation of the “confused”
1619 nitrogen atom.’”**”” Their nickel(II), cobalt(Il), silver(Il),
1620 palladium(II), mercury(II) and manganese(IlI) complexes
1621 have been reported.’

AD

metal ions are all coordinated by an idealized square-planar N;C
donor set (Scheme 35).”” The conformation of 103Ni is, like
many of the nickel porphyrinoids, significantly distorted from
planarity and takes up a ruffled deformation mode.”” Complex

https://doi.org/10.1021/acs.chemrev.1c00694
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Sche

Form the Metal Oxidation State”

/

. Coordination Chemistry of N-Confused Porphyrin 91 and 99 Highlighting the Relationship between the Tautomeric

99FNi, Ar = C4F5

(A)
Ar Ar Ar
LN LN N
Ar Ar G Ar Ar M) Ar Ar
Ar 91Ag Ar 91 AT 99Ni: M = Ni(ll)
99Pd: M = Pd(ll)
99Cu: M = Cu(ll)
(B) CoFs CeFs
~ NH LN
DDQ
CeFs CeFs CeFs CeF's
p-tosyINHNH,
99FCu 91FCU
CeFs CeFs

“Stick representation of the X-ray structure of 99¥Ag adapted with permission from ref 377. Copyright 1999 American Chemical Society.

>

The electronic structure of azuliporphyrins is significantly 1654
ERE different from that of porphyrins or most other carbaporphyrins. 16ss
8 0. 91y The UV—vis spectrum for free-base azuliporphyrin 101 is 16s6
8 characterized by a distinct split Soret band region and one broad, 1657
2067 997Cu little-structured absorption band in the Q-band region of the 16ss
%0.4— spectrum (Figure 15).'°%*'"*'% Both the nickel(II) and 1659 fis
= ] alladium(II) complexes of azuliporphyrin 101 maintain the 1660
T 0.2 P P porphyr.
£ azuliporphyrin characteristics. 1661
Z 0 . . . .
a0 0 00 50 200 '.The. metalation .reactlon of 101 with copper(II.) resulted in an 1662
B Wavelength [nm] oxidation of the inner carbon and the formation of a N;O- 1663
Fl coordinated copper complex 102CuO containing an oxygen 1664
> i atom bridging the copper and inner carbon atoms (Scheme 1665
g (91),Mn 0!
§ 0.8 ; 35).""" These types of metal-induced inner carbon oxidations 1666
8 91Mn )
S 0.6+ are also observed for other carbaporphyrins, such as O-confused 1667
504_ oxaporphyrins (Scheme 36) and N-confused porphyrins 1668 s36
£ (Scheme 32). The crystal structure of 102CuO highlights the 1669
£ 0.2 dramatic distortion from planarity of the macrocycle caused by 1670
2 0 | | | T the presence of the oxygen atom.""” The steric imposition of the 1671
400 500 600 700 800 oxo-group forces the azulene moiety to be canted with respect to 1672
Wavelength [nm] . 413
the mean plane of the remainder of the macrocycle. 1673
Figure 14. Normalized UV—vis spectra (CH,Cl,) of (A) 91°Cu and The iridium(I1I) complex 103Ir of $-alkylazuliporphyrins was 1674
99°Cu and (b) 91MI}II and (91),Mn. Spectra of 91Mn" and (91.)2Mn formed utilizing bis(cycloocta-1,5-diene) diiridium(I) dichlor- 1675
adapte.dvnthpermlssxon fror;lref382. Copyrlght 2.00.2 Royal Society of ide [Ir((_:OD)CI]Z in xylene as the metal source (Scheme 1676
Cheml_Stry' Spectrum O,f o1 adapifed WIth, permission from ref %83' 35B).”*" Thus, metal insertion was accompanied by a metal ion 1677
Copyright 2014 American Chemical Society. Spectrum of 99°Cu dati A thodium(IT) lex 103Rh that sh
adapted with permission from ref 384. Copyright 2003 American oxidation SFep.. i .r odiam - Fomp ex at shows 1678
Chemical Society. structural similarities to the iridium complex has also been 1679
explored.*'* 1680
2.4.3. O-Confused Oxacarbaporphyrin Metal Com- 1631
1650 101Pd containing the larger palladium(II) ion is much more plexes. 2-Oxa-21-carbaporphyrins, such as (variously sub- 16s2
1651 planar, albeit slightly saddled. The conformation and Pd—N stituted) compounds 104, are furan-analogues of the N- 1683
1652 bond distances are identical to those found in regular confused porphyrins; i.e., the inverted pyrrole has been replaced 16s4
1653 [porphyrinato]palladium (1) complexes.*'* by an inverted furan subunit (Scheme 36). Synthesized by mixed 1685

AE https://doi.org/10.1021/acs.chemrev.1c00694

Chem. Rev. XXXX, XXX, XXX—XXX


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00694?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as
christian
Sticky Note
Please replace with revised scheme provided - crystal structure of 99FNi was missing


Chemical Reviews

pubs.acs.org/CR

REVIEY

Scheme 33. Coordination Chemistry of N-Confused Porphyrin with Iron and Manganese®
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(Aryl substituents removed for clarity)
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>
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“Stick representation of the X-ray structure of (91),Mn" adapted with permission from ref 382. Copyright 2006 Royal Society of Chemistry. Stick
representation of the X-ray structure of 99Fe™ adapted with permission from ref 387. Copyright 2001 American Chemical Society. Stick

representation of the X-ray structure of 91Mn™

adapted with permission from ref 374. Copyright 2005 American Chemical Society. Stick

representation of the X-ray structure of 100Fe adapted with permission from ref 388. Copyright 2004 American Chemical Society.

1686 condensation, these carbaporphyrins are attractive analogues to
1687 their all-aza-analogues as they permit a fine delineation of the
1688 subtle interplay between structural flexibility, perimeter
1689 substitution, and aromaticity on the coordination chemistry of
1690 these carbaporphyrins.*"’

1601 Oxacarbaporphyrin 104""" readily forms nickel(II)
1692 (105P"Ni) and palladium(II) (105*"Pd) complexes.g’418 The
1693 crystal structure of 105P"Ni shows only a slight macrocycle
1694 distortion from planarity; the dihedral angles between the
1695 macrocyclic and substituted pyrrole ring planes reflect their
1696 biphenyl-like arrangement. The inverted furan moiety is reactive
1697 toward nucleophilic attack at the peripheral position, a result of
1698 the redirection of the macrocyclic n-delocalization. " ®*'” The
1699 insertion of silver into 104°F* results in, similarly to other
carbaporphyrins, the formation of the d® silver(III) complex
104°%Ag.*'® Treatment of 104°*Ag with acid eliminates the
1702 alkoxy group to generate the stable carbacationic species
1703 104%Ag. This reactivity controlled by the presence of the ring
1704 0Xxa group is reminiscent of the facile modification of the
1705 oxazolochlorins (cf. Scheme 13).

1700
1701

AF

The insertion of copper into 104""" resulted in the
quantitative formation of the copper(IIl) complex 104*"Cu.
This complex is unstable; prolonged exposure to aerobic
conditions resulted in the formation of the paramagnetic
complex 105Cu where the metal, now formally in a +II
oxidation state, is still bonded to the three nitrogen atoms and

the carbon atom on the inverted furan (Scheme 36

).*2° Further

exposure to oxygen resulted in the formation of two stable
compounds: the furan-oxidized complex 106Cu and a ring—
opened degradation product, oxotriphyrin complex 107Cu.**’
Alternatively, the reaction of 105Cu with hydrogen peroxide/
potassium hydroxide also led to the formation of 106Cu in a
reaction that parallels oxygen insertion reactions between the
metal and the inner, coordinated carbon atom in other
copper(Ill) carbaporphyrins (cf. Scheme 35).**° The X-ray
crystal structure of 106Cu (not shown) features a macrocycle
that is, as expected, slightly distorted from planarity.**

2.4.4. N-Confused Pyrazoloporphyrin Metal Com-
plexes. Pyrazoloporphyrins are a class of PMPs in which a
pyrrole subunit has been replaced by an inverted pyrazole
moiety.*”>*** Pyrazoloporphyrins, such as free-base compound

https://doi.org/10.1021/acs.chemrev.1c00694
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Sche Coordination Chemistry of N-Confused Porphyrin 91 Highlighting the Involvement of the Outer Nitrogen Atom”

[Rh(CO),Cll,
NaOAc,
CH,Cl,

Ph

Ph Ph —

91 IrCI(CO),(p-tol)
Ph NaOAc,
toluene/THF

Ph

[ir] = If(CO),

Ph

91Ir, (meso-Ph
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“Stick representation of the X-ray structure of 91Ir, adapted with permission from ref 394. Copyright 2006 American Chemical Society. Stick
representation of the X-ray structure of 91Rh, adapted with permission from ref 391. Copyright 2001 Royal Society of Chemistry.

Scheme 35. Single-Crystal X-ray Structure of Azuliporphyrinato Ni(II)“
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“Stick representation of the X-ray structure of 102CuO adapted with permission from ref 413. Copyright 2004 Wiley-VCH. Stick representation of
the X-ray structure of 103Ni and 101Pd adapted with permission from ref 99. Copyright 2003 American Chemical Society.

108, are available only via a [3 + 1]-type total synthesis pathway
4NN

1727
between pyrazole dialdehyde 9 and tripyrrane 95, and only

) 422

1728

a7 1729 P-alkyl derivatives have been prepared to date (Scheme 37

. They are considered borderline aromatic carbaporphyrins. As a

1731 consequence, these PMPs possess optical and chemical

AG

properties that are distinctly different from those of porphyrins,
N-confused porphyrins, or imidazoloporphyrins.

This member of the carbaporphyrins forms metal complexes
with nickel(II) and palladium(II) in which the pyrazolopor-
phyrin acts as dianionic N3C ligands. The crystal structure of the
neutral palladium(II) complex 108Pd shows it to be nearly

https://doi.org/10.1021/acs.chemrev.1c00694
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Spectrum of 102GuQ, adapted with permission from ref 99. Copyrlght
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adapted with permission from ref 100. Copyright 2016 American

Chemical Society.

perfectly planar with regular Pd—N and Pd—C bond distances,
comparable to the palladium(II) complexes of other carbapor-
phyrins, such as metalloazuliporphyrins (Scheme 35).”*** Metal
coordination to the outer nitrogen atoms was not (yet)

demonstrated.

2.4.5. Neo-Confused Porphyrin Metal Complexes.
Neo-confused porphyrins are tetrapyrrolic carbaporphyrinoids
resulting from the formal in-place turning of one pyrrole moiety

such that the pyrrole nitrogen is located on an a-position.

424

Thus, this nitrogen atom participates in macrocyclic con-
jugation. Like the N-confused porphyrins, they are strictly
speaking not PMPs (after all, a rotated pyrrole is still a pyrrole),
but because of their close relationship to other PMP-type
carbaporphyrins, they are included here. Neo-confused
porphyrins 110 were prepared via [2 + 2] condensation of an
1,2'-dipyrrylmethane dialdehyde with a 2,2'-dipyrrylmethane

Scheme 36. Synthesis and Manipulation of O-Confused Furanoporphyrins®
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“Stick representation of the X-ray structure 105”"Ni adapted with permission from ref 421. Copyright 2003 Wiley-VCH.
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Scheme 37. Total Synthesis of Metallopyrazoloporphyrins®

R
N
N
108 108Ni: M = Ni(ll)
108Pd: M = Pd(il)

“Stick representation of the X-ray structure of 108Pd adapted with
permission from ref 423. Copyright 2008 Royal Society of Chemistry.

1754 (Scheme 38).*** This carbaporphyrinoid possesses a high
1755 degree of aromatic character.

Scheme 38. Examples of Synthetic Pathways and Metalation
of Neo-Confused Porphyrin 102

110Ni: M = Ni(ll)
110Pd: M = Pd(ll)

“Stick representation of the X-ray structure of 110Ni adapted with
permission from ref 424. Copyright 2011 Wiley-VCH.
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The nickel and palladium complexes of neo-confused
porphyrin have been reported.*”* While the nickel(II) complex
110Ni formed smoothly, and its crystal structure confirmed the
macrocycle to act—like in other N;C-donor PMPs—as a
square-planar, trianionic ligand, the formation of the palladium-
(I1) complex 110Pd proved challenging and could initially be
accomplished onlgf in low yields.”** However, this problem was
later overcome.**” The nickel(II) and palladium (II) complexes
are essentially isostructural. The planarity and coordination
sphere metrics of the palladium complex are very similar to the
related palladium(II) complexes of two N-substituted N-
confused tetraphenylporphyrins®”**”” as well as a palladium (II)

Al

azuliporphyrin 101Pd”” (Scheme 35A) and palladium(II)
pyrazoloporphyrin 108Pd*** (Scheme 37).

In the decade since their discovery, regular, contracted, and
expanded neoporphyrinoids have been reported, including their
spectral, structural, aromatic, and coordination properties.
These structurally variable systems have been reviewed.**°

2.4.6. Benzi- and Oxybenziporphyrin Metal Com-
plexes. In benziporphyrins, a pyrrole of a porphyrin has been
replaced by a benzene (phenylene) ring, linked in a 1,3- or 1,4-
fashion, forming m- and p-benziporphyrins, respectively. The m-
isomers are accessible along a number of routes (Scheme 39A,B)
while the p-isomer has been prepared exclusively along [3 + 1]
routes (Scheme 39C). Benziporphyrins do not possess macro-
cycle aromaticity since this is possible only at the expense of the
6 m-aromatic system of the benzene moiety, a process that is
evidently energetically more costly than the gain in macrocycle
aromaticity would offset (in contrast to the oxybenziporphyrins
described below)."*”**” Thus, the 7z-resonance of the benzene
moiety exists within the macrocycle essentially isolated from the
conjugated 7-system of the tripyrrin fragment. This situation is
also reflected in their non-porphyrin-like, linear oligopyrrole-
type UV—vis spectra. Nonetheless, the absence of aromaticity is
not necessarily an indication of chemical instability, as the many
examples of benziporphyrins (and related macrocycles) amply
demonstrate.

Metalation of m-benziporphyrin 112 with, for example,
nickel(II) or iron(II) generates the metal complexes of the
connectivity shown for 112NiCl and 112FeBr, respectively, in
which the metal is (distorted) tetrahedrally coordinated by the
three nitrogens of the tripyrrin fragment and an additional axial
ligand (Scheme 40).**”**° Thus, m-benziporphyrins act here as
monoanionic Nj-ligands. The benzene moiety is not strongly
bound to the metal; the Fe—C atom distance, for example, is
longer than in the corresponding N-confused porphyrin iron (1)
complexes 108Fe or 99Fe"" but shorter than the van der Waals
contact distance. Other metal ions that show this type of agostic
interactions with the macrocycle includes zinc(1l), cadmium-
(11), and mercury(II).">** The conformational flexibility of this
arrangement with respect to the relative position of the
phenylene moiety has been investigated for the paramagnetic
nickel(II) complex using NMR spectroscopy and DFT
calculations.”** Heating of 112NiCl in solution transforms it
to the square-planar complex 112Ni.**' In the case of
coordination to copper(Il), the formation of a tetranuclear,
mixed valence copper complex 115Cu is observed.*”” The
benzene ring in this complex was also chlorinated during the
metalation reaction, but the benzene moiety shows no further
involvement in the coordination to the metal. The reaction of
free-base 112 with silver(I) acetate affords an oxidative
acetoxylation but otherwise delivers only a free-base product.'’

On the other hand, coordination to palladium(Il) or
platinum(II) forms the (idealized) square-planar complexes
112Pd and 112Pt containing formal metal—carbon bonds.'""
Here, the m-benziporphyrin acts as a dianionic N;C-ligand.

p-Alkyloxybenziporphyrin 116 was also generated along a
classic [3 + 1] pathway (Scheme 41A)."°******* Importantly,
the oxybenziporphyrins incorporate a ketone functionality on
the benzene ring that breaks the local 6 -electron aromaticity of
the nonpyrrolic building block, thereby facilitating the
expression of a macrocyclic aromatic resonance form in which
the oxybenzi moiety takes up a quinoidal resonance form.'®*
The large effects of the oxy-modification on the electronic
properties of the oxybenziporphyrin chromophore are reflected

https://doi.org/10.1021/acs.chemrev.1c00694
Chem. Rev. XXXX, XXX, XXX—=XXX

1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830

s39

s40

s41


https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
https://pubs.acs.org/page/pdf_proof?ref=pdf
pubs.acs.org/CR?ref=pdf
https://doi.org/10.1021/acs.chemrev.1c00694?urlappend=%3Fref%3DPDF&jav=AM&rel=cite-as

Chemical Reviews

pubs.acs.org/CR

REVIEY

Scheme 39. Examples of Synthetic Pathways Used for the Formation of meta- and para-Benziporphyrins

(A)
1. HBr/AcOH,
CH,Cly, THF
2. Chloroanil
m
(B) Ph Ph  OMe
R
HO HO
Ph OMe Ph OMe R
HO Ph HO Ph Q
Q 76mPh 2 ArCHO 7Gm-PhOMe OMe
Ar Ph + Ar Ph
1. BF3+Et,0 1. BF5°Et,0
2.DDQ 3 [\ 2.DDQ
N
Ar 112 (for Ar = Ph) H Ar 113
R=H,Ar=Ph
R =H, Ar = p-+-BuCgH,
R =Me, Ar=Ph
R = Me, Ar = p-+-BuCgH
(%) HO_Ar! P
Arl
3 U N\;
' HO™ Ar! O
76740
+ —_— AR Ar!
1. BF5°Et,0
2Ar2CHO 2.DDQ
1147

Ar?

1831 in the large differences in the optical spectra of the two
1832 macrocycles (see below).

1833 MacDonald-type [3 + 1] condensations of an N-methyl-
1834 tripyrrane 95™¢ with dialdehyde 94" °" afforded N-methylox-
1835 ybenziporphyrin 116™¢ (Scheme 41B); the presence of the
1836 internal alkyl substituents affected the UV—vis spectrum of the
1837 chromophore greatly but had little effect on the global aromatic
1838 characteristics."”

1839 Like the benziporphyrins, the oxybenziporphyrins form a
1840 range of metal complexes, including palladium(II) complex
1841 116Pd in which the ligands act as trianionic N;C donors,
1842 forming an anionic complex (Scheme 41A).2* Remarkably, the
1843 inner carbon of the complex 116Pd is sufficiently nucleophilic to
1844 be alkylated, forming the neutral N-methyloxybenziporphyrin
1845 palladium complex 116M*'Pd. While conventional metal
1846 insertion conditions failed to result in the formation of the
1847 targeted platinum(II) complex of oxybenziporphyrins, moder-
1848 ate yields were obtained when oxypyriporphyrin was reacted
1849 with platinum(1I) chloride in refluxing mixtures of DMF and
1850 acetic acid containing potassium acetate.**

1851 Core-modified oxybenziporphyrins are oxybenziporphyrins in
1852 which at least one pyrrolic nitrogen has been replaced by an O, S,
1853 or Se atom (cf. the heteroporphyrins described in Section 2.3).
1854 Even with this change of donor sets, they are competent to form
1855 metal complexes.”*”**’

1856 Dimethoxybenziporphyrin 113 is a special benziporphyrin
1857 case (Scheme 41C). PMP 113 proved to be nonaromatic in the
1858 neutral state, but modest 18 s-aromaticity was achieved in its
1859 monocation (inner nitrogen protonated) and dication (oxo-

AJ

roup and inner nitrogen atom protonated) on addition of 1s6o
acid.'®***® 1t thus forms an intermediate between the 1s61
benziporphyrins and the oxybenziporphyrins. Metalation of 1862
the diprotic dimethoxybenziporphyrins with nickel(II) and 1s63
palladium(II) resulted in the formation of 113Ni and 113Pd, 1s64
respectively.*** The X-ray structure of 113Ni shows that the 1s6s
macrocycle adopts a saddled geometry with the dimethox- 1s6s
ybenzene bent out of plane, generating a distorted square-planar 1867
N;C-coordination geometry.“’s’“’8 1868
The UV—vis spectrum of dimethoxybenziporphyrins shows 1869
two broad bands that are frequently observed in non- 1870
macrocycle-aromatic porphyrinoids (Figure 16; cf. also Figure 1871
17). The UV—vis spectrum for palladium complex 113Pd 1s72
sharpened all features of the spectrum, likely a reflection of the 1873
modulation of the macrocycle aromaticity.™” 1874
Free-base p-benziporphyrin 114 is nonplanar and non- 1875
aromatic. It can coordinate metal ions, but the complexed 1876
metal ions show either no or only weak interactions with the p- 1877
phenylene moiety (Scheme 42). In these cases, p-benziporphyr- 1878
in acts as a monoanionic Nj-ligand. For example, the crystal 1879
structure of palladium(II) complex 114Pd highlights the degree 1ss0
to which the p-phenylene unit is slanted away from the mean 1881
macrocycle plane. However, the palladium ion in complex 1ss2
114Pd is close enough to activate the neighboring carbon 1ss3
positions to undergo, upon thermal activation in the presence of 1834
base in polar solvents, a ring-contraction reaction to form the 1sss
aromatic carbaporphyrinoid complexes 117Pd“M° and 1ss6
117Pd™.** This reaction shows the large driving forces toward 1ss7
the achievement of the planar macrocycle-conjugated porphyr- 1sss
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Scheme 40. Syntheses of Metallo-1,3-benziporphyrins®
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112FeBr: M = Fe(il), X = Br 112Pt: M = Pt(ll)
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Ph

Ph Ph
112Ni: M = Ni(ll)
Ph

“Stick representations of the X-ray structures of 112FeBr and 115Cu adapted with permission from ref 429. Copyright 2004 American Chemical

Society.

in-like arrangement of four 5-membered rings linked by single
carbon atoms. Alternatively, the relative orientation of the p-
phenylene unit facilitates an 77-interaction in the diamagnetic
ruthenium(IT) complex 114Ru", as well as in the paramagnetic
ruthenium(I1T) complex 114Ru™.**'

The UV—vis spectrum of p-benziporphyrins 114 reflects their
nonmacrocycle aromaticity (Figure 17)."°" Coordination of
ruthenium(1I) to form complex 114Ru" changes the character
of the free-base spectrum and introduces complexity and a
significant red-shift, testament to the much different electronic
structure of the metal complex compared to the free-base
chromophore.**

p-Benziporphyrin derivatives, such as naphthiporphyrin and
anthriporphyrin 118, have also been synthesized along [3 + 1]-
pathways and exhibiting parallels in their structure and
metalation characteristics (Scheme 43), while exhibiting the
expected changes in their electronic properties that come with
the presence of expanded 7-systems.”””~***

Using a fluorene building block fused into a heteroporphyrinic
macrocycle, the antiaromatic meso-fused heterobenziporphyrins
120 were synthesized (Scheme 44).">" Their formation followed

AK

[3 + 1] routes involving a fluorene-analogue to a tripyrrane with
a heterocyclic diol. The antiaromaticity decreases in sequence
from the thiophene-based system to the selenophene-based
system to the tellurophene-based system. All macrocycles form
stable palladium (IT) complexes 120°Pd, 120%°Pd, and 120™°Pd.

2.4.7. N-Confused Pyriporphyrin. An interesting twist on
the pyriporphyrins is presented by the N-confused derivative
123 (Scheme 45). Here, the pyridine moiety is oriented such
that the pyridine nitrogen is located on either one of the
peripheral positions, and conversely, a pyridine carbon is
pointed inward. The macrocycle is synthesized along a classic [3
+ 1] route. In its neutral state, it is non-macrocycle-aromatic, but
in a remarkable reaction, when protonated, it shows macrocycle
aromaticity. Likewise, its palladium(II) complex 123Pd is
nonaromatic but can be monoprotonated with TFA on the
external nitrogen to give an aromatic monocation.

2.4.8. Tropiporphyrin Metal Complexes. Tropiporphy;-
ins are PMPs in which a pyrrole of a porphyrin has been replaced
by a 7-membered carbacycle and are the only isolated PMPs
containing 7-membered rings. They were synthesized along [3 +
1] total synthesis routes typical for many carbaporphyrins (see,
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Scheme 41. Examples of Metallo-oxy- and Dimethoxybenziporphyrins®
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“Stick representation of the X-ray structure of 113Ni adapted with permission from ref 436. Copyright 2007 American Chemical Society.

1931 e.g., Scheme 28 or 37)."*> The optical properties of
1932 tropiporphyrins are considerably different from those of other
1933 aromatic carbaporphyrins and are characterized by very broad
1934 and red-shifted Q-bands.***

1935 The coordination chemistry of the tropiporphyrins is also not
1936 fundamentally different from that of any typical carbaporphyrin
1937 (cf., e.g,, Scheme 32 or 40). The structure of the silver(III)
1933 complex 124Ag (Scheme 46) shows that the fully conjugated 7-
1939 membered ring is too large to adopt a planar conformation

AL

within the steric constraints imposed by the porphyrinic
macrocycle. As a result of the resulting strain, the macrocycle
assumes a slightly twisted conformation.”® Nonetheless, the
N;C donor set of this carbaporphyrin coordinates to the
silver(IIL) ion in a square-planar fashion. This is also the case for
the palladium(II) complex of tropiporphyrin 124.**

A reaction of tropiporphyrin 124 with palladium(II) acetate
led to ring-contraction of its 7-membered ring to form two
benziporphyrin palladium(II) complexes, one of which carries a
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Figure 16. Normalized UV—vis spectra of free-base dimethoxybenzi-
porphyrin 113 (1% Et;N/CHCL;) and its palladium(II) complex
113Pd (CHCl;). Spectrum of 113 adapted with permission from ref
436. Copyright 2007 American Chemical Society. Spectrum of 113Pd
adapted with permission from ref 439. Copyright 2014 American
Chemical Society.

1949 formyl substituent.**” Tropiporphyrin reacted with excess
1950 methyl iodide and base to form the internally N-methylated
1951 derivative (regioselectively at the 24-position). In an interesting
1952 twist, a reaction of the N-methyl derivative with palladium(II)
1953 acetate afforded a palladium complex that retained the N-methyl
1954 substituent (cf. also the chemistry of the oxybenziporphyrin
1955 palladium(II) complex, Scheme 41).**’

1956  Compared to other aromatic carbaporphyrinoids, however,
1957 the UV—vis spectrum of tropiporphyrins (Figure 18) shows a
1958 more broadened and weakened Soret band with broad,

pubs.acs.org/CR
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2 0.8 114
g (1]
5 0.6 114Ru
Q
<
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N
g 0.2
S
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Figure 17. Normalized UV—vis spectra (CH,Cl,) of p-benziporphyrin
114 and its Ru(II) complex 114Ru™. Spectra adapted with permission
from ref 442. Copyright 2017 American Chemical Society.

indistinct Q-bands. On the other hand, the silver(III) 1959
tropiporphyrin 124Ag demonstrated two broad Soret bands 1960
and three additional and well-defined absorption bands 1961
throughout the visible region.**’ 1962

2.5. Metalloporphyrinoids with N,C,-Coordination Spheres

Examples of the metal complexes of the PMPs containing a
N,C,-donor set are direct extensions of the metallocarbapor-
phyrins, except that two N-confused pyrroles, azulenes, etc., 1965
building blocks are incorporated. These PMPs are generally 1966
synthesized via [2 + 2]-type total synthesis approaches. Many of 1967
the traits of the monocarbaporphyrins, like the ability to stabilize 1968
higher-oxidation-state complexes (such as silver(IlI) com- 1969
plexes),*** are retained. 1970

1963
1964

Scheme 42. Syntheses of Metallo-1,4-benziporphyrins®
Ph
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“Stick representations of the X-ray structures of 114Pd adapted with permission from ref 440. Copyright 2011 American Chemical Society. Stick
representations of the X-ray structures of 114Ru" and 114Ru™ adapted with permission from ref 442. Copyright 2017 Wiley-VCH.
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Scheme 43. Total Synthesis of Metalloanthriporphyrin
118Pd
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Scheme 44. Synthesis of Antiaromatic
Heterobenziporphyrins and Their Palladium Complexes'®'
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Scheme 45. Synthesis of N-Confused Pyriporphyrins and
One of Its Palladium Complexes'*'
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1971 2.5.1. Di-N-Confused Porphyrin Metal Complexes. The
1972 structure, stability, and aromaticity of multiply N-confused
1973 porphyrins were discussed.”*” Five regioisomers of the doubly
1974 N-confused porphyrins (N,CPs) theoretically exist, but only
1975 two isomers have been realized to date; they are labeled as the
1976 adj- and opp-isomers, indicating the relative position of the two

AN

Scheme 46. [3 + 1] Synthesis and Metalation of
Tropiporphyrin®

OHC
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v

“Stick representation of the X-ray structure of 124Ag adapted with

124Ag,
R'= Et, R2 = Ph

permission from ref 380. Copyright 2004 American Chemical Society.
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Figure 18. Normalized UV—vis spectra of free-base tropiporphyrin 124
(1% Et;N/CHCl;) and its Ag(III) complex 124Ag (CHCl,). Spectra
adapted with permission from ref 445. Copyright 2004 American
Chemical Society.

peripheral nitrogen atoms on adjacent or opposite pyrrolic 1977
building blocks (the cis/trans-nomenclature used in the original 1978
literature for these regioisomers has been replaced with the adj/ 1979
opp terms throughout this Review).**® Both examples of N,CPs 1980
were prepared along [2 + 2] strategies generating ligands with 1981
either an NCNC or an NNCC coordination sphere (Scheme 1952 s47
47A,B).***"° The macrocycles are sensitive toward oxidation 1983 s47
and are thus readily derivatized at the peripheral f-carbon, 1984
during either synthesis or the metal insertion step. 1985
In their metal complexes, the adj-N,CPs act as square-planar, 1986
trianionic N,C, ligands, capable of stabilizing higher central 1987
metal oxidation states, such as silver(IIl) and copper(IIl) 19ss
(Scheme 47A).**”**° When metalating opp-doubly N-Confused 1989
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Scheme 47. [2 + 2]-Syntheses and Metalation of Bis-N-Confused Porphyrins®
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“Stick representation of the X-ray structure of 129¥Ag adapted with permission from ref 384. Copyright 2003 American Chemical Society.

128, it similarly serves as a trianionic ligand (Scheme 47B).*%

N,CPs also express rodlike hydrogen-bonding networks in their
crystals that cannot be formed in monofunctionalized
PMPs.**>*** The conformations of the copper(IIl) complexes
126"Cu and 128Cu are both idealized planar.**>**’ Palladium-
(II) insertion also activates one of the two inner carbons toward
a C—C bond formation with the solvent as the conversion of
130" to 131FPd illustrates (Scheme 47C).**77*!

The spectro-electrochemical and acid—base properties of
N,CPs and the photochemistry of their copper(IIl), silver(III),
and gold(IIT) complexes were studied.”*~*° The X-ray crystal
structures of the complexes revealed highly planar core
geometries along with the presence of peripheral amine and

AO

imine nitrogen sites; the central metal affects the amphiprotic
character of the complexes.*>> Their syntheses, application as
photosensitizers (for the adj-isomers)**® and as anion binders
(binding to the peripheral nitrogen atoms),””**” and their metal
coordination and supramolecular chemistry have been re-
viewed S9—61,365

The UV—vis spectra of the free-base N,CPs regioisomers
126" and 128F are much different from each other and very
much distorted from those of the porphyrinoid archetypes
(Figure 19A,B; cf. Figure 4). They are also much different than
those of other dimodified PMPs, such as the dilactones (cf.
Figure 7). The corresponding complexes 126"Ag and 129"Cu
are characterized by relatively sharp bands in their absorption
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Figure 19. Normalized UV—vis spectra (CH,Cl,) of (A) 126" and
126Ag, (B) 128F and 129FCu, and (C) 130F and 131FPd. Spectra of
126" and 126"Ag adapted with permission from ref 383. Copyright
2003 American Chemical Society. Spectra of 128, 129¥Cu, 130F, and
131FPd adapted with permission from ref 449. Copyright 2000
American Chemical Society.

spectra when compared to their free-bases, whereby the change
of the spectrum upon insertion of copper is particularly drastic.
The spectra of the adj- and opp-isomeric copper complexes
126"Cu (not shown) and 129¥Cu are distinctly different from
each other. The spectra of free-base 130 and 131Pd (Figure
19C) also show distinct solvatochromic behavior, attributed to
interactions of the solvent with the peripheral NH-proton.**’

2.5.2. Diazuliporphyrin Palladium Complex. The
incorporation of two azulene moieties into a porphyrin-like
macrocycle using a [2 + 2] approach generated diazuliporphyrin
133 (Scheme 48). Its palladium(II) complex 133Pd formed
smoothly, and its crystal structure showed the existence of two
Pd—C bonds. The loss of a third central hydrogen (from a
pyrrolic moiety) and the absence of a counterion in the crystal
allowed the formulation of 133Pd as a non-macrocycle-aromatic
but fully conjugated meso-ionic palladium (1) complex.***

The UV—vis spectra of free-base diazuliporphyrin 133 (in
basic conditions) as well as its palladium(IT) complex reflect the
nonaromatic nature of the macrocycles, with broad bands and
small Soret band to Q-band ratios but with absorbances at
particularly long wavelengths (Figure 20).14¢

2.5.3. Bisindenyl-Based adj-Dicarbaporphyrin Com-
plexes. In this class of dicarbaporphyrinoids, two adjacent
pyrroles have been replaced by two indene moieties. Lash and
co-workers prepared the aromatic macrocycle 135 via a base-
catalyzed [2 + 2] condensation reaction between bis(3-

AP

Scheme 48. [2 + 2]-Synthesis and Metalation of
Bisazuliporphyrin®

Bu Bu
O~ g

OHC 132 CcHo 1.HBror HCI
2. FeCljy
+ _— X-
HO,C HH CO,H
N N \
// N R R
R 133 X~ =CI, Br
94C02H

R = Et, CH,CH,CO,Me

133Pd, R = Et

“Stick representation of the X-ray structure of 133Pd adapted with
permission from ref 448. Copyright 2009 American Chemical Society.
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Fig . Normalized UV—vis spectra of free-base bisazuliporphyrin
133 (X = Br™) (1% DBU/CHCL;) and its Pd(II) complex 133Pd

(CHCI;). Spectra adapted with permission from ref 448. Copyright
2009 American Chemical Society.

indenyl)methane 134 and a dipyrromethane dialdehyde
(Scheme 49). The tautomers of the free-base carbaporphyrins
were discussed.

In a metalation reaction of 135 with rhodium(I), the
dicarbaporphyrin tautomerizes, and one of the pyrrolic NH
protons migrates to the inner indene carbon atom; the other
pyrrole NH proton is lost, resulting in a monoanionic ligand that
coordinates in a bidentate, out-of-central-cavity fashion to the
rhodium(T) fragment Rh(CO),.*** Thus, the dicarbaporphyrin
ligand in 135Rh acts not fundamentally different from other
PMP macrocycles and even octaethylporphyrin,****** though
many porphyrins tend to stabilize rhodium(III) ions in an in-
plane coordination mode.**® Metalation of adj-dicarbaporphyr-
in 135 with palladium(II) resulted in the formation of an
unusual tripalladium sandwich complex:*®" Each of the two
tetraanionic dicarbaporphyrin units (both NH and inner CH

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 49. [2 + 2]-Synthesis and Metalation of
Bisdicarbaporphyrin 135*5%%01¢

EtOH,
KOH, A Pd(OAC),,
CHsCN
[Rh(CO),Cl],,
CH,Cl,

135

135Rh

“Stick representation of the X-ray structure of 135Pd adapted with
permission from ref 461. Copyright 2014 American Chemical Society.

2058 protons are lost) coordinate the palladium(II) ions as square-
2059 planar N,C, donors. The resulting two dianionic metal
2060 complexes then form a metallocene-like sandwich, coordinating
2061 to a palladium(IV) ion in an 77°-fashion also involving the meso-
2062 carbon atoms of each macrocycle. Thus, the overall neutral
2063 homotrimetallic, mixed oxidation state complex 135Pd is
2064 formed.**"

206s  2.5.4. Earring Porphyrin Metal Complexes. Earring
2066 porphyrins, such as 138Ni and 138NiPd, are carbaporphyrin-
2067 type PMPs in the sense that one pyrrole of a regular nickel
2068 porphyrin has been replaced by an entire porphyrin (Scheme
2069 50). Their [3 + 1]-type synthesis utilized a Suzuki—Miyaura
2070 coupling between a functionalized tripyrrane 137 and a suitably
2071 derivatized porphyrin 136Ni. The meso-carbon of this annulated
2072 porphyrin serves as the carbon atom donor atom of the N;C
2073 donor set of the “ear”. Next to the nickel(II) ion in the regular
2074 porphyrin portion of the molecule, a second metal ion can be
207s accommodated in the N3C coordination environment of the
2076 carbaporphyrin-type “ear”. A subporphyrin variety and heterole-
2077 fused earring porphyrins have also become known.*****

2078 The X-ray structure of 138NiPd shows the assembly to be a
2079 smoothly curved plane, whereby the porphyrin half is more
2080 displaced from planarity than the Pd-ear. Since the structure of
2081 “free-base” ligand 138Ni s also known,*” it could be shown that
2082 the insertion of Pd(II) caused an increased curvature of the
2083 assembly 138NiPd.

2084  The 7-systems of both chromophores are tightly coupled, but
2085 the aromatic pathways of these PMPs do not extend over the
2086 whole molecule. Instead, the two regions possess distinct
2087 aromatic (nickel porphyrin) or antiaromatic (ear) 7z-systems.**”

Scheme 50. Synthesis and Metalation of Earring Porphyrin

138Ni”
R
R
Ar Ar
Ar Ar
Br 136Ni g, [Pd], base, A
+
Bpin  Bpin
Mes Mes
138Ni
R //
Ar Ar
Pd(ll)
Mes' Mes \
138NiPd \
138NiPd

(meso-substituents
removed for clarity)

“Stick representation of the X-ray structure of 138NiPd adapted with
permission from ref 462. Copyright 2016 Wiley-VCH.

The character of the metalloporphyrin-like absorption
spectrum of 138Ni is not principally changed but red-shifted
upon insertion of the second metal ion, palladium(II) (Figure
21). Arising from an effective 7-conjugation upon palladium(1I)
insertion, a weak NIR Q-band of earring 138Ni extends to 1500
nm in 138NiPd.**

3
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5064
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Figure 21. Normalized UV—vis spectra (CH,Cl,) of monometallic
earring porphyrin 138Ni and its heterobimetallic complex 138NiPd.
Spectra adapted with permission from ref 462. Copyright 2016 Wiley-
VCH.

2.5.5. Phenanthriporphyrin Metal Complexes. Phenan-
thriporphyrinoids are antiaromatic hybrid macrocycles where a
dipyrrin subunit of a regular porphzrrin has been replaced with a
phenacene moiety (Scheme 51).'°**** The presence of the
N,C, coordination sphere and two adjacent inner carbon atoms
classifies phenanthriporphyrin 140 as a syn-dicarbaporphyr-

AQ https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 51. Synthesis, Metalation, and Oxidative Ring-Opening of Metallophenanthriporphyrin®

/ N\ / 0\
d % o o o o
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3. PhCHO Cu(OAc),H,0,
4.DDQ CHCl5
Ph Ph Ph Ph Ph Ph
OH HO
’ 139
H 1“0 o
N Ph 2 Ph
® (for 140Cu) 140P: M = P(V)
<—\/ 140Cu: M = Cu(lll)

=
,}@’,\J

( 140Cu

“Stick representation of the X-ray structure of 140Cu adapted with permission from ref 464. Copyright 2015 Wiley-VCH.

2100 inoid. Made by the condensation of pyrrole, aldehyde, and a chalcogen-based heteroporphyrins and may act as dianionic 2122
2101 phenanthrene precursor, it is suitable to accommodate copper- ligands (examples shown in Scheme 52). Derivatives featuring, 2123 ss2
2102 (III) and phosphorus(V) ions. The methoxy groups on the for instance, isomeric CONN or tris-modified CNTeO cores 2124
2103 phenanthrene moiety can be converted to oxo-functionalities, have also become known.”® Synthesized along classic [3 + 1]- 2125
2104 switching the nonaromatic macrocycle in a proton-dependent type pathways using a heterotripyrrane and a carba-building 2126
2105 process to become aromatic.'®® The copper(Ill) complex block,**”*% the p-alkyl-**”**® as well as the meso-aryl- 2127
2106 140Cu is sensitive toward light and oxygen. Upon exposure, it derivatives"*”** were reported. These compounds are the 2128
2107 oxidatively and regioselectively cleaved at the meso-position heteroanalogues of, for example, benziporphyrins (cf. Section 2129
2108 adjacent to the phenanthrene unit, resulting in the formation of 2.4.6),"%*7% oxybenziporphyrins (cf. Section 2.4.6),*** oxy- 2130
2109 acyclic helical organometallic copper(III) phenanthribilinone pyriporphyrins (cf. Section 2.2.10),**® or azuliporphyrins (cf. 2131
2110 complex 140Cu.”® This molecule is a pyrrole-modified Section 2.4.2),"”" etc. These oxa- and thia-based ligands form 2132
2111 analogue of the naturally occurring porphyrin degradation neutral, organometallic complexes with the divalent metal ions 2133
2112 products, the biliverdins. nickel(IT) and palladium(I1),**7#67468470472 2134
2113 Reflecting their antiaromaticity, the electronic spectra of 140, 2.7. Metal Complexes of Selected Expanded Porphyrins

2114 140P, and 140Cu are similar to each other and primarily consist ] ] ] ] o
2115 of a narrow Soret-like band at a significantly shorter wavelength While the classic expanded porphyrins (porphyrins containing 2135

2116 than a typical porphyrin and very weak and broad absorption more than four pyrroles) could also be defined as PMPs—one 2136
2117 bands that extend up to 1000 nm (Figure 22,6+ pyrrole in a porphyrin has been replaced by a dipyrrin, bipyrrole, 2137
tripyrrin, etc.—they do not contain nonpyrrolic building blocks. 2138

We do not consider the classic all-pyrrole expanded porphyrins 2139
here. Many expanded porphyrins also include thiophene or 2140

2.6. Metalloporphyrinoids with NCNX-Coordination
2118 Spheres (X=0, S, Se)

2119 Heterocarbaporphyrins possessing NCNX-coordination furan building blocks; they have also become known as core- 2141
2120 spheres (X = O, S, Se, Te) combine the features of the modified expanded porphyrins.15 Even though they fit our 2142
2121 trianionic carbaporphyrins with those of the monoanionic definition of PMPs and some form metal complexes, we omitted 2143

. ) 15,31,188
them here for brevity; they have been well-reviewed." > #*47% 3144

3z 1 Nonetheless, we highlight here select expanded PMP metal 2145
go.s— 140 complexes that are noteworthy for their structures, rich 2146
8 140Cu coordination chemistry, or close relationship to traditional 2147
306 140P PMPs. 2148
;)044_ 2.7.1. Texaphyrin Metal Complexes. The Schiff-base 2149
S oo oligopyrrolic macrocycle texaphyrin 146 is an expanded pyrrole- 2150
£ modified-porphyrin in which an o-phenylene-diamine moiety 2151
=z 0 SR formally replaced one pyrrole ring (Scheme 53). It is among the 2152 553
300 400 500 600 700 800 900 1000

Wavelength [nm] oldest, most versatile, and best investigated PMPs.”077 172474 5 164

Texaphyrins are synthesized along [3 + 1]-type pathways. This 2154

Figure 22. Normalized UV—vis spectra (CH,Cl,) of free-base nonaromatic macrocycle offers a Ns-donor set in an idealized 2155

phenanthriporphyrin 136 and its Cu(1I) and P(V) complexes 136Cu planaF georpetry 'and is ch%r.acterized by. rich coordine%t%on 2156

and 136P. Spectra of 140 and 140P adapted with permission from ref chemistry, including the ability to COOI;%T%& to transition 2157

464. Copyright 2015 Wiley-VCH. Spectrum of 140Cu adapted with metals and notably the larger f-metal ions.””""” The texaphyrin 2158

permission from ref 465. Copyright 2019 American Chemical Society. ligand containing sp’-hybridized meso-carbons undergoes 2159
AR https://doi.org/10.1021/acs.chemrev.1c00694
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Schem@ Synthesis and Metalation of Heterocarbaporphyrins
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2160 oxidation to the fully conju§ated form upon complexation with a
2161 number of metal cations.”” The coordination chemistry of this
2162 expanded macrocycle is in some cases reminiscent of that of a
2163 porphyrin. For example, insertion of iron afforded the formation
2164 of a p-oxo dimer 146Fe.”® The molecule can spin about the
2165 iron—oxygen bond to allow for a number of different relative
2166 orientations of the ligands with respect to each other. y-Oxo
2167 dimers, such as 146Fe, are well-known products formed by iron
2168 porphyrins.”” Iron(II) porphyrins are being readily oxidized to
2169 the corresponding iron(I1I)-oxo dimers upon exposure to air, a
2170 reaction with multiple biological implications for the hemes.*’®
2171 However, differences are also noted. For instance, the
2172 corresponding manganese(II) and cobalt(II) complexes
2173 146Mn and 146Co are stable in their +II oxidation states,
2174 whereas the +III oxidation states are stabilized in the
2175 corresponding porphyrin complexes. This is due to the increased
2176 cavity size and the decreased ligand charge; the six- or seven-
2177 coordinate geometries with low-charge donor atoms favor the
2178 stabilization of lower oxidation states.”**”> Also, an acid-
2179 induced cleavage of the dimer 146Fe to generate and isolate the
2180 corresponding monomeric iron(1Il) complexes is, for the acid-
2181 sensitivity and concomitant decomposition of the texaphyrin
2182 complex, not possible for 146Fe,”® though this reaction is
2183 commonly possible for regular porphyrin y-oxo dimers.*”®

2184 The zinc(II) complex 146Zn was the first example of
2185 texaphyrin acting as a tridentate ligand. Its crystal structure
2186 indicates that the zinc(1) cation coordinates with the tripyrrane
2187 subunit.”’> In the lanthanide complexes of texaphyrins, the
2188 central metal sits above the plane of the ligand and coordinates
2189 to all five nitrogen atoms (plus additional lig:mds).477

2190 The UV-—vis spectra of free-base texaphyrin 146 and
2191 metallotexaphyrins 146Ni and 146Fe (or even the lanthanide
2192 complexes, not shown) are in contrast to those of the
2193 corresponding porphyrin complexes that are surprisingly similar
2194 to each other and are the ligand-derived two-band spectra typical
2195 of nonaromatic PMPs (Figure 23).78’478

2196 Clinical studies of lutetium(III) and gadolinium(III)
2197 complexes of a water-soluble texaphyrin have shown their

AS

potential applications as photosensitizers and radiation 2198
enhancers for arteriosclerotic disease and cancer, respec- 2199
tively."”” The manganese(Il) texaphyrin complex 146Mn was 2200
found to act as an in vitro catalyst for the decomposition of 2201
peroxynitrite, **” a cytotoxic reactive oxygen species of relevance 2202
in diseases such as cancer, amyotrophic lateral sclerosis, or 2203
atherosclerosis. 2204

2.7.2. Twin Porphyrin Metal Complexes. A number of 2205
expanded porphyrins are large enough to accommodate more 2206
than one metal ion in their cavity, whereby metal coordination 2207
frequently affects the often severely nonplanar conformation and 2208
electronic structure (aromaticity) of the chromo- 2209
phore.'*>*75#1452 A qumber of examples of pyrrole-modified 2210
expanded porphyrins were also prepared that retained this two- 2211
metal coordination ability."** 212

Twin porphyrin 148 is formally derived from the expanded 2213
porphyrin hexaphyrin by a replacement of two pyrrolic moieties 2214
at opposite positions by pyrazole moieties. However, both 2215
pyrazoles are in an inverted position, pointing their nitrogen 2216
atoms inward. The result is the formation of two porphyrin-like 2217
square-planar N,-coordination sites that are linked through the 2218
pyrazole moieties, "3 2219

Twin porphyrin 148 was specifically designed to hold two 2220
metals in close proximity either to exploit metal—metal 2221
interactions or to interact/activate a small molecule (axial 2222
ligand) with two metal centers at once (Scheme 54).**>*** The 2223
twin porphyrin framework was synthesized along a [3 + 3]-type 2224
condensation pathway.”*~**> A number of mono- (148M'), 2225
and homo- (148M,), and heterobimetallic (148M'M?) 2226
complexes were formed.**>™**° The near-invariant twisted 2227
conformations of the free-base and metalated compounds 2228
were structurally characterized.**™**® Monometalation 2229
strongly affects the basicity and tautomeric state of the other, 2230
free-base half of the complex."®” The strong electronic and 2231
magnetic interactions of the two metals in mono- and 2232
heterobimetallic complexes with each other and the non- 2233
innocence of the ligand were described.””**>*#+#867458 The 34
complexes have yet to demonstrate catalytic abilities. 2235

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 53. Complexation of Texaphyrin 146“
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146Co: M = Co(ll)
146Ni: M = Ni(ll)

Fe(NO3)3
MeOH,
EtN3, A

“Stick representations of the X-ray structures of 146Zn2MeOH and 146Fe adapted with permission from ref 78. Copyright 2002 American
Chemical Society. Stick representation of the X-ray structure of 146Gd adapted with permission from ref 477. Copyright 1993 American Chemical

Society.
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Figure 23. UV—vis spectra of texaphyrin 146 (CH;CN) and its Ni(II)
and Fe(III) complexes 146Ni and 146Fe (CH;OH). Spectra of 146Ni
and 146Fe adapted with permission from ref 78. Copyright 2002
American Chemical Society. Spectrum of 146 adapted with permission
from ref 478. Copyright 2001 American Chemical Society.

236 The optical spectra of the free-base, mono- and bimetallic
2237 complexes are characterized by the presence of the broad bands
2238 characteristic for nonaromatic, conjugated oligopyrroles;'”
2239 here, the bands are also much less dependent on, for example,
2240 metalation compared to regular porphyrins (Figure 24; cf.
2241 Figure 4).

AT

2.7.3. Palladium Complexes of Phenylene- and
Pyridylene-Based Octaphyrin Analogues. Octaphyrins
(and heterooctaphyrins) are a class of expanded porphyrins
composed of eight pyrroles and varying numbers of meso-carbon
atoms linking them.””°~* In the 1,3-phenylene- and 2,6-
pyridylene-analogues of the octaphyrins 150 and 151, two
pyrroles in opposite positions of an octaphyrin were replaced by
phenylene and pyridyl moieties, respectively (Scheme 55).

The syntheses of octaphyrin-analogues 150 and 151 can be
described as Pd-catalyzed [3 + 5]-type condensations, followed
by oxidation to the fully conjugated macrocycles.*”* Unlike
nonplanar all-pyrrole-based octaphyrin (of figure-eight con-
formation), analogues 150/151 are idealized planar. The ligand
can accommodate two palladium(Il) ions that are each
coordinated in a N;C fashion (and to the same phenylene/
pyridylene), causing this ligand to act like a dicarbaporphyrin.
The bismetal complexes 150Pd,/151Pd, are overall idealized
planar with a slight overall bow.

The two-band UV—vis absorption spectra of free-base 150
(not shown) and 151 are similar and reflect their nonaromatic—
but conjugated—nature (Figure 25).** Bispalladium insertion
leads to a drastic broadening and red-shift of the spectra,

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 54. [3 + 3]-Type Synthesis and Metalation Reactions of Twin-Porphyrin 148
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“Stick representations of the X-ray structures of 148Ni and 148Ni, adapted with permission from ref 484. Copyright 2013 Wiley-VCH.
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Figure 24. Normalized UV—vis spectra (CH,Cl,) of 148, 148Ni, and
148Ni,. Spectrum of 148 adapted with permission from ref 489.
Copyright 2016 Wiley-VCH. Spectra of 148Ni and 148Ni, adapted
with permission from ref 486. Copyright 2020 American Chemical
Society.

2264 reﬂectin§ the tight interaction of the ligand 7-system with the
2265 metal."’

4

AU

2.7.4. Ruthenium Complex of a Bisterphenyl-Modified
Decaphyrin Analogue. A decaphyrin is an expanded
porphyrin-analogue composed of 10 pyrrolic moieties. Decg‘
hyrin-analogue 153 is derived from a porphyrin by formalk
replacing each of two pyrrole rings with terphenylene units. It
could also be seen as a decaphyrin PMP-analogue in which two
groups of three adjacent pyrroles were replaced by six phenyl
groups.

The bisterphenyl-modified decaphyrin-analogue 153 was
synthesized by a [S + 5] acid-catalyzed condensation of two
terphenyl dipyrromethanes 152 linked through aryldehydes,
followed by dehydrogenation (Scheme 56).*”> This non-
aromatic macrocycle allows for the incorporation of two metal
ions in two equivalent sites; its rhodium(I) complex was
prepared. The X-ray crystal structure of 153Rh, demonstrate
the (idealized) square-planar coordination of the metals by two
carbonyl oxygen atoms and the N,-chelates of the dipyrrin-like
halves of the macrocycle. Complex 153Rh, retains the

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme $5S. Synthesis and Metalation of a Pyrrole-Modified Octaphyrin-Analogue”

1. [Pd], Cs,CO4
2.DDQ, CH,Cl,

150, for X = CH
151, for X=N

|
)\/OY (151Pd),, for X =N \-\

Pd(OAc),, NaOAc,
CH3Clo/CH3z0H

150Pd,, for X = CH
151Pd,, for X =N

(151Pd),, for X =N

“Stick representation of the X-ray structure of 151Pd, adapted with permission from ref 494. Copyright 2020 Nature-Springer.
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Figure 25. Normalized UV—vis spectra (CH,CL,) of 151 and 151Pd,.
Spectra adapted with permission from ref 494. Copyright 2020
Springer-Nature.

2284 nonaromatic characteristics of its free-base macrocycle. As could
2285 be expected based on the coordination of the metal to the distant
2286 ends of the macrocycle, no strong electronic coupling of the two
2287 halves of the macrocycle is apparent.*”

2.8. Metallocenoporphyrins

2.8.1. Metallocenoporphyrins and Metallocenoheter-
oporphyrins. One class of metalloporphyrinoids, metal-
2290 locenoporphyrins, stands out in the context of the metal
2291 complexes of PMPs (and thiaporphyrins) in that a metal
2292 complex constitutes the nonpyrrolic moiety.*”*~*** Synthesized
2203 along [3 + 1] pathways (Scheme 57), they provided the first
2294 insight into what extent the transmission of metallamacrocyclic
2295 m-electron conjugation can reach across the d-electrons of a
2296 metallocene (ferrocene or ruthenocene). Moreover, the hinge-
2297 like flexibility of the metallocene sandwich complex allows for a
2298 number of compound topologies that affect the porphyrinoid 7-
2299 system. In contrast to the ferrocenophanes prepared previously,

2288
2289

AV

the metallocenoporphyrins possess spectroscopic features 2300
suggestive of macrocycle aromaticity. Protonation and redox 2301
events modulate the aromaticity of the system.*”” 2302

2.8.2. N-Confused f,f-Fused Ferrocenoporphyrinoids. 2303
N-Confused p,f-fused ferrocenoporphyrinoids are weakly 2304
aromatic PMPs that combine the structural features of several 2305
PMP classes: They feature a 2,4-linked (and oxidized) N- 2306
confused pyrrolic moiety (cf. Section 2.4.1). A ferrocene moiety 2307
is incorporated in place of a pyrrole, characterizing them as 2308
metallocenoporphyrins (cf. Section 2.8.1), and they contain an 2309
inverted pyrrole that oxidatively formed a direct j,f-linkage 2310
between the N-confused and inverted pyrroles,””” reminiscent 2311
of N-fused porphyrins.** % They are synthesized alonga [3 + 1] 2312
pathway (Scheme 58) that is similar to the synthesis of regular 2313
metallocenoporphyrins (Scheme 57), except a 2,4-modified and 2314
N-methylated pyrrole is fused into a the metallocene-tripyrrane- 2315
analogue, and the oxidative transformations take place 2316
concomitantly with the oxidation of the initially formed 2317
macrocycle to the final (aromatic) product. The external 2318
nitrogen atom of the inverted pyrrolic building block in 157Fe 2319
can coordinate to the rhodium(I) tricarbonyl fragment; the 2320
inside of the macrocycle is likely too congested to be able to 2321
coordinate to any metal ion. The rigid but helical conformation 2322
of the weakly aromatic macrocycle rhodium complex was shown 2323
by single-crystal crystallography.*”” 2324

3. RELEVANCE OF METALLO-PMPS

The relevance of metallo-PMPs is derived from fundamental and 2325
applied aspects. On the most fundamental level, the alteration of 2326
the porphyrin macrocycle and the observation of the resulting 2327
perturbation allow one to learn something about the importance 2328

https://doi.org/10.1021/acs.chemrev.1c00694
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Scheme 56. Synthesis and Metalation of Bisterphenyl-
Modified Decaphyrin-Analogue 153 and Its Bisrhodium
Complex 153Rh,”

p-TSA,

1. C4FsCHO,
2. DDQ, CH,Cl,

[Rh(CO),Cl],,
EtyN, CHCl3,
CHZOH, A

153Rh,

“Stick representation of the X-ray structure 153Rh, adapted with
permission from ref 495. Copyright 2019 American Chemical Society.

of the specific connectivity of the parent (hydro)porphyrin, one
of the pigments of life. On another fundamental level, the PMPs
may provide often unique mixed nitrogen, carbon, and
chalcogen coordination environments (such as N;C, N,O,
N,C,,N,S,, N, Te,, N,CSe, etc.) to a central metal ion in a more
or less rigid (planar) arrangement. This allows, for example, the
formation of organometallic complexes with great and
unprecedented facility or the stabilization of unusual metal ion
oxidation states (such as silver(Ill)).”° The PMP may even
bind in an out-of-plane coordination mode forming half-
sandwich or sandwich complexes with larger metal
2340 jons." > 30441499 Thig hag led, for example, to the formation
2341 of high-valent tungsten(IV) complexes of N-fused porphyrins
2342 for which no equivalent is known for porphyrins.*'?

2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
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Scheme 57. [3 + 1] Syntheses of Metallocenoporphyrins®

Ph
Ar
OH |
N 1. BF3Et,0
— . H 2.DDQ
N @/2@
Ar N Ph Ar,
H
765, X =S 154Fe: M = Fe
76N, X = NH 154Ru: M = Ru

1555Fe: M = Fe, Ar, Tol, X = S
1555Ru: M = Ru, Ar=Tol, X =S
155NRu: M = Ru, Ar = Ph, X = NH

1555Fe: M = Fe, Ar, Tol, X = S

“Stick representation of the X-ray structure of 155Fe adapted with
permission from ref 497. Copyright 2010 Wiley-VCH.

Scheme 58. [3 + 1] Syntheses of N-Confused f,-Fused
Ferrocenoporphyrinoids®

Ar'
Ar? B
OH N
N \ 1.PTSA
H 2. chloranil
N + Fe —_—
=~
. @F
Ar? N Arl
155 H
156A'Fe

157Fe

[RhCI(CO),l,,
CH,Cl,

157Fe-Rh(CO);

157Fe-Rh(CO)3, Ar! = Ph, Ar2 = 2,6-F,Ph

“Stick representation of the X-ray structure of 157Fe—Rh(CO);
adapted with permission from ref 499. Copyright 2021 American
Chemical Society.

The macrocycle may be aromatic, non-macrocycle-aromatic, 2343
or antiaromatic, and the electronics and charge state of the 2344
ligand can be modulated by means of protonation and 234s
substitutions at the macrocycle periphery; these features help 2346
to understand the nature and the fundamental concept of 2347
aromaticity and the factors that allow the switching of 2348
aromaticity parameters.134’149’150’428’501’502 2349

The presence of functional groups and heteroatoms, including 2350
the nitrogen atoms of inverted pyrrolic moieties, that are tightly 2351
electronically linked to the macrocycle ﬂ—systen}zis a common 2352
and often characteristic feature of PMPs.'”~'"'*® The 2353
functionalities at the periphery of many metallo-PMPs 2354
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particularly suggest their utilization as o | chemosensors,
with multiple examples already realized 127, 133, 172,
291-293, 371, 393, and 503—506). Moreover, in case the PMPs
contain self-complementary functionalities, rodlike networks in
their crystals that cannot be formed in monofunctionalized
PMPs can be observed, making these chromophores ideal for the
study of light-harvesting antennas, etc.’*>***

Reflecting their different electronic structures, the optical and
electrochemical properties of metallo-PMPs can also vary
broadly. This broadly influences the reactivity of the
coordinated metal ions; thus, the metallo-PMPs are frequently
distinctly different from each other and from the correspon@
porphyrin or hydroporphyrin metal complexes.'>~"*"**
catalytic properties of the coordinated metals in metallo-PMPs
were also explored for a myriad of reactions; comparisons to the
reactivities of the corresponding metalloporphyrins are
frequently available.””®*%%**>%9%397 §ome of the applications
of PMPs as catalysts in organic transformations reflect this, as is
well-documented for metalloporpholactones (see also Section
2.2.4). Generally, the often found superiority of the metallo-
PMPs was deduced to lie in their differing electronics or
presence of peripheral functionalities.'>*"*>*"

The photophysical properties of the metallo-PMPs, like those
of regular porphyrins, are the basis for their potential
applications as fluorescent sensors in phototheranostic, *°
phototherapeutic, >>°°*7>"* and technical ﬁeldsfo‘g’504
artificial light-harvesting systems-;ll8’83’514_516 or in optical
switches or logic gates,”'” though it is not always clear to
which degree the metallo-PMP carries functional advantages
over the corresponding regular metalloporphyrins. The larger
coordination sphere of the texaphyrins, for example, has proven
to be of tremendous utility: They can readily form stable
complexes with lanthanides, and the clinical studies of
lutetium(I1I) and gadolinium(III) complexes of a water-soluble
texaphyrin have shown their potential applications as photo-
sensitizers and radiation enhancers for arteriosclerotic disease
and cancer, respectively.””” While manganese(II) texaphyrin
complexes were found to act as an in vitro catalyst for the
decomposition of peroxynitrite, a property not unique to
texaphyrin manganese complexes,” its in vivo utility in the
destruction of this cytotoxic reactive oxygen species of relevance
to cancer, amyotrophic lateral sclerosis, or atherosclerosis is
likely derived from the honed and favorable biodistribution of
the texaphyrin.

On the other hand, the finely tunable metalloporpholactone
derivatives were again clearly shown to be superior to the
corresponding metalloporphyrin in the photosensitization of
oxygen and lanthanides or in the ability to function in oxygen-
sensing paints.'”'?* PMP metal complexes absorbing or
emitting in the NIR,"*’ and some even well above 1000 nm,
have also been described, a range inaccessible by regular
(hydro)porphyrins,'*>'?¥*1°

Porphyrin and PMP metal complexes were incorporated into
hybrid metal—organic frameworks (MOFs) with core/shell-like
hierarchical structures. The variation of the macrocycle allowed
a broader tuning of, for instance, the visible-to-near-infrared
(NIR) absorption/emission characteristics, excited-state energy
migrations, and photosensitization capabilities of these novel
mimics of the photosynthetic Pigment system than would be
possible using only porphyrins.>*

Metallo-PMPs may also have (helical) conformations or
conformational flexibility; that is different than t—ha%of the
corresponding metallo-(hydro)porphyrins;*”"*****>1 " they

AX

clearly occupy a much larger conformational space than
porphyrins (that themselves can vary in their conformations
broadly)."'® PMPs may also be subject to different steric
constraints than porphyrins. For example, the lesser steric
congestion around the meso-positions in subporphyrins
compared to regular meso-arylporphyrins®*°~>** results in a
free rotation of their aryl-substituents and an enhanced
electronic influence of the meso-aryl substituents on the og)tical
and electrochemical properties of these chromophores;”" we
extend this finding also to the metallo-PMP derivatives of the
subporphyrins. This provides PMPs with avenues to adjust their
shape and electronic structure not accessible to regular
porphyrins.

Beyond their coordination chemistry, many PMPs are
nonplanar, exposing the inner NH hydrogen atoms for
interactions with their environment. As recently shown for
porphyrins, this is the basis for their “molecular engineering”
into, for example, organocatalysts or a molecular recognition
system, 53524

4. CONCLUSION AND OUTLOOK

This Review demonstrates that PMPs are porphyrinoids of large
structural variety, conformation and conformational flexibility,
chemical stability, and optical and physical properties. Their
synthetic pathways either are along total synthesis routes or
utilize the conversions of porphyrins, chlorins, or other PMPs;
however, only in rare exceptions are complementary routes
toward the same class of PMPs available.”'” The extent of the
tuning of the electronic properties of the porphyrinic macrocycle
that resulted from the replacement of one or two pyrroles by
nonpyrrolic heterocycles is readily appreciated by a comparison
of the optical properties of PMP-analogues with those of the
parent porphyrinoids. The syntheses and structures of aromatic,
antiaromatic, and nonaromatic species were shown.

Either the metallo-PMPs are prepared in metalated form, or
the metal ions are inserted into the free-base macrocycles via
metathesis reactions. The central metals of (sometimes varying)
oxidation states play multiple roles or have varying effects on the
syntheses, conformation and conformational flexibility, chem-
ical stability, and optical and physical properties of the metalated
macrocycles. Despite the structural diversity observed in
metallo-PMPs, some general reactivity and (in)stability trends
emerged that point toward the highest stability for those systems
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of architectures and electronics that are similar to those of 2459

(hydro)porphyrins. The size of the macrocycle cavity was shown
to have a large impact on the type of metals that can bind or the
oxidation states of the metal ions they stabilize; inversely, the
metal can affect the conformation of the complex. The
coordination chemistry of some of the derivatives is rich,
while other PMPs have yet to be studied in detail.

It can be safely predicted that the field has yet to reach its full
potential and that new discoveries with respect to the formation,
reactivity, physical properties, and utility of metallo-PMPs can
still be expected. We hope that this overview will guide and
inspire further development of one major aspect of modern
porphyrinoid chemistry.”*
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