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‘We show that as T — oo, for all t € [T, 2T'] outside of a set of measure
o(T),

logHT 1 B i
—+it+ih>‘ dh = (log T) ¢ (B)+o()
/—logeT‘§<2 (logT)

for some explicit exponent fy(B), where 6 > —1 and B > 0. This proves an
extended version of a conjecture of Fyodorov and Keating (Philos. Trans. R.
Soc. Lond. Ser. A Math. Phys. Eng. Sci. 372 (2014) 20120503, 32). In partic-
ular, it shows that, for all & > —1, the moments exhibit a phase transition at
a critical exponent B.(6), below which fp(8) is quadratic and above which
fo(B) is linear. The form of the exponent fy also differs between mesoscopic
intervals (—1 < 0 < 0) and macroscopic intervals (6 > 0), a phenomenon that
stems from an approximate tree structure for the correlations of zeta. We also
prove that, for all r € [T, 2T] outside a set of measure o(7'),

1
max ‘; <— +ir+ 1h>‘ = (log T)"™(@+o(D)
Ih|<log? TI" \2

for some explicit m(0). This generalizes earlier results of Najnudel (Probab.
Theory Related Fields 172 (2018) 387—452) and Arguin et al. (Comm. Pure
Appl. Math. 72 (2019) 500-535) for & = 0. The proofs are unconditional,
except for the upper bounds when 6 > 3, where the Riemann hypothesis is
assumed.

1. Introduction.

1.1. Maxima and moments over large intervals. Understanding the growth of the Rie-
mann zeta function ¢ (s) on the critical line Res = % is a central problem in number theory,
due, among other things, to its relationship with the distribution of the zeros of {(s); see,
for example, Theorem 9.3 in Titchmarsh (1986); regarding the more general subconvexity
problem, see, for example, Michel and Venkatesh (2010), Venkatesh (2010), and see Iwaniec
and Sarnak (2000) for a general discussion.

The Lindel6f hypothesis predicts that, for any ¢ > 0 and all # € R, we have |§(% +1it)| =

O((1 + |#])¥), whereas it follows from the Riemann hypothesis that

IR @ logt )
(1.1) ‘§<§+lt>‘—0(exp(( > +0(1))710g10gt)>’ ast — o0;

see Chandee and Soundararajan (2011).
Unfortunately, there is a large gap between these conditional results and the best uncon-
ditional upper bounds, such as Bourgain (2017), which shows that |§(% + i) = O +

Received January 2021.
MSC2020 subject classifications. Primary 60G70; secondary 11M06, 60F10, 60G60.
Key words and phrases. Extreme value theory, Riemann zeta function, moments.

3106


https://imstat.org/journals-and-publications/annals-of-probability/
https://doi.org/10.1214/21-AOP1524
http://www.imstat.org
mailto:louis-pierre.arguin@baruch.cuny.edu
mailto:ouimetfr@caltech.edu
mailto:maksym@caltech.edu
https://mathscinet.ams.org/mathscinet/msc/msc2020.html

MOMENTS OF THE ZETA FUNCTION ON SHORT INTERVALS 3107

|£])13/84+¢) for any given ¢ > (0 and all ¢ € R. Currently, the best unconditional lower bound,

1 log T logloglog T
g“(— —|—it>‘ Zexp((ﬁ—i—o(l)) Of ° 08108 08 ), as T — oo,
2 loglog T

(1.2) max
t€[0,T]

is established in de la Breteche and Tenenbaum (2019) and building on a method from
Bondarenko and Seip (2017).

The true order of the maximum of |§(% + it)| remains elusive to this day. A conjecture
that we find plausible is stated in Farmer, Gonek and Hughes (2007), where it is conjectured
based on probabilistic models that

{(% +it>‘ =exp<(% +0(1))\/m>» as T — oo.

Another set of central objects in the theory of the Riemann zeta function are the moments

1 2T
(1.4) ?/T

Their importance comes from their relationship to the size and zero-distribution of ¢(s).
However, unlike the problem of understanding the size of the global maximum of |§(% +it)|,
we are in possession of widely believed conjectures regarding the behavior of moments.
Following the work Keating and Snaith (2000), it is expected that, for all 8 > 0,

1 2T
(1.5) T/T

and that the constant Cg > 0 factors into a product of two constants: one is computed from
the moments of the characteristic polynomial of random unitary matrices, and the other is an
arithmetic factor coming from the small primes.

There are a few results supporting (1.5). First, the conjecture (1.5) is known for 8 =2 and
B = 4 following the classical work of Hardy—Littlewood and Ingham. Upper bounds of the
correct order of magnitude are established in Heap, Radziwilt and Soundararajan (2019) for
0 < B < 4. Meanwhile, lower bounds of the correct order of magnitude have been established
for all 8 > 2 in Radziwilt and Soundararajan (2013). Conditionally on the Riemann hypoth-
esis, the correct order of magnitude of (1.5) is known for all 8 > 0 (see Harper (2013a),
Soundararajan (2009) for the upper bounds and Heath-Brown (1981) for the lower bounds).

(1.3) max
1€[0,T]

1 B
{(5 +it>' dr, B>0.

1 B
§(§ +it)‘ dr ~ Cg(log T)ﬂ2/4, as T — oo,

1.2. Maxima and moments over short intervals. Motivated by the problem of understand-
ing the global maximum, Fyodorov et al. (2004), Fyodorov and Keating (2014) initiated the
question of understanding the true size of the local maximum of g“(% + it) by establishing a
connection with log-correlated processes. If 7 is sampled uniformly on [T, 27'], they conjec-
tured that, for any 0 < § < 1, there exists C = C(8) > 0 large enough and independent of T
such that with probability 1 — &,

1 3
{(5 +it +ih)’ — <10glogT — ZlogloglogT) e[-C,C].

1.6 1
(1.6) herfljl;f]]og

They also conjectured weak convergence with a limiting tail of the form Cye~2Y. The leading
order loglog T was proved in Najnudel (2018) (conditionally on the Riemann hypothesis for
the lower bound) and in Arguin et al. (2019) unconditionally. The sharp upper bound was
recently established in Arguin, Bourgade and Radziwilt (2020).
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It is also conjectured in Fyodorov et al. (2004), Fyodorov and Keating (2014) (see equa-
tions (14) and (2.30), respectively) that the moments in a short interval undergo a freezing
phase transition, that is, the event

(log TYF*/4+oM if g <2,

1 B
1.7 / (—+ir+ih)‘ dh =
(4D [—l,l]g 2 (log T)P~1H+eM if g~ 2,

has probability 1 — o(1) as T — oco. Fyodorov and Keating (2014) also state corresponding
conjectures for mesoscopic intervals of length 10g9 T, when 6 € (—1,0), as well as finer
asymptotics for the moments.

In view of equations (1.5) and (1.7), an obvious question is to determine up to which
interval size the freezing phase transition persists. In this paper we establish that freezing
transitions occur exactly for interval sizes of order log? T with > —1. We also obtain the
corresponding results for local maxima over such intervals. The following functions will be
crucial to our analysis:

132
7(1 +0)+0, ifB=<p:(0)=2,

pm (@) — 1, it B> Bc(0),

B* .
6>0. m@) =v1t0, fop=1a4 if B <B(0) =2v1+0,

pm@) —1, if B> B.(6).

0<0. m@®:=1+0, fi(B):=

(1.8)

THEOREM 1.1 (Moments). Let 6 > —1, 8 > 0 and ¢ > 0 be given. Let T be a random
variable uniformly distributed on [T,2T]. Then, as T — 0o, we have

log? T 1 B
(1.9) P(f {(—+ir+ih) dh < (1ogT)f0(/3>—8) =o(1).
—10g9 T 2
Moreover, if 8 < 3 or if the Riemann hypothesis holds, then, as T — oo,
loge T 1 B
(1.10) IP’(/ ;(—+ir+ih> dh > (1ogT)f6<ﬂ)+8) =o(1).
,10g9 T 2

PROOF. For the upper bound, see Section 2.3, and for the lower bound, see Proposi-
tion 3.2. [

When 8 > B.(0), the moments exhibit freezing, that is, they are dominated by a few large
values at the level of the local maximum of |{(% +it +1ih)|, |k < loge T. Theorem 1.1 also
suggests that freezing does not occur for intervals larger than any fixed power of log 7', since
B:(0) — 00 as 8 — co. We note that recently a sharp upper bound in the case (8 =0, § =2)
has been established in Harper (2019), thus refining the (log T')¢ factor appearing in (1.10),
when 8 =0 and 8 =2.

THEOREM 1.2 (Local maximum). Let 6 > —1 and ¢ > 0 be given. Let T be a random
variable uniformly distributed on [T,2T]. Then, as T — 0o, we have

1
(1.11) IP( max ;(— +it + ih) < (log T)m(9>—€> =o(1).
Ihl<log T1” \2

Moreover, if 0 < 3 or if the Riemann hypothesis holds, then, as T — 00,

1
(1.12) P( max ;(— +ir + ih) > (log T)m<9>+€) =o(1).
Ihl<log? 71" \2
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PROOF. For the upper bound, see Section 2.3, and for the lower bound, see Proposi-
tion3.1. O

It is instructive to put these results in the context of two well-known facts on ¢. First,
Selberg’s central limit theorem, see, for example Selberg (1946), Selberg (1992) or the simple
proof in Radziwitt and Soundararajan (2017), states that, for any given a < b,

! + oo [PeT" /2
0g|¢ (5 +it)] < b)> T /
\/ —loglogT

In other words, a typical value of log |§(% + it)| is a Gaussian random variable of variance

(1.13) P(

% loglog T'. This is consistent with the moment conjecture (1.5), which gives a precise expres-
sion for the Laplace transform of log |§(% +it)|. Second, since ;(% +1t) varies on the scale of
(log T)~! for T <t < 2T, the analysis of large values should be reducible to a discrete set of
(log T)'*? points. Putting these two facts together, one expects that the statistics of extreme
values of log |§(% +it+ih)|, |h| < loge T, should be similar to the ones of (log 7)™ Gaus-
sian random variables of variance % loglog T. If the random variables were independent, this
is the so-called random energy model (REM) in statistical mechanics introduced in Derrida
(1981). For 6 > 0, it is not hard to check, using basic Gaussian tail estimates, that the expres-
sion (1.8) corresponds to the free energy of the model and the results of Theorem 1.2 to the
maximum of the REM. For more on this, we refer to Kistler (2015), where many techniques
from REM were introduced to analyze log-correlated processes.

The REM heuristic is, of course, limited, as the values of log|¢ (% +it +1ih)|, |h| < loge T
are correlated. In fact, they are log-correlated if |2 — h’| < 1, as first noticed by Bourgade
(2010). A good probabilistic model for the extreme values in the case & = 0 is, therefore, a
branching random walk. This is explained in more details in Section 1.4 and illustrated in
Figure 1. For 6 > 0, our results show that the correlations do not affect large values at leading
order (though the proofs must take them into account). As argued in Section 1.4, we believe
that the correct probabilistic model for large values in this case is log? T’ independent branch-
ing random walks. One implication is that the REM heuristic should persist to subleading
order (but fail at the level of fluctuations). In view of this, we believe that conjecture (1.6)
needs to be expanded, as follows to include large intervals.

CONJECTURE 1.3. Let 8 > 0 be given and let m(0) be as in (1.8). Let T be a random
variable uniformly distributed on [T, 2T]. For any 0 < § < 1, there exists C = C(§) > 0 large
enough and independent of T, such that with probability 1 — §,

1
(1.14) max log ;(5 +it —i—ih)‘ — (m(®)loglog T — r(0)logloglogT) € [-C, C],

|h|<log? T

where

r(@):% if0=0 and r0)= if6 > 0.

1
44146
In particular, we expect a discontinuity of r(6) as 6 | 0. An analysis of a model of the
Riemann zeta function shows that the discontinuity can be resolved by approaching 0 at a
suitable rate. Namely, if 6 ~ (loglog T)™%, it is expected that r(0) = Hf“, interpolating
between 1/4 and 3/4 for 0 < @ < 1; see Arguin, Dubach and Hartung (2021). Such hybrid

statistics have been studied in the context of branching random walks; see Kistler and Schmidt
(2015) and Bovier and Hartung (2020).
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For 6 < 0, our analysis suggests that the correct model consists of a single random walk up
to time |0|loglog T, followed by a branching random walk. The maximum on such intervals
would then be consistent with the level proposed in Section 2(c)(ii) of Fyodorov and Keating

max log

(2014),
1
— +it —I—ih)‘
lh|<log? T ¢ <2

3 /16
=m(0)loglogT — ZlogloglogT + |—2|10g10gT - Z+ Op(1),

where Z is a standard Gaussian random variable. As explained in Section 1.4, the
additional fluctuation would represent the contribution of the Dirichlet polynomial
Zlogpglog‘“ r Re p_l/z_‘(”’h), which is essentially the same random variable for all 4’s in

the interval || <log? T.

(1.15)

1.3. Relations to other models. When —1 < 8 <0, Conjecture 1.3 is based on modelling
¢ by the characteristic polynomial of a random unitary matrix (CUE). More precisely, if My
is a random matrix sampled from the Haar measure on the unitary group U/ (N), one can
consider the moments

1 2 " 28 k
(1.16) E[(z—/ |det(T — e My)| dh) } k>0,8>0.
T JO

These can be computed in the limit N — oo, at least heuristically, using Selberg integrals
and the Fisher-Hartwig formula, cf. Fyodorov and Keating (2014). Exact expressions were
recently obtained in Bailey and Keating (2019) in the regime k, 8 € N. The statistics of
log [ | det(I — e~ My)|?# dh and of maxjejo 2] | det(I — e " My)| in the limit N — 0o
can be inferred from the asymptotics of the moments by comparison with log-correlated
processes, cf. Fyodorov, Gnutzmann and Keating (2018) for a numerical study. In the CUE
setting the freezing analogue of (1.7) and the leading order, as in (1.6), were proved in Arguin,
Belius and Bourgade (2017). The subleading order of the maximum was proved in Paquette
and Zeitouni (2018) and up to constant C in Chhaibi, Madaule and Najnudel (2018).

From the analysis of a particular variant of the log-correlated REM model, Fyodorov and
Bouchaud (2008) conjectured an exact formula for the density of the total mass of the sub-
critical Gaussian multiplicative chaos (GMC) measure, associated to the Gaussian free field
(GFF) on the unit circle, cf. Rhodes and Vargas (2014). In the critical case they conjectured
that the fluctuations of the maximum can be captured by a sum of two Gumbel variables.
Both results were proved in Remy (2020). Naturally, these results are expected to hold in the
CUE setting, where the GMC measure is the limit of

|det(I — e " My)1* dh
E[|det(I — e~ 1" My)|2] 27

as proved by Webb (2015), when —1/4 < B < 1/+/2, and by Nikula, Saksman and Webb
(2020), when 1/+/2 < B < 1. Such a random measure can also be considered in the context
of the Riemann zeta function for mesoscopic intervals of length 10g9 T, —1 <06 <0, with
|§(% + it + ih)| in place of |det(I — e " My)|. (There does not seem to be any obvious
equivalent for macroscopic intervals, 6 > 0, in the CUE model.) A step in this direction was
made in Saksman and Webb (2020), where {(% + it +1ih), h € R, was shown to converge, as
T — oo, when considered as a random variable on the space of tempered distributions.
Another model for the large values of log|¢ (% + it +1ih)|, h € [—1, 1] is to consider

a random Dirichlet polynomial X, =Re}_ -7 p~ 12—k U,, where (U, p primes) are i.i.d.

(1.17)
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uniform random variables on the unit circle, cf. Arguin, Belius and Harper (2017), Arguin and
Ouimet (2019), Harper (2013b). The analogue of conjecture (1.6) for this model was proved
up to second-order corrections in Arguin, Belius and Harper (2017), and large deviations and
continuity estimates for the derivative were found in Arguin and Ouimet (2019). The limit of
the corresponding multiplicative chaos measure was obtained in Saksman and Webb (2016),
Saksman and Webb (2020). A proof of the freezing phase transition was given in Arguin and
Tai (2019). In the latter, the limit of the Gibbs measure exp(8X},) dh is also studied in the
supercritical regime > 2, showing that it is supported on /’s that are at a relative distance
of order one or order (log T)~! of each other. This result was used in Ouimet (2018) to prove
that the normalized Gibbs weights converge to a Poisson—Dirichlet distribution.

NOTATION. For the rest of the paper, t denotes a uniform random variable on [T, 2T].
For any event Ay C [T, 2T] and a random variable X7 : [T, 2T] — C, we write

1 12T
P(A7) = -Leb(Ar) and E[X7l=— | Xr()de

We also use the standard o and O notations: thus, f(T) = o(g(T)) if | f(T)/g(T)| tends to 0
as T — oo, when the parameters 6, 8 and ¢ are fixed. Similarly, we write f(T) = O(g(T))
if limsup | f(7T")/g(T)| is bounded for 6, B and ¢ fixed. We sometimes write for conciseness
F(T) < g(T)if f(T)=0O(g(T)) and also f(T) =< g(T) if both f(T) < g(T) and g(T) <
f(T) hold. In some statements we write f(T) <4 g(T) or f(T) = O4(g(T)) to highlight
the dependence on a specific parameter A in the implicit constant. In some of the proofs,
we use the common convention that & denotes an arbitrarily small positive quantity that may
vary from line to line. We will also encounter some arithmetical functions familiar in number
theory. These include w(n) (which counts the number of distinct primes dividing n), 2 (n)
(which counts with multiplicity the number of primes dividing n) and the Mobius function
w(n) (which equals 0 if n is divisible by the square of a prime and equals (—1)©"™ if n
is square-free). Throughout the paper, x vV y and x A y refer to max{x, y} and min{x, y},
respectively.

1.4. Outline of the proof. For 8 > 0, the upper bound part of Theorem 1.1 and Theo-
rem 1.2 follows from the moment estimates

(1.18) E[ ;(% ~|—ir>

and from a discretization result which roughly shows that for a Dirichlet polynomial D that
approximates zeta and for 8 > 1, we have
( 1. 2mik ) ‘ﬂ
D| - +1t+ .

1 B
D -+1 ih
<2+1T+1 )‘ < Z 2 log T
|k|<log!*? T

B
} <« (log )"/,

(1.19) max
Ih|<log? T

Equation (1.19) tells us that the process ({(% +it +ih), k| < loge T) varies on a (log 7)~!

scale so that the maximum and moments of log |¢| on an interval of length O(log? T') behave
as those of O(log!*? T') i.i.d. Gaussian random variables of variance % loglog T.! The limita-

IAs in the branching random walk setting, the log-correlations are important in the proof of the first-order
asymptotics of the maximum, high points and moments, but they do not influence the results. When comparing
Gaussian fields, Slepian’s lemma tells us that, at equal variance, the field with no correlations will have, on
average, the highest maximum and the highest number of points above any fixed proportion of the maximum
(the asymptotics of the moments are derived directly from these two quantities). Therefore, the asymptotics of the
maximum and moments for i.i.d. Gaussians are always an upper bound for those of log-correlated Gaussian fields.
It turns out that we get a matching lower bound by a coarse-graining of the scales following Kistler (2015). This
is why our heuristic here is phrased in terms of i.i.d. Gaussians, because the correlations ultimately only matters
for the proof, not the actual results.
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tion to 6 < 3 comes from the fact that the upper bounds (1.18) are not known unconditionally
for 8 > 4.

When 6 < 0, the upper bounds in Theorem 1.1 and Theorem 1.2 are a bit more delicate.
We follow essentially the same strategy, but we apply it to the function

1 1
(1.20) (¢ -e_P"')(E + i‘(), where P, (s) = Z — fora >0,
log p<log®T
instead of {(% + it). The reason is that, when 6 < 0, the contribution of the primes up to

scale |6] is negligible with high probability. Namely, with probability 1 — o(1),

(1.21) max
|h|<log’ T

1
77|9|(§ +it —Hh)’ =o(loglogT).

When Tt is restricted to a specific event A(7T') on which (1.20) can be discretized as in (1.19),
we can show that

(1.22) IEH({ -e—PB)G + ir)

for B < 2. This explains the additional factor (82/4)6 in f3(8) when —1 <6 <0 and 8 < 2.
We then turn to the lower bound part of Theorem 1.1 and Theorem 1.2. The lower bounds
in Theorem 1.2 follow directly from Theorem 1.1 (see (3.74)), so it is enough to discuss
Theorem 1.1.
The problem is first reduced to obtaining lower bounds for moments off the critical line.
In particular, it is shown, uniformly in % <o < % + (log T)?~¢ and for any given & > 0, that
with probability 1 — o(1),

ﬂ} < (log T)(ﬁ2/4>-(1+9)+g

3log’ T 1 B 1
i ih)| dh 4+ ——c-
( +it +1 )’ + (log T

log? T
(1.23) /g |§(o+1r+1h)}’3dh<</ :

310g T

This is accomplished using a result of Gabriel (1927) for subharmonic functions and the
construction of an explicit entire function which is a good approximation to the indicator
function of the rectangle R = {o +iu : |u| < (log 7)Y, 4 7<0=<3 + (log T)?~¢} in the whole
strip % < Res. The fact that the interval can be very small when 6 < 0 makes this part rather
technical. We believe that this result might be useful in other applications as well.

The problem is, therefore, reduced to obtaining a good lower bound for
log9 T B 1
(124) /;10 |{(O’O +it + 1h)| dh with oy = W,

for some sufficiently small § > 0. We adapt mollification results from Arguin et al. (2019) to
show that, outside of an event of probability o(1), the problem can be reduced to understand-
ing
log” T
(1.25) / , exp(BRe Pi_s(op + it + ih)) dh
—log" T

The proof of the lower bound is now restricted to the problem of understanding the corre-
lation structure of the process

(1.26) (Re Py_s(0p + it + ih), |h| <log’ T).

The remaining part of the argument is done in Section 3.4 by a multiscale second moment
method introduced in Kistler (2015). The covariance of the process (1.26) can be computed
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using Lemma A.3 with a(p) = p~0(p~ " + p_ih/),
E[Re Pi_s(op +1it +1ih) -ReP1_s (G() +it + ih/)]
(1.27) 1 Z cos(|h — h'|log p)

= 200

+ O().
log p<(log T)1 -3

The cosine factor implies that primes smaller than exp(|h — h’|~!) are almost perfectly cor-
related, whereas primes greater than exp(|h — h’|~!) decorrelate quickly. In fact, the covari-
ance can be evaluated precisely using the prime number theorem and equals % log|h—h'|~1 4
O(1). This shows that the process is approximatively a log-correlated Gaussian process. (This
is also true for log |¢| in the sense of finite-dimensional distributions, as shown in Bourgade
(2010).)

The identification with a log-correlated process is useful, as it suggests that the Dirichlet
polynomials have an underlying tree structure. To see this, consider the increments

1
¢ p(I()—H‘L’-Hh ’

(1.28) P(hy= >

ek—1<log p<ek

1 <k<loglogT.

The range of primes is chosen so that each Py has variance % 4+ o(1). In this framework the
Dirichlet polynomial at 4 can be seen as a random walk with independent and identically
distributed increments. However, the random walks for different 4’s are not independent by
(1.27). In fact, the walks are almost perfectly correlated until they branch out around the
prime p ~ exp(|/h — h’|~1), corresponding to the increment k(h, h’) = log|h — h’|~". Since
k goes to essentially loglog 7', the analysis can be restricted to A4’s on a grid with mesh
(log T)~!. Furthermore, the /’s in an interval of size (logT)™, for 0 < o < 1, will share the
same increments up to k ~ « loglogT'.

The above observations have important consequences for the probabilistic analysis. For
6 = 0, this means that the process (1.26) on an interval of order one is well approximated by
a Gaussian process indexed by a tree of average degree e =2.718. .., where the independent
increments Py (h) are identified with the edges of the tree. Note that the number of leaves on
the interval [—1, 1] is then ~ eloglogT — log T. Equivalently, the walks > Px(h), h € [—1, 1]
can be seen as a branching random walk on a Galton—Watson tree with an average number of
offspring e, cf. Figure 1.

When 0 < 0, the tree structure suggests that the primes up to exp(log!’! T') do not con-
tribute to large values, since they should be essentially the same for all 4’s in the interval.
Therefore, these primes can be cutoff at a low cost, cf. Corollary 2.12. This is equivalent to
restricting to a subtree of the one on [—1, 1] with (1 + 0) loglog T increments and log!*? T
leaves, yielding a maximum at leading order of (1 4+ ) loglog T by the REM heuristic.

The case 6 > 0 stands out as the analogy with branching random walks fails. This is be-
cause the random walks for 4 and /" are essentially independent when |h — h’| > 1. There-
fore, the right probabilistic model seems to consist of =< log? T' independent branching ran-
dom walks corresponding to different intervals of order one; see Figure 1. A large class of
similar models (called CREM’s for continuous random energy models) have been studied in
Bovier and Kurkova (2004); see Bovier (2006), Bovier (2017) for a review. It turns out that
the large values at leading order correspond to the ones of a REM with log!*? T variables of
variance % loglog T'. This yields a maximum of 4/1 + 6 loglog T at leading order. In fact, in
view of the extreme value statistics of CREM’s we expect that the REM heuristic holds for
subleading corrections. This is the motivation for Conjecture 1.3.

2. Upper bounds.
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6<0
k=0T k=0-
1+ 1
k(h,})
|6]loglog T+ E
loglog '+ loglog T4
scale ¥ scale
—log?T  1og?T

10MA0

9 interval interval rval
—log?T oA of width 1 of width 1 of width 1 1og9T

scale ¥

FIG. 1. Anillustration of the branching structure of ) Py for the interval [— loge T, log(9 Tlwith8 <0,06=0
and 6 > 0. When 6 < 0, the increments Py, approximately coincide at each scale up to scale |6|1loglog T (so one
branch), followed by the structure of a branching random walk. When 6 = 0, we have one branching random walk
starting at scale 0. When 6 > 0, there is a forest of < loge T approximately independent branching random walks.

2.1. Moment estimates. We will need a number of moment estimates which we state
below.

PROPOSITION 2.1.  Assume the Riemann hypothesis. Let B > 0 and ¢ > 0 be given. Then,
1 B
@2.1) IEH;‘(E —I—ir)‘ ]<< (log T)P*/4+e.
PROOF. See Corollary A in Soundararajan (2009). [J
PROPOSITION 2.2. Let 0 < 8 <4 be given. Then,
Lo £ /4
2.2) E| (¢ 3 +ir < (logT)" /™.
PROOF. See Theorem 1 in Heap, Radziwilt and Soundararajan (2019). [J

The proof of Proposition 2.1 is based on the following deterministic upper bound for ¢.
Suppose that T is large. Let T <t <2T,andlet2 <x < T2. Then, as T — 0o, we have

1 1 1 log T
{(5 + it)' <Re Z 0g(x/p) + o2 + O(logloglog T);

1 1 :
p=x p§+@+lt logx log x

(2.3) log

see Proposition and Lemma 2 in Soundararajan (2009). On the Riemann hypothesis the up-
per bounds in Theorem 1.1 and Theorem 1.2 could be proved in a simpler way by using
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this deterministic bound and by proving the corresponding results for the Dirichlet polyno-
mials. For unconditional results, such a deterministic upper bound is not available. We need
to work on average to discard the contribution of large primes. This is the purpose of Lem-
mas 2.3, 2.4, 2.5 and Proposition 2.6 below.

In order to compute the moments of ¢ - e~ 7¥l, we will need to express e~ 71! as a finite

Dirichlet polynomial. To this aim, notice that if |z] < v/10 for some v € N, we have [e* —
;:O Zj—],| < e~". Consider, more generally, ¢*7®) with A € C and P(s) = > p<xa(p)p~* for
some completely multiplicative function a. We have by the above, assuming |AP(s)| < v/10

for some v € N and by the multinomial formula, that

Vo k k Q(n)
oo o BA(R e g
i K \=x P’ Q(n)<v n
pln=—=p=<X

where €2 (n) is the number of prime factors of n with multiplicity. Here, g is the multiplicative
function defined by g(p*) = 1/k! for all integers k and primes p.

The relevant function a for e~7¢l will be of the following form: Given «, 8 € R and
0 > —1, let §o, p,0(n) denote a completely multiplicative function such that

o, if logp <log? T,
2.5 =
2.5) Se.p.0(P) lﬂ, if log?! T < log p.

In the next three lemmas, we control various terms with the aim of proving the moment
estimate in Proposition 2.6, which we will need in the case of short intervals.

LEMMA 2.3. Let —1 <0 <0, 8> 0and & > 0 be given. Then,

Z S0,8/2,0(n)g(n)

2
n

(2.6) E[

Q(n)<100|loglogT ]
pln = log p<log' ¢ T

PROOF. Notice that the Dirichlet polynomial in (2.6) has length <« T° for any fixed
6 > 0. In particular, by the mean-value formula (Lemma A.2),

Fo.p/2.0(m)g(n) |* Fo.p/2.0(n)?g(n)?
]E|: Z nl/2+it :| < Z n :
Q(n)<100|loglogT ] Q(n)<100[loglog T |
pln = log p<log!—¢ T pln = log p<log'—¢ T

Dropping the restriction on €2 (n) and expressing the sum as an Euler product yield

So.p/2.0()*g(n)? Fo.6/2.0(P)* g (p*)?
2.7) > oo = I 14y —H— )
pln == log p<log' ¢ T " log p<log!—¢ T k=1 p

The logarithm of the right-hand side is easily evaluated using the prime number theorem (see
Lemma A.1) and is (ﬁz(l +6)/4)loglog T + O(1). This proves the claimed bound. [

LEMMA 2.4. Let —1 <60 <0,0< B <2and e > 0 be given. Then,

2.8) E[‘g(% + ir)

2 F-1.8/2-10mgn) |?
B/2—1,0(n)g(n B2(146)/4+
D> 2oL < tog ) g

Q(n)<100|loglogT |
pln =>log p<log ¢ T
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PROOF. By Theorem 1 in Bettin, Chandee and Radziwilt (2017), the left-hand side of
(2.8) s

2
- 1 Z S-1,8/2-1,60(nm)g(n)g(m) 1()g((n,lﬂ) )cb(L) dr
TJR g ()<100[oglog T [, m] 2rnm r
Q(m)<100[loglog T'|
pln = log p<log' ¢ T
plm = log p<log! ¢ T
(2.9) 1/ S-1,8/2—1,0(nm)g(n)g(m) <t>
— logt +2y)®P| — ) dr
+7 L > — (logr +2y)®(

Q(n)<100|loglogT |
Q(m)<100[loglog T |
pln = log p<log' ¢ T
plm = log p<log!=¢ T

+0O(T™),

where ® is a smooth nonnegative function such that ®(x) > 1 for all 1 < x < 2, with support
contained in say [0, 3], and (n, m) and [n, m] stand for the greatest common divisor and the

least common multiple, respectively.

We first note that if n, m have the prime factorization n = [[/_; p{* and m =[]/_, pf ,

where some «;’s and ;s are possibly 0, then [n, m] = [T;_, ?"vﬁ"

and b(m) are two bounded multiplicative functions, we have

. This means that if a(n)

b . 4
(2.10) > %: I1 <1+Zp_k > a(p’)b(pf)).
][;||:1:>f7§<§( ’ p<X k>1 i,jmax(i, j)=k

Using Chernoff’s bound, we can get rid of the restriction € (n) < 100|loglog T | in (2.9).
It suffices to notice that the contribution of each sum over n with Q(n) > 100|loglog T | is

< logT Z |S_1,ﬂ/2_179(I’lm)|g(l’l)g(m) eQ(n)—IOOIOglogT
pln = p<T [n,m]
plm = p<T

2.11)

1 _1.8/2— AF—1.8/2— 2
< (og T)~% 1—[(1+( +e)5-1,82-1,0(P)| L 15-1,8/2-1,0(P)I )
et p p

&« (logT)™% - (log T)'2¢ = 0(1),

where we used (2.10) with a(n) = [F_1,5/2—1,0 (1) g(n)e? ™, b(m) = |F_1.p/2—1,0(m)|g(m).
The contribution of each sum over m with Q(m) > 100|loglog T | can be removed in the
same manner.

Considering the sums in (2.9) without the restriction on 2 (n) and 2 (m), we get, by (2.10)
and Lemma A.1,

)3 §-1,8/2—1,0(nm)g(n)g(m)

[n,m]

pln = log p<log' ¢ T
plm = log p<log'—¢ T

n 285 -1,8/2-1,0(p) + 3—1,,3/2—1,9(19)2>

(2.12) = I1 (1 >

log p<log'~¢ T
= (log T) 1! (log T)(#*/4=D-(1+6—¢)

<« (log T),B2(1+9)/4—1+e.
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In particular, this means that the second integral in (2.9) is < (log T)52(1+9)/ dte
To evaluate the first integral in (2.9), write

2 2
; 1 ; “d
(2.13) 10g<(m ") >=_7§ <(’" n) ) &
mn 27i Jiz)=1/10gT\ mn z
Then, we end up having to evaluate
1 1.8/~ ,n)2\¢ d
(2.14) 2_% )3 $-1,8/2 1,0(mn)9(m)g(n)<(m n) > _;
71 J|z|=1/log T pln —> log p<log!—* T [m, n] mn Z
plm = log p<log' ¢ T
As above, the sum over m and n factors into an Euler product which is
2% _ _ _ 2
1+ S 1,/3/12+1,9(P)+3 1,8/2—1,0(P)
pe R
(2.15) = ]I S_1pp-10(p)H plin)=
log p<log!=® T - i,szO: ilj! plivi+z)
(V)2
For |z] = 1/log T, note that
F-1.8/2-1,0(p) T plinz 1 1 e’
(2.16) Z ilj! pUvH+2) | = _2 Z —J _2
i, j=0: A j>0
(ivj)=2

and a Taylor expansion yields

3 S-1,8/2-1,6(P)

p1+Z
log psloglf‘"' T
2.17) 3 ) { i
_ — (o)
-y 1.8/2-1.6(p +(9<10 . )3 gp>.
log p<log'~—¢ T p & log p<log' ¢ T p

Since the error term in (2.17) is o(1) by Lemma A.1, the Euler product in (2.15) is

251,52 +3_1.82-1.6(p)* _
_ l—[ m S-1,8/2-1,6(P) +5-1,8/2-1,6(P) +O(p 2)>
(2.18) log p<log!~* T P
<< (log T)ﬂ2(1+9)/471+8.
By putting this estimate back in the contour integral and using a trivial bound on z =2, equa-

tion (2.14) is < (log T)P*(1+0)/4+¢ a5 required. O

LEMMA 2.5. Let e > 0 be given. For £ =2|loglogT |, we have

1 2 Pl—e(% +i77) 2t )
2.19 E — 41 —_— log T
( ) H§<2+n>‘ ’ Sloglog T ]<<(0g )
and
Pl—s(% +ir)|?* —4
2.20 _e log 7).
(2.20) H Sloglog T ] < (logT)
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PROOF. First, we apply a moment estimate (Lemma A.4) followed by a prime number
theorem estimate (Lemma A.1) to obtain

EHPH(% +it) 46] QONEp<r P~H*
5loglog T 54¢(loglog T)*¢

2.21)
4.2\ 40 8
<<JZ(—25€> <Le M < (logT)™®.

The estimate (2.19) then follows by applying the Cauchy—Schwarz inequality, the fourth
moment bound E[l;‘(% +inf 1« (log T)*; see, for example, Ingham (1927) and (2.21). For
(2.20), the same reasoning as in (2.21), yields the estimate < e« (log 4 O

The last three lemmas show a moment bound of the right order for ¢ - e =71/,

PROPOSITION 2.6. Let —1 <0 < 0,0 < B <2 and ¢ > 0 be given. Then, as T — 00,

1 B
(2.22) EH(C : e‘P'G)(E + ir) 1A(T)] & (log T)F*1+0)/4+e
with the event
1
(2.23) A(T) = HP|9| (5 + it) <2loglog T}.

PROOF. Let0 < B < 2. By Young’s inequality with p=2/8 and ¢ =2/(2 — ),

c(54) =5 G+e)|
§2 1T _p-g“z it

e
2
44

Note that (2.24) holds trivially for 8 = 2. Hence, for 0 < 8 <2,
1 p 1 2
‘(C -e_P'e')<5 +il’) Eé'§<§ ~|—ir>

+ 2- IBeﬂRepl_E(%—Hr)—ﬁRePw‘(%—i—ir)‘
2
On the event A(T) N {|731,g(% +it)| <5loglog T}, we get, by the truncation (2.4) with
v = 100[loglog T'] and the identity |z + w|? < 2(]z]* + |w|?), that

~2RePi(G+in) 1 2RePi (J+in)

q

+

(2.24)
Lo~ C-PReP (htin) 2 ; B pRePi_o(JHir)

_e—(Z—ﬂ)RePl,g(%—Hr)—ﬂReP\e\(%-Hr)

(2.25)

e—(2—ﬂ)Re’Pl_5(%+ir)—ﬂ Re Pjg|(%+i7)

(2.26)

)3 F-1.8/2-1,0m)gn) |?

/24T + (log 7)™,

<
Q(n)<100|loglogT ]

pln = log p<log' ¢ T

where §q, ,0(n) is the completely multiplicative function defined in (2.5). Likewise, on the
same event we have

oBREPI_e(5+T)—BRe Py (5-+i1)

2
n n
(2.27) » )3 So,,s/zl,/ez(+ i)Tg( ) + (log )20,
Q(n)<100loglog T | n
pln = log p<log!=¢ T
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Finally, on the event A(T) N {|771_8(% +it)| > Sloglog T}, we get, for any £ > 1,
S BN 4 1.
2.28)  |(g-e (S HiT)| = UogT)'- {1+ ¢( 5 +iT

since for B < 2, |¢|? is bounded by (1 + |¢|%) and |e~71I|# is bounded by (log T)* on A(T).
We choose £ =2|loglog T |. Now take the expectation with 7 restricted to A(T) in (2.25),
then split the terms on the right-hand side over the associated events in (2.26), (2.27) and
(2.28). We use Lemmas 2.3, 2.4 and 2.5 to bound the expectations. [

2) ‘Plg@ +ir) ¥
SloglogT

2.2. Discretization. The analysis of the maximum of zeta on an interval can often be
restricted to /’s on a grid with mesh of order (log 7)~!. This can be proved for the maximum
using the functional equation for zeta; see, for example, Lemma 2.2 in Farmer, Gonek and
Hughes (2007). We will need a more elaborate variant for general Dirichlet polynomials.

PROPOSITION 2.7.  Lett > —1,8 > 1 and ¢ > 0 be given. Let D(s) = }_, -p1+= a(n)n™*

be a Dirichlet polynomial of length T'*¢, where sup, <ri+e |a(n)| < B for some B > 0 pos-
sibly depending on ¢ and T. Then, forall A > 101 +¢&)B, T <t <2T and o > 1/2,

sup |D(o +it +ih)|
|h|<log’ T

< > ‘D( +ir + 2mik )‘ﬂ
A o+1 _—
(2.29) Kl<210gh 0 T (1+2¢e)logT

2mik B 1
+ ) 'D(a+it+ )‘ : ~+ BT,
Mo T <t (142¢)logT 1+ k|

PROOF. Let V be a smooth function with V (x) =1 for x € [—(1 + ¢), 0] and compactly
supported in [—(1 4 2¢), ¢]. We show

L 1 . 2mik ~( k hlogT
230) D(o +it +ih)=——3'D ¢ % . .
2.30) Dio +ir+ih) 1+26 =~ (UJ” +(1+28)10gT> <1+2e o >

By taking the complex norm and applying Holder’s inequality with 8 > 1, this yields

2ik p
|D(o +it +ih)| 5( Z‘ (o— + it + 4k )‘
14 2¢ (14+2¢)logT

V( k hlogT))l/ﬂ
1+ 2¢ 2w

1 ~( k hlogT\|\'~1/#
(el ))
1—|—28keZ 1+ 2¢ 27

This proves (2.29) after taking the supremum over /4, using the rapid decay of V and noticing
that sup,, 71+ [a(n)| < B and our assumption on A imply that

2.

k|>T

< BATU+02
lk|>T

(2.31) X

2mik )‘ﬂ 1
(1+2e)logT 1+ k|4

D<0 +1ir +
(2.32)

W < BﬂT_A/z.
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Since D(s) is of the form >, 71+ a(n)n™", it suffices by linearity to establish (2.30) for
asingle n < T!7¢ that is,

1
1+2¢

Znué”)i‘grv( k _hlogT>, 1 <n<T"
= 14 2¢ 2

(2.33) nih =

Using the Poisson summation formula, the right-hand side can be rewritten as

1 ) 1 logn ~( 'y hlogT
Zf exp(2n1y<—£ — -V — dy
ez rR142¢ 14+2¢logT 1+2e¢ 2

i ) 1 .
(2.34) — Z e_1€(1+28)h1°gT/ exp(Zn’iu (—E(l +2¢) — ﬂ)) -V(u)du
F R logT
ez
_ i Z it +2e)hlogT V(—z(l L 2e) - 1logn )
el OgT
hlogT

where we made the change of variable y = (1 + 2¢)(u + —52—). The term £ = 0 is equal to
—ih

n~" since V(—llgg;) =1 for 1 <n < T'** by the choice of V. The other terms (¢ # 0) are
logn

all equal to O since —£(1 + 2¢) — Tog T falls outside the support of V for 1 <n < T!+¢, This
proves (2.33) and the proposition. [l

Proposition 2.7 implies five important corollaries to tackle the maximum of ¢ and of
Dirichlet polynomials. We first observe that the discretization applies to ¢ in Corollary 2.9.
This is a consequence of the following approximation.

LEMMA 2.8 (Approximation of ¢). Let ¢ > 0 and o > 1/2 be given, and let k >
max{5, 10/&} be an integer. Then, as T — 0o and for t < T, we have

k

Z n= (log %) + (’)k(T_ks/z), if1/2<o0 <2,
(235) (o +it)={n=T"*
Y onoTrro(rh), ifo>2,
n<T
where the smoothing wy is defined by setting
1, ifx <0,
ke (k) D' ‘
(2.36) wi(x) := 1 (—1) Z o) (€—-x),, if0<x<k,
=0 :
0, ifx >k,

where (y)4 := max{y, 0}. Examples of graphs for wi(x) are provided in Figure 2.

PROOF. The case o > 2 is a trivial consequence of the fact that | Y, ;n 7 1| <
[>T n~2%| < T~'. Therefore, assume 1/2 < o < 2. We claim that

1 2+ic0 Z_1\kd
(2.37) we(x) = —— / e_“<e ) &
2

271 J2—ico Z Z

First, it is easy to check that this formula holds for x < 0 and x > k: if x < 0, then we shift
the contour toward Rez = —oo and collect a single pole with residue 1 at z = 0, while if
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1.0 1.0 1

0.8 0.8

0.6 0.6

0.4 0.4

0.2 0.2

0.5 1.0 15 2.0 25 3.0 1 2 3 4 5 6

(a) Graph of wz(x) (b) Graph of wg(x)

FI1G. 2.  Examples of graphs for wy (x).

x > k, then we shift the contour toward Re z = 0o, and we see that the integral is zero. In the
remaining intermediate range 0 < x < k, we expand

-\ DR E ey,
(2.38) ( - ) = ZQ) (=D,
£=0

and we use the fact that
2.39) J_/Hw>ﬂz& dz 1 —-x)k ife—x>0,

271 J2—ico ko, if £ —x <0.

Therefore,

1 n 1 [2+ic et —1\*dz
2.40 ——wy(log —— | = — it 7*1+@Z(—————> —.
( ) Z no T wk<0g Tl—i—s) 27 /;—ioo {(0+1 +Z) z z

n>1

We now shift the contour to the line Rez = —(k — 2). We collect a pole at z = 0 with residue
{(o +1it). On the line Rez = —(k — 2), we bound the integral using the estimate |¢(r +
ir)| < (1 + [¢t)!/2~" which is valid for any fixed r < — &5 and all # € R.? Specifically, the
contribution of the line Rez = —(k — 2) is bounded by

2% du
541 T—(1+s)(k—2)f Tk=2 k—2 T—ek/2.
24D LT ) e <

This proves that

: 1 n _
(2.42) {(o+ir) = Z kaoog m) + Ok(T ks/z)’ fort <T.

n>1

The conclusion follows by a simple rescaling. [

From Lemma 2.8 we derive the following discretization result.

2This estimate follows from applying the functional equation for ¢ (r +iz), bounding the ratio of Gamma factors
using Stirling’s formula and bounding ¢ (1 — r — iz) trivially by O(1).
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COROLLARY 2.9. Let6 > —1, 8> 1 and ¢ > 0 be given. For any A > 10(8_1 + 1B

andall T <t <2T,
1 B
{(E‘i‘il—f—ih)‘

max
|h|<log? T
1 2mil p
a2 ‘§<—+it+—>‘
2.43
e l¢|<2log!*? T 2 (14+2e)logT
! 27l B

+ — +ir+ . +T_A/2'

Z §<2 ' (1+28)10gT>‘ 1+|£|A

2log" ™t T<|0|<T

PROOF. This is a consequence of the ¢ approximation in Lemma 2.8 with o = 1/2 and
k=|(A+1)/(Be)] as well as the discretization in Proposition 2.7 with B=1. [

As a consequence we get a suboptimal upper bound for 6 > —1 using the second moment.
Note that this bound also works for 8 dependent on 7.

COROLLARY 2.10. Let0 < ¢ <1 be given, and let k > 10/¢ be an integer. Then, for any
0 > —1, possibly dependent on T, we have
1

1, .
i nz-l—lf—i—lh

—0

k
e“n 2
Wi <10g T1+5>‘ > 29(10g T)2+9> < @

(2.44) IP’( max
|h|<log? T

PROOF. The Dirichlet polynomial in (2.44) is < Y, cpi+en /2 K T2 « T, 50
the probability is just zero when 6 > log7T/loglogT. Therefore, we assume that 6 <
log T /loglog T. By the ¢ approximation in Lemma 2.8, it suffices to prove
—0

1 2
;(5 +it + ih)‘ > 29/2(log T)2+9) <=

(2.45) IP( max .
logT

|h|<log’ T

By applying Markov’s inequality and Corollary 2.9 with A = 100(¢~! + 1), the probability

in (2.45) is
L. AP
;(5 —|—11’+1h>‘ ]

1 2l 2
<2 "(logT) Z} B R C R Ty
(2.46) t1<2l0g* T

1 2mid
+ 2_6(10g T)4-% Z EH; <— +it + 1 )
2loght T<lt|<T 2 (1+2¢)logT

<27 (log T)_4_29 IE|: max
|hl<log’ T

2 1
] ) 1+ |£|100

+ T_SO.

Using a standard second moment bound, see, for example, Titchmarsh (1986), p. 141, the last
two expectations are < log 7. We conclude that the right-hand side of (2.46) is
-6

2
(2.47) <2 %ogT) > « =—
logT

El

since § > —1. [0
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A similar reasoning, using Markov’s inequality, can be applied to get an upper bound for
the maximum of P,, 0 < o < 1. The bound below is suboptimal for & < 0 and optimal for
6> 0.

COROLLARY 2.11. Let6 > —1,& > 0and o > 1/2 be given. Then,

(248)  P( max [Pu(o +it +ih)| > (Va(I+6) +¢)loglogT) =o(1).
k| <log” T

PROOF. We apply Markov’s inequality with exponent 2¢ and discretize, as in (2.46),
using Proposition 2.7 with B = 1. We then use moment estimates from Lemma A.4, with
¢ =1[(146)loglogT], to bound the expectations. []

When 6 < 0 and o > |@], the bound (2.48) (and its analogue for ¢) needs to be refined by
discarding the contribution of small primes. The result below directly implies that for 6 < 0
and o > |0|, the sharp upper bound for Re P, is /(« + ) (1 + 6) loglog T since the effective

variance is @ loglogT.

COROLLARY 2.12. Let —1 <0 <0and o > 1/2 be given. Then, for any 0 < ¢ < C and
V =V (T) that satisfies ¢loglogT <V < CloglogT, we have

(2.49) P( max [Pg(o +it+ih)|> V) <e™
|h|<log” T

for some constant c = c(e, C) > 0.

PROOF. For a lighter notation, write S(h) = Pjg| (0 +1it +ih). (We keep the dependence
on t implicit, consistent with the probabilistic notation for random variables.) We have

P( max  [S(h)| > V) < IP( max |S(h) — S(0)| > V/2)
(2.50) |h|<log’ T |h|<log” T

+P(IS0)| > V/2).

Let ¢ denote a generic natural integer. By Markov’s inequality, a moment estimate
(Lemma A.4) and a prime number theorem estimate (Lemma A.1), we have

E[|S(0)[*] ,(Zpg;ﬂ")ﬁ <4uoglogr )e

251 P(SO)|>V/2) < (V/2)2% < (V/2)2 ¢2(loglog T)?

With the choice £ = L% loglog T |, this probability is < exp(—aV') for some constant a =
a(e,C) > 0.

It remains to control the first probability on the right-hand side of (2.50). Let £ denote
another natural integer to be chosen later. By applying Proposition 2.7, we get

(2.52) E[ max |S(h)—S©O)*]<log™*T- max E[|S(h) - S©O)*]
|h|<log’ T |h|<log? T

A short calculation, using moment estimates (Lemma A.4) followed by prime number theo-
rem estimates (Lemma A.1), yields

2 —2cos(|h|log p)

253) max E[|St)-SO < Y .

lh|<log’ T

J4
) < (td)*
log pglog‘gI T

for some constant d > 0 (to obtain the last inequality, note that |4| - log!’! T < 1).
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Then, by Markov’s inequality and the choice £ = L% loglog T |, we deduce

o (AdNE L,y
(2.54) p( max }S(h)—S(0)|>V/2) < log T‘(—z <e
|h|<logf T 4

for some constant b = b(e, C) > 0. [
As before, the maximum of ¢ - e~71/ can be discretized by truncating the exponential.

COROLLARY 2.13. Let —1 <0 <0 and ¢ > 0 be given. Then, there exists a constant
C =C(0, ¢e) > 0 such that the event

2

(¢- e_P'(’)(% +it + ih>

max
lh|<log® T
1 27il 2
255 <C . e Plol <— i —)
@53) =< 2 @ 2 T A 20 log T

l¢|<2log't? T

+C >

2log!t? T<|t|<T

1 2mil 2 1
e Py 2 4 . 70
(¢-e )(2+1r+(1+28)10gT>‘ T e

has probability 1 — o(1).
PROOF. Define the event

(2.56) ATy = { max
lh|<log’ T

1
77|9|(5 +it —|—ih)‘ < 210g10gT}.

By Corollary 2.12 we have P(A(T)) = 1 — o(1). By (2.4), for all € A(T), we also have

3 (—DHR™g(n)

arictih | = |3_P'9'(%+ir+ih)| + O((log T) ™)
n

(2.57) Q(n)<20(loglog T |

|n = log p<log!’! T o
p g p=log e_P|9|(%+1r+lh)|.

~—
—~

Combining this with the { approximation in Lemma 2.8 with 0 = 1/2 and k = 102/¢, we
conclude that, for all 7 € A(T') and uniformly for y < T,

1 1 log? T
s [ i) <[o i)+

where D is a Dirichlet polynomial of length T!*2¢. Proposition 2.7 implies

1 2

max
lh|<log? T

1 2mil 2

< Z Dl-+it+—"—

(2.59) < )
le|<2log!*? T 2 (1+2¢)logT
! 27l 2

D5 i . T_SO,

2log't? T<|t|<T

Together with (2.58), this concludes the proof. [
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2.3. Proofs of the upper bounds.

2.3.1. The case 8 > 0. PROOF OF THEOREM 1.2 FOR 6 > 0. By Markov’s inequality
with exponent 8 > 0, we have

1
c (5 +it + ih) ‘ > (log T)m<9>+8>

|
§<§+1r+1h)’ :|

If we choose B =2m(0) > 2, we get, by picking A large enough in Corollary 2.9, that the
right-hand side of the above equation is

1 B
2.61) < (log T) 2P 2146 ‘Eﬁg (5 i ”) }

By applying Proposition 2.2 if 8 <4 (i.e., if & < 3) and Proposition 2.1 if 8 > 4 (i.e., if
6 > 3), the expectation is bounded by (log T)m(9)2+8 . Therefore, the claim follows. [

IP’( max
h|<log? T

(2.60)

& (log T)~Pm@)—pe E|: max
|h|<log’ T

PROOF OF THEOREM 1.1 FOR 6 > 0. For all 8 > 0, Markov’s inequality yields

o/
|h|<log’ T

1 B
;(— +it + ih)’ dr > (log T)fe(ﬂHS)
—fo(B)— 10 of .
L (logT)™/° log" T -E||¢| = +it

(2.62) 2
B
s+l
When B < 24/146, we have fp(B) = ,82/4 + 0, so the right-hand side of (2.62) is <«
(log T)~%/2 by Proposition 2.2 for # < 3 and by Proposition 2.1 for 6 > 3.

It remains to sharpen the bound in the case 8 > 24/1 4+ 6. We use the Lebesgue measure
of high points. Let a, b > 0. Two successive applications of Markov’s inequality yield

¢ (% it + ih) > (log T)“} > (log T)“2+9+5>

)

Again, the optimal bound is at b = 2a. Using Proposition 2.2 for & < 3 and Proposition 2.1
for © > 3 and choosing b = 2a, we conclude that this is < (log )¢/ for 0 < a < m(6).
We now partition the integral according to the value of the integrand. Let M > 1 be an
integer and 0 < j < M. Theorem 1.2 (for 8 > 0) and the above imply that, with probability
1 B
C(— +it+ih>‘ dh

1 —o(1),
/h|glog9T 2

< Y (log THPUTDMME) . (1og Ty~ /Mm@ +0+e
0<j<M

IP’(Leb{|h| <log’ T:

(2.63)
< (log TY*' = - (log T) 4 . E[

(2.64)

For 8 > 24/1 46 > 2m(#), the last term j = M dominates, and, in particular, the above is
bounded by

(2.65) < (log T)ﬂm(ﬂ)—m(9)2+9+2s — (log T)Pm®—1+2
provided that M is chosen sufficiently large with respect to 8, 8 and e. [J
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REMARK. In the above proof we could have handled all 8’s using the Lebesgue measure

of high points in the spirit of a Gibbs variational principle. We chose to prove the case 8 <
24/1 4+ 6 directly, as the proof is straightforward.

2.3.2. The case 6 < (0. PROOF OF THEOREM 1.2 FOR 6 < 0. We notice that

1
IP’( max {(- +ir + ih) > (log T)m(9)+e>
lh|<log? I~ \2
1
(2.66) < P( max |(¢ - e—Ple)(- Fir+ ih)‘ > (log T)m<0>+e/2>
|h|<log® T 2

+IP’( max |e7)‘9‘(%+if+ih)| > (log T)€/2>.
|h|<log” T

By Corollary 2.12 the last term is o(1), as T — oo. As in (2.56), let

(2.67) ATy = { max
|hl<log? T

1
Puoy <5 +it + ih)‘ <2loglog T}.
By Corollary 2.12 again, the probability of JZ((T) is 1 —o(1). We let Ao (T) denote the subset

of .,Z(T) for which the conclusion of Corollary 2.13 holds. The probability of Ay(T) is 1 —
o(1). Then, by Markov’s inequality we have

]P’({ max |(
lh|<log’ T

< (logT)™2m@®—¢ IE[ max
h|<log? T

¢ e‘PV’)(% +it + ih>‘ > (log T)m(e)”/z} N Ao(T))

(2.68) )

(¢ -e_PQ')(% + it +ih)

lem]

By Corollary 2.13, and since m(0) = 1 4 0, this is
2

1
(2.69) < (log T)~(+9=* -EH(: : e‘P'g)(E + if) lzm]
By Proposition 2.6 this is

(2.70) &« (log T)~1H9=¢ . (1og 7)1+ +¢/2 « (log T)~¢/?,

as needed. I

PROOF OF THEOREM 1.1 FOR 6 < 0. Similarly to (2.66), we can restrict the integrand
to £ - e~ 70l as follows:

P
([hldoge T
P
= (/mglog"r (;

As in (2.67), the probability is JP’(.;l(T)) =1 —o(1), and by Markov’s inequality we have

P<{/Ih|§log9T (¢

1
<tog 1y 50 g 78] -y (L )

1 B
;(5 +it + ih)’ dh > (log T)f9<ﬁ>+8)

2.71) P
1
. e—?’w)(5 +it + ih)‘ dh > (log T)f"(ﬁ)“/z) +o(1).

1 b 7
: e—%l)(5 +it+ ih)‘ dh > (log T)fﬂ(ﬁ“f/z} N A(T)>

(2.72) ,
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By Proposition 2.6 the above is
(2.73) <& (log T)~B/HU+0)=e/2 (150 7)(B*/4-(140)+e/4 (160 T)=8/4,

This bound proves the claim for 8 < 2.

It remains to refine the bound for the case 8 > 2. This proceeds in the same way as in the
proof of Theorem 1.1 in the case 6 > 0, with ¢ replaced by ¢ - e~ Pl restricted on the event
A(T). Namely, we have, for 0 < a < m(9),

. ({ieli{lh;f_l;%iz; |(§ . e—Pl@\)(% +it + ih)| > (log T)a} } N .Z(T)>
(2.74) = (ogT) 1 b
& (log TY* - (log T) " -E[ (¢ -e_P'e')<§ +if) 1ﬁ<T>}-

This is o(1) by Proposition 2.6 with the optimal choice b = 2a/(1 + 6) < 2. The remainder
is done exactly as in the proof of Theorem 1.1 in the case 6 > 0, by partitioning the integral
over values of the integrand in the range [0, m(0) +¢]. O

3. Lower bounds. In this section, we prove:

PROPOSITION 3.1. Let 0 > —1 and ¢ > 0 be given. Then,

(3.1) ]P’( max |¢(1/2 + it +ih)| > (log T)m(‘”—s) =1—o(l).
|h|<log? T

PROPOSITION 3.2. Let0 > —1, 8 > 0 and € > 0 be given. Then,

logGT B
(3.2) IP’(/I , lety2+iv+in) dh>(1ogT)f9<ﬁ>—8):1—0(1).
g

The lower bound for the maximum will be an easy consequence of the lower bound for
the moments. The idea is to approximate zeta by an appropriate Dirichlet polynomial. This
can be done with good precision off-axis, cf. Section 3.1. The approximation to a Dirichlet
polynomial is then shown in Section 3.2. The lower bound for the moments of the Dirichlet
polynomials is proved in Section 3.3, using Kistler’s multiscale second moment method.
Finally, the two propositions above are proved in Section 3.4.

3.1. Reduction off-axis. In Arguin et al. (2019) the maximum on a short interval of the
critical line was compared to the one on a short interval away from the critical line by ex-
ploiting the analyticity of ¢ away from its pole. More precisely, a value off-axis can be seen
as an average of zeta over the critical line weighed by the corresponding Poisson kernel. This
approach could also be used in the case of the moments by using the subharmonicity of the
function z > |z|#. We choose to apply a different method based on the following convexity
theorem of Gabriel which handles error terms more efficiently.

PROPOSITION 3.3 (Theorem 2 of Gabriel (1927) in the special case a =b =1). Let F
be a complex valued function which is analytic in the strip @ < Rez < B. Suppose that | F (z)|
tends to zero as |Imz| — oo uniformly for « < Rez < B. Then, for any y € |«, B] and any
p >0,

(3.3) I(y) < I(a)(ﬂ—)’)/(ﬂ—a) . [(13)(7/—05)/(/3—0!)’

where

(3.4) 1(0) ::/R|F(a+it)}pdt.
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This theorem has the following useful consequence.

COROLLARY 3.4. Let F be a complex valued function which is analytic in the strip
% < Rez. Suppose that |F(z)| tends to zero as | Imz| — oo uniformly for % < Rez. Suppose

also that I (o) — 0 as 0 — oo. Then, for any o > % and any p > 0,

1
(3.5 I(o) < 1(5)
PROOF. Let o* be such that
(3.6) I(c*)= sup I(0).
o>1/2

Note that because of the assumption that /(o) — 0 as ¢ — 00, the above ¢* has a finite
value. Let ¢ > 0 be given. If o* = %, then we are done. If o* # % then by Proposition 3.3

applied with y =¢*, o = % and B =0* + ¢, we get

A
37 I(c*) < 1(%) (0" +e),

for some appropriate A, u > 0 that satisfy A + pu = 1.
Therefore, by definition of ¢* in (3.6),

1 A
(3.8) I(e") =<1 (5) 1(0)",
and hence I (6*)* < I(%))‘. Since A > 0, we get [ (o*) < I(%). The claim follows from (3.6).

O

We now construct a special analytic approximation for the indicator function of the rectan-
gleR={o +iv: % <o < % + K, |v| < L} for K, L > 0. The effective width of the indicator
function will be K ~ L /A in the statement below.

LEMMA 3.5. Letby €(0,1)and A, L, A, by > 0 be given. There exists an entire func-

tion ® A 1 (z) such that, for z =0 +iv with o > % and v € R:

(i) For |v| > (14 by)L, uniformly ino > 1, ®a 1.(z) «a by A A=A
(ii) Forany [v| < (1 =b)L, P ()| =14 Op a(A~4)+O((0 — %)%2).

(ii1) Forany |v| < (1 +b2)L, [Pa,L(2)| K1+ (0 — %)ATZ-
@iv) @A 1(z) = O uniformly in v as 0 — oo.

PROOF. Let V be a smooth function, compactly supported in (0, c0) and such that
V(1) = 1. Given a parameter n > 0 and given z € C with Rez > % and u € R, consider
the following function:

o
(3.9) 8y (2) =/ e Y V (nx)ndx.
0

Then, 6, (z) defines an entire function of exponential type. By integration by parts, we see
that

1 —A
(3.10) 8,(2) <a (1 + ‘z —~ 5',7_1) :
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for any A > 0 and uniformly in Rez > % Therefore, we may think of §,(z) as localizing to
7= % + O(n). Furthermore, notice that if z = % +iv and u € R, then

(3.11) 8p(z —iu)=V((w—un),

and for z = o + iv, we have, by a Taylor expansion of the exponential,

00 L.
377(2 —iu) :f 6—271(0—7+1(v—u))x -V (nx)ndx
0

(3.12) = /:O e 2miv—ux <1 + O((O‘ — %)x)) -V(nx)ndx
= V((v —wn N+ O((a — %)n_l)

Finally, for z =0 +iv with o > l, we have from (3.10) that

(3.13) |8y (z — iu)| <a

L+ (v —ulp=H4”

The candidate function is, for n = L/A,

A L drind
(3.14) B L(2) = Z/Le* Tl 5 a (2 — iu) du.

We will now describe some of the features of this function. Write z = o + iv with o >
Using the bound (3.13), we see that, if |v| > (1 4 by) L with by > 0, then

=

A

(3.15) P L(z) KA A du <4 b;AAI_A.

L
/—L1+(|v—u|%)A

This gives the first claim.
If |v] < (1 —by)L, then by (3.14) and (3.12) we have

L R 2
(3.16) D1 (2) =%/_L e 2T V((v —u)%) du +(’)((a _ %)%)

It follows that if % <o and |v| < (1 — b1)L, then, due to the rapid decay of V, we have

. vA4a o 1\ A2
CDA,L(Z) — 6—27711)% /AL 6271114 V() du + O((O’ _ _)_)

. 1 AZ
=TT 4 Oy, 4 (A7) + O((U - 5)7)

by Fourier inversion and the assumption that V(1) = 1. This proves the second claim. If
% <o < 1and |v] < (1+ by)L, then we have the bound

~ 1\ A2
(3.18) |<I>A,L(Z)|<</|V(u)|du+(9<<0——>—>
R 2/ L
which proves the third claim.
Finally, notice that §; /A (z — i#) — 0 uniformly as o — oo by (3.10), which implies the
last claim that ® A 1 (z) — O uniformlyinveRaso — oo. [
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The following proposition relates the moments off and on axis.

PROPOSITION 3.6. LetO >—1,8>0,0<e<1land T > 10° be given. Then, for all

l <5< % + (log T)0 =3¢ the event

2
log? T P 3log? T 1 ) . B 1
(3.19) /_ |§(6+1r—|—1u)| du<</310g . (2—|—11:+1u) du+(log—T)96
has probability l —o(1).
PROOF. Let
. k
) n—“—”wk< elfg), if1/2<0 <2,
(3.20) D(o +ir) = {n=T' d
> a0, if o > 2,

n<T

with 0 <& <1 and k > 10/¢ a fixed integer. Using the { approximation in Lemma 2.8, we
have, for T <t <2T and % <o < % + (log T)?3¢,

(3.21) ¢(o +it)=D(o +it) + O(T 7).
Therefore, it suffices to establish (3.19) for ¢ replaced by D

log? T 5 3logf T 1 B
3.22 f D(o +it +iu du<</ <—+ir+iu> du + ——=.
(322) —log | ( )| 3logf T 2 (log T)%6
Consider
(3.23) I(a)=f|D(a +it+iw)|f - | Do (o +iw)|’ du,
R

with A =10g°T and L = 1.510g9 T. Then, by Lemma 3.5(i) and (iv), Corollary 3.4 can be
applied and yields

/ ID(o +it +iw)|f - |®a.r(o +iu)] du

(3.24) 4 | 4
. CDA’L(E + ll/l)

<<f‘ ( +1‘L’+1u>

Now it remains to unsmooth both sides of this expression. Lemma 3.5(ii) (with b = 1/3)
implies that ® A 1 (o +1iu) > 1 for |u| < log? T. We thus have

du.

log? T
(3.25) / |D(0 +it 4 iuw)|f du <</|D(o +it+iw)|f | a0 +iw)|f du,

settling the left—hand side of (3.22). For the right-hand side, note that the choice A =1log® T
and L = 1.510g9 T ensures that the error term (o — %)AT2 in Lemma 3.5 is (logT)~¢ for
o — % < (log T)?—3¢. Lemma 3.5(iii) (with b, = 1) shows that the right-hand side of (3.24)
is

1 p 1 p
/‘D(——i—it—i—iu) -‘QDA L(——Hu) du
R 2 2
310g6T /S
(3.26) <<f ( it +1u)
—3log9T

B
du,

‘CDA L( +1u>

( +1t+1u>
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where Uy = {3(log T)?** < |u| < 3(log T)?T¢*1}. By Corollary 2.10 and a union bound, the
event

(3.27) ST =) { max
=0

|u|<logt T

1

S zz(log T)2+£}
has probability 1 — o(1). Moreover, by Lemma 3.5 (i) with A =1 + %(W} + DA +1/8)
and by = 2(log T)* — 1, we have, for all 3(log 7)™ < |u],

1
(3.28) ‘(DA,L(E +i“) & (log T)~ 1P (10g ) ~100TOTHD-(H/B),

Therefore, on the event S(T') and for every integer £ > 0, the following holds:

AN 4 1
f D<—+1r+1u> (ON L(——i—lu)
Uy 2 T\ 2

< (log T)I1HEHT 2L (190 THAZHD) | (1og )~ 100B+ D1 +L+1)

B
du

(3.29)

« (log T)—96(/3+1)-(f91+15+1)‘

Thus, on S(T) the contribution of the sum on the right-hand side of (3.26) is negligible. The
claim follows by combining equations (3.24), (3.25) and (3.26). U

3.2. Mollification. This step is an adaptation of Section 4.2 of Arguin et al. (2019), which
is itself based on the work of Radziwilt and Soundararajan (2017). The treatment is slightly
different as the width of the interval needs to be taken into account. Also, we choose to use
the discretization in Proposition 2.7 to obtain a uniform control on the interval, as opposed to
a Sobolev inequality.

The main idea is to define a mollifier for the zeta function

wu(n)
(3.30) M= Y — —-,
Q(m=<vy
pin= p=X
where
(3.31) X =exp((logT)! K™, for K >2, and vy = 100K ¢ loglog T.

Here, u denotes the Mobius function w(n) = (—1)¢ ™) if n is square-free, where w (n) is the
number of distinct prime factors, and @ (n) = 0 if n is nonsquare-free. The estimate will be
done slightly off-axis,

1 log T)3/2K)
(3.32) oo = L 4 doe D
2 logT

The parameter K will eventually be assumed to be large enough, depending on 8, § and ¢.
The goal of this section is to prove that M is an approximate inverse of ¢.

LEMMA 3.7. Let0 > —1 and & > 0 be given. Then,

(3.33) IP’( max [(¢ - M)(op +it +1ih) — 1| >8>:O(1).
|h|<log’ T

This was proved in the case # = 0 in Lemma 4.2 of Arguin et al. (2019). In particular, it
also holds verbatim for —1 < 0 < 0 since the interval is just smaller. The proof of Lemma 3.7
also holds in the case 6 > 0 with slight modifications that we highlight. The key idea is the
following L?-control.
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LEMMA 3.8. Let 6 > 0 be given. Then,

(3.34) E[|(¢ - M)(0g +it) — 1]*] < (log 7)~100"

PROOF. The proof follows Arguin et al. (2019) with a new error term, due to the choice
of vg. (The manipulations are very similar to the ones in Lemma 2.4.) The error appears after
equation (4.10) in Arguin et al. (2019) and is given by

(3.35) (logT)e™ [T (1+7p7").
p=X

The Euler product is < (log T)’, using Lemma A.1. Using this and the definition of vy in
(3.31) yields

(336) (log T)e_UQ 1_[ (1 + 7p_1) < (log T)S . (log T)—100K€9 .
p=X
Since K > 2, this gives the correct estimate. Note that the expression }_,. ylog(l —
p~290)~1 entering in the remainder of the proof of Lemma 4.2 in Arguin et al. (2019), is
B3 <Y p XD —exp(—(log 1)) < (log 7)1,
p>X
This ends the proof. [

PROOF OF LEMMA 3.7FOR 6 > 0. ByLemma 2.8, ¢ is well approximated by a Dirichlet
polynomial of length 7!*¢ for any given & > 0. Moreover, M is a Dirichlet polynomial of
length less than 7' for any given ¢ > 0. Therefore, an application of Markov’s inequality and
Proposition 2.7 yield that the probability in (3.33) is

(3.38) < log' ™ T - E[|(¢ - M) (o0 +it) — 1]7].

The conclusion follows from Lemma 3.8. [

3.3. Approximation of the mollifier. 'We now approximate the mollifier M by the expo-
nential of a Dirichlet polynomial. If we let

- 1
(3.39) Prg-1()=Y_ > e

k>1p<X

then the following relation between exp(—751_ x-1(s)) and M (s) holds for all Res > 1/2:

(340)  exp(=Py_x-1(s) = exp(log [T0- p‘s)) Mo+ y M
p<X Qm>vy
pln= p=<X

In particular, we see that exp(—751_ x—1(s)) and M (s) only differ for integers n with more
than vg prime factors (£2(n) > vg) and all their prime factors < X. The following lemma
make use of this fact to estimate how close they are when s = o¢ + it + ih.

LEMMA 3.9. Let 6 > —1 be given. Then, for any K > 2, we have

(3.41) ]P’( max (M —exp(=P|_g-1))(00 +it +ih)| > (log T)—lo) —o(1).
|h|<log’ T
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PROOF. The discretization in Proposition 2.7, together with the mean value theorem in
Lemma A.2, yield

IE|: max |M — exp(—ﬁl_K-l)}z(ao +it —|—ih)]

|h|<log’ T
3.42
(3.42) <log T . 3 a1
Q(n)>vg
pln= p=<X

The right-hand side is < (log T)~'% by Rankin’s trick and Lemma A.1,

log! 0 T . Z n~! < log! 0T .7 Z o2, —1

Q(n)>vy pln = p<X
P|”l=>PSX k
e
(3.43) <logroem [ (1+X5)
pln = p<X 1P

&« (logT)~1%,

The result follows by Markov’s inequality. [J

3.4. Proofs of the lower bounds. Consider, for 0 < j < K — 2, the Dirichlet polynomials

1 i it
(3.44) Pj(h) =Re Z W’ Jj = (exp((log T)Ié,exp((log T)JK )]

pEJ;

We choose a probabilistic notation for the increments P;’s seen as random variable, omitting
the dependence on the random 7. We first prove a lower bound for the moments of Dirichlet
polynomials.

PROPOSITION 3.10. Let6 > —1 and ¢ > 0 be given. Then,

logeT K-3
(3.45) IP’(/ exp(ﬁ > Pj(h)> dh > (log T)fe<ﬂ>—8> =1—o(1).

—log9 T =1

The polynomial Pk is not included in the sum to ensure that the variances of the P;’s
are almost equal. Indeed, for all || <log? T and j < K — 3, an application of (A.6) yields

1 1
556) 57 =E[P; ()] = 5 - loglog T + O((log 7)),

since g — % = (log T)~1+3/CK) The polynomial P is ignored to ensure that the polynomials

> ;-(:_13 Pj(h) are almost independent for 4’s that are far apart which will be crucial for the
second-moment method to go through; see below (3.63) in the proof of Proposition 3.10.

PROOF OF PROPOSITION 3.10. This is similar to the upper-bound proof of Theorem 1.1.
We first relate the moments to the measure of high points. Let ¢ > 0 and M € N, and set

y2

0———,
(3.47) Eo(y) = 1+6
6—y2, ifo > 0.

if 6 <0,
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Consider y; = ﬁm(@) + ¢ for 1 < j < M and the good event

(3.48)
M K-3
E=) {Leb:|h| <log’T: exp(Z Pg(h)) > (log T)Vf—l} > (log T)&0vi-0=¢/2

K-3
m{ max exp(Z Pg(l’l)) < (log T)m(9)+8}

We will show below that P(E) is 1 —o(1). Before, we prove the lower bound on the moments
on the event E. We have

log ['%8 7 exp(B SK Py () i

3.4 iy
549 loglog T >1£na<x {IBVJ 1+59(7/J 1)} e/

By the continuity of the function y — By + & (y), equation (3.49) implies that, on the event
E and for M large enough with respect to € and S,

150 log /' gT exp(B X527 Pi(h)) dh .

(3.50) loglog T > yefg%)]{ﬂy + &)} -
When 0 < 8 <2m(0)/(1 + (6 A 0)), take ¢ > 0 small enough so that 8 > 2¢/(1 4+ (6 A 0)).
The maximum is attained at y = g(l + (68 A 0)), in which case the right-hand side of (3.50)

is equal to %2(1 + (@ A0))+6 —¢e. When 8 >2m(0)/(1+ (6 A0)), the maximum is attained
at y = m(#), in which case the right-hand side of (3.50) is equal to (8m(0) — 1) — ¢. Thus,
on the event E and for M large enough, the lower bound in (3.45) is satisfied.

To conclude the proof of the proposition, it remains to show that P(E) — 1 as T — oo.
By the upper bound on the maximum of Zf:_f Pj(h) in (2.48) (and the remark below it for
6 < 0), it is sufficient to prove that, for all n > 0 and all 0 < y < m(6), the event

K-3
(3.51) {Leb{lhl <log’ T: Z Pi(h) >y loglogT} > (log T)ge(y)”}
j=1
has probability 1 — o(1).
Consider
1, if6 >0
3.52 = -
( ) JO)= {LK|9|J—|—1 if —1 <6 <0.

For # < 0, Corollary 2.12 ensures that the primes up to exp(log!?! T') only make a very small
contribution, namely, the event

J0)—1
Y
(3.53) max Pj(h)| < ———loglogT
[|h|510g9r Jg ‘ (1+0)K g8

has probability 1 — o(1). We consider the random variable
(3.54) N =Leb{|h| < loge T:Pj(h)>xj, for 7(0) < j <K —3},
where
(3.55) (1 n 100 ) Y loglog T

. X;= . oglogT.

J I+ @AK) (T+@A0NK 8
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By summing the x;’s, it is not hard to check that the intersection of the events {N >
(log T)%¥)=1} and the one in (3.53) is included in the event in (3.51). Therefore, the proof
of the proposition is reduced to show

(3.56) P(N > (log )% 71) =1 — o(1).

This is established by the Paley—Zygmund inequality.
To this aim, we shall need one-point and two-point large deviation estimates for the event
A(h) ={Pj(h) > xj, for J(¥) < j < K — 3},
(3.57)
0>—1,hh" e[—log’ T,1og’ T].
The next two propositions are stated as Propositions 5.4 and 5.5 in Arguin et al. (2019). They
are consequences of the Gaussian moments in Lemma A.3.

PROPOSITION 3.11 (One-point large deviation estimates). Consider the event A(h) in
(3.57). For any choices of \/loglog T <k x; <loglogT,where 1 < j < K —3 and uniformly
for h, W € [—log® T, log’ T1, we have

K-3 00 €_y2/2 K-3 §: 2002
(3.58) P(A(h) = (1+o0(D) [] / dy=< [] L./,
=7 %ilsi V2@ j=7© "

In the case of two points /4, &', the primes are essentially correlated up to exp(|h — h'|™")
and quickly decorrelate afterward. For 6 > 0, this means that the P;’s are essentially in-

dependent whenever |h — h'| > (log T)_ﬁ, since j = 0 is excluded. For 6 < 0, we must

exclude the j’s up to J(0) — 1. Therefore, the P;’s are essentially independent whenever
1

|h — h'| > (log T)?~ 2k . We get the following.

PROPOSITION 3.12 (Two-point large deviation estimates). Consider the event A(h) in
(3.57). For any choices of 0 < xj < loglogT and uniformly for h,h' € [—1log? T,10g? T]

such that |h — | > (log T)~F>+7% , we have
(3.59) P(A(h) NA(R)) = (1 + o(1)P(A(R))P(A(R)).

Furthermore, let 0 < £ < K — 3. Then, uniformly for h,h’ € [— loge T, loge T] such that
|h —h'| < (log T)~*K we have

L 52 K
(3.60) P(A(h) N A(R)) <<eXp<— Z —’2 -
=70 25

-3 2

X
2 )
J=E+HvT @) 7J

Now, in order to prove (3.56), we start by finding a lower bound on E[N]. By (3.58) the
x;’s1in (3.55) and the s;’s in (3.46), we have

log” T K3 . 20042
(3.61) E[N]= P(A(h)) dh > log’ T e ED s (log TH® W7/,
g g
et j=7@) "

assuming that K is large enough with respect to 6, y and 5. By the Paley—Zygmund inequal-
ity, this implies
PN = (log T)%™)™1) > P(N > (log T) " "*E[N])
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It remains to show E[NV?] = (1 4 o(1))(E[N1)2. With I = [—log? T, log? T'], Fubini’s theo-
rem yields

(3.63) E[N?] = f P(A(h) N A(k')) dhdh'.
IxI
The integral can be divided into (K — J(0) + 1) parts:

B={(h,):|h— h}>(1ogT) s gt
Bo={(h,'): (log T)" %" < |h = h'| < (log T) "% +7 };
Gob By ={(h. 1) : (log )" “H*V/K < |n — 1’| < (logT) /XY,
for =7@),..., K —3;
Bx—2={(h. 1) : |h = h'| < (log T)~ "2/ %},

The dominant term will be the one on B. Note that Leb(B) = Leb(7)%(1 + o(1)). Hence, by
(3.59) we have

(3.65) / P(A(h)y N A(h))dhdh' = (1 + 0(1))(IE[N])2.
B
By (3.60) and the estimate (3.61), the integral on By is
K=3 42 1 ,
(3.66) < (log )/~ %%"+1k eXp< > —S—£> < (log T)~ VO =3k (E[N])?,
J=J ) J

assuming that K is large enough with respect to € and y. For £ = J(@),..., K — 3, the
integral on By is, by (3.60) and the estimate (3.61),

1 x2 K-3 x2.>

<<(logT)"“f/Kexp<— > 2’ > 5
S

N

j=J ) J=t+1"°j
14 2 K-3 ,2
3.67 _o— X5 .
( ) = (logT) o-t/K exp( Z 2—12) - (log T)% exp( Z —é)
J=T®) ) Jj=T©) "]

—0—L/K+(L/K+(OA0))

2
Y
< (logT) o0 RN,

assuming again that K is large enough with respect to 6, ¥ and 7. Since y? < m(6)> =
(1+6)(1+ (0 A0)), the right-hand side of (3.67) is o((E[N])?) if we fix > 0 small enough
with respect to 6 and y. Similarly, by (3.58) and the estimate (3.61), the integral on Bx _» is

(3.68) < /B P(A(h))dhdh’ < (log T) "2/ K+1/3 [ EIN] = o((E[N])?).
K-2

provided that 7 is small enough with respect to § and y and K is large enough with respect
to 6, y and n. This concludes the proof of Proposition 3.10. [J

Putting all the work of Section 3 together, we can prove the lower bound in Theorem 1.1.

PROOF OF PROPOSITION 3.2. By Proposition 3.6 the probability in (3.2) is

1log T
(3.69) > IP’(/ |§(cro +it +ih)|f dh > (log T) P~ 8) —o(1).
—10

3
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By Lemma 3.7 and Lemma 3.9, the above is

1 10g9 T -
(3.70) > IP’(/ 31 , exp(BReP|_g-1(o0 + it +ih))dh > (log T)fe(ﬁ)—zs) —o().
—3log’ T

Now notice that the (double) sum for £k > 3 in ﬁl _g-1(op+it +1ih) is of order one (uniformly

for |h| <log® T) and that the sum for k = 2 is of negligible order,

TS
;P

p<X 2

(3.71) IP( max 2(oo-HiT+ih)

|hl<log’ T

> A) < A7 (log"™?' 1) - 2,

where we use the discretization from Proposition 2.7 and the moment estimates from
Lemma A.4. Indeed, the right-hand side of (3.71) is o(1) with the choice A = /v and
£=[(140)loglogT]. Hence, P|_g-1 can be replaced by P;_x-1 with an error less than
log® T with probability 1 — o(1), meaning that the right-hand side of (3.70) is

Llog? T
(3.72) > ]P’(f 31 , exp(BReP|_g-1(o0 + it +ih))dh > (log T)fe(ﬁ)—3e> —o(l).
—3log’ T

By (2.48) we may discard the terms with j =0 and j = K — 2 with a similar error. For K
large enough with respect to ¢, 8 and 6, the probability in (3.72) is, therefore,

%logg T K-3

(3.73) >P / ., _exp(B D Pj(h)|dh > (log T)feB)=4 ) _ o(1).
—3log" T =1

Finally, the probability in (3.73) tends to 1, as T — oo by Proposition 3.10. [

We now prove the lower bound in Theorem 1.2.

PROOF OF PROPOSITION 3.1. From (1.8) we have that f3(8) = Bm(0) — 1 when § >
Bc(0) =21+ (6 AO). Thus, on the event in the statement of Proposition 3.2 (which has
probability 1 — o(1)) and for 8 large enough with respect to ¢ and 6, we have

1 1 log? T 1 B 1/8
§<—+ir+ih)'z< . ] ;(—+iz+ih>) dh>
2 210g T J-10g?T

2
(3.74) (eso
> (log T)" O~ 5"

> (log T)"® ¢,

max
lh|<log’ T

This ends the proof. [

APPENDIX A: USEFUL ESTIMATES

The prime number theorem yields estimates on the sum of primes with a good error.

LEMMA A.1. Let1 <P < Q, then

(log Q)"  (log P)" .
1 mn — Om(1), >1,
(A1) s Qe _ 17, m T OnM im
p<p<og P loglog Q — loglog P + O(e=<v10e ) " ifm = 0.

Also, for Inlog Q] <1,
5~ costlogp)

P<p=<Q p

(A.2) =1loglog @ —loglog P + O(1).
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PROOF. For (A.1), see Lemma A.l in Arguin and Ouimet (2019) and Lemma 2.1 in
Arguin, Belius and Harper (2017). For (A.2), see p.20 in Harper (2013b). U

The next three results yield moment estimates for Dirichlet polynomials. The first one is
an elementary bound. The second ensures that moments of Dirichlet polynomials that are not
too high are approximately Gaussian.

LEMMA A.2 (Lemma 3.3 in Arguin et al. (2019)). For any complex numbers a(n), b(n)
and for N < T, we have

E[( > a(m)mir> <n§\/ b(n)nir>]

(A-3) "~ Nlog N
= > am)b®) + (’)( g > (latm)|* + |b(n)|2)>-
n<N n<N

LEMMA A.3 (Lemma 3.4 in Arguin et al. (2019)). Let x > 2 be a real number, and
suppose that, for primes p < x, a(p) is a complex number with |a(p)| < 1. Then, for any

keN,

1 . \F 2K
ad B3 e ame) | = (]‘[ 1ol |a(p)|z)) _+o(%)
where 1o(z) = Y ;>0 22" /(2% (n!)?) denotes the modified Bessel function of the first kind of

p=x p<x
order 0. In particular, the expression is O(x**/T) for odd k.

The relation with Gaussian moments in the case where a(p) = p~°

expanding the product to get

is obtained by

2

1
(AS) T1 folla(p)z) = F@) - exp(2 22,,20),

p=x p=x

where F(z) is analytic in a neighborhood of 0 with F(0) = 1 and any derivative of a fixed
order is bounded by -, p ™ uniformly in z. In particular, this implies that, for o > 1/2
and k small enough so that x>/ T = o(1),

ir—in\ 26)! /1 k
(A0 E[<ZRep_a_n_lh) }:(1 +°(1))2(k.§<! <§ ZP_ZU) '

p=x p=x

The above also holds if a(p) =0 for p < y (say) with the sum over primes restricted to
y < p < x. In particular, the error }_,_,_, 7% can be made o(1) by taking y large. We
note that the moments yield a Gaussian tail

(A7) IP’(Z Rep o 1771 > V) < exp(=V?/(2v?)),
p<x

by picking the moment k = | V?/2v?] with v> = % > p<x p 29, for V not too large.
Finally, the third estimate is a cruder version of the Gaussian moment estimates that yields
quick upper bounds on moments.

LEMMA A.4 (Lemma 3 in Soundararajan (2009)). Let T be large, and let 2 <x <T.
Let £ be a natural number such that x* < T /1og T. For any complex numbers a(p), we have

a(p) |* la(p)1*\*
ZW :|<<€!(Z T) .

(A.8) IE[
p=x P p=x
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