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We establish Lz-exponential convergence rate for three popular piece-
wise deterministic Markov processes for sampling: the randomized Hamilto-
nian Monte Carlo method, the zigzag process and the bouncy particle sam-
pler. Our analysis is based on a variational framework for hypocoercivity,
which combines a Poincaré-type inequality in time-augmented state space
and a standard L2 energy estimate. Our analysis provides explicit conver-
gence rate estimates, which are more quantitative than existing results.

1. Introduction. Sampling approaches based on piecewise deterministic Markov pro-
cesses (PDMPs) [16], which involve random jumps and deterministic trajectories in be-
tween, have recently attracted a lot of attention: several classes of Markov chain Monte
Carlo MCMC) algorithms have been developed based on PDMPs, including the random-
ized Hamiltonian Monte Carlo (RHMC) [12, 21], the zigzag process [7] and the bouncy
particle sampler [14, 35]. Compared with MCMC algorithms based on diffusion, such as
overdamped and underdamped Langevin Monte Carlo, the methods based on PDMPs do not
need time discretization for the random part and the deterministic dynamics can either be
explicitly integrated (for zigzag and bouncy particle) or be dealt with high order numerical
integration (for RHMC), which make them promising to have better numerical performance
[5, 6, 12, 13, 24, 38]. The zigzag and bouncy particle samplers are also suitable for the big
data situation, as they can be unbiased even if a stochastic gradient is used [7, 14].

Typical PDMPs for sampling purpose introduce an auxiliary “velocity” variable v € RY
that facilitates simulation, which is often chosen from a fixed distribution. For this paper,
we will only consider the case that the velocity variable is drawn from the standard Gaus-

2

sian distribution dx (v) = (271)_%6_% dv. In the PDMPs, the velocity variable is redrawn
independently from the Gaussian distribution at a certain rate, and between two redraws the
trajectory of state variable (x, v) consists of deterministic routes and random bounces so that
the spatial variable x will explore the state space in all different directions with the help of v.
The PDMPs are designed so that the x samples the desired target distribution.

We now present the general mathematical formulation of PDMPs. Let f = f(¢,x,v) :
R, x RY x R? — R be the expectation of some observable function fo(x, v) at time ¢, and
therefore satisfies the backward Kolmogorov equation

(1) atf:£f7 f(t:03x7v):f0(xvv)v

where the infinitesimal generator £ associated with PDMPs is given by

K
) L=v-Vi—Fo(x) Vo+ ) (v F(x), B —I) + y (I, — D).
k=1
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Here Z denotes the identity operator, and (s)4+ := max{s, 0}. The vector fields F : RY —
R?, k=0,1,..., K depend only on the position variable x (examples will be discussed
below). The jump operators By correspond to reflections of the velocity variable through the
hyperplanes orthogonal to Fy, defined as

3) Bif(t,x,v):= f(t,x,v—2(v - ng(x))ne(x)),
where
@ () = {Fk(x)/rFk<x)| if Fi(x) #0,

0 otherwise,

and IT, is the projection operator on Gaussian with respect to v variable

5) (M) = [ fx ) dk(o),

In (2), y > 0 is the refreshment rate of the velocity variable, whose choice will impact the
convergence rate of the dynamics. Our analysis will provide optimal choices of y.

Different PDMPs correspond to different choices of the vector fields Fj. While our frame-
work can be generalized to various situations, for definiteness, we will only focus on the three
most prominent examples:

e The randomized Hamiltonian Monte Carlo (RHMC) [12, 21] corresponds to the choice
K =0 and Fy = V, U, where U is some potential function. The corresponding equation
(1) can be seen as a particular linear Boltzmann equation [4] with the collision operator
given by y (Tl — 7);

e The zigzag process (ZZ) [7] corresponds to K =d, Fop =0 and F; = 9y, Ue; where
(ex)ke(1,...,ay 1s the canonical basis of R,

e The bouncy particle sampler (BPS) corresponds to the choice K =1, Fp =0 and F; =
V,U. The BPS was first proposed in [35] and extended in [14].

All these PDMP processes above satisfy Zf:o Fy =V, U, and thus are designed so that they
admit a unique stationary distribution [11, 12, 32] given by

(6) dpoo(x,v) =duy (x) dr (v),

where
1
dpy (x) = —e V@ gy, Zy =f e UM gy,
Zy R

Other PDMPs have been proposed for sampling purposes, including Hamiltonian BPS [39],
the Coordinate Sampler [42], the Gibbs zigzag sampler [37], the Boomerang sampler [8],
and more general bounces involving randomization [30, 39, 41]. While our framework can
be generalized to these algorithms, we will not consider these variants in this work.

Our goal is to derive explicit decay rate estimates in L? for PDMPs, based on the vari-
ational framework developed in [2] and our previous work for the underdamped Langevin
dynamics [15], the idea of which originates from the pioneering work [29]. More precisely,
we will obtain explicit estimates for some v > 0 and a universal constant C > 1 independent
of U, y and d such that for f = f (¢, x, v) solving (2) and | fodpsc = 0, we have

@ [F e =Ce™ I folliz-

Geometric convergence for ZZ has been established in [11] and for BPS in [17, 22, 32],
however the expressions of the convergence rates are either implicit or complicated. The work
[1] established explicit convergence rates for these processes, however only in terms of the
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dimension d; the comparison of their result with ours will be further elaborated below after
we present our main results.

Other theoretical studies of the PDMPs include scaling limits and spectral analysis: The
work [18] established the scaling limit of first coordinate for BPS, and [9] proved scaling
limits of ZZ and BPS for several statistical observables. Spectral analysis of PDMP were
considered in [10, 31] in one-dimension and [26] for the metastable regime.

More generally, convergence result of type (7) for hypocoercive equations was established
in H'(pso) in [33, 40] for a class of kinetic equations. Hypocoercivity estimate in terms
of a modified L? space was developed in [19, 20, 27] and a series of works based on this
framework [3, 25, 36].

Notation. Throughout the paper we assume / to be the time interval (0, T'), and we use
dA(t) = x(o,7) (1) dz to denote the Lebesgue measure on /. Define C /lj to be the set of functions
f such that they are k-times differentiable with bounded derivatives up to order k. We define
the Sobolev space

H'(up):={f: fx) e L*(uy) and 8y, f € L*(uy), Yk =1,...,d}.
We also define
L0 )= { £ = f0: [ rdrdun < ool
IxR4

and its corresponding norm

1
2

1120 = ( [ fa dMU(@)

The space L?(A X poo) for functions on 7 x RY x R? and its corresponding norm are defined
similarly. We define the average of f: 1 x R x RY — R over A X pso as

1
Dixp =7 [, 705, 0)dr oo v,
and for g : I x R? — R we define its average over A X jiy as

1
= — t,x)drd .
@ =7 [ 800 dr duy ()
We use
ViF:=-V,-F+F -V,U

to denote the L%(uy)-adjoint operator of V.. For time-augmented state space I x R?
equipped with measure A X puy, we use the convention dy, := 9;, the shorthand notation
V= (0, VX)T, and the notation A; , := —09;; + V;V, to denote the “Laplace” operator on
L*(A X py).

1.1. Assumptions and main results. Below are three fundamental assumptions that U (x)
must satisfy in our framework. The convergence rates get better if we have stronger assump-

tions on U.

ASSUMPTION 1 (Poincaré inequality for nyy). The measure duy corresponding to U (x)
satisfies a Poincaré inequality with constant m > 0:

2 1
® - L) wws [V Ve w.
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ASSUMPTION 2. The potential U € C%(R?), and the Hessian of U, V2U satisfies

9) IV?U @) | <M1+ |VU®@)|) VxeR?
for some constant M > 1, where ||-|| denotes the matrix operator norm
|A§|
A= sup -
seri\(0) (8]

ASSUMPTION 3. The embedding H'(uy) = L*(uy) is compact.

The Assumption 2 is commonly used in the literature, see, for example, the books [34, 40]
for underdamped Langevin dynamics, and is satisfied when U grows at most exponentially
fast as x — oo. Assumption 3 is satisfied as long as

Ux)

[x|—>o00 |x|"‘

for some o > 1 (see [28] for a proof). While previous works on hypocoercivity [20] and
works following its framework [1, 3, 36] use the elliptic regularity estimate in x for which As-
sumption 1 suffices, our proof, in particular the construction of test functions in Lemma 2.2,
relies on spectral decomposition of the operator ViV, which is only guaranteed through the
slightly stronger Assumption 3.

It is established in [23] that BPS and ZZ are well-defined Markov processes whose gener-
ators admit Cﬁ(Rd x R?) as a core, and similar arguments can be used to establish that the
RHMC generator has the same core. It is standard that Cg(Rd x R?) is dense in Lz(,ooo).
Moreover, the operator £ is closed in L?(poo), and generates a strongly continuous contrac-
tion semigroup (P;);>0 on L?(pso). These set up the basic regularity assumptions needed in
this work.

Below we present the main result of this work.

THEOREM 1.1. Under Assumptions 1,2 and 3, there exist a constant v > 0 and universal
constants Cy, co independent of all parameters such that, for any f satisfying fo € L*(poso)
and

(10) Jodpoo(x,v) =0,
R2d
and solving the PDMP equation (1), we have for every t > 0,
(11) [ £ 120,y = Coexp(=vDIl foll L2(p)-
Moreover, let R be the parameter that describes the “convexity barrier” of U, defined as
0 if U is convex;
(12) R=RWU):={vL ifV?U(x)>—LT,Vx;

M~Nd ifonly (9) is assumed.

Then, there exists a universal constant C, independent of all parameters, such that the con-
vergence rate v can be explicitly estimated for the three PDMPs as

my

JmtRiypp  JorREMG
my
or 77,
(13) VECN Umt R tr?
my for BPS.

(Vdm + R/d + y)?
Here Rzz = /L if |V2U|| < L,Vx and Rzz = M~/d otherwise.
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TABLE 1
Summary of lower bound on the convergence rate
v and optimal choice of y depending on d, m, L
under the assumption mZ < V%U < LT for the
regime m < 1 K< L

Convergence rate v Optimal y
RHMC O(y/m) N
77 0(%) VL
BPS 0(@ ) Jdm

We will prove this theorem in Section 2.
Given the expression of (13), we can choose the optimal y to maximize the rate v for the
three PDMPs:

Jm+ R for RHMC;
(14) y=1vm+Rzz for ZZ:
Vdm + Rvd for BPS.

Therefore the optimal convergence rate is given by

m
_ for RHMC;
Jm+ R or
m
1 > _— for 7ZZ;
(15 v=C Jm+Rzz
n for BPS.

Jdm + RVd

Table 1 summarizes the result under the assumption mZ < V%U < L7 (and hence guarantee
Assumptions 1-3) in the most interesting regime m < 1 < L, with optimal choice of y.

Compared to [1], we are able to derive an explicit scaling of v not only on d, but also
explicitly on y, m, L as well. For RHMC, we obtain the optimal convergence rate O (y/m),
which is the same as for the underdamped Langevin dynamlcs [15]. The O(y/m) rate is
optimal as can be checked for the Gaussian case U (x) = m‘x | . For the zigzag process, we
are able to derive dimension independent convergence rate Wlth the smoothness assumption
I V)%U || < L, which is more quantitative than the result in [1]. Finally, although we are unable
to obtain a dimension independent rate for BPS, our rate O(d~'/?) under the assumption
V2U > — L7 is still an improvement from the rate in [1], whose estimate provides a rate of
O(d (+o)/ 2) under the assumption A, U (x) < cd't® 4|V, U (x)|?/2. It is unclear whether
a dimension independent convergence rate is possible for BPS.

Before we move on to the proof of Theorem 1.1, let us give a brief introduction on the
strategy of the proof. A naive energy estimate yields

d 2 1 K 2
— t, - =—— E - F - B drd
dr ”f( )”L2(pw) 2 kzl/(.S,Z)XRM [v- Frl(f cf) Poo

—2y (f = My f)? di dpoc.
(s,)xR2d
While the above establishes the L2 energy decay, it does not directly yield exponential decay
rate. In particular, the energy dissipation is only present in the velocity variable. However, in-
stead of looking at single time layers, we should look at time intervals, since after time prop-
agation, the dissipation in v together with the transport and bouncing terms in x will lead to
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dissipation in x. With the help a Poincaré-type inequality in the augmented state space estab-
lished in Theorem 2.1, we can prove exponential convergence still using the standard energy
estimate, with y (I, — Z) playing the role of “dissipation,” in line with the moral “hypocoer-
civity is simply coercivity with respect to the correct norm,” quoted from [2], page 4.

2. Proofs. We first state the following modified Poincaré-type inequality that generalizes
[2], Theorem 1.2, and [15], Theorem 2, to the PDMP dynamics under consideration.

THEOREM 2.1. There exists a constant C independent of all parameters such that for
all functions f(t,x,v) € Cé (I x R¥),

||f - (f))\Xﬂoo ||L2(Axpoo)

1
<(A+CHIf - HufHLZ(Axpoo) +C(ﬁ + T>

(16)
K
O f —v-Vif =) (- F)+Bx—Df +Fo-Vof :
k=1 L2 (A poo)
Here C 7 is a constant defined as
1 R
C(1+—+—+RT for RHMC,;
\/_T m )
(17) Cyr= ( +f—|— \/_-{—RzzT) for 77,
Cf(l L S RT) for BPS
fT " m ’

where R and Rzz are the same quantities as defined in Theorem 1.1.

REMARK 2.1. We remark that Theorem 2.1 also applies to any f (¢, x, v) which is the so-
lution to (1) with initial condition fj € L?(pso). Since L generates a contraction semigroup,
for f(t,-,-) = P; fo we have P, fp € L?(poo), and therefore for any fixed t,

K

Wf—=v-Vaf =D (- F)+Be =D f +Fo- Vo f =yl f — f) € L*(poo).

k=1

Hence the right-hand side of (16) is finite for any f being the solution to (1), and therefore
Theorem 2.1 holds for f by density argument.

To prove Theorem 2.1, we need the following lemma, established in our previous work
[15], which provides crucial test functions that satisfy a divergence equation with Dirichlet

boundary conditions. To make the paper self-contained, we include the proof in the Appendix.

LEMMA 2.2 ([15], Lemma 2.6). For any function [ = f(t,x) € L2(n x WUy) with
(rxuy =0, there exist ¢ = (¢po, ¢1, ..., ¢d)T € Hl(k X ;LU)d+1 solving

d

(18) o+ 0idi=f  ¢1t=0,)=¢(t=T,)=0,
i=1

with estimates

_ 1
(19) ||¢||L2()\><MU) S Cmax{ﬁv T}”f”LZ()"X,U/U)’
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d 12 1 R
2
(20) ( Z ||8xi¢j||L2(AxuU)> = ( + ﬁ + T + RT) ||f||L2(AxMU)-

i,j=0
Here C is some universal constant, and R is the “convexity barrier” parameter for potential
U defined in Theorem 1.1.

Before proceeding to the proof of Theorem 2.1, we present two elementary but useful
lemmas: one regarding the properties of reflections By, and the other on intergrating the v
variable with (v - n) 4.

LEMMA 2.3. The operators By, defined in (3) satisfy the following properties:

1. for any functions f, g,

Bi(fg) = Bi fBkg;

2. B,% =7,
3. By is symmetric in L?(k): For any two functions f, g,
@1 | Besgacw)= [ | rBigacc);
R4 R4

as a direct consequence, letting g = 1, we have for any function f,

/Rd By f de (v) Z/Rdfd“”)?

4. for any function f,
(22) /Rd(v + Fi)+ By f dk (v) =/Rd(—v “F) 4 f de(v).

PROOF. The first and second properties can be verified directly using definition (3). The
third property follows from a change of variable v := v — 2(v - ng)ng in v, so that v =v —
2(0 - ng)ng, and x (v) = k(v):

[ Befgac@ = [ | 1o =20 - nom)g) dew)
Rd Rd
= [, F @8 -2 nom) de@) = [ | 1Bigdew).
R4 R

Finally for the fourth property, we change the variables in the same way as the proof of the
third one, sothat v - F, = —0 - Fy:

/ (v Fo)1Be f dic(v) = / g0 S0 =20 ) de0)
- f (5 FO £5) e (D)
:fRd(_v.medK(v). 0

LEMMA 2.4. For any vector ¢ € R? and any two functions ¢(v - q) and ¥ (v) such that
o - g)r(v) is even in v and ¢(0) =0, it holds

1
23) Lo ppmaw =3 [ o 9uw o).
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PROOF. The identity is obtained as follows, in which we use a change of variables v
—v in the second equality, the symmetry of Gaussian « (v) in the sense that x (v) = x(—v) in
the third equality, and ¢(0) = 0 in the last equality:

/«»(v-q)w/x(v)dx(w:/ w(v-q>w(v>dx<v>+/ o(v - P (v) de (v)
Rd v-g>0 v-g<0

q=

=| 9@ Y@ +

vq=

Ofﬂ(—v-Q)l//(—v) di (—v)

v-q=

= 2/1).(120(0(1) Cl)lﬁ(v)dlc(v) = Z/Rd gp((v . q)_'_)v/(v) dK(U). 0

We are now ready to prove Theorem 2.1.

PROOF OF THEOREM 2.1. Without loss of generality we assume

(f )Ax Poo — 0.
We now take ¢ = (¢, ¢1, ..., Pq) " to be the test functions given by Lemma 2.2 with I, f
playing the role of f.
Define (for simplicity of notation, we denote ¢ = (¢1, ..., ¢q) " and treat ¢ as a d-vector)

d K
(24) T :=—0po+v-Vado+v-01p— Y vjv-dx, ¢+ Fo-p—2 ) (—v-F) 4 (v-np)(d-mp).
i=1 k=1
We claim the following estimate, the proof of which will be deferred.

LEMMA 2.5. The quantity J can be controlled by I, f in the sense of

(25) 1T 2005 po) = CT MMy fll 22005 1) -

Here C 7 is the constant defined in Theorem 2.1.

Before proceeding with the proof of Theorem 2.1, let us provide a heuristic justification
for Lemma 2.5: if we calculate || 7 ||i2 (x pac)” then its expression consists of terms that are
up to the fourth moment of v multiplied with Ok, Ox;¢j or ¢V U. Therefore, integrating
out the v component against Gaussian, and by Lemma 2.2 all terms can be controlled by
ITT, f ||i2 Goxpiy)” The actual constants will be estimated separately for each PDMP in a later
part of the paper.

Now let us return to the proof of Theorem 2.1 assuming Lemma 2.5. To simplify notation,
we define the operator

K
(26) Af =0f —v-Vof =Y (- F)4Bx =D f + Fo -V f.
k=1

We now estimate the L2 norm of IT, f. Using Lemma 2.4 for g = —F}, ¢(v-¢) = v - ¢ and
Y (v) = (v - ng)(¢ - nx) and integrating out v, we have

2[00 0@ dtdpse == [ (e B no@ - mo drdpse
@7) IxR IxR

:_/1 @ Fudt duy o)
X
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Therefore, by the construction of the test functions ¢, and noticing V, U = Zf:o Fy, we have

K
1T £ 1720y = /1de va<—8,¢o — Vi p+o-) Fk> drduy (x)

k=0

@ nvf(—wo —V,-¢p+6-Fy
I xRR2d
K
23 (—v- F)p(v-m) (@ 'nk>) dt dpeo
k=1
(28) =/ nvf(—atqao + - Vigo+ v 0p = D viv- 3y d+ - Fo
K
—2) (—v- F)+(-m) (¢ nk)) dr dpog
k=1
@ _ _
B[ I Tddp /I LT drdp
(25)
<

= /I R2 ST dtdpeo +CJ||va||L2(AXMU)||f - va”Lz(}»Xpoo)’
X

where the third equality follows from introducing a dummy v variable and noting that by the
basic properties of Gaussian measure k', [pa v; dk (v) =0, and [ v;v; dk (v) = §;;.

To estimate the first term on the RHS of (28) we use integration by parts. For time deriva-
tives, we crucially use that ¢ vanish at both boundaries + = 0 and ¢ = T; for derivatives
in space and velocity, we use [pa Vi f - gdpuy(x) = fpa f(=Vig + g - ViU)dpy(x) and
St Vo f - Ak (V) = fa f(=Vog + g - v) dk (v):

/I T dtdps
X

d
24
=) RMf(—a,¢o+v-vx¢o+v-8z¢>—Zviv'3Xf¢+F0‘¢
X i=1

K
=23 (~v F)4 (i) (@ - nk)) dr dpog

k=1

K
= <3zf¢o — v Vefgo+ foov- > Fi— i fv-dp+ - Vif)v-$)
I xR2d k=0

K
- (”'VXU)“"¢)f+f¢'Fo—ZD—v-Fk>+<v-nk><¢>-nk>f> dr dpac
k=1
zflsz"((atf_U'VXf)(¢0_v'¢)+f¢0v‘F0+f¢'F0—(v-Fo)(v-¢)f

K K
+ (v . ZFk>(¢O —v)f—2) (v F)4(v 'nk)(¢-nk)f> dt dpes

k=1 k=1
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K K
- ((a,f 0 Ve f Y (v Fk>+f> (Go—v-d) =Y (—v-F)(do—v-§) f
k=1

2d
I xR k=1

K
+¢oFo- Vo f = (Fo- Vo /)0 -¢) =2 (—v- F)4(v-m) (o - nk)f) dr dpoo

k=1

K
- IxRM((a’f_v’v’“f"'z(v'Fk)+f+Fo-va)(¢0—v.¢)

k=1

K
= (—v- F)4+B(go — v - ¢)5’1%f> drdpo

k=1

K
(21)’:(22)/1 R2d<(3zf—v'vxf_Z(U'Fk)+(3k—1)f+F0'vvf)
X k=1

X (¢o — v-¢)> dr dpeo

(26)
< 0 — v Bl 126 x poc) A N L260x poo) -
Since ¢ is independent of v, expanding and integrating out v with respect to «, we obtain

De(2 ) i f12
= ﬁ + ” vf”L2()»X,LLU)'

6o = v 31726 py = 1D17 2650y
Thus

1
@ [ T8 = TN FAS 20

Combining (28) and (29) we arrive at

1
”HUfHLz()"X/'LU) = C(ﬁ + T) ||Af||L2(}\,><poo) +Cqllf — HUf||L2()»><poo)’

and therefore by the triangle inequality

1A 220.xpe) = 1 = o fll2200x o) F 1T 22005 10

1
= C(ﬁ + T>||Af||L2()\,>(poo) +(A+CHIf — va||L2(xxpoo)- O

PROOF OF THEOREM 1.1. We first notice that
[ Ftx 0 a0 =0
RZd
for all ¢ > 0. In view of (10), it suffices to prove
i/ f(t, x,v)dpoo( v)@/ Lf({t,x,v)dpoo(x,v)=0
dt de ’x7 /OOO xa —_— RZ(I ax5 pOO x’ - .

Notice

K
['zv'vx_VxU'vv‘f‘Z['k"i‘V(Hv_I)»
k=1
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where Ly = (v- Fy)+(Bx — ) + Fy - V,,. Therefore, as it is clear that both operators v - V,, —
V.U -V, and I1, — 7 preserve pno, it suffices to show that £ preserves p~o as well. Indeed,

/ Lo f dpoo(r,v) = f ((v- FO+Bef — (v F)sf + Fi- Vo f) dpss
RZd RZd

D | (v F)pf =@ FOsf + fv- Fi) dpoo =0.

Next we establish the energy decay properties of f. Take any two positive numbers 0 <
s < t. Following [1], Proposition 8, we denote the symmetric part of £ by

1 K
(30) S=32 v FlBy =D +y ([, = D).
k=1

Using the properties of By in Lemma 2.3,

f v+ Fiel (Bi f)? dt dpoc =f v+ FelBef2 dr dpss
(s,1) x R4 x R4 (s,1) x R4 x R4

@ Bilv - Fe| f2dt dpeo

(s,1) x R4 x R4

=/ v+ Fel f2dr dpe.
(5,1) x R4 x R4

Therefore

(31) [v- Fil(f — Bef)*dtdpeo =2 v+ Fi| f(Z — B) f dt dpoo.
(s,t) x R4 x R4 (s,t) x R4 x R4

On the other hand, since
| fTf drdoos = [ (MNP dtdpso= [ (1,2 drduy (o),
(5,1) x R4 x R4 (s,1) xR x R4 (s,1)xR4
we have
[ (f = TP drdps = | FT—T,)f dt dpwe.
(s,1)x R4 x R4 (s,1)x R4 x R4

Therefore we have an elementary energy estimate, noticing the anti-symmetric part of £ does
not contribute to the integral f(s’ HxRdxrd JLf At dpoo:

2 2
| £, ')||L2(poo) =[£G, ‘)”LZ(poo)
—2 £8, fdrdpe 22 FSfdtdpe
(s5,1) xR xRd (s5,8)xR4 x R4

K
=3 v+ Fl f(Bi — D f dt dpsc
(s,1) xR x R4

(32) +2y f £, — 1) f dr dpss
(5,1) x R4 x R4

@——Zf( v+ Fel(f — Bef)?dt dpo

s5,1) x R4 x R4

—2y (f — T, £)*dr dpes
(s,1) x R4 x R4

< —2]/||f - va”iz()t(s,z)xpoo)’
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where we use A, ) to denote the Lebesgue measure on (s, 7). In particular,
(33) the mapping t — | f(z, )| iz(pm) is nonincreasing.
By equation (1) and definition of the operators (2) and (26),

(34) AL 200 0wy = P ILE = T Fll 12011

Therefore, for any 0 < s < ¢ (note that Theorem 2.1 applies by Remark 2.1),

1 20y = 176 T2

(32 2
< —2)/||f - nvf”L2((s,t)><,ooo)

@ 2 ((1+c f — S|
= — — 2
(1+Cy+ C)/(ﬁ +1—1))? 7 v ILZ s, X poo)

1 2
n C(ﬁ 4 s> ||u4f||L2()»(s,r)XPoo))

Ed 2 112

T+ Cr+Cy(gy+i—9)? L2 X Po0)
(33) 2y(t —s) 2

= - | @, ‘)||L2(poo)-

(1+Cq +Cy (g +1—5)

Now fixing a T > 0 to be optimized later, for any ¢ > 0, we pick the integer k satisfying
kT <t < (k+ 1)T. Applying above inequality iteratively and using the monoticity (33), we
obtain

2yT
17 P2 = (1 4

T O (L TP
J Vﬁ

< (1 + =il )_Hlnf 17
= 0
(1+Cg +Cy(-= + 1)) L2(p0)

—k
2
) ol

2yT
< (1+ : )
(1 +Cj+Cy(Tm +7))2

xexP(_i1og<1+ T )>||fo||%2( .
r (1+Cq+Cy (g +T1))? poo

The prefactor
2yT - 2yT <1 1

1+ <1+ <
(14 Cq+Cy (5= + 1)) (1+CyT)? C

is bounded above by a universal constant. Therefore, using log(1+x) > éx forx € [0, 1+ %]
for some universal constant C, this yields (11) with the exponential decay rate

L <1+ 2vT >
v = sup — log
70 2T (1+Cj+Cy(ﬁ+T))2
(35)

> C sup v

7=0 (1 +cj+y(ﬁ +T))2
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Substituting (17) into (35), we get

1 S—_ _ . for RHMC:;
(1+—m+—/n—l+§T+—/n7+)/T)
for Z7Z;
(36) v=C 1 Ry Ea 2 ,
I+ =+ &+ RzzT + =+ yT)
1 — 1 _ for BPS.
(Wd(l + o + 2% + RT) + y (5= + 1))

We arrive at the rates (13) by optimizing the choice of T" for each case:

m=i(R+y)"? for RHMC;
T={m*t(Rzz+y)"2  forZz
dim~3(vdR +y)~% for BPS. 0

The remaining task is to prove Lemma 2.5. For RHMC,

d
T =—0¢o+v-Vego+v-01p— Y vjv-0y¢+¢-V,U.
i=1

The norm || Tl 12, 1S already estimated in [15], Proof of Theorem 2, and the proof is
thus omitted here. In the two subsequent subsections we will estimate C 7 for ZZ and BPS
respectively.

2.1. The zigzag process. In this case

d d
T =—=d¢o+v - Vego+v-0¢— ) vjv-05,¢—2) (—0k0y U) yvir.

i=1 k=1

LEMMA 2.6. Let ¢;,i =0,...,d be test functions as in Lemma 2.2. Then

d
> [ @0 diduy (o)
37) =!

1 Rz g T2 I, f)*drd
<+«/_ +T+ ZZ ) /Ide( v ) drduy (x).

Here Rzz is defined as in Theorem 1.1.

PROOF. Using integration by parts,

Z [ (@i U) dtduU(X)—Z / Dy (920, U) di dpsyy (x)

/ B i U di duy ()

d
=2)"
k=

1

d
Z f 20 U dt djuy (x)

=1
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d 1
Z «/;x d <2(¢kaka)2 + 2|axk¢k|2) drdpy(x)

k=1

d
+Zf $20,,, U drdpy (x).
k=1 I xR4

After rearranging, we have

d
> /1 @0, Ay ()

d
Z f (18,812 + B2 U) dt dpay ()
(38)

2 < s +RT>2/ (M, £)>dr dpy (x)
—t+ —= X
«/— ﬁ IX]Rd v /’LU
+CZ/ BP0, U dr dpuy (x).
k=1 IxR4

We first discuss the easier case where ||V)%U | <L:

d d
2 2
kE_l/lde Op O U dt dpy (x) < LkE_l/szd ¢j drdpy (x)

(E)CL( ! +T)2f (T, )% dr dpug (x)
— X).

= «/E R v nu

In the general setting where only Assumption 2 is assumed, by [15], Lemma 2.2, we have

(39) ||¢k|VxU| ||L2()~><,MU) = C(||Vx¢k||L2(AXMU) + Md||¢k||L2(AXMU))~
Therefore, by the Cauchy—Schwarz inequality,

d
> [ ot U dtduu (o)
k=1"1%

(9)
<cm Z f + 1V, U1)¢F dr duy (x)
d
< M2y + CM D086 22600 |61V U1 20
k=1

d
(39
= CM<“¢”12(AXMU) + Z ||¢k”LZ(AXMU)(”de’k”Lz(kxuy) + Md||¢k||L2(AXMU)))
k=1

19 d 2 K 2 2
< CM((Z ||¢k||L2W,LU)> (Z ||vx¢k||LzWU)) +Md||¢||L2WU))
k=1 k=1

(19),(20) 1 M
< C(l + —— [
./mT Jm

This proves the lemma with Rzz = M Jd. O

+Mfr) 1T £132 0
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PROOF OF LEMMA 2.5 FOR ZIGZAG PROCESS. To estimate HJHLZ(AX,O )
terms, categorize them according to their powers on v and whether (—vidy, U) is contained,
and integrate out the v variable for each term.

We start with terms that do not contain (—vydy, U) 4+, in which all terms with odd power of
v vanish:

Terms with Oth power of v:

we expand its

| g0 drdun o).

Terms with 2nd power of v:

d
fl . ((v Vo) + (v 89)* + 20 ) (v - Vao) +2 Y vivjazqsoax,.asj) dr dpoc

i,j=1

= ((v $0)* + (391¢)* + 2(3,¢ - Vebo) +2a,¢ozax,¢,)dt dpy (x)

i=1
d
2 2 .
= /1 R (2(Vx¢0) +2(0:¢)” + 200 Z axiqb,) drduy (x).
: i=1
Terms with 4th power on v:

d

/I R2d Z ViVjUpUq axi ¢j 8X1)¢‘1 dr dpoo
X ..
i,j,p,q=1

=/;XR (32(8x,¢1)2+ Z |8xi¢j|2+8xi¢iaxj¢j +axi¢j8Xj¢i)> dtd,bLU(x)

1<i#j<d
d
/1 Rd((zax,@) +2) |ax,.¢>,~|2)dzduu(x>.
x i,j=1

Now we look at the terms with “(—vidy, U)4".
Terms where (—v 0y, U)4 are appearing twice, in which case the overall power of v is even
and thus Lemma 2.4 is applicable:

d
[ D U U vy, U) vy i o
I xR k. p=1

= (2 Y (—ued DR+ Y v,%vf,¢kaxku¢papr) dr dpso

2d
I xR |<k£p=<d

1<k#p<d

/I]Rd< Z¢k(3ka) + Z ¢k8ka¢p3pr)dtd,uU(x)

d
(Z ¢kaka> +5)° ¢,§(8ka)2> dr dpy (x).

k=1
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Cross terms with (—vdy, U)+ where we could still use Lemma 2.4 due to an overall even
power of v:

d d
./IxRM <4a,¢o D o (—vdg U)yvrd +4 Y Uivjax[¢j(—vkaka)+vk¢k) dt dpeo

k=1 ijk=1

d d
= o (—23;¢0 Z v,%akaqbk -2 Z vfaxiﬁbi 3y, Ui
) i=1

k=1

-2 Y v ax,¢,ax]U¢,)dtdpoo

1<i#j<d

= Rd( 2a,¢oZaka¢k 6Zaxl¢,axlU¢,—2 3 8x1¢,8ij¢j)dtduU(x)
X

I<i#j<d

d d
=/ (—2<a,¢o+zaxi¢i)<2 ¢kaka) P23 (ol + |¢l~ain|2)> de dpuy (x).

i=1 k=1 i=1
Finally cross terms with (—vgdy, U)4+ where one cannot use Lemma 2.4 due to an overall

odd power of v. In this case, instead of calculating an exact integral (which we actually can,
but it does not yield a better bound), for simplicity we control these terms by what we have

calculated above:

d
4 /1 o0 @1+ Vado) o (—vrdy U uighedi dpo
* k=1

— 4 /1 - Z(af¢k+8xk¢o>( Uk U) 4 02 df Aoy
X =1

</1>< 2d<ka(3t¢k+axk¢O) +4Z( vkaka)+¢k) dt dpso

= IXRM<3 > (@i + 9y, 0)* +22(ukaka) ¢k) dt dpeo

k=1

k=1

Therefore, combining these calculatlons, we obtain finally

2
<
||j“L2()\,><poo) - /1><Rd<

d
+93 (3 U)%;%) drdpy (x)

k=1

2

d
+8 ) [0y ;1

i,j=0

d d
dpo+ Y 0 — Y oy U
i=1

i=1

(18),(20),(37) 1 Ry 2
< C(l + + RZZT> “H”f”iz(kxuy)' O

Tt

REMARK 2.7. Our bound in Lemma 2.6 can be improved for some specific cases. For
example, if the potential has a separate form U (x) = Zizl Ui (x;) with U,Q’ (x) > —L for
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all k, we claim the convergence rate v is dimension independent, regardless of the growth
condition of U, recovering the result in [1].

For the proof of this, we need to revisit the construction of the test functions ¢y in the
proof of [15], Lemma 2.6, and make a more refined estimate than that in Lemma 2.6. We will
follow the notation of the proof of [15], Lemma 2.6. Let us decompose

T
M f=r*+ co(t - 5) + 2 (ea e e e T wa (),
o

where ¢, cgf are numbers, f Lis perpendicular to all harmonic functions in A X uy, in the
sense that for any g € H2( x py),

Arx8=—0ug+ V:ng =0 = /] R fJ‘g drduy(x) =0,
x

and a2, w, are corresponding eigenvalues and eigenfunctions of ViV,:

2
ViViwg = o wqy, lwell L2y = 1-

By linear combination, it suffices to prove in both cases IT, f = f* and IT, f = e wq (x)
(note in the case I1, f =1t — % the corresponding ¢ = 0 for k > 1, and thus (40) trivially
holds), the corresponding functions ¢y satisfy

d
2 2
(40) > [ B0 U A s () < T f g

First consider the case IT, f = f, ¢ = dy, u where u is the solution of the elliptic equa-
tion
“n Aqu=ft in I x RY,

dqu(t=0,)=dur=T,)=0 inR%
By Bochner’s formula, using the fact that U (x) = Zle U (xy),

d

2 _ 2 _
N LN P T T |

R quTV%Uqu drduy (x)
i,j=0

X

d
=17 i ~ [ @0PUl o drduay o,

this yields (40) since ¢y = 0y, u.
For the case I, f = e*'wq for a particular «, ¢x = ¥ (¢)dy, wy (x), where

1
[V Ol20) = 1M 26.x00)-

Moreover, again by Bochner’s formula, using ||V} V,w, 2204y = o? | we 2200y = o?,

d
2 2 T2
Z ”axi,ija”LZ(]XMU) = “V;:waa ”LZ(AXMU) - /1de waa Vvaxwoz duy (x)
ij=1

d
=at =3 [ U ) dau ).
k=1 I xR4
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Therefore Y¢_; [7.ra (3, wa) U} (xx) dey (x) < &* and hence
d 5 d
> / GO U dt dpy () = ¥ () [ 21 D / (3, wa) 2 U (i) dpey ()
=1 IxR4 P IxR4

<o f 1122 g

The estimate (40) follows from linear combination. Substituting into (38) we obtain (37) with
Rzz = R, so that we have a dimension-independent convergence rate assuming U ,2/ (xr) >
—L, even without an upper bound on V)%U besides Assumption 2. Moreover, if we further
assume U}/ (xx) > 0 for all k, then we have convergence rate O (,/m) after optimizing in y.

2.2. Bouncy particle sampler. In this case K = 1, and n| = W In order to avoid
notation conflicts, in this section, we write n = n and use
o, U
n; =
VU]

to denote the ith component of n. As n is normalized, Z 1 n =1.
Recall that we want to estimate 7, which for BPS is given by

T =—=0o+v-Vego+v-0¢— Y vjv-05,¢—2(—v-n); (v-n)( V U).
i=1
LEMMA 2.8. Let ¢;,i =0,...,d be the test functions as in Lemma 2.2. Then
| @V drdu
I xR4

(42)

<Cd( +;+L+RT)2/ (M, £)2 dr dpy (x).
- \/_T \/_ I xR4

Here R is defined as in Theorem 1.1.

Let us remark that the factor d on the right-hand side of the above estimate is the reason
that the convergence rate we obtain is degraded by a factor of /d for BPS.

PROOF. By construction of the test functions (18), we have

d
¢- ViU =TI, f + 0o+ Y 0, i

i=1
Thus

d 2
2 _ .
| @ vurdduwew = [ Rd(nvf+at¢o+;ax,¢l> dr dyuy (x)

X

d
< [d+2) fl Rd((l'lvf)2+ (30 +Z(axi¢i)2> dt dpy (x)
x i=1

(2<0)Cd<1 R +RT)2 / (M, /)2 dr dpy (x)
= «/_ «/_ Rd v U s

where the first inequality follows from Cauchy—Schwarz. [
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PROOF OF LEMMA 2.5 FOR BOUNCY PARTICLE SAMPLER. Similar to the proof for
77, we will expand ||.7||? 120 and organize its terms according to their powers on v and

whether (—v - n)4 appears in the expression. Terms that do not contain (—v - n)4 are identical
to those for ZZ and thus calculations are omitted.

Next we look at terms where (—v - n) appears twice, in which the overall power of v is
even so Lemma 2.4 can be applied:

[ A0 e w3 @ V) drdpnc )
IxR2d

- / 20 - W)} - Ve U2 dr dpoo (x, v)
1 xR2d
d
_ 2
= 2 Y vivjuupnnmn, (¢ - Vi U)? dr dpeo(x, v)

2d
DXRE G 5 k p=1

d
43) = IXRZd(zZv;‘n?+6 > v?vfn?n§>(¢-VXU)zdtdpoo(x,v)
i=1

I<izj<d

d
B 1de(62“?+6 2 n"Zn%>(¢)'VXU)Zd[dMU(X)

i=1 I<i#j=<d

(Zn ) (- V2U)dt duy (x)

1 xR4
=6f (¢ - ViU)2dr duy ().
I xR4

Cross terms with (—v - n) appearing once and the overall power of v is even:

/ <48,¢0(—v ‘M) (v-n)(d -V, U)
I xR

d
4y vl-vjax,.d)j(—v-n)+<v-n><¢>-va)> dr dpos
i,j=1

d
=-2 /1 . <3z¢o(v~ﬂ)2+ > vivjaxi¢>,~(v-n)2><¢-va)drdpoo

i,j=1

_2/ (8,(1)0211 + Z ViV VUMM D, ¢,>(¢ V,U)dt dpso

i,j,p.q=1

d
=2 /1 R2d<a,¢o+2v;‘n$ax,¢,-+ Y. vivinioge:
x i=1

l<i#j=<d

+2 ) v?v?nin,axiqu) (¢ - Vo U)dt dpoo
I<i#j=<d

=-2f (at¢o+32n R R

1<i#j<d
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+2 ) n,-n,-amj)(qs -V U)dtdpy (x)

1<ij<d

d d
= —ZfMRd (at¢o+zaxi¢,- +2 ) n,-n,vax,.¢,-)<¢-va>dtduu<x)

i=1 i,j=1

d
<2 Ide(—<at¢o+§ax,¢,-)(¢-VXU>

d
+ ) (¢ - ViU) + (8xi¢,->2)) dr dpy (x)

i,j=1

=2 IxR4 < (at¢0+zax’¢’>(¢ VaU) + (¢ - VxU)? + Z(ax,¢1 )dtduU(x).

i,j=1

Finally the cross terms with (—v - n)4 appearing once and an odd overall power on v, in
which we again control by terms we have calculated above

—4 R V- (0 + Vo) (—v-n)(v-n)(¢ -V U)dt dpo
<2/ (Jv- (3¢ + Vo) |* + (—v-1)2 (v - 1)2($ - V. U)?) dr dpoo

(43)
< / (413,817 + 4 Veol? +3(6 - Ve U)?) dr dusy (x).
IxR4

Therefore, combining these calculations, we obtain

d 2 d
1T 152y < /,W((a@wzax,@ —¢-va) +6 Y 10017
i=1

i,j=0
+16(¢ - va>2) dt duy (x)

(18),(20),(42)
= Pea(1+

R 2
\/_ \/_ + RT) Lo FI2 o O

APPENDIX: PROOF OF LEMMA 2.2

In this appendix, we prove Lemma 2.2 to make the paper self-contained; the proof follows
largely our previous work [15]. Let us first state an easy lemma on Poincaré inequality for
the product space.

LEMMA A.1 (Poincaré inequality). For f € Hl(k X Uy),

17 2 2
@ 1 = Do i =m0 087 )+ 195 o)

PROOF. Define (f),(t) = Jpa f(x,1)duy(x). Then,

2
||f — (Mixpy ”LZ(AXMU)

= f = (D720 T 10x = Picns | 720500,
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< [M1reo -ty as [([(reo-5 [ fo00) ) @

® 1 (T
<

) T 1 T 2
2o ez, war [ (Fen -5 [ e ds) didu o

1 5 T2 2
< IV By + 3 o100 £ 20,1 A0 ()

2
=max{i,T—}(||atf||22 IV ),
m’ 72 L2(oxpy) L2(ix )

where the last inequality follows the standard Poincaré inequality on (0, 7'):

1 T d T ,
Hf—?/o f(s)ds = —[F'®Ol07) O

L2(0,T)
LEMMA A.2 ([40], Lemma A.24). Forany ¢ € H'(\ x Wy ), we have

2 2 252 2
(45) ||¢VXU||L2()\.X/J,U) S 8||Vx¢||L2()LX;Lu) +2(M d +Md)||¢||L2(XX;Lu)’

where M is the constant in (9).

PROOF.
19902y = [, $*VeU - VsU e day ()

=] Ve (¢*V,U)dt dpy (x)
X

=2 ¢Vx¢-Vdetd,uU(x)+/ $> AU drdpy (x)
IxR4 I xR4

1

< —

4

2 2
MNPy + M [ P19V AR ()

16V U122 00y + 4NVeB12 2600

1 2 2 2
5 Z”(Z)VXU”LZ(XX/LU) +4||VX¢”L2()»X/LU) + Md“(b”Lz()xX/l.U)

1
+ MG N L2 0p0y + 719 VU2

The estimate (45) is obtained after rearranging. [

LEMMA A.3. Foranyu e HZ(A X y) such that (0;u, qu)T € HO1 (A x [LU)d+l,

d
2
”DZM”LZ(AXMU) = Z ||8Xiaxj‘”||i2(xxuy)
(46) hI=0

d
< co<||At,xu||§z(wU) +R*Y ||axiu||§2(kxu,])>.
i=0

Here Cy is a universal constant, R is the same constant defined in (12).
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PROOF. The starting point of the proof is Bochner’s formula

d <, 12

2_T,. T T2 [Vu|
E |8xi,xju| =Vu-VA; yu — (Viu) vaqu_At,xT-
i,j=0

Integrate over A x puy and (noticing the last term above has integral zero) we get

d
@) Y 18vul oy = 1Al a0y — /1 XRdeu)TV,%vaudr dpy (x).
i,j=0

Let us first discuss the easier case when U satisfies V%U > —L7Z. We can estimate directly

d

2 = 2 _ T2
48) iéollaxi,xjullﬁ(/\xuy)—”AM"‘”U(AXMU) flde(qu) Vi UVudtduy (x)

<Aty + LIV -

This verifies the conclusion in cases U is convex (setting L = 0) and V2U > —LZ.

We now deal with the more general case, without assuming V)%U > —L7Z. For the rest of
the proof, we let Co be a universal constant independent of all parameters, and may change
line by line. Using (45) with ¢ = o,u, i =1,...,d,

| Va9, P drdu (o)
X a

d
=Y/ @AV UPd iy ()
i=1""%

(45) )
= Co<||D2u||Lz(WU) 02 [ Vil duU<x>)

(4<7)C 2 2 2 2
< Co| 1Arxully2g 0y TM7d f Rdlvxul drdpy (x)
X

— /1 Rd(qu)TV)%Uqu dr d,uU(x)>
X

X

©)
2 Co(IanatBgyy + M2 [ IVt dpp )

+M Rlexu|2(1—|—|VXU|)dthU(x)>

I x

< o180ty + M2 [ 1V dday (0

X
2 2 1 2 2
+M |Veul"drduy (x) | + 5 |Vaul "V UI"drduy (x).
IxRd 2 JIxRrd
Rearranging the terms, we arrive at

[ VPV UPdrdpag ()
(49) -

< co(nAt,xuniz(kX,w) #0202 [Vl d;LU(X))-

X
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Therefore, by (49),
9),47

2 )
”DZM”LZ(XX;LU) = CO(”Al’xu”iz(kxuu) + MLde |VXM|2(1 + |VXU|) dt d,LLU(X))

< CollArxttFagnnyy ¥ MIVitlGag )

+ MIIVattll 1265 ) | V22l V2 U | HL2(AXMU))

“9 2 2
= CollArxul2gpyy + MUVl 260 00

+ MUVl 12650y 1AL Ul L2 G0y + MANVxUl 1265 000)))

< CollArsttlag ) + M2Vt ) 0

LEMMA A.4. Consider the following elliptic equation:

{Amu:h inl xR,

50
(50) Qu(t=0,)=0u(t=T,)=0 inR?.

Assume h € H™'(A x uy), and (M) axpuy = 0. Define the function space

V= {u e H'(x x uy) :/ u(t, x)dt djuy (x) :o}.
IxRd
Then:

(1) There exists a unique u € V which is a weak solution to (50). More precisely, for any
ve H' O x ny), we have

f (8,u8,v+qu-va)dtd,uu(x)zf hvdrdug (x).
IxR4 I xR
When h € L*(\ x Ly ), we have the estimate
2 2 T* 2
(51) 1900y + 195001 =m0 I

(i) Ifh e L2( x UU), then the solution u to (50) satisfies u € H2() x Hy).

PROOF. (i) V isalinear Hilbert space and has nonzero elements (any function constant in
t,and H' and mean zero in x is included in V). Moreover, V is a subspace of H I(A X Uy),
and for the rest of the paper we equip it with the H!(A x puy) norm. We also define the
following inner-product:

B(u,v) :=/; Rd(atuatv 4+ Vyiu - Vyv)dtdupy (x).
X

One can easily verify B(:, -) is an inner product on V. Notice that if B(u, u) = 0 then do;u =
V,u =0, leaving u to be a constant, which has to be 0 since [}, paudrduy(x) =0.If u is
a weak solution of (50), then for any v € V, B(u, v) = [;, ga hv dt duy (x), and necessarily
J7«pa hdt dpy (x) = 0 when we take v = 1.

Since [}, pau(t,x)dt duy(x) =0, by Poincaré inequality (Lemma A.1) we can show B
is coercive under H! (1 x (y) norm in the sense of

Blu,ul = ||9,ul},

1 2 2 2
Z (”atu”Lz(kX/LU) + ”qu”Lz()\X/LU) + ”u”Lz(XXpLU))

2
o) T IV L2600
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We can also show B is bounded above since it is an inner-product and Blu,u] <

HMH%II(AXMU)' Define a linear functional on V: H (v) := [}, ga hv df dpy (x). One can verify

the boundedness of H:

|H(v)| < NN =1 o) IOl BT o g ) -
Thus by Lax—Milgram’s theorem, the equation (50) has a unique weak solution # € V. Finally
when h € L2(1 x wy)

2 2 2
(1920123 gy F 1V 0725100

2
_ 2 _ 2 2
— Blu.ul? = ( [ d//«U(X)) < 1125 10022
2

<max{—,T—}||h||22 (EX + I Vaul?, ),
- m’ 2 L=(Axpy) L=(Axpy) L=(Axpy)

and the desired estimate follows.
(ii)) Foreachi =1, 2, ..., d, consider the elliptic equation

(52)

Agyw; =y h — Veu - Vydy, U inI x R,
dwi(t=0,)=dw;(t=T,)=0 inR%

We first verify the rhs has total integral zero. Indeed
/ (0x;h — Vyu - Vi, U)dt dpy (x)
IxRd

=] (19U = Veu - Vo, U) dr duy (x)
X

=/, Rd((—BI,u—I—V;‘qu)ain — Vyu - Vi, U)dt dpy (x)
X

= | @i U+ Vi Ved U = Ve Vad U) d dpeys () = 0.
X

The next step is to show rhs is in H “Twx wy). Pick a test function ¢ € H' (A x puy) with
@151 (3 x ) = 1, and by Lemma A2,

[ @l = Vi V0, U0 dr dpag ()
X

< / (—hdy, ¢ + hepdy, U) dr duy (x) + / |Vue|| V3, U dr dpa(x)
IxR4 IxRd

©))
= 12 (14 105Ul 200un) + M [ 169501(1+ 19U ) e du)

= ”h”Lz()\qu)(l + ||¢ain||L2(AXMU)) + M”VxM”LZ(AXMU)(l + ||¢VxU||L2(AXMU))
(45),(51)
= CUDIAN L2005y

where C(M) > 0 is a constant depending on M. Therefore, by (i) we know there exists a
w; € V which is the weak solution of (52).
The next step is to verify w; = 0y, u — % fix . Oy, udt duy (x). We know both functions are

in L?(A x uy) with spatial integral zero. For derivations below, we use the shorthand notation
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(f. 8) = [;«pa fgdtduy (x), and we don’t specify the regularities of f and g. Take any test
function ¢ € H?(A x uy). Using integration by parts it is easy to check

(=i wi + ViViwi, @) = (dwi, @) + (Vawi, Vid).
Now we do the calculations using the equation
(=9hwi + ViViwi, @) = @ h — Vi U - Vott, §)

= (h, =0y, ¢ + ¢, U) — (Vx5 U - Vyu, §)

= (=0yu+ ViViu, —0x,¢ + ¢y, U) — (Vi 0x, U - Viu, ¢)

= (0pu, 0 (— 0y, + POy, U)) + (Vyu, Vi (= 0y, ¢ + ¢y, U))

— (Vx0,U - Vyu, ¢)

= (0pu, 0 (—0x; + Py, U)) + (Viu, —Vy 0y, + 3, U Vo)

= (0;0y;u, 0;@) + (Vyx Oy, u, Vi @).
The equality holds when we replace oy,u by oy,u — % Lo . Oy udtduy(x) as it is in-
variant under a constant shift. This shows that, as LZ(A x wy) functions, w; = 0y,u —
% J7sra Ox;u dt duy (x). However we already have w; € H Ln x Uy ), thus we have shown

that 9y, u € H'(A x uy) foreachi=1,...,d. Finally we use the equation d;;,u = VV,u —h
to verify that d;;u € L?(% x g ). This suffices to show u € H>(A x uy). O

PROOF OF LEMMA 2.2. Let H be the subspace of L2( x /Ly ) that consists of “harmonic
functions,” in other words, f € H if and only if A, , f = 0. We consider the decomposition
f=rfD4 @ where fV e Hand f@ L H. Since 1 € H we know (f(z))AXMU =0and
hence (f(1);« uy = 0. Therefore, by linearity it suffices to consider f () and f® separately.
For f@, the equation

Aju=f® inI xRY,

(53) {8tu(t=0, Y=8ut=T,)=0 inR?

has a unique solutionu € VN H 20 x pny) by Lemma A.4. Moreover, for any v € HN H T(ax
Uy ), integration by parts yields

0= f(z)vdtd,u(x)zB[u,v]
R4

I x

= . ul; yvdrdu(x) + /]Rd (u(T)0;v(T) — u(0)3,v(0)) dp(x).

IxR

Therefore, since v is arbitrary, we have u(7) = u(0) = 0, meaning V,u € HOl (A x lLU)d .
We also have d,u € HO1 (A x ny). Thus for the f @ part, it suffices to take correspondingly
¢(()2) = Oru, qbi(Z) = Jy,u with the estimates

54 T annns = 9l P max| L Ty o2
(54 lo ”LZ(AX/LU)_” “”U(Awu) = max ) | HLZ(AXMU)’

and

— 12 5 (46) R? )
(55) || V¢(2) ||L2(xxm,) = || D2u||L2(Ax;LU) = CO(I + m + RZTZ) ||f(2) HLZ(Axuuy
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We now consider the f @ part. Since {1} U {w,} forms an orthonormal basis in LZ(MU)
and (f (1))“ ny =0, we have an orthogonal decomposition

Y@ x) = fo) +d fulHwax).
A

Since £V is harmonic,
0=A fV == O+ D (= O+ 22 f.0))w(x)
)
and therefore fy(¢) is an affine function fy(¢) = c(t — %) for some constant ¢, as fy(¢) has
integral zero. Moreover, for every eigenvalue A > 0 there exist constants ¢’ such that
fk(t) — C)\, e)»[ +c)\. MT— Z)

The construction of @ for fo(z) is easy: we can simply take ¢l.(0) =0forl<i<d and
(/5(0) (t,x)= fo fo(r)drt (so that ¢(0)(T, x) =0 since fj integrates to 0), and thus

=0) r
(56) lp ||L2()L><MU) < ;||f0||L2(AxMU)’
and
(57) V6 2y = 10l 200500

Now without loss of generality, we assume f1) = e*w, (x) for a particular A (the case
fD = AT=Dy), (x) can be treated similarly by ﬂipping time and the general case follows

from a linear combination). Thus || f (V|2 L200xuy) = —1 We need to find 'V such that

d
—agy” + D05 = M w (x).
i=1
Since wy € HX(L x Ly), we can take the ansatz d)él) =Y ()wy(x) and fori =1,...,d,

¢V = Y2(1)8y, wy. (x), and the two functions ¥y (1), Y2 (r) should satisfy ¥ (0) = ¥y (T) =
Y2(0) = Yo (T) = 0 as well as the equation

(58) —Y1(0) +22Y(1) = &
Of course there exist infinitely many possible solutions, we will choose a particular one so
that o1 satisfies the desired estimates. Let us introduce a shorthand notation L = ¢*”, so
1 L2—1
||f( )”LZ(AXMU) on . Let
1
(x—1), [1 i}
h(x) = L—-1 2
4 L+1
—— (L —x), xe|——,L]|.
L—-1 2

Pick g(s) = sh(s), then g(1) = g(L) =0, and flL @ ds = L — 1. From the expression we
can directly derive (using A > /m)

L 1
/
0<g(s)<2s and |g(s)|§L_1:1+e” 1_|__T
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Then pick ¥ (t) = ;—2 g(eM). Itis easy to compute

1 7 1 L g(s)? 2(L* - 1)
2 _ M2 4, 8
el =55 [ @Par=5 [ E 0 < ZEZD ana

1 T 1 L L?—1 1
7112 _ A2 20t 702
||¢2”L2(1) = kz./() g ( ) dr = A3/ g (s)sds < 3 (1 + mT2>'

Moreover, since /(1) = A2y (1) — e from (58),

T 1 5(L2—1)
=< .
AT

TNESIEE

L?—1+2InL L?—1
<2 )
A -7 A

111320, < 202102122 ) +

Finally since

(ekt _ 1),

> —

o= [ (ee”) - e)as| =

we can estimate

T
Il < [ (@ =1 dr<

Now using |will;2(x,,) = 1 and [[Vxwy |l 2 = 1, we estimate [|¢'V 220 x )

(Axpy) —
()2 12 d 12
4" )”mew) =0 | 220y + Y le; (FET
i=1
59) = 191wl 7200y + 12 V5w 1726000

= 1¥1l72 + xznwzuiz(,)

= Az ”f(l)HLZ(AxMU) ”f M ||L2(AX/1U)

Combining (54), (56) and (59), we can derive (19).
We now shift our focus to ||V¢(1)||L2(,\XMU)~ By (a slight tweak of) Lemma A.3 and

VEVew;, = A2w;,
2 12 d 1))2
S _ _
|| V¢( )”LZ(AX,U,U) = || Vo, ||L2()\,></,LU) + Z“ Vo, ||L2(AXMU)
i=1
2
= ” ‘/f{ W, H L20xuy) T |W1wak”iz(xxm,)
2 2
W Vawil f20 ) + [¥V2D50 L2000

= [¥ill 20y + 22001052y + 22 (V51200 + 10202y (2 + R222)

1
< o1 s+ g )1 By

Combining above with (55) and (57), and noticing %2 < %, we finish the proof for (20). U
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