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Abstract

We study the total mass of high points in a random model for the Riemann-zeta function. We consider
the same model as in Harper (2013) and Arguin et al. (2017), and build on the convergence to Gaussian
multiplicative chaos proved in Saksman and Webb (2016). We show that the total mass of points which
are a linear order below the maximum, divided by their expectation, converges almost surely to the
Gaussian multiplicative chaos of the approximating Gaussian process times a random function. We use
the second moment method together with a branching approximation to establish this convergence.
© 2022 Elsevier B.V. Allrights reserved.
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1. Introduction

1.1. The model

Let P denote the set of all prime numbers. Let (8,,) ,c be independent identically distributed
random variables, being uniformly distributed on [0, 27]. For N € N, a good model for the
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large values of the logarithm of the Riemann-zeta function on a typical interval of length 1 of
the critical line as proposed in [10] is

1 . .
Xy(x) = Z — (cos(x In p) cos(8,) + sin(x In p)sin(@,)), x €[0,1]. (1.1)
pePAI0,N]

We denote by [E the expectation with respect to the 6,,’s.
The maximum of the process on a small interval was studied in [2]. There it was shown
that with high probability, depending on €,

3
max Xy(x)=InInN — (= +€)Inlnln N. (1.2)
xel0,1] 4

In this paper, we are interested in the values of the process of the order of § Inln N with o < 2.
Some of the behavior of the large values of the process Xy(x), x € [0, 1], is captured by the
random measure

XN ()

E(eaxN<x>)dx
By the independence of the 6),’s, it is not hard to see that M, y converges almost surely as
N — oo. By Theorem 4 in [16], the almost sure weak limit of M, y(dx) is non-trivial for
0 < o < 2. We denote the limit of the total mass by M,
1
M, = lim M, y(dx) a.s. (1.4)
N—o0 Jo
For log-correlated Gaussian field the analogous limiting measure is called Gaussian multi-
plicative chaos and M, corresponds to the total mass of the limiting measure. For Gaussian
multiplicative chaos it was first proved in [11] that the limit is nontrivial for small o and
was recently revisited (see for example [15,14]). Note that in our case the limit of M, y(dx) is
almost a Gaussian multiplicative measure (see [16]). The connection between the Riemann-zeta
function and Gaussian multiplicative chaos has been further analyzed in [17].
The fact that the Riemann-zeta function (or a random model of it) can be well approximated
by a log-correlated field have recently been used to study the extremes on a random interval [5,
13,2].

M, y(dx) = (1.3)

1.2. Main result

Consider the Lebesgue measure of a-high points:
Wen = Leb{x € [0, 1]: Xy(x) > £Inln N}. (1.5)

The main result of this note is to relate the limit M, to the Lebesgue measure of high points
building on the ideas of [8]:

Theorem 1.1. For any 0 < « < 2 and M, as in (1.4), we have
Wa.n

E (Wa,n)

In view of Eq. (1.2) and of Theorem 1.1, it is not surprising to see that the M,, is non-trivial

for ¢ < 2. The critical case where @ — 2 is interesting as it is related to the fluctuations of the
maximum of Xy. It is reasonable to expect that our approach can be adapted to the method

— M, in probability as N — oo. (1.6)
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of [6] to prove the critical case. Another upshot of the proof is that it highlights the fact that
M,, depends on small primes, cf. Lemma 3.1. In a branching random walk the corresponding
martingale limit encodes the effect of the first few generations. The effect of larger primes is
somehow averaged out, which might also seem natural as the structure of primes become more
regular.

The problem for the Riemann-zeta function is trickier. We expect that the equivalent of
Theorem 1.1 still holds:

Conjecture 1.2. Let T be a uniform random variable on [T, 2T]. Let W, v = Leb{h € [0, 1] :
In|¢(1/2 +i(r +h))| > 5 InInT}. Then we have for a < 2

iy War (/2 i+ hy)“dn
im ——— = lim -
7o B(Wap) T—oo  E(C(1/2+ 1))

This would be consistent with the conjecture of Fyodorov & Keating for the Lebesgue
measure of high points, see Section 2.5 in [7]. There might be hope to prove this as the proof of
Theorem 1.1 relies on a Gaussian comparison for one point and two points. This is accessible
to some extent for the zeta function, see [1].

The analog of Theorem 1.1 was proved for the two-dimensional discrete Gaussian free
field in [4] (see Corollary 2.2). There, the result is proved as a consequence of a much more
detailed result on the (joint) point measure of the value of high points and their location (see
Theorem 2.1). Note that the convergence of the measure level sets there is in distribution,
but their method should also yield convergence in probability, as in Eq. (1.5). Another notable
difference is that Theorem 1.1 holds for a process that is a priori non-Gaussian. In fact, the main
novelty of the present paper is to concretely enlarge the universality class where multiplicative
chaos phenomena can be found.

in probability.

1.3. Outline of the proof

The proof of Theorem 1.1 is based on a first and a second moment estimate and follow the
global strategy proposed in [8] for branching Brownian motion. First, we prove convergence
of a conditional first moment to the desired limiting object in Lemma 3.1. The proof relies on
an explicit Gaussian comparison, cf. Proposition 2.3. Next, a localization result is established
in Lemma 3.3. Finally, we turn to the proof of Proposition 4.1 which is based on a second
moment computation. We use a branching approximation similar to the one employed in [2].
Using the obtained first and second moment estimates we are finally in the position to prove
Theorem 1.1.

Notations. To lighten some computations, we will sometimes use Vinogradov’s notation where
f(N) <« g(N) stands for f(N)/g(N) = O(1). The notations O and o will always be meant
for the limit N — oo with implicit dependence on the fixed parameter «. In some proofs, it
is convenient to use a loglog-scale for the parameters R < K < N, in which case we will use
lower case letters and write r = Inln R, k = Inln K and n = InIn N. To keep the computations
as clear as possible we assume r, n are natural numbers. The general case follows in the same
way by considering the first and last summands of Xy separately. The desired estimates carry
over with minor adjustments, but would require a more involved notation.
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2. Comparison with a Gaussian process

It turns out that the process Xy is well approximated by a log-correlated Gaussian field
Gn(x), x € [0, 1]. A precise result in this direction is the following result of [17].

Theorem 2.1 (Theorem 1.7 in [I7]). For N > 2, the field Xn(x), x € [0,1], can be
decomposed as G y(x) + Eyn(x) where

Gy(x) = Z \/1_ (Z(l) cos(x In p) + Z(z) sin(x In p)), 2.1

pePNI0,N]

for (Z;,")),,ep,,'e{].z} i.i.d. standard normal random variables. The error Ey is such that

lim max |[En(x)— EXx)|=0 a.s., 2.2)

N—o00 x€l0,

where the limit E(x) is a smooth (random) function. Moreover, the error Ey(x) has uniform
exponential moments

E (exp(k sup EN(x))) < 00. 2.3)
N>1,x€[0,1]

The statement of Theorem 1.3 in [17] is in terms of a random Euler product. The difference
between the Euler product formulation and the Dirichlet polynomial formulation in (1.1) is
small and is controlled by Lemma 3.2 of [17].

It might be tempting to prove Theorem 1.1 by simply proving it for Gy and control the
error Ey using Eq. (2.3). However, there is a major difficulty in taking this approach as one
might lose the independence between the small primes in Gy and the error Ey.! Instead, we
rely on the following Berry—Esseen approximation as in [2] which allows for precise first and
second moment estimates.

Lemma 2.2 (Corollary 17.2 in [3], see also Theorem 1.3 in [9]). Let (Y;,j = 1) be a
sequence of independent random vectors on (R4, B(RY), P) with mean E (Y ) and covariance
matrix Cov(Y ;). Define

= Z E(Y;) and %, = ZCOV(Y]') :
j=1

j=1
Let )\, be the smallest eigenvalue of 2, and Q,, be the law of Y1+ ---+ Y.
There exists an absolute constant ¢ depending only on the dimension d such that

sup )Qmm) M5 ()| = iy 3/ZZE(|IY — EIY,1IP), 24)

where ny, 5, is the Gaussian measure of mean [, and covariance matrix X,,, and A is the
collection of Borel measurable convex subsets of R?.

1 We thank the referee for pointing out this in the first version of the manuscript.
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In the context of Eq. (1.1), we take as increments for k > 1

1 . .
Yi(x) = Z m (cos(x In p) cos(),) + sin(x In p) 51n(6,,))
k=1 <In pfek

_ Z cos(xInp —6,)

= P , xel0,1].

k=1 <In pfek

For k = 1, the sum is the same with the primes ranging from 2 to ¢°. By definition, we then
have

Xy(x) =Y Yi(x), 2.5)
k=1

where we set n = Inln N. Since the uniform random variables are bounded, the error in
approximating Y; by Gaussian random variables in Eq. (2.4) is the sum over p~3/2. To ensure
this error is small, it is necessary to truncate the small primes.

With this in mind, consider R < N. Define Fy to be the o-algebra generated by (0,),<r.
We will often condition on Fg to fix the dependence on the small primes. To shorten notation,
we also write

XR,N = XN —XR.

The variance of Xg y(x), x € [0, 1], is by definition

1

Oy =VaXpx() =5 > p (2.6)
R<p<N

The prime number theorem, see e.g. [12], implies that the density of the primes goes like
(In p)~!. More precisely, we have by Merten’s second theorem

1
Gz%,zv — E(lnlnN —InlnR)| =o0(1) as N - oo and R — oo. 2.7

In the next two sections, we state the results from [2] derived from Lemma 2.2. The reader is
referred to [2] for more details of the proofs.

2.1. One-point Gaussian comparison

For one point, the Gaussian comparison is simple.

)100

Proposition 2.3. For any a € R and R > (InN)"™", we have

oV 10k )

- dy+0(nN)>).
Jamonn y+O(InN)™)

o0
B(Xrn(x) > @) = (1 +o(1) |
a
where the error is uniform in a.

Proof. This is Proposition 2.11 in [2] (with A = 0). This is a direct consequence of Lemma 2.2.
Note that the error is < ZP>R p~3? = O(R™'?) « (In N)72, by the choice of R. [

For some estimates, Proposition 2.3 is too precise. A plain Chernoff bound is often enough.
For this reason, it is useful to compute the moment generating function.
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Lemma 2.4. Let ) € R. Then for any x € [0, 1] and R < N, we have

E(exp(tX g v (x)) = (1 + 0GR ™) - exp(h2a7 v /2),
and for an absolute constant ¢ > 1,

cexp(A?Inln R/4 + cA*) < E(exp(A X g(x))) < cexp(A*Inln R/4 + cA*). (2.8)

Proof. Without loss of generality, we can assume x = 0. Note that by independence of the
6,’s, we have

1 [ A
EexpXznO) = [[ = / exp<— cos e)de.
’ 2 0 pl/2
R<p<N
An expansion of the exponential and integration over 6 yields
)\,2
E(exp(A Xy (0) = [] <1 + e +on? p2)) . (2.9)
R<p<N

The result then follows from (2.6) by taking the logarithm and by noticing that ) p=R pt=
O(R™"). The claim (2.8) is obtained the same way using (2.7) by considering the sum over all
p<R. O

We stress that Lemma 2.4 implies a Gaussian-like behavior for Xg 5 and X only if A is
small compared to R. However, this will always be the case in the forthcoming estimates. In
fact, we will take A to be fixed as N and R go to infinity. Of course, a Chernoff bound for
the large deviation of Xp y and X can be upgraded to a Gaussian tail by optimizing over A.
More precisely, one gets for A = V /o2,

P(Xgn(0) > V) < exp(=V?/(20k y))- (2.10)

The estimate will be used only for V of the order of the variance ensuring that A is of order
one.

2.2. Two-point comparison

As in the case of one-point estimates, it will often be enough to use a Chernoff bound for
two points. For this purpose, we compute the two-point moment generating function.

Lemma 2.5. Let A € R. Then for any x,x’ € [0,1] and R < P < Q < N, we have
E(exp(AX p,o(x) + 1'Xp o(x)))

2202 2202 AN cos(|x — x'| In p)
=(1+O0RG*R™")- F.0 e ey
(14 0( )) - €xp ) + > + »

P<p=Q
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Proof. This is done as in the one-point case. Without loss of generality, we can assume x" = 0.
The independence of the 6,’s gives

E(exp(A X p o(x) + 2" X p 0(0)))

/

= L . 1 0 )L 0)do
= 1—[ T ; exp(mcos(x np— )+ﬁcos)

P<p=<Q
A2 W 4
= [] (1+5=+757+>=costxlnp)+ O *p%) | .
P<p=Q 4p4p 2p

where the second line follows by expanding the exponential and integrating. The claim follows
from the observation that 1 + x = ¢* + O(x2). O

As for the one-point estimate, it is possible to get a two-dimensional Chernoff bound
P(Xp.o(x) > u, Xp.o(x) > v) < exp(—%(u, v) - Cplya, v)), w,v> 0. @.11)

Here, Cp ¢ is the covariance matrix of (Xp o(x), Xp o(x"))

2 1
o PP, 1 cos(|x — x'|In p)
CPQ:< P.0 ZQ) IOP,QZE E ——
’ P<p=Q p

Eq. (2.11) is achieved by optimizing (A, A'), i.e., (A, 1)) = C;’IQ(u, v). The sum of cosines in
Lemma 2.5 has very different behavior depending on the distance |x — x’|. On one hand, if
|x — x’|In Q < 1, then a Taylor expansion of the cosine yields
/
3 M —lo+ Y O((x —|Inp)/p)
P<p=<Q
=070+ O0((x —x'|In Q)),

P<p=Q

where we use the fact that ), _ pSQ(ln p)?/p < (In Q)%. Roughly speaking, this shows that
Xp,o(x) and Xp o(x') are essentially perfectly correlated whenever |x — x'| < (In 0)~!'. On
the other hand, if |[x — x’|In P > 1, the prime number theorem and integration by parts yield

s XD _ o — a1 Py,
p

P<p=Q
see Lemma 2.1 in [2]. Since the error is typically small, this suggests that X p o(x) and X p o(x")
are essentially independent whenever |x — x'|In P > 1.

When x, x” are far away, the Chernoff bound is not precise enough. We then resort to the
following precise Gaussian comparison. The Gaussian comparison is quite powerful and applies
not only for Xz y but for the whole random walk as defined in (2.5). More precisely, consider
the loglog-scale notation: n = Inln N, r = Inln R, k = Inln K. We restrict the events below
to the discrete set of integers k € [0, n]. Consider the Gaussian random walk

Sp.N = Z G,
r<k<n
where Gy, k < n, are IID centered Gaussian random variables of variance 1/2.
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Proposition 2.6. For R > (InN)', we have for |x —x’| > (InR)™'/? and the notation as
above

P(XR,K(X) € AK, XR’K(.X/) S A/K’ Vk € [V, I’l])
=1 +0o(1) P(Sg.x € Ak, Yk € [r,n]) - P(Sg x € A, Vk € [r,n]) + O((In N)72).

where Ax and Ay are intervals of R and the error term is uniform in the choice of these
intervals.

Proof. This is Proposition 2.9 in [2] (with A = 0, m = r, A = r/2). This is a direct consequence
of Lemma 2.2. [

3. First moment estimates

The next lemma highlights the fact that the non-trivial contribution to Theorem 1.1 comes
from small primes. As before, we write n = Inln N and r = Inln R.

Lemma 3.1. For W,y as in (1.5), we have for 0 < a <2 and R > (In N)100

- w = M, in probability oy
N—oo E(WO(,N) B ‘ ! | |

Proof. We compute E(W, y|Fr) and E(W, y) simultaneously. Define the (random) subsets
Br={x €10, 1]: 1Xp()| > %n}
By = {x € 10,113 [Xp()| € [n'7%, 51,
By =[x € 10,112 IXp()| ="} .

In view of Eq. (1.2), there are no points in B, and B; with high probability. However, since
we are dealing with the expectation of W, y, these events could still have an effect and need
to be controlled. Note that the functions ]lgj (x), j = 1,2, 3 are Borel measurable as subsets
of [0, 1] with P-probability one. We split the integral on B;, B, and Bj;. As expected, the
dominant contribution is from Bs; in expectation and on an event of high probability. The set
By is useful since on its complement, the quantity n — Xg(x) is much larger than 1, so a
Gaussian estimate will be possible. The contribution of the set B, is handled with more care,
as one needs a joint control of X and Xy z.

The set B; has large measure in expectation and in probability. Indeed, one has by a Chernoff
bound using (2.8)

E(Leb(By) = P(I1XxO)] =n'*) = 1",

In particular, this implies by a Markov inequality that B; has Lebesgue measure greater than
1/2 with high probability:

P(Leb(Bs) < 1/2) = P(Leb(BS) > 1/2) < 2- 1P’(|XR(0)| > n1/4) <

One has, using the independence of X y and Xg as well as Proposition 2.3,

—y*/Q0} )

X ~n—X ]-' dx = ————dy+0((In N)™?).
[, P(tat > SnXucolFe) /B /”Rm T 0N



L.-P. Arguin, L. Hartung and N. Kistler Stochastic Processes and their Applications 151 (2022) 174-190

(Note that the error in Proposition 2.3 is uniform in Xz(x)). The integral in y can be evaluated
using the Gaussian estimate

o/V 2 002
PY >V)=(1+o(l)—— e V/%) vy >1,
21
for Y a Gaussian random variable of mean 0 and variance 2. With this, the above equals
= (1 +o(l) | RN X050 4 O(n N) )
By V2mn

2
— S (n+r)

a/rn Jp,
where the estimate (2.7) and the bound on Xg(x) for x € Bs are used. Note that on the event
{Leb(B3) > 1/2}, the first term is at least

= (1 +o(1)) “XR®dx 4 O((In N)™2),

2
— 2 (n+r)
eOlXR(x)dx > ¢ 4— . le_om

a/rn  Jp, a/an 2

2
e*%(nJrr)

: (3.2)

which is much larger than (In N)~2 since o < 2. Therefore, the error term can be absorbed as
a multiplicative error:

2
e—"‘Tn-&-r

a\/TTn B3

Furthermore, note that, by a Chernoff bound (with A = 100 say) and (2.8),

:(/

We deduce from this that the integral on Bs can be extended to the whole [0, 1] in the
expectation

KR . (3.3)

/ IP(XR,N(x) - %n _ XR(x))fR) dx = (1 + o(1))
B3

eaXR(x)dx> < e—100n1/4 .E(eaxR(o)+100|xR<o)|) < e—99nl/4'

¢
3

2
= (n+r) 1

@ _ e+ 7 X p(x)
E(/I%P(XR,N(xp = XR(x)‘]-'R) dx) = (o=~ | e ).

34

Similarly, the integral on B3 can be extended to [0, 1] on a Fg-measurable event of large
probability, since P (ch e*XRWdx > 6710,,1/4) = o(1), so that on this event
3

2
— G (n+r) 1

Olﬁ 0
The conclusion of the lemma follows by considering the ratio of the right-hand side of (3.5)
and Eq. (3.4), and by taking the limit N — oo as in (1.4). It remains to show that the
contributions of B; and B, are small compared to the one of Bs in expectation and on an
event of high probability.

For Bj, one brutally bounds the probability by 1 to get

/ IP(XR,N(x) >2n_ XR(x))fR) dx = (1 + o(1)) KRy . (3.5)
B3 2

/31 P(XR,N(x) > %n . XR(x)(;ER) dx < Leb(B,).
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But this measure is small in expectation and with high probability, since by a Chernoff bound
again,

E(Leb(Bl)) = P(IX(x)| > %n) < (InN)~'. (3.6)
1/4 «

The estimate is a bit more subtle for B,. We divide the range [n $n] into intervals of

length 1. Proceeding as for B3 and using a Gaussian estimate, one has

/Bz P(XR,N(x) > %n - XR(x))fR) dx

[%n

< Z e_(%n_u)z/(2‘712€,N) . / eDtXR(x)dx + O((ln N)72) (37)
u=n/4) {x:|Xr(x)|€lu,u+1]}
P
e T N / "Xk dx + O((In N) 7).
{x:I X R E€lu,u+11}

u>n1/4

This is much smaller than the integral on Bj in expectation since

E Z ew‘f e Xrgy | < Z (@100 (@ XROHIOIXRONy (3 g)
{x: | Xgr(x)€lu,u+11}

u>nl/4 us>nl/4

This is O(e 28I ¥ )1/4) by (2.8). This also implies by Markov’s inequality that on an event of

large probability, this is negligible. This concludes the proof of the lemma. [

The proof of the last lemma also yields a precise estimate for the average measure of high
points.

Corollary 3.2. For W, y as in (1.5), we have for 0 < o <2 and R > (In N)100,

BV 1P = (1 4+ oy / e g, (3.9)
“ a7 Inln N Jo ' .

In particular, this implies
(In N)~—*/4

JVInlnN

Proof. The equality is a direct consequence of Eq. (3.4) which is the dominant contribution, and
of Egs. (3.6), (3.7), (3.8) which show that the contribution of B, and B; to the expectation is
negligible. The inequality follows from Eq. (2.8) that gives a bound on the moment generating
function of Xz. [

E(Wa,N) >

We now want to show a barrier-type estimate: the points x such that Xy(x) > FInln N
must be such that Xg(x) is close to %ln In K for most K’s in [R, N]. For conciseness, we
turn again to a loglog-scale notation: n =Inln N, r = Inln R, k = Inln K. With analogy with
random walks, consider the discrete set of integers k € [0, n]. Define for fixed ¢ > 0 and
0<é<1

W,y =Leb{x €[0,1]: Xy(x) > $n; 3k € [r/2,n(1 = 8)] : Xk (x) > (§ + ek}

Wony =Leb{x € [0.1]: Xy(x) > §n: Ik € [r/2,n(1 = 8)] : Xg(x) < (§ —e)k}.
183
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We need to pick R such that » = n'/1% as it needs to be much smaller than n, yet not too
small. Picking r = Inn for example would lead to errors too big in what follows. Note that we
have R > (In N)'% for the choice r = n'/!%, thereby fulfilling the assumptions of the previous
results. The restriction on the range of k for the barrier is necessary as the behavior for small
and large primes is not as regular.

Lemma 3.3. For R such that r = n'/1% we have forO<d<land 0 <e<1A %8,
W>
EWex) =o(1).
E(W, x)

In particular, for all ¢ > 0, we have
P (W;N > ]E(WO,,N)) =o(1) P (E(W;’Nl}}) >c E(Wa,N)) = o(1), (3.11D

where the o-term depends on c. The same estimates hold for W,

Proof. We prove the lemma for W as the proof is very similar for W . Eq. (3.11) is a
direct consequence of the first claim by Markov’s inequality.
We bound the expectation of W, from above:

| n(1-8)
E (W y) / Z IP Xn(x) > &, Xg(x) > (2 —i—e)k)
0 =2
1n(1 8)
/ ]P’(XK,N(x) > gn—v, Xg(x) > v) dx,
0 k= r/2v>( +e)k

where the second inequality is obtained by partitioning the range of Xg. Recall that Xg and
Xk ny are independent. We estimate the probability depending on the value of k and v. Note
that we always have (5 + €)k < 2k, since o < 2 and € < 1. We first consider the range
(3 + €k < v <2k and v < Fn. This is the sharpest case since X is expected to lie close
to %k if Xy is around %n In this case, the estimate (2.10) can be applied to Xk since v is of
the order of the variance. It can also be applied to Xk y since 0 < 5n —v < 5(n — k) — €k

which is of the order of the variance. This yields

n 2k n
(1-5) %A5 (zn—v)z 2
Z Z exp — %)

k=r/2 v=(5 ek

A direct computation shows that the exponential term is maximized at v = $k. This is much
smaller than v = (5 + €)k. This is therefore the dominant v, and we conclude that the above
is

n(1-38) o o 2 o 2 2 n(l1=9) 2

—(§n— (G +k)? —((§+ek) ) _2, n 2,2

< E ex + Le 4 E et ge AT
k=r/2 P( n—k k k=r/2

This is o(E(W,,y)) by Corollary 3.2 for any fixed € > 0 by the choice r = n'/1%,
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The case where (% +e)k <v <2kand v >
restriction to X g y can be dropped. This yields

5n can only occur when k > ¢n. For this, the

n(l-8) 2k n(1-8) 2k
3 Z]P’(XKN(O)> &y _y, XK(0)>v) <3 Yo - (3.12)
kzcm/4v=§n k= otn/4u__”

This is « exp(%“2 ”(;’—ia)), which is o(E[W, y]) by Corollary 3.2 forany 0 < § < 1.

It remains to handle the case v > 2k. Again, we split into the cases when v > $n and
v < 3n. The latter can only occur for k < Zn. In this case, we can apply the Gaussian
estimate for X y. However, it might not hold for Xk for large v. Instead, we rely on a plain

exponential Chernoff bound (with parameter a) to get

nooan (ai’l _ U)2 N aZk
€xX — — av — .
r/2 v=2k —k 4

The summand is maximized at v = %n — %(n —k). We pick a = 2 > « so that the maximizer is
simply v = k +n(5 — 1) < k. The maximizer is outside the range of v, hence the maximizing
value of v is 2k as expected. Writing 2k = 5k + (2 — %)k, the above is

IS

k

3" 2 4” )
o _ o e,
< Z n-e 4. ¢ 4(01 8a+12) < Z n-e” 4 Q—a)k Ln-e 4 n, (1 Z)r'
k=r/2 k=r/2

This is o(E(W, y)) by Corollary 3.2 for any fixed € > 0 by the choice r = n'/!%, In the
case v > 2k and v > Zn, the idea is again to drop the probability of X y. The probability
P(Xg(x) > v) is estimated for k < §n and k > ¢n separately. In the latter case, we can use
a Gaussian estimate as the value of v is of the order of the variance. This gives an estimate
as in (3.12), which is small. In the case, k < %n, we can use an exponential Chernoff bound
(with a = 2) to get that

2 .,
Z Z P(Xk(x) > v) < Z Z e gy L gmanthn,

k=r/2 U>2k\/%n k=r/2 v>2k\/%n

=5

n

which is smaller than “——, since o < 2. This completes the proof of the lemma. [J

S

4. Second moment estimates
The main result of this section is:

Proposition 4.1. For R such that r = n'/1%

P ( Wan —E (Wan|Fr)

E (Wa,n)
where the o-term depends on c.

, we have for any fixed o € (0, 2)

c) =o(l), as N — oo, 4.1
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4.1. Proof of Proposition 4.1

To prove the proposition, we consider the following reduction. Let
Won =
Leb|x €10, 11: Xy(x) > n; Vk € [r/2,n(1 — )] : (% — )k < Xg(x) < (& —i—e)k}
Note that Wy = Wan— Wa’ N— Wa’ - as defined in (3.10). In particular, we have the following
decomposition
Won —EWon|Fr)  Won —EWenIFr)  Woy  EW 4 Fr)
EWarn)  EWew) EWen)  E(Wen)
Wen E(WgnIFr)
EWen)  EWan)

The last four terms are small in probability by Lemma 3.3. Therefore, the proof of the
proposition is reduced to show that the first term is also small in probability. For n > 0,
consider the Fr-measurable event

4.2)
+

Ay n = {EWgy|Fr) < 17 "E(Won)). (4.3)
Note that the complement has small probability, uniformly in N, since by Markov’s inequality,
P(AC ) <,

Therefore, the proof of the proposition can be reduced to showing that for fixed n > 0,

. Wen — E(WgyIFr)
e (( E(We) > ﬂA”'”) -0

This will follow once it is shown that for fixed 7
E((Way = EWaylFo) T,y ) = B(Wap) La,, — EWoy 1 Fo)? 1a,,)
= o(E(Wa,n))).

4.4)

Clearly, we have
Wey)’
= Leb**{(x, x") € [0, 117 : Vyeprry Xn(y) > 4n,
Vielr/2.n(1-8) (5 — €k < XK(Y) < (5 + ek}

Let 0 <8 < 1 —a?/4. We divide (W N)2 into three terms depending on the distance between
x and x':

() :|x —x'| <e =9 (D) : e < |x —x'| <e'/?
(IID):|x —x'| > e "% .
With this notation, Eq. (4.4) gives

0 < E() +E(U D +E((H11)4,, — Byl Fr)la, ).

where we dropped the event in the first two terms. Lemmas 4.2 and 4.3, and 4.4 prove that
this is o((E(W,.y))?), and thereby finish the proof of the proposition. Note that it is sufficient

to show that the positive part of E((III)]IAU,N EW, N|]—'R))2]1A N) is small.
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Lemma 4.2. Let 0 < o« < 2. For R such that r = n/'%0

E(1) = o(B(Wa,n))). 4.5

, we have as N — 00,

Proof. By noting that for x fixed we have Leb{x’ : |x — x'| < e7"079} < ¢7"1-9_we bound
E(I) from above by simply dropping all the restrictions on x" and keeping only the endpoint
restriction for x:

1
E(I) < e™"0=9 / P (XN(x) > %n) dx = e "TIEW, ). (4.6)
0
Hence, we have
) —n(1—8) ,
E(I) < EWon)? -~ = B(Wy 5)? - (1), 47
() < E(Wy,n) EWon) (We,n)™ - o(1) 4.7

by Corollary 3.2 and the choice § < 1 —a?/4. O

The estimate of (/1) is where the restriction established in Lemma 3.3 comes in handy. We
will only use the restriction at each K.

Lemma 4.3. Let 0 < o < 2. For R such that r = n'/'% we have as N — oo
E(I1) = o((B(Wqn))P). (4.8)

Proof. Write (11); for the contribution of the pairs of points with e~ *+D < |x — x| < e7k.
For conciseness, we write Xx(x) = (Xg(x), Xg(x')) with x = (x,x’) and u = (u, u’). By

decomposing the values of Xk (x) and Xg(x"), we get that the contribution of a fixed k is

E((I 1) <
/fx_x/|<e—k > P<XK(X) > “) 'IP(XK,N(X) > S(n,n)— u) dxdx’. (4.9)

(5 —ek=uu'<(5+ek

Note that we can assume that u, u’ < 5n provided we choose € < da/4 from the equation
(% +e)k < %n k < n(1—24). The two probabilities can then be estimated by a Chernoff bound
as in Eq. (2.11). We evaluate the first probability in (4.9). We expect that Xk (x) and Xg(x")

are almost perfectly correlated. The covariance matrix of (Xg(x), Xg(x')) is by Lemma 2.5

2 1

o PK cos(|x—x'|In p) 2 12 2k

Cr = K , = - E == P =0 +O(|Jx — x'|"e™).

K (,OK 0'12() PK 2 P K ( | )
l<p<K

Note that the error term O(|x — x’|262" ) is order one for the range of x —x’ considered. Denote
this error term by —c~!. The inverse of this matrix is then

c({1 -1 1 (0 1
(1+0(1)){5<_1 1)+;<1 O)}
The Chernoff bound (2.11) then yields

’

IP’(XK(X) > u) < exp(—%(u — u/)z) -exp(—%). (4.10)

The first term is an effective delta function for u = u’, whereas the second term provides
the Gaussian decay for a single Xg (as u ~ u’ effectively from the first term). The second
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probability in (4.9) is evaluated the same way. The covariance matrix is now

2 1

o PK,N cos(|x—x’|1In p)

— K.,N , — _ costix—x 1np) _ O(1).
Cg.n= (PK,N 512<,1v> PK,N = 3 E » (1

K<p<N
Therefore, the Chernoff bound (2.11) yields
o (%nfu)2 (%nﬂ/)2
Pk (X) > 201, 1) — 1) < exp(— )] @.11)

The dominant term in Eq. (4.9) is obtained by optimizing (4.10) and (4.11) over u, u’. The
solution is

2n

Y
u,u —2k -

This is larger than (5 + €)k for the choice € < ad/4 when k < n(1 — §). The upshot is that
the dominant term in the range of u of interest is simply u = u" = (5 + €)k. Putting this back
in (4.9) with the estimates of (4.10) and (4.11) yields

B D) < e™ - exp(—(§ + €2k — 2e(5n = (§ + OkP?)

n

@2

e 7" exp(—k(l — % — ae)) .
Summing this over k > r/2 is 0((E(WQ,N))2) by Corollary 3.2 and the choice of » for ¢ small

enough, since ¢ < 2. O

Lemma 44. Let 0 < o < 2 and A, n as in Eq. (43) for n > 0 fixed. For R such that
r=n'1 e have as N — oo

E((1DLa, — EWoy 1 F) L, ) = o(EWan)): @.12)

Proof. Recall that the event A, y is Fr-measurable. First, note that the indicator function of

the barrier event {Vk € [r/2,n(1 —§)] : (5 — ek < Xg(x) < (5 + €)k} can be written as

Ls) = LBge) - 1Bg g x) Where
Lap = H L@ —op=xxm=G+on

r/2<k<r

L ke = H 1{(%—e)k—xRoc)sxR,K<x>s<%+e)k—xk(x)}'
r<k<n(1-96)

Note also that the event Bg(x) is Fr-measurable for every x. By linearity of conditional
expectation, we have

E((I1D)|FR)
- /f IP’({XN(x) > 20y N B N (XN () > =n) N BK)
[x—x'|>e~7/2 2 2

FR) dxdx’

_ / /| - B(Vy € (') (Xpw() > 50— Xe(0)) 0 Ben(3)|Xx)

X 1 peonseendxdx’.
188



L.-P. Arguin, L. Hartung and N. Kistler Stochastic Processes and their Applications 151 (2022) 174-190

The conditional probability is of the form of Proposition 2.6 for the process Xg x, R < K < N.
Hence, we have that E((/11)|Fg) equals

(1 +o0(1))
X // n 1_[ 1Bx») 'P({XR,N()’) > %n - Xr(}N BR,N()’)‘XR> dxdx’
|x—x'|>e"

yelx.x'}
+O((In N)™2).
Note that by definition

E(W,, N|}—R) = //;) 2 l_[ ]lBR(}) P({XR N(Q) > —’l Xr(INBg, N(y)‘XR> dxdx’.

By dropping the contribution of |x — x'| < e™"/?

in the double integral, we get
(BWIDIFR) = EWy I Fo)) | = ol) - EWgy ) +0(n N) ).

On the event A, y, the first term is o((E(Wy, ~))?). Therefore, it remains to show that the error
term O((In N)~2) is small compared to the double integral. Note that by Jensen’s inequality

n

NlQN

E(EWyIF07) > (EWoy) > &

by Corollary 3.2. This is much larger than (In N)~2 for o < 2. This proves the lemma. [

5. Proof of Theorem 1.1

We are in the position to prove Theorem 1.1 using Lemma 3.1 and Proposition 4.1. First,
by picking R such that r = n'/1%, we write
Weny E (Wan|FR)  Won —E (Wen|Fr)
E (Wq,n) E (Wq,n) E (Wa,n)
By Proposition 4.1 the second summand converges to zero in probability as N — oo. By

Lemma 3.1, the first summand converges almost surely to M, defined in (1.4). This completes
the proof of Theorem 1.1.
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