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Abstract

We study the total mass of high points in a random model for the Riemann-zeta function. We consider
he same model as in Harper (2013) and Arguin et al. (2017), and build on the convergence to Gaussian

ultiplicative chaos proved in Saksman and Webb (2016). We show that the total mass of points which
re a linear order below the maximum, divided by their expectation, converges almost surely to the
aussian multiplicative chaos of the approximating Gaussian process times a random function. We use

he second moment method together with a branching approximation to establish this convergence.
2022 Elsevier B.V. All rights reserved.
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1. Introduction

1.1. The model

Let P denote the set of all prime numbers. Let (θp)p∈P be independent identically distributed
random variables, being uniformly distributed on [0, 2π ]. For N ∈ N, a good model for the
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large values of the logarithm of the Riemann-zeta function on a typical interval of length 1 of
the critical line as proposed in [10] is

X N (x) =

∑
p∈P∩[0,N ]

1
√

p

(
cos(x ln p) cos(θp) + sin(x ln p) sin(θp)

)
, x ∈ [0, 1] . (1.1)

e denote by E the expectation with respect to the θp’s.
The maximum of the process on a small interval was studied in [2]. There it was shown

hat with high probability, depending on ϵ,

max
x∈[0,1]

X N (x) = ln ln N − (
3
4

+ ϵ) ln ln ln N . (1.2)

In this paper, we are interested in the values of the process of the order of α
2 ln ln N with α < 2.

Some of the behavior of the large values of the process X N (x), x ∈ [0, 1], is captured by the
random measure

Mα,N (dx) =
eαX N (x)

E(eαX N (x))
dx . (1.3)

y the independence of the θp’s, it is not hard to see that Mα,N converges almost surely as
N → ∞. By Theorem 4 in [16], the almost sure weak limit of Mα,N (dx) is non-trivial for
0 < α < 2. We denote the limit of the total mass by Mα

Mα = lim
N→∞

∫ 1

0
Mα,N (dx) a.s. (1.4)

For log-correlated Gaussian field the analogous limiting measure is called Gaussian multi-
plicative chaos and Mα corresponds to the total mass of the limiting measure. For Gaussian
multiplicative chaos it was first proved in [11] that the limit is nontrivial for small α and
was recently revisited (see for example [15,14]). Note that in our case the limit of Mα,N (dx) is
almost a Gaussian multiplicative measure (see [16]). The connection between the Riemann-zeta
function and Gaussian multiplicative chaos has been further analyzed in [17].

The fact that the Riemann-zeta function (or a random model of it) can be well approximated
by a log-correlated field have recently been used to study the extremes on a random interval [5,
13,2].

1.2. Main result

Consider the Lebesgue measure of α-high points:

Wα,N = Leb
{

x ∈ [0, 1] : X N (x) > α
2 ln ln N

}
. (1.5)

The main result of this note is to relate the limit Mα to the Lebesgue measure of high points
building on the ideas of [8]:

Theorem 1.1. For any 0 < α < 2 and Mα as in (1.4), we have
Wα,N

E
(
Wα,N

) → Mα in probability as N → ∞. (1.6)

In view of Eq. (1.2) and of Theorem 1.1, it is not surprising to see that the Mα is non-trivial
for α < 2. The critical case where α → 2 is interesting as it is related to the fluctuations of the
maximum of X . It is reasonable to expect that our approach can be adapted to the method
N
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of [6] to prove the critical case. Another upshot of the proof is that it highlights the fact that
Mα depends on small primes, cf. Lemma 3.1. In a branching random walk the corresponding
martingale limit encodes the effect of the first few generations. The effect of larger primes is
somehow averaged out, which might also seem natural as the structure of primes become more
regular.

The problem for the Riemann-zeta function is trickier. We expect that the equivalent of
Theorem 1.1 still holds:

Conjecture 1.2. Let τ be a uniform random variable on [T, 2T ]. Let Wα,T = Leb{h ∈ [0, 1] :

ln |ζ (1/2 + i(τ + h))| > α
2 ln ln T }. Then we have for α < 2

lim
T →∞

Wα,T

E(Wα,T )
= lim

T →∞

∫ 1
0 |ζ (1/2 + i(τ + h))|αdh

E(|ζ (1/2 + iτ )|α)
in probability.

This would be consistent with the conjecture of Fyodorov & Keating for the Lebesgue
easure of high points, see Section 2.5 in [7]. There might be hope to prove this as the proof of
heorem 1.1 relies on a Gaussian comparison for one point and two points. This is accessible

o some extent for the zeta function, see [1].
The analog of Theorem 1.1 was proved for the two-dimensional discrete Gaussian free

eld in [4] (see Corollary 2.2). There, the result is proved as a consequence of a much more
etailed result on the (joint) point measure of the value of high points and their location (see
heorem 2.1). Note that the convergence of the measure level sets there is in distribution,
ut their method should also yield convergence in probability, as in Eq. (1.5). Another notable
ifference is that Theorem 1.1 holds for a process that is a priori non-Gaussian. In fact, the main
ovelty of the present paper is to concretely enlarge the universality class where multiplicative
haos phenomena can be found.

.3. Outline of the proof

The proof of Theorem 1.1 is based on a first and a second moment estimate and follow the
lobal strategy proposed in [8] for branching Brownian motion. First, we prove convergence
f a conditional first moment to the desired limiting object in Lemma 3.1. The proof relies on
n explicit Gaussian comparison, cf. Proposition 2.3. Next, a localization result is established
n Lemma 3.3. Finally, we turn to the proof of Proposition 4.1 which is based on a second

oment computation. We use a branching approximation similar to the one employed in [2].
sing the obtained first and second moment estimates we are finally in the position to prove
heorem 1.1.

otations. To lighten some computations, we will sometimes use Vinogradov’s notation where
f (N ) ≪ g(N ) stands for f (N )/g(N ) = O(1). The notations O and o will always be meant
or the limit N → ∞ with implicit dependence on the fixed parameter α. In some proofs, it
s convenient to use a loglog-scale for the parameters R < K < N , in which case we will use
ower case letters and write r = ln ln R, k = ln ln K and n = ln ln N . To keep the computations
s clear as possible we assume r, n are natural numbers. The general case follows in the same
ay by considering the first and last summands of X N separately. The desired estimates carry
ver with minor adjustments, but would require a more involved notation.
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2. Comparison with a Gaussian process

It turns out that the process X N is well approximated by a log-correlated Gaussian field
G N (x), x ∈ [0, 1]. A precise result in this direction is the following result of [17].

heorem 2.1 (Theorem 1.7 in [17]). For N ≥ 2, the field X N (x), x ∈ [0, 1], can be
ecomposed as G N (x) + EN (x) where

G N (x) =

∑
p∈P∩[0,N ]

1
√

2p

(
Z (1)

p cos(x ln p) + Z (2)
p sin(x ln p)

)
, (2.1)

or (Z (i)
p )p∈P,i∈{1,2} i.i.d. standard normal random variables. The error EN is such that

lim
N→∞

max
x∈[0,1]

|EN (x) − E(x)| = 0 a.s., (2.2)

here the limit E(x) is a smooth (random) function. Moreover, the error EN (x) has uniform
xponential moments

E

(
exp

(
λ sup

N≥1,x∈[0,1]
EN (x)

))
< ∞. (2.3)

The statement of Theorem 1.3 in [17] is in terms of a random Euler product. The difference
etween the Euler product formulation and the Dirichlet polynomial formulation in (1.1) is
mall and is controlled by Lemma 3.2 of [17].

It might be tempting to prove Theorem 1.1 by simply proving it for G N and control the
rror EN using Eq. (2.3). However, there is a major difficulty in taking this approach as one
ight lose the independence between the small primes in G N and the error EN .1 Instead, we

ely on the following Berry–Esseen approximation as in [2] which allows for precise first and
econd moment estimates.

emma 2.2 (Corollary 17.2 in [3], see also Theorem 1.3 in [9]). Let (Y j , j ≥ 1) be a
equence of independent random vectors on (Rd ,B(Rd ), P) with mean E(Y j ) and covariance
atrix Cov(Y j ). Define

µm =

m∑
j=1

E(Y j ) and Σm =

m∑
j=1

Cov(Y j ) .

et λm be the smallest eigenvalue of Σm and Qm be the law of Y 1 + · · · + Y m .
There exists an absolute constant c depending only on the dimension d such that

sup
A∈A

⏐⏐⏐Qm(A) − ηµm ,Σm (A)
⏐⏐⏐ ≤ cλ−3/2

m

m∑
j=1

E(∥Y j − E[Y j ]∥3), (2.4)

here ηµm ,Σm is the Gaussian measure of mean µm and covariance matrix Σm , and A is the
ollection of Borel measurable convex subsets of Rd .

1 We thank the referee for pointing out this in the first version of the manuscript.
177



L.-P. Arguin, L. Hartung and N. Kistler Stochastic Processes and their Applications 151 (2022) 174–190

F
h

w
a
t

W

I
r

2

P

w

P
N

F

In the context of Eq. (1.1), we take as increments for k > 1

Yk(x) =

∑
ek−1<ln p≤ek

1
p1/2

(
cos(x ln p) cos(θp) + sin(x ln p) sin(θp)

)
=

∑
ek−1<ln p≤ek

cos(x ln p − θp)
p1/2 , x ∈ [0, 1].

or k = 1, the sum is the same with the primes ranging from 2 to ee. By definition, we then
ave

X N (x) =

n∑
k=1

Yk(x), (2.5)

here we set n = ln ln N . Since the uniform random variables are bounded, the error in
pproximating Yk by Gaussian random variables in Eq. (2.4) is the sum over p−3/2. To ensure
his error is small, it is necessary to truncate the small primes.

With this in mind, consider R ≤ N . Define FR to be the σ -algebra generated by (θp)p≤R .
e will often condition on FR to fix the dependence on the small primes. To shorten notation,

we also write

X R,N = X N − X R .

The variance of X R,N (x), x ∈ [0, 1], is by definition

σ 2
R,N ≡ Var(X R,N (x)) =

1
2

∑
R<p≤N

p−1. (2.6)

The prime number theorem, see e.g. [12], implies that the density of the primes goes like
(ln p)−1. More precisely, we have by Merten’s second theorem⏐⏐⏐⏐σ 2

R,N −
1
2

(ln ln N − ln ln R)
⏐⏐⏐⏐ = o(1) as N → ∞ and R → ∞. (2.7)

n the next two sections, we state the results from [2] derived from Lemma 2.2. The reader is
eferred to [2] for more details of the proofs.

.1. One-point Gaussian comparison

For one point, the Gaussian comparison is simple.

roposition 2.3. For any a ∈ R and R > (ln N )100, we have

P(X R,N (x) > a) = (1 + o(1))
∫

∞

a

e−y2/(2σ 2
R,N )

√
2πσR,N

dy + O((ln N )−2).

here the error is uniform in a.

roof. This is Proposition 2.11 in [2] (with λ = 0). This is a direct consequence of Lemma 2.2.
ote that the error is ≪

∑
p>R p−3/2

= O(R−1/2) ≪ (ln N )−2, by the choice of R. □

For some estimates, Proposition 2.3 is too precise. A plain Chernoff bound is often enough.
or this reason, it is useful to compute the moment generating function.
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Lemma 2.4. Let λ ∈ R. Then for any x ∈ [0, 1] and R < N, we have

E(exp(λX R,N (x))) = (1 + O(λ4 R−1)) · exp(λ2σ 2
R,N /2),

nd for an absolute constant c > 1,

c−1 exp(λ2 ln ln R/4 + cλ4) ≤ E(exp(λX R(x))) ≤ c exp(λ2 ln ln R/4 + cλ4). (2.8)

roof. Without loss of generality, we can assume x = 0. Note that by independence of the
p’s, we have

E(exp(λX R,N (0))) =

∏
R<p≤N

1
2π

∫ 2π

0
exp

( λ

p1/2 cos θ
)

dθ.

n expansion of the exponential and integration over θ yields

E(exp(λX R,N (0))) =

∏
R<p≤N

(
1 +

λ2

4p
+ O(λ4 p−2)

)
. (2.9)

he result then follows from (2.6) by taking the logarithm and by noticing that
∑

p>R p−2
=

(R−1). The claim (2.8) is obtained the same way using (2.7) by considering the sum over all
p ≤ R. □

We stress that Lemma 2.4 implies a Gaussian-like behavior for X R,N and X R only if λ is
mall compared to R. However, this will always be the case in the forthcoming estimates. In
act, we will take λ to be fixed as N and R go to infinity. Of course, a Chernoff bound for
he large deviation of X R,N and X R can be upgraded to a Gaussian tail by optimizing over λ.

ore precisely, one gets for λ = V/σ 2,

P(X R,N (0) > V ) ≪ exp(−V 2/(2σ 2
R,N )). (2.10)

he estimate will be used only for V of the order of the variance ensuring that λ is of order
ne.

.2. Two-point comparison

As in the case of one-point estimates, it will often be enough to use a Chernoff bound for
wo points. For this purpose, we compute the two-point moment generating function.

emma 2.5. Let λ ∈ R. Then for any x, x ′
∈ [0, 1] and R < P < Q < N, we have

E(exp(λX P,Q(x) + λ′ X P,Q(x ′)))

= (1 + O(λ4 R−1)) · exp

⎛⎝λ2σ 2
P,Q

2
+

λ′2σ 2
P,Q

2
+

λλ′

2

∑ cos(|x − x ′
| ln p)

p

⎞⎠ .
P<p≤Q
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Proof. This is done as in the one-point case. Without loss of generality, we can assume x ′
= 0.

he independence of the θp’s gives

E(exp(λX P,Q(x) + λ′ X P,Q(0)))

=

∏
P<p≤Q

1
2π

∫ 2π

0
exp

( λ

p1/2 cos(x ln p − θ ) +
λ′

p1/2 cos θ
)

dθ

=

∏
P<p≤Q

(
1 +

λ2

4p
+

λ′2

4p
+

λλ′

2p
cos(x ln p) + O(λ−4 p2)

)
,

here the second line follows by expanding the exponential and integrating. The claim follows
rom the observation that 1 + x = ex

+ O(x2). □

As for the one-point estimate, it is possible to get a two-dimensional Chernoff bound

P(X P,Q(x) > u, X P,Q(x ′) > v) ≪ exp
(
−

1
2 (u, v) · C−1

P,Q(u, v)
)
, u, v > 0. (2.11)

ere, CP,Q is the covariance matrix of (X P,Q(x), X P,Q(x ′))

CP,Q =

(
σ 2

P,Q ρP,Q

ρP,Q σ 2
P,Q

)
ρP,Q =

1
2

∑
P<p≤Q

cos(|x − x ′
| ln p)

p
.

q. (2.11) is achieved by optimizing (λ, λ′), i.e., (λ, λ′) = C−1
P,Q(u, v). The sum of cosines in

emma 2.5 has very different behavior depending on the distance |x − x ′
|. On one hand, if

x − x ′
| ln Q < 1, then a Taylor expansion of the cosine yields

1
2

∑
P<p≤Q

cos(|x − x ′
| ln p)

p
= σ 2

P,Q +

∑
P<p≤Q

O((|x − x ′
| ln p)2/p)

= σ 2
P,Q + O((|x − x ′

| ln Q)2),

here we use the fact that
∑

P<p≤Q(ln p)2/p ≪ (ln Q)2. Roughly speaking, this shows that
X P,Q(x) and X P,Q(x ′) are essentially perfectly correlated whenever |x − x ′

| < (ln Q)−1. On
he other hand, if |x − x ′

| ln P > 1, the prime number theorem and integration by parts yield∑
P<p≤Q

cos(|x − x ′
| ln p)

p
= O((|x − x ′

| ln P)−1),

ee Lemma 2.1 in [2]. Since the error is typically small, this suggests that X P,Q(x) and X P,Q(x ′)
re essentially independent whenever |x − x ′

| ln P > 1.
When x, x ′ are far away, the Chernoff bound is not precise enough. We then resort to the

ollowing precise Gaussian comparison. The Gaussian comparison is quite powerful and applies
ot only for X R,N but for the whole random walk as defined in (2.5). More precisely, consider
he loglog-scale notation: n = ln ln N , r = ln ln R, k = ln ln K . We restrict the events below
o the discrete set of integers k ∈ [0, n]. Consider the Gaussian random walk

SR,N =

∑
r<k≤n

Gk ,

here G , k ≤ n, are IID centered Gaussian random variables of variance 1/2.
k
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Proposition 2.6. For R > (ln N )100, we have for |x − x ′
| > (ln R)−1/2 and the notation as

above
P(X R,K (x) ∈ AK , X R,K (x ′) ∈ A′

K , ∀k ∈ [r, n])

= (1 + o(1)) P(SR,K ∈ AK , ∀k ∈ [r, n]) · P(SR,K ∈ A′

K , ∀k ∈ [r, n]) + O((ln N )−2).

here AK and A′

K are intervals of R and the error term is uniform in the choice of these
ntervals.

roof. This is Proposition 2.9 in [2] (with λ = 0, m = r , ∆ = r/2). This is a direct consequence
f Lemma 2.2. □

. First moment estimates

The next lemma highlights the fact that the non-trivial contribution to Theorem 1.1 comes
rom small primes. As before, we write n = ln ln N and r = ln ln R.

emma 3.1. For Wα,N as in (1.5), we have for 0 < α < 2 and R > (ln N )100

lim
N→∞

E
(
Wα,N |FR

)
E
(
Wα,N

) = Mα in probability. (3.1)

roof. We compute E(Wα,N |FR) and E(Wα,N ) simultaneously. Define the (random) subsets

B1 =

{
x ∈ [0, 1] : |X R(x)| >

α

4
n
}
,

B2 =

{
x ∈ [0, 1] : |X R(x)| ∈ [n1/4, α

4 n]
}
,

B3 =

{
x ∈ [0, 1] : |X R(x)| ≤ n1/4

}
.

n view of Eq. (1.2), there are no points in B2 and B1 with high probability. However, since
e are dealing with the expectation of Wα,N , these events could still have an effect and need

o be controlled. Note that the functions 1B j (x), j = 1, 2, 3 are Borel measurable as subsets
f [0, 1] with P-probability one. We split the integral on B1, B2 and B3. As expected, the
ominant contribution is from B3 in expectation and on an event of high probability. The set

B1 is useful since on its complement, the quantity α
2 n − X R(x) is much larger than 1, so a

aussian estimate will be possible. The contribution of the set B2 is handled with more care,
as one needs a joint control of X R and X N ,R .

The set B3 has large measure in expectation and in probability. Indeed, one has by a Chernoff
bound using (2.8)

E(Leb(B3)) = P
(
|X R(0)| ≤ n1/4

)
≥ 1 − e−n1/4

.

In particular, this implies by a Markov inequality that B3 has Lebesgue measure greater than
1/2 with high probability:

P(Leb(B3) ≤ 1/2) = P(Leb(Bc
3) > 1/2) ≤ 2 · P

(
|X R(0)| > n1/4

)
≤ e−n1/4

.

ne has, using the independence of X R,N and X R as well as Proposition 2.3,∫
P
(

X R,N (x) >
α

n− X R(x)
⏐⏐⏐FR

)
dx =

∫
dx
∫

∞

α

e−y2/(2σ 2
R,N )

√ dy+O((ln N )−2).

B3 2 B3 2 n−X R (x) 2πσR,N

181



L.-P. Arguin, L. Hartung and N. Kistler Stochastic Processes and their Applications 151 (2022) 174–190

u

f

w
{

w

F

W
e

S

(Note that the error in Proposition 2.3 is uniform in X R(x)). The integral in y can be evaluated
sing the Gaussian estimate

P(Y > V ) = (1 + o(1))
σ/V
√

2π
e−V 2/(2σ 2), V > 1,

or Y a Gaussian random variable of mean 0 and variance σ 2. With this, the above equals

= (1 + o(1))
∫

B3

σR,N
√

2πn
e−( α

2 n−X R (x))2/(2σ 2
R,N )

+ O((ln N )−2)

= (1 + o(1))
e−

α2
4 (n+r )

α
√

πn

∫
B3

eαX R (x)dx + O((ln N )−2),

here the estimate (2.7) and the bound on X R(x) for x ∈ B3 are used. Note that on the event
Leb(B3) > 1/2}, the first term is at least

e−
α2
4 (n+r )

α
√

πn

∫
B3

eαX R (x)dx ≥
e−

α2
4 (n+r )

α
√

πn
·

1
2

e−αn1/4
, (3.2)

hich is much larger than (ln N )−2 since α < 2. Therefore, the error term can be absorbed as
a multiplicative error:∫

B3

P
(

X R,N (x) >
α

2
n − X R(x)

⏐⏐⏐FR

)
dx = (1 + o(1))

e−
α2
4 n+r

α
√

πn

∫
B3

eαX R (x) dx . (3.3)

urthermore, note that, by a Chernoff bound (with λ = 100 say) and (2.8),

E

(∫
Bc

3

eαX R (x)dx

)
≤ e−100n1/4

· E(eαX R (0)+100|X R (0)|) ≪ e−99n1/4
.

e deduce from this that the integral on B3 can be extended to the whole [0, 1] in the
xpectation

E
(∫

B3

P
(

X R,N (x) >
α

2
n − X R(x)

⏐⏐⏐FR

)
dx
)

= (1 + o(1))
e−

α2
4 (n+r )

α
√

πn

∫ 1

0
E(eαX R (x))dx .

(3.4)

imilarly, the integral on B3 can be extended to [0, 1] on a FR-measurable event of large
probability, since P

(∫
Bc

3
eαX R (x)dx > e−10n1/4

)
= o(1), so that on this event

∫
B3

P
(

X R,N (x) >
α

2
n − X R(x)

⏐⏐⏐FR

)
dx = (1 + o(1))

e−
α2
4 (n+r )

α
√

πn

∫ 1

0
eαX R (x)dx . (3.5)

The conclusion of the lemma follows by considering the ratio of the right-hand side of (3.5)
and Eq. (3.4), and by taking the limit N → ∞ as in (1.4). It remains to show that the
contributions of B1 and B2 are small compared to the one of B3 in expectation and on an
event of high probability.

For B1, one brutally bounds the probability by 1 to get∫
P
(

X R,N (x) >
α

n − X R(x)
⏐⏐⏐FR

)
dx ≤ Leb

(
B1

)
.

B1 2
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But this measure is small in expectation and with high probability, since by a Chernoff bound
again,

E
(

Leb(B1)
)

= P(|X R(x)| > α
4 n) ≤ (ln N )−100. (3.6)

The estimate is a bit more subtle for B2. We divide the range [n1/4, α
4 n] into intervals of

ength 1. Proceeding as for B3 and using a Gaussian estimate, one has∫
B2

P
(

X R,N (x) >
α

2
n − X R(x)

⏐⏐⏐FR

)
dx

≤

⌈
α
4 n⌉∑

u=⌊n1/4⌋

e−( α
2 n−u)2/(2σ 2

R,N )
·

∫
{x :|X R (x)|∈[u,u+1]}

eαX R (x)dx + O((ln N )−2)

≤ e−
α2
4 (n+r )

∑
u>n1/4

eαu
·

∫
{x :|X R (x)|∈[u,u+1]}

eαX R (x)dx + O((ln N )−2).

(3.7)

his is much smaller than the integral on B3 in expectation since

E

⎛⎝ ∑
u>n1/4

eαu
·

∫
{x :|X R (x)|∈[u,u+1]}

eαX R (x)dx

⎞⎠ ≤

∑
u>n1/4

e(α−100)u
·E(eαX R (0)+100|X R (0)|). (3.8)

his is O(e−98(ln ln N )1/4
) by (2.8). This also implies by Markov’s inequality that on an event of

arge probability, this is negligible. This concludes the proof of the lemma. □

The proof of the last lemma also yields a precise estimate for the average measure of high
oints.

orollary 3.2. For Wα,N as in (1.5), we have for 0 < α < 2 and R > (ln N )100,

E(Wα,N |FR) = (1 + o(1))
(ln N )−α2/4

α
√

π ln ln N

∫ 1

0
eαX R (x)− α2

4 ln ln R dx . (3.9)

In particular, this implies

E(Wα,N ) ≫
(ln N )−α2/4

√
ln ln N

.

roof. The equality is a direct consequence of Eq. (3.4) which is the dominant contribution, and
f Eqs. (3.6), (3.7), (3.8) which show that the contribution of B2 and B1 to the expectation is

negligible. The inequality follows from Eq. (2.8) that gives a bound on the moment generating
function of X R . □

We now want to show a barrier-type estimate: the points x such that X N (x) > α
2 ln ln N

must be such that X K (x) is close to α
2 ln ln K for most K ’s in [R, N ]. For conciseness, we

urn again to a loglog-scale notation: n = ln ln N , r = ln ln R, k = ln ln K . With analogy with
andom walks, consider the discrete set of integers k ∈ [0, n]. Define for fixed ϵ > 0 and
< δ < 1

W >
α,N = Leb

{
x ∈ [0, 1] : X N (x) ≥

α
2 n; ∃k ∈ [r/2, n(1 − δ)] : X K (x) > ( α

2 + ϵ)k
}

W <
= Leb

{
x ∈ [0, 1] : X (x) ≥

α n; ∃k ∈ [r/2, n(1 − δ)] : X (x) < ( α
− ϵ)k

}
.

(3.10)

α,N N 2 K 2
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We need to pick R such that r = n1/100, as it needs to be much smaller than n, yet not too
mall. Picking r = ln n for example would lead to errors too big in what follows. Note that we

have R > (ln N )100 for the choice r = n1/100, thereby fulfilling the assumptions of the previous
esults. The restriction on the range of k for the barrier is necessary as the behavior for small
nd large primes is not as regular.

emma 3.3. For R such that r = n1/100, we have for 0 < δ < 1 and 0 < ϵ < 1 ∧
α
4 δ,

E(W >
α,N )

E(Wα,N )
= o(1).

In particular, for all c > 0, we have

P
(
W >

α,N > c E(Wα,N )
)

= o(1) P
(
E(W >

α,N |FR) > c E(Wα,N )
)

= o(1), (3.11)

here the o-term depends on c. The same estimates hold for W <
α,N .

roof. We prove the lemma for W >
α,N as the proof is very similar for W <

α,N . Eq. (3.11) is a
direct consequence of the first claim by Markov’s inequality.

We bound the expectation of W >
α,N from above:

E
(
W >

α,N

)
≤

∫ 1

0

n(1−δ)∑
k=r/2

P
(

X N (x) > α
2 n, X K (x) > ( α

2 + ϵ)k
)

dx

≤

∫ 1

0

n(1−δ)∑
k=r/2

∑
v>( α

2 +ϵ)k

P
(

X K ,N (x) > α
2 n − v, X K (x) > v

)
dx,

where the second inequality is obtained by partitioning the range of X K . Recall that X K and
X K ,N are independent. We estimate the probability depending on the value of k and v. Note
that we always have (α

2 + ϵ)k < 2k, since α < 2 and ϵ < 1. We first consider the range
α
2 + ϵ)k < v < 2k and v < α

2 n. This is the sharpest case since X K is expected to lie close
to α

2 k if X N is around α
2 n. In this case, the estimate (2.10) can be applied to X K since v is of

the order of the variance. It can also be applied to X K ,N since 0 < α
2 n − v < α

2 (n − k) − ϵk,
which is of the order of the variance. This yields

n(1−δ)∑
k=r/2

2k∧
α
2 n∑

v=( α
2 +ϵ)k

exp

(
−

( α
2 n − v)2

n − k
−

v2

k

)
.

A direct computation shows that the exponential term is maximized at v =
α
2 k. This is much

maller than v = ( α
2 + ϵ)k. This is therefore the dominant v, and we conclude that the above

s

≪

n(1−δ)∑
k=r/2

exp
(

−( α
2 n − ( α

2 + ϵ)k)2

n − k
+

−
(
( α

2 + ϵ)k
)2

k

)
≪ e−

α2

4 n
·

n(1−δ)∑
k=r/2

e−ϵ2k
≪ e−

α2

4 n−
ϵ2
2 r

.

his is o(E(W )) by Corollary 3.2 for any fixed ϵ > 0 by the choice r = n1/100.
α,N
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The case where ( α
2 + ϵ)k < v < 2k and v > α

2 n can only occur when k > α
4 n. For this, the

estriction to X K ,N can be dropped. This yields

n(1−δ)∑
k=αn/4

2k∑
v=

α
2 n

P
(

X K ,N (0) > α
2 n − v, X K (0) > v

)
≪

n(1−δ)∑
k=αn/4

2k∑
v=

α
2 n

e−
v2
k . (3.12)

his is ≪ exp(−α2

4
n2

n(1−δ) ), which is o(E[Wα,N ]) by Corollary 3.2 for any 0 < δ < 1.
It remains to handle the case v > 2k. Again, we split into the cases when v > α

2 n and
≤

α
2 n. The latter can only occur for k ≤

α
4 n. In this case, we can apply the Gaussian

stimate for X K ,N . However, it might not hold for X K for large v. Instead, we rely on a plain
xponential Chernoff bound (with parameter a) to get

α
4 n∑

k=r/2

α
2 n∑

v=2k

exp

(
−

( α
2 n − v)2

n − k
− av +

a2

4
k

)
.

he summand is maximized at v =
α
2 n−

a
2 (n−k). We pick a = 2 > α so that the maximizer is

imply v = k + n( α
2 − 1) < k. The maximizer is outside the range of v, hence the maximizing

alue of v is 2k as expected. Writing 2k =
α
2 k + (2 −

α
2 )k, the above is

≪

α
4 n∑

k=r/2

n · e−
α2

4 n
· e−

k
4 (α2

−8α+12)
≪

α
4 n∑

k=r/2

n · e−
α2

4 n
· e−(2−α)k

≪ n · e−
α2

4 ne−(1−
α
2 )r .

his is o(E(Wα,N )) by Corollary 3.2 for any fixed ϵ > 0 by the choice r = n1/100. In the
ase v > 2k and v > α

2 n, the idea is again to drop the probability of X K ,N . The probability
P(X K (x) > v) is estimated for k ≤

α
4 n and k > α

4 n separately. In the latter case, we can use
Gaussian estimate as the value of v is of the order of the variance. This gives an estimate

s in (3.12), which is small. In the case, k ≤
α
4 n, we can use an exponential Chernoff bound

with a = 2) to get that
α
4 n∑

k=r/2

∑
v>2k∨

α
2 n

P(X K (x) > v) ≪

α
4 n∑

k=r/2

∑
v>2k∨

α
2 n

e−2v+k
≪ n · e−αn+

α
4 n,

hich is smaller than e−
α2
4 n

√
n , since α < 2. This completes the proof of the lemma. □

4. Second moment estimates

The main result of this section is:

Proposition 4.1. For R such that r = n1/100, we have for any fixed α ∈ (0, 2)

P

(⏐⏐⏐⏐⏐Wα,N − E
(
Wα,N |FR

)
E
(
Wα,N

) ⏐⏐⏐⏐⏐ > c

)
= o(1), as N → ∞, (4.1)

here the o-term depends on c.
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4.1. Proof of Proposition 4.1

To prove the proposition, we consider the following reduction. Let

W =

α,N =

Leb
{

x ∈ [0, 1] : X N (x) ≥
α
2 n; ∀k ∈ [r/2, n(1 − δ)] : ( α

2 − ϵ)k ≤ X K (x) ≤ ( α
2 + ϵ)k

}
.

ote that W =

α,N = Wα,N −W >
α,N −W <

α,N , as defined in (3.10). In particular, we have the following
ecomposition

Wα,N − E(Wα,N |FR)
E(Wα,N )

=
W =

α,N − E(W =

α,N |FR)
E(Wα,N )

+
W >

α,N

E(Wα,N )
−

E(W >
α,N |FR)

E(Wα,N )

+
W <

α,N

E(Wα,N )
−

E(W <
α,N |FR)

E(Wα,N )
.

(4.2)

The last four terms are small in probability by Lemma 3.3. Therefore, the proof of the
proposition is reduced to show that the first term is also small in probability. For η > 0,
consider the FR-measurable event

Aη,N = {E(W =

α,N |FR) ≤ η−1E(Wα,N )}. (4.3)

Note that the complement has small probability, uniformly in N , since by Markov’s inequality,

P(Ac
η,N ) ≤ η,

Therefore, the proof of the proposition can be reduced to showing that for fixed η > 0,

lim
N→∞

E

((
W =

α,N − E(W =

α,N |FR)
E(Wα,N )

)2

1Aη,N

)
= 0 .

This will follow once it is shown that for fixed η

E
(

(W =

α,N − E(W =

α,N |FR))2 1Aη,N

)
= E

(
(W =

α,N )21Aη,N − (E(W =

α,N |FR))2 1Aη,N

)
= o((E(Wα,N ))2).

(4.4)

Clearly, we have

(W =

α,N )2

= Leb×2
{(x, x ′) ∈ [0, 1]2

: ∀y∈{x,x ′} X N (y) > α
2 n,

∀k∈[r/2,n(1−δ)] ( α
2 − ϵ)k ≤ X K (y) ≤ ( α

2 + ϵ)k}.

et 0 < δ < 1 − α2/4. We divide (W =

α,N )2 into three terms depending on the distance between
x and x ′:

(I ) : |x − x ′
| < e−n(1−δ) (I I ) : e−n(1−δ)

≤ |x − x ′
| < e−r/2

(I I I ) : |x − x ′
| > e−r/2 .

ith this notation, Eq. (4.4) gives

0 ≤ E(I ) + E(I I ) + E
(

(I I I )1Aη,N − (E(W =

α,N |FR))21Aη,N

)
,

here we dropped the event in the first two terms. Lemmas 4.2 and 4.3, and 4.4 prove that
his is o((E(Wα,N ))2), and thereby finish the proof of the proposition. Note that it is sufficient
o show that the positive part of E

(
(I I I )1 − (E(W =

|F ))21
)

is small.
Aη,N α,N R Aη,N
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Lemma 4.2. Let 0 < α < 2. For R such that r = n1/100, we have as N → ∞,

E(I ) = o((E(Wα,N ))2). (4.5)

roof. By noting that for x fixed we have Leb{x ′
: |x − x ′

| < e−n(1−δ)
} ≤ e−n(1−δ), we bound

E(I ) from above by simply dropping all the restrictions on x ′ and keeping only the endpoint
restriction for x :

E(I ) ≪ e−n(1−δ)
∫ 1

0
P
(

X N (x) >
α

2
n
)

dx = e−n(1−δ)E(Wα,N ). (4.6)

Hence, we have

E(I ) ≪ E(Wα,N )2
·

e−n(1−δ)

E(Wα,N )
= E(Wα,N )2

· o(1), (4.7)

y Corollary 3.2 and the choice δ < 1 − α2/4. □

The estimate of (I I ) is where the restriction established in Lemma 3.3 comes in handy. We
ill only use the restriction at each K .

emma 4.3. Let 0 < α < 2. For R such that r = n1/100, we have as N → ∞

E(I I ) = o((E(Wα,N ))2). (4.8)

roof. Write (I I )k for the contribution of the pairs of points with e−(k+1)
≤ |x − x ′

| ≤ e−k .
or conciseness, we write XK (x) = (X K (x), X K (x ′)) with x = (x, x ′) and u = (u, u′). By
ecomposing the values of X K (x) and X K (x ′), we get that the contribution of a fixed k is

E((I I )k) ≪∫∫
|x−x ′|≤e−k

∑
( α

2 −ϵ)k≤u,u′≤( α
2 +ϵ)k

P
(

XK (x) > u
)

· P
(

XK ,N (x) > α
2 (n, n) − u

)
dxdx ′. (4.9)

Note that we can assume that u, u′ < α
2 n provided we choose ϵ < δα/4 from the equation

α
2 +ϵ)k < α

2 n, k ≤ n(1−δ). The two probabilities can then be estimated by a Chernoff bound
as in Eq. (2.11). We evaluate the first probability in (4.9). We expect that X K (x) and X K (x ′)
are almost perfectly correlated. The covariance matrix of (X K (x), X K (x ′)) is by Lemma 2.5

CK =

(
σ 2

K ρK

ρK σ 2
K

)
, ρK =

1
2

∑
1<p≤K

cos(|x−x ′
| ln p)

p = σ 2
K + O(|x − x ′

|
2e2k).

ote that the error term O(|x − x ′
|
2e2k) is order one for the range of x − x ′ considered. Denote

his error term by −c−1. The inverse of this matrix is then

(1 + o(1))
{

c
2

(
1 −1

−1 1

)
+

1
k

(
0 1
1 0

) }
.

The Chernoff bound (2.11) then yields

P
(

XK (x) > u
)

≪ exp
(
−

c
4 (u − u′)2

)
· exp

(
−

u·u′

k

)
. (4.10)

he first term is an effective delta function for u = u′, whereas the second term provides
he Gaussian decay for a single X (as u ≈ u′ effectively from the first term). The second
K
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probability in (4.9) is evaluated the same way. The covariance matrix is now

CK ,N =

(
σ 2

K ,N ρK ,N

ρK ,N σ 2
K ,N

)
, ρK ,N =

1
2

∑
K<p≤N

cos(|x−x ′
| ln p)

p = O(1).

herefore, the Chernoff bound (2.11) yields

P(XK ,N (x) > α
2 (n, n) − u) ≪ exp

(
−

( α
2 n−u)2

n−k −
( α

2 n−u′)2

n−k

)
. (4.11)

he dominant term in Eq. (4.9) is obtained by optimizing (4.10) and (4.11) over u, u′. The
solution is

u, u′
=

α
2 k ·

2n
n+k .

This is larger than (α
2 + ϵ)k for the choice ϵ < αδ/4 when k < n(1 − δ). The upshot is that

he dominant term in the range of u of interest is simply u = u′
= ( α

2 + ϵ)k. Putting this back
in (4.9) with the estimates of (4.10) and (4.11) yields

E((I I )k) ≪ e−k
· exp

(
−( α

2 + ϵ)2k −
2

n−k ( α
2 n − ( α

2 + ϵ)k)2
)

≪ e−
α2

2 n
· exp(−k(1 −

α2

4 − αϵ)) .

umming this over k ≥ r/2 is o((E(Wα,N ))2) by Corollary 3.2 and the choice of r for ϵ small
nough, since α < 2. □

emma 4.4. Let 0 < α < 2 and Aη,N as in Eq. (4.3) for η > 0 fixed. For R such that
= n1/100, we have as N → ∞

E
(

(I I I )1Aη,N − (E(W =

α,N |FR))21Aη,N

)
+

= o((E(Wα,N ))2). (4.12)

roof. Recall that the event Aη,N is FR-measurable. First, note that the indicator function of
he barrier event {∀k ∈ [r/2, n(1 − δ)] : ( α

2 − ϵ)k ≤ X K (x) ≤ ( α
2 + ϵ)k} can be written as

B(x) = 1BR (x) · 1BR,K (x) where

1BR (x) =

∏
r/2≤k≤r

1
{( α

2 −ϵ)k≤X K (x)≤( α
2 +ϵ)k}

1BR,K (x) =

∏
r≤k≤n(1−δ)

1
{( α

2 −ϵ)k−X R (x)≤X R,K (x)≤( α
2 +ϵ)k−X R (x)}.

Note also that the event BR(x) is FR-measurable for every x . By linearity of conditional
expectation, we have

E((I I I )|FR)

=

∫∫
|x−x ′|>e−r/2

P
(
{X N (x) >

α

2
n} ∩ B(x) ∩ {X N (x ′) >

α

2
n} ∩ B(x ′)

⏐⏐⏐FR

)
dxdx ′

=

∫∫
|x−x ′|>e−r/2

P
(
∀y ∈ {x, x ′

} {X R,N (y) >
α

2
n − X R(y)} ∩ BR,N (y)

⏐⏐⏐X R

)
′

× 1BR (x)∩BR (x ′)dxdx .
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The conditional probability is of the form of Proposition 2.6 for the process X R,K , R < K ≤ N .
Hence, we have that E((I I I )|FR) equals

(1 + o(1))

×

∫∫
|x−x ′|>e−r/2

∏
y∈{x,x ′}

1BR (y) · P
(
{X R,N (y) >

α

2
n − X R(y)} ∩ BR,N (y)

⏐⏐⏐X R

)
dxdx ′

+ O((ln N )−2).

Note that by definition

E(W =

α,N |FR)2
=

∫∫
[0,1]2

∏
y∈{x,x ′}

1BR (y)·P
(
{X R,N (y) >

α

2
n−X R(y)}∩BR,N (y)

⏐⏐⏐X R

)
dxdx ′.

y dropping the contribution of |x − x ′
| ≤ e−r/2 in the double integral, we get(

E((I I I )|FR) − (E(W =

α,N |FR))2
)

+

= o(1) · (E(W =

α,N |FR))2
+ O((ln N )−2).

n the event Aη,N , the first term is o((E(Wα,N ))2). Therefore, it remains to show that the error
erm O((ln N )−2) is small compared to the double integral. Note that by Jensen’s inequality

E
(
E(W =

α,N |FR)2
)

≫

(
E(W =

α,N )
)2

≫
e−

α2

2 n

n
,

y Corollary 3.2. This is much larger than (ln N )−2 for α < 2. This proves the lemma. □

. Proof of Theorem 1.1

We are in the position to prove Theorem 1.1 using Lemma 3.1 and Proposition 4.1. First,
y picking R such that r = n1/100, we write

Wα,N

E
(
Wα,N

) =
E
(
Wα,N |FR

)
E
(
Wα,N

) +
Wα,N − E

(
Wα,N |FR

)
E
(
Wα,N

) . (5.1)

y Proposition 4.1 the second summand converges to zero in probability as N → ∞. By
emma 3.1, the first summand converges almost surely to Mα defined in (1.4). This completes

he proof of Theorem 1.1.
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