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Abstract

We study the computational complexity of zigzag sampling algorithm for strongly log-concave distributions. The zigzag
process has the advantage of not requiring time discretization for implementation, and that each proposed bouncing event
requires only one evaluation of partial derivative of the potential, while its convergence rate is dimension independent. Using
these properties, we prove that the zigzag sampling algorithm achieves ¢ error in chi-square divergence with a computational

. 1 3 . S . . .
cost equivalent to O (sz 2(log %) 2) gradient evaluations in the regime x < @ under a warm start assumption, where « is

the condition number and d is the dimension.
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1 Introduction and Main Results

Monte Carlo sampling from a high-dimensional probability
distribution is a fundamental problem with applications in
various areas including Bayesian statistics, machine learning,
and statistical physics. Many sampling algorithms, espe-
cially those for continuous state space like R?, are based on
continuous time Markov processes. Examples of these pro-
cesses include the overdamped Langevin dynamics, whose
invariant measure is the target measure, the underdamped
Langevin dynamics and Hamiltonian Monte Carlo (HMC)
Duane et al. (1987), both augment the state space with a
velocity variable v, and have the x-marginal distribution of
the invariant measure as the target measure. For strongly
log-concave distributions, all these processes converge to the
equilibrium exponentially fast with rates independent of the
dimension, making them suitable for sampling purposes. On
the other hand, all of these processes require time discretiza-

B Lihan Wang
lihanw @ andrew.cmu.edu

Jianfeng Lu
jianfeng @math.duke.edu

Department of Mathematics, Department of Physics, and
Department of Chemistry, Duke University, Durham, NC
27708, USA

Department of Mathematical Sciences, Carnegie Mellon
University, 311 Hamerschlag Drive, Pittsburgh, PA 15213,
USA

tions for implementation, which not only induces further
numerical errors but requires the time step to be small as
well, requiring higher computational complexity if a small
bias is desired. To remove such bias due to discretization,
the conventional procedure is to introduce the Metropolis-
Hastings acceptance-rejection step, but rejections indicate
waste of computational resources.

A very different line of sampling algorithms have been
recently developed in statistical physics and statistics lit-
erature Peters and de With (2012), which are based on
piecewise deterministic Markov processes (PDMPs) Davis
(1984). These processes are non-reversible, which may mix
faster than reversible MCMC methods (Diaconis et al. 2000;
Turitsyn et al. 2011). Examples of such samplers include the
randomized Hamiltonian Monte Carlo Bou-Rabee and Sanz-
Serna (2017), the zigzag process Bierkens et al. (2019), the
bouncy particle sampler (Peters and de With 2012; Bouchard-
Coté et al. 2018), and some others (Vanetti et al. 2017; Michel
etal. 2014; Bierkens et al. 2020). The zigzag and bouncy par-
ticle samplers are appealing for big data applications, as they
can be unbiased even if stochastic gradient is used (Bouchard-
Coté et al. 2018; Bierkens et al. 2019). These algorithms, as
they are still relatively new, have not yet been thoroughly
analyzed. In particular, no non-asymptotic computational
complexity bounds on these algorithms have been established
yet, to the best of our knowledge. Our previous work Lu et al.
(2020) gives explicit exponential convergence rates for the
PDMPs with log-concave potentials, which opens the possi-
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bility of deriving such complexity bounds for PDMPs, and
provides the foundation of this work.

1.1 Algorithm and assumptions

Let x denote the state variable in R? where d is the dimension.
The target distribution we want to sample from is denoted by

dp(x) = Z7 " exp(=U (x)) dx,

where U (x) is the potential and Z = fRd exp(—U(x)) dx
is the normalizing constant. Although the zigzag process
can also be applied to sample non log-concave distribu-
tions, we will restrict our analysis to strongly log-concave
distributions, namely, we make the following assumption
throughout:

Assumption 1 The potential function U (x) satisfies
mld < V2U (x) < LId, (1)

for some 0 < m < 1 < L. Moreover, U(x) has a unique
minimizer at x = 0, and U (0) = 0.

For any random variable X, we use p (X) to denote its law.
In this paper, we use chi-square divergence to measure the
difference between two probability measures: for probability
measures pg, pp that p; < pa, it is defined as

dpi 2

2

= 1) dps.
x“ (o1 1l p2) /Rd<dp2 ) 02

The zigzag sampling algorithm is based on a piecewise
deterministic Markov process, called zigzag process. Besides
the variable x, we augment the state space by an auxiliary
velocity variable taking value in R?. A trajectory of the
zigzag process, denoted by (X, V;), can be described as fol-
lows. Given some initial (Xg, Vp), the position X; always
evolves according to %X + = V;, while the velocity V; is
piecewise constant which only changes when bouncing or
refreshing events occur at some random time following Pois-
son clocks. Bouncing events on the j-th direction occur with
rate (V,(j >axj U(X;))+, and at such an event the velocity V;
changes by flipping its j-th component to —V,(j ). Refresh-
ing events occur with rate A for some fixed A > 0, when the
velocity V; is completely redrawn from the standard normal
N(0,1d).

It has been established (Andrieu et al. 2021; Bierkens et al.
2019; Lu et al. 2020) that under Assumption 1, p(X;, V;)
converges to the invariant measure of the zigzag process,
which is a product measure of the target measure in x and
the standard Gaussian in v:

dit(x,v) = du(x)dv(v) where dv(v)
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2
= (271)_% exp(—%) dv.

Our analysis relies on the following more quantitative con-
vergence result for zigzag process proved in Lu et al. (2020),
which also specifies the optimal choice of refreshing rate A.!
We would like to comment here that the choice of A = +/L
is completely technical since it optimizes the theoretical
convergence rate (up to a universal constant) of the zigzag
process established in Lu et al. (2020). The zigzag process
is ergodic even if A = 0 and in practice the choice A = 0 is
common.

Proposition 1 (Lu et al. 2020, Theorem 1) Under Assump-
tion 1, there exists a universal constant K independent of all
parameters, such that for any initial density [Lo, the zigzag
process with friction parameter ). = /L satisfies

K2(0(X7. V) | 1) < K exp(————T)x*(io | ©)-  (2)

KVL

The left-hand side of (2) controls desired divergence of
p(X) with respect to the target measure u, as we have

x> (o(X1, V) || it)

do(Xr,V; 2
:/ (M) diCe.v) — 1
RY xRY du

— /Rd( dp§§7)>2(41,(%)2dv(v)) ey 1

= L5 (26 10 1)) aneo -

dp(X7)\2
= [ (A0 due - 1= 2 o,
RN du

Moreover, we would take initial condition in the form of

(X0, Vo) ~ fto(x, v) = po(x)v(v), 3

which implies that x2(fio || it) = x> (o || ). Therefore, we
get

X2(0(X7) | 1) < K exp(————=T) x> (0 || 1. @)
KL

which suggests the total time 7 needed to achieve control of
chi-square divergence.

Of course, in practice, we cannot simulate the zigzag
process directly, as simulating the Poisson process asso-
ciated with the bouncing event would require integrating
(V,(j )ijU (X:))+ along the trajectory. To turn the zigzag

I Lu et al. (2020) shows exponential convergence for the backward
equation. By duality the exponential convergence of the backward equa-
tionin L2 (j1) is equivalent to the exponential convergence of the forward
equation in x2 with the same rate.
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process into an efficient and practical sampling algorithm,
the Poisson process for the bouncing events are usually sim-
ulated using the Poisson thinning trick (see e.g., discussions
in Bierkens et al. (2019)*Section 3). Under Assumption 1,
we will use the following upper bound estimate for the rate:

(Vi 0y, U(x +v1))+ < |05, U(x + v1)|
< |vill0y; U (x + v1)|
< L|vil(|lx| + t]v]). (5)

This upper bound has the advantage of not involving evalu-
ations of U and its partial derivatives, which greatly reduces
the computational cost, compared with using numerical
quadrature for d Poisson clocks. The price to pay is the
increased frequency of potential bouncing events, which
scales like O (v/d) since the pessimistic bound for the partial
derivative |0y, U (x)| < VU (x)| < L|x| typically sacrifices
a factor of O (+/d) in the first inequality.

Following the above discussions, the zigzag sampling
algorithm is described in Algorithm 1, where Step 12 uses the
upper bound estimate in (5), while Steps 19-23 correspond to
the Poisson thinning step. Note that for each potential bounc-
ing event, the algorithm requires one evaluation of d,, U in
Step 19. In practice, typically accessing the partial deriva-
tives of U is the most time consuming step, therefore, in our
complexity analysis, we focus on the number of access to
partial derivatives.

We also need the following assumption for technical pur-
poses, as will be discussed after stating the main results:

Assumption 2 The initial distribution o (x) satisfies awarm-
start condition:

d
<8KK10gd)’ ©

2
X (o Il ) < exp
where ¥ := L/m is the condition number, and K is the
same universal constant as in (2). Furthermore, the initial
distribution is concentrated in the sense of

n = ]P’M0<|x| > @) < %. %)

Remark 1 The concentration condition (7) can be easily sat-
isfied. By Gaussian Annulus Theorem, if we pick pug =
N(O, %Id), then Py, (|x| > \/%) < 3¢~ for some uni-
versal constant c. The failure probability gets smaller if we
take o = N (0, %Id) or (to = . The warm start condition
(6) is more stringent but can be achieved by first running
Langevin Monte Carlo (LMC). We will discuss that after
presenting our main result.

Algorithm 1 The zigzag sampling algorithm

Input: Terminal time 7, initial distribution ¢¢.

1: Draw x ~ uo.

2: Sett < 0.

3: Set refr < true.

4: whiler < T do

5. if refr then

6: Draw v ~ N (0, Id).

7. Draw tery ~ Exp («/Z).
8: trefr < min{tierr, T — 1}.
9: refr < false.

10:  endif

11: fori=1,---,ddo

12: Draw t; such that P(r; > s) = exp(—sL\v,- [lx| — %|Uz’||v|)~
13:  end for

14:  Pick j = arg_ Ilnil'ld'[i-
=1,

15: Aj < Llvj|(Ix] + zj]v]).

16: t <1+ min{rj, Trefr }-

17: x < x +vmin{t;, fref ).

18:  if Tj < tetr then

19: Aj <« (vjoy; U(x))+.
20: Draw « ~ Unif (0, 1);
21: if o« < i—' then
J
22: Vj < —vj.
23: end if
24: refr <= Irefr — Tj-
25:  else
26: refr < true.
27:  endif

28: end while
29: return x.

1.2 Main results

Theorem 1 Under Assumption 1, for any prescribed accu-
racy € > 0, Algorithm 1 outputs a random variable X such
that

X)W <e, ®)
for terminal time T chosen as

L 1
T = K(i(log — +log x*(uo Il w) + log K)), )
m &

where K is the universal constant in (2).
. d
Moreover, if ¢ > exp(—m), then, under Assump-

tion 2, with probability 1 — % -C log_% d —n, Algorithm
1 returns an output with a computational cost of

31 3
0(ati(log? = +10g? x2(uo | w))

evaluations of partial derivatives of U, where 1 is defined in
(7) and C is a universal constant.

Remark 2 By repeated trials, the theorem implies that for any
8 € (0, ;IL), with probability 1 — §, Algorithm 1 returns the
desired output with a computational cost of

@ Springer
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o(ﬁ *(1og? © +log? x2(uo Il 1)) Tog  flog ™ (—
k*(logZ — +1o 0 og - |lo —_—
g e g= X (Ko Il K g8 g \/ZT
3
+log2d+n)‘),

thatis O d 5 «2) evaluations of partial derivatives of U, where
5(~) hides logarithmic factors.

With the common computational model that d evaluations
of partial derivatives of U is equivalent to one evaluation of
VU in complexity, the complexity of zigzag is equivalent to

9] d %Kz) evaluations of VU.

Let us explain the choice of T in (9): For the zigzag sam-
pling algorithm to reach the target ¢ accuracy according to
(4), the terminal time 7 needs to be large enough. Mean-
while, the Assumption 2 guarantees that 7 is not too large,
as otherwise we cannot effectively control the number of
bouncing events either due to a very large V drawn from a
velocity refreshing event or the trajectory reaching regions
with large gradient. These motivate our previous Assump-
tion 2 on the initial distribution pq, as well as the restriction
on ¢ that it cannot be too small compared to d. We remark
that the assumption on ¢ is not prohibitive as we are inter-
ested in high dimensional cases and the error threshold is
exponentially small in d.

The warm start condition (6) can be achieved if we start
with a Gaussian distribution in x and run Langevin Monte
Carlo

Xnt1 = Xn — hVU(X,,) + V20 &, (10)

where £ is the step size, and &, are i.i.d. A(0, Id) random
variables. This leads to the following corollary:

Corollary 1 Let d > 1. Suppose the potential U satisfies
4

cff);* a for
some computable (from Erdogdu et al. (2020)) universal con-
stant C. Then, for any prescribed accuracy ¢ > 0, if we
initialize Xo ~ N0, ﬁld), the hybrid algorithm by first
running LMC (10) for N = d*/«'%/5 steps with step size
h = %d’4/5/c*16/5m’1 log% and then Algorithm 1 up to

time T = K("/Tz(log 1 +d5Ks log? 4+ log K)) outputs a

random variable X such that

. 9
Assumption 1 for some k > 1 such that k5 <

XX Ip) <e. (11)

Moreover, if ¢ > exp(—SKKdng), then there exists some

universal constant ¢ > 0 such that, with probability 1 —
_3 14 .
% —Clog™2d — Cexp(Cd5ks log? % —cd), Algorithm

1 returns an output with a computational cost of

1o, 3l aus 5d
0(d2/< log2 — 4+d5k5 log )
e

K

@ Springer

evaluations of partial derivatives of U.

Proof 1t is easy to verify that our choice of N, h satisfies
h < % and Nh? < m (where c satisfies Erdogdu
etal. (2020)*Lemma 14). Therefore, we may appeal Lemmas
2, 14, 25, 26 of Erdogdu et al. (2020), so that the random

variable Xy produced in (10) satisfies

X2 (p(Xn) )
< exp(Cd exp(—Nhm) + CNh**L*(d + log N))

d
= exp(Cd%fc% log? —) (12)
K

for some universal constant C. This, combined with our
assumption on «, guarantees that (6) holds with p (X y) play-
ing the role of 1p. We can also check the validity of (7) by

2d

P (1] > /=)
3 2d \ 1
= (1420 0twIw)* (Pullixl = )

d
< Cexp(Cd%K% log2 - — cd) < 1.
K

Therefore we may apply Theorem 1 with g = p(Xn), and
derive that the total computational cost (in terms of number
of evaluations of VU) equals to

1
O(N + d%/c2(log% -
e

3
+log? x*(p(Xn)IW) )
d 1
= O<d%/c1576 log® = +d%/<210g% _).
K &
[}

Theorem 1 guarantees that the zigzag sampling algorithm
(Algorithm 1) outputs a sample from a distribution with
x2-divergence at most ¢ away from the target density for
a computational complexity equivalent to o %KZ) partial
derivative evaluations (i.e., amounts to 0 d %/cz) gradient
evaluations), in the regime max{«x, log %} < @ with a
warm-start condition. Corollary 1 establishes that the hybrid
LMC-zigzag algorithm outputs a sample for a computational
complexity 0 d %K%ﬁ) gradient evaluations. The initializa-
tion using LMC is added only for technical reasons as we
currently do not have complexity guarantees otherwise with
an explicit initial distribution, nor is it necessary for actual
implementations. We would also like to comment that our
goal is to obtain the best possible scaling in d, and the scaling
in k might be possibly improved by a more careful analysis.

Our analysis is based on the quantitative convergence rate
of the zigzag process established in Lu et al. (2020), which
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is O(iL) for m-convex and L-smooth potentials. The rest
of our proof is based on estimating sup | X;| along a single
trajectory of the zigzag process and subsequently turn this
into an estimate on the number of potential bouncing events,
and hence number of partial derivative evaluations. Our anal-
ysis utilizes the two important and desirable features of the
zigzag sampling process:

e The implementation of the zigzag process does not need
time discretization, as the velocity in deterministic por-
tion of the trajectory remains constant, which makes it
possible to simulate the exact trajectories of the zigzag
process while eliminating an important source of error.
This is the reason that the complexity of the zigzag
process only has logarithmic dependence on é, without
Metropolis acceptance/rejection.

e Moreover, for each potential bouncing event of zigzag,
only one evaluation of a partial derivative of the potential
is required, which is O(d) cheaper than a full gradient
evaluation in computational cost for usual model of com-
putation.

We would also remark that we quantify the error of
distribution in terms of x2-divergence, which provides
stronger guarantee than total variation, KL divergence or
2-Wasserstein distance. While y2-divergence is relatively
convenient for obtaining convergence rates of continuous
processes based on Poincare inequality (Cao et al. 2019; Lu
et al. 2020), it does not seem easy to use for analyzing dis-
cretization error of SDEs. The work Vempala and Wibisono
(2019) made assumptions of Poincare inequality for the dis-
crete invariant measure, which is difficult to verify. We are
fortunate to avoid such problem for zigzag sampler, thanks to
the fact that zigzag does not need time discretization. After
the first version of this work appears online, Erdogdu et al.
(2020) established convergence of LMC in x2- and Rényi
divergence, using the exponential convergence of continuous
time overdamped Langevin dynamics in Rényi divergence
(Cao et al. 2019; Vempala and Wibisono 2019).

1.3 Previous works

Here we focus on results on non-asymptotic analysis of sam-
pling algorithms, which has been a focused research area
in recent years. Many sampling algorithms have been ana-
lyzed including algorithms based on overdamped Langevin
dynamics (Dalalyan 2017; Durmus and Moulines 2019; Dur-
mus et al. 2019; Vempala and Wibisono 2019; Li et al. 2019;
Ding et al. 2021), underdamped Langevin dynamics (Cheng
et al. 2018; Dalalyan and Riou-Durand 2020; Ma et al. 2021,
Shen and Lee 2019; Ding et al. 2021; Monmarché 2021),

Hamiltonian Monte Carlo (Mangoubi and Smith 2019; Lee
et al. 2018; Chen et al. 2019; Mangoubi and Vishnoi 2018;
Bou-Rabee et al. 2020), or high order Langevin dynamics
Mou et al. (2021), among others. These methods involve
discretization of ODEs or SDEs, which yields an error that
scales polynomially with step size. Thus the complexity of
these algorithms has polynomial dependence on £ ~!, where
¢ is the desired accuracy threshold.

Metropolized variants of sampling algorithms, includ-
ing Metropolized HMC and Metropolis Adjusted Langevin
Algorithm (MALA), have also been studied in (Dwivedi
et al. 2018; Chen et al. 2020; Lee et al. 2020), the complex-
ities of which have only logarithmic dependence on &~!,
similar to the zigzag sampling process analyzed here. In
Dwivedi et al. (2018) the complex1ty upper bound for MALA
is established as O(Kd + K2d2) under warm start condi-
tion, and O (kd*+« 5 d2 5 ) with a feasible start. In Chen et al.
(2020) the complexity upper bound for MALA is improved to
5(/cd +« %d%) with feasible start (where g = N (0, %Id)).
The work Chen et al. (2020) also established bounds for
Metropolized HMC, which is 0 (Kd%) with warm start
(which is in fact more stringent than our Assumption 2) in
the regime k = O(d%), and 5(K%d + K%d%) with feasible
start if the target potential function has a bounded Hessian.
The complexity upper bound has been improved in Lee et al.
(2020) to 0 (kd) for both Metropolized HMC and MALA
with a feasible start, based on a refined analysis using con-
centration of gradient norm. In comparison, our result for
zigzag relies on a warm start (which is achievable by LMC),
while the complexity upper bound has better dependence in
d. The issue of feasible start will be further discussed in
Sect. 3.

Regarding asymptotic analysis for the convergence of
zigzag process, the ergodicity was first established in
Bierkens etal. (2019). Exponential convergence of the zigzag
process is established in (Fontbona et al. 2016; Bierkens and
Roberts 2017) using a Lyapunov function argument. A cen-
tral limit theorem of the zigzag process is established in
Bierkens and Duncan (2017), and a large deviation princi-
ple is established for the empirical measure in Bierkens et al.
(2021). The spectrum of the zigzag process has been stud-
ied in (Bierkens et al. 2019; Guillin and Nectoux 2020). A
dimension independent exponential convergence rate for the
zigzag process is established in Andrieu et al. (2021), using
the hypocoercivity framework developed in Dolbeault et al.
(2015). Finally, a more quantitative convergence estimate
was established in Lu et al. (2020), for which our analysis of
the sampling algorithm is based on.

@ Springer
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2 Strategy of the proof

Since Algorithm 1 always simulates exact trajectories of the
zigzag process, we see that (8) is guaranteed with the correct
choice of T'. Therefore we only need to estimate the compu-
tational complexity. The strategy of the proof is to first give
an estimate on sup, .o 71 U (X;) (Lemma 1), which directly
controls sup, ¢ 77 | X[ The upper bound on | X;| in turn pro-
vides us an estimate of upper bound on the number of partial
derivative evaluations of U. The complexity upper bound we
derive holds with high probability, while it does not always
hold (for example, the number of proposed bouncing events
from the Poisson clock might be atypically high), such events
only occur with very small probability, which will be con-
trolled in the proof.

Let N + 1 be the total number of velocity refreshments
(including the initial refreshment), therefore N is a Poisson
random variable such that

P(N = n) = (“/E—'T)ne—ﬁ? (13)

Let0 =Ty <T1 <Th <--- <Ty <T < Ty4 be the
refresh times, and V7, be the velocity variable after refresh-
ment at time 7. Fork =1,--- , N, weuse ty = Ty — Ty—1
to denote the time duration between refreshments. For con-
venience, we will also denote tyy1 =T — Ty.

The first step of the proof is the following lemma which
controls sup, <o 71 U (X;) condition on some high probability
events. The proof will be deferred to the appendix.

Lemma 1 Under Assumptions 1 and 2, suppose the following
conditions hold:

%«/ZT <N< %ﬁT; (14a)
A% d 1 v A4 1
Vi, - VU (X7 < (ﬁ> VUKl Yk=1,--, N;
(14b)
Vgl <2vd, Yk=1,---,N (14c)
U(Xo) <«d; (14d)
N+1
4T

Z == (14e)
Then there exists a universal constant C such that

sup U(X,) < CVLTd. (15)

tel0,T]

The next element in the proof is to control the failure event
that (14) does not hold. The control of the first four events
are relatively straightforward and will thus be directly carried
out in the proof of theorem below; we state the probability
for the event (14e) to hold as the following lemma, which
will also be proved in the appendix.

@ Springer

Lemma 2 There exists a universal constant C such that, if
VLT > C, then with probability 1 — fT condition (14e)
holds.

The final component of the proof is to turn the estimate
for sup, (9,71 U(X;) to an upper bound for the number of
proposed bouncing events.

Proof of Theorem 1 Let p; be the probability that condition
i in (14) of Lemma 1 fails. We start with condition (14a) of
Lemma 1. For Poisson process with #; as the arrival times,
we may estimate the first failure probability (here and for the
rest of the proofs C denotes a universal constant that may
change from line to line)

Pa < exp(—éﬁn < % (16)

We now check the conditions (14b) and (14¢) of Lemma 1.
By Gaussian Annulus Theorem, for each refreshment, we
have

P(|Vy,| > 2v/d) < 3e™, (17)

where ¢ > 0 is some universal constant. We also require

Vr, to satisfy | Vg, - n(X,)| < (}T)

% which has failure probability

/2, where n(Xr,) =

d 12
PV -1 (01 2 (=) )

1 00 r2
= _271 /L 12 exp(—?) dr
T d 1
\/_/ 1/2 («/_T) / )dr

\/_T 1/2 d
f\/; (7 W

Since we have to draw V for N times, cumulatively this yields
a failure probability

ed (VL
() enl5 ) e
(18)

Pb + Pe SC'(e

Recall the assumption & > exp(—m) as well as (6)
(and that kK log K < 410gd) which implies that /LT <
2] ogd for our choice of T as in (9). Together with condition
(14a), we derive (neglecting the obviously smaller term e <)

Q)”z exo

Pb+ pe < CJZT( ;

d )<01o—%d
LT/ ~ &4
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The failure probability for condition (14d) is straightforward
to estimate. Using Assumption 1, we have

Lo
UXo) = 51 Xol",

which indicates

2d
pa <n=P[|Xol = —].
m

Finally, p, is already estimated in Lemma 2, which yields
Pe < % In summary, the total failure probability of (14)
can be bounded as

pa+pb+pc+pd+pe_[ + Clog™ 2d+n (19)

‘We now assume that condition (14) holds. Thus, Lemma
1 together with Assumption 1 implies that

2 1/2 VL 1/2
sup |X,| < (— sup U(x,)) < C(—Td) .(20)
1€[0,T] m (€[0,T] m

After each refreshment or bouncing event, Algorithm 1 runs
d independent Poisson clocks {7;};=1.... 4 defined in Step 12
where, noticing 3, |V;| < V/d|V| < 2d,

. r?
B(mint; = 1) = exp(—LIX| ) IVil = S IVI Y IVil)
i i
305 11 )
>exp(—Cd2(L*m™ 21T 2t +17)). (21)

This motivates us to consider the following counting process
1\7,: suppose i1, - - - are i.i.d. random variables with P(f; >
s) = exp(—As — Bs?) where A = Cd%L%m_%T% and B =
Cd%, and let N, = infn{Zf’=1 f; > t}. By construction, the
probability of N > 8AT under condition (14) is controlled
by IP(IVT > 8AT). Therefore, it suffices to estimate ]P’(](’T >
8AT).

We compute the expectation of 7 (here notice A > B >
1):

o0
Ef = / s(A + 2Bs) exp(—As — Bs?)ds
0

A
> /B 5(A + 2Bs) exp(—2As) ds
0
1 B (3A 5

“m o \t;
+ B>—¥>1 (22)
243)¢ 7 T aa

On the other hand,

o0
Eff < / s2(A + 2Bs) exp(—As) ds
0

2 12B 33
A2 A% T 16A2

Therefore we may appeal to Kolmogorov’s inequality (Dur-
rett 2019, Theorem 2.5.2) (here S, denotes Y 7_, ;)

P(Ny > 8AT) = P(Sgar < T)

= P(Ssar — ESgar

16
< T —ESgar) < P(Sgar — ESgar < —T)

1
§T2varSSAT
BA o _C
= — Var — < —
T U T AT T JLIT

To sum up, we have established that with high probability
the number of partial derivative evaluations is bounded by

1

:0(d%L%m 2T7?)

1 2
= 0> (10g? - +log? (a0 ) ).

Lu

O(AT)

3 Discussion

We establish non-asymptotic complexity bounds for the
zigzag sampling algorithm. While we focus on zigzag sam-
pler in this work, we expect that similar analysis for other
PDMPs (Bouchard-Co6té et al. 2018; Vanetti et al. 2017;
Michel et al. 2014; Bierkens et al. 2020) can be carried out.
We leave these for future research.

We admit that our warm-start requirement (6) may be
stringent. We observe that (6) implicitly requires the con-
dition number « to be much smaller than d, as otherwise, if
k ~ d, (6) requires x>(uo || ©) = O(1) which is unrealistic.
Corollary 1 essentially requires k < d 5 for the analysis to
hold. This restriction on condition number is not completely
unexpected since the zigzag sampler does perform poorly
for highly anisotropic densities (see for example numerical
results in Michel et al. (2014)).

A major issue of the warm-start assumption comes from
our choice of X2 divergence, rather than total variation, 2-
Wasserstein distance, or KL divergence as in previous works
for non-asymptotic analysis of sampling algorithms. In par-
ticular, if we choose the initial condition

|x|?

L
dpo(x) = (E)% exp(— —21) dx, 23)

@ Springer
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2
as in previous works, then for U (x) = %, we have

2 . L 2 _
X (o llw) = Z(—2 ) exp(—L|x|"+Ux))dx — 1
T Rd

L
= K%(E)% /1;1 exp(—(L — %)|x|2) dx — 1

which violates (6). On the other hand, for the same choice of
o, as long as U satisfies Assumption 1, one can estimate

KL (o Il )
L d L
:(—)%/ (—log—
2w RA\2 2
L 2 L 2
+logZ — S|’ + U(x)) exp(— 5 Ix[?) dx

<—1
0ogkK.
) g

This means log KL(x0 || 1), and consequently the logarithm
of total variation or 2-Wasserstein distances are much smaller
than any algebraic power of d, making it suitable for initial-
ization. We hope the following conjecture is true:

Conjecture 1 Under Assumption 1, there exists a universal
constant K independent of all parameters, such that for any
initial density [Lo, the zigzag process with friction parameter

A = /L satisfies

KL(p(X7, V1) || i) < K exp(———=T) KL(jio || /).

KVL

If this is indeed true, we can establish the convergence in KL
divergence of the pure zigzag sampler using a feasible start,
without using LMC for initialization.

Another interesting open question is whether one can find
a tighter upper bound than Step 12 of Algorithm 1 in order to
reduce the computational complexity, since it magnifies the
proposed bouncing rates by O(+/d). The following lemma,
which might be of independent interest, provides a concen-
tration bound for |0, U| so that we might be able to give up
a small probability to obtain a much sharper bouncing rate
control.

Lemma 3 Let U (x) satisfy Assumption 1, then for any ¢ > 0,
IP’M<|8,C,. U| > 2L + 2¢vI log d) <3d°. (24)

The proof of this lemma, deferred to the appendix, is inspired
by Lee et al. (2020), which uses the following Brascamp-Lieb
inequality Brascamp and Lieb (1976):

@ Springer

Lemma4 Let U (x) satisfy Assumption 1, then for any g €
H'(w),

Var, g 5/ Vg(V2U) 'Vgdpu. (25)
R4

With Lemma 3, it might be possible to improve Algorithm
1 while surrendering a small probability by replacing Step 12
with P(t; > 5) = exp(—cs«/f| vi|logd) since (v; oy, U (x +
vs))4 < c+/L|v;|logd with high probability. This motivates
the following conjecture:

Conjecture 2 Under the Assumption 1, for any « and log %
that are both smaller than some algebraic power of d, there
exists an algorithm that gives a random variable X such that

X (pX) | 1) <e. (26)

Moreover, with high probability, the algorithm requires
0 (d/( log d(log % +1log x2(uo || u))) evaluations of partial
derivatives of U.

Unfortunately there are several difficulties for proving the
conjecture. One is that although d,,U does not exceed
O (logd) with high probability, we are unable to control
the partial derivatives for a trajectory of the zigzag process.
Another issue is that since some trajectories of the zigzag
process may go to regions with partial derivatives exceeding
O (logd), we do not always simulate the exact trajectories,
which introduces bias in the sampling.

Acknowledgements This work is supported in part by National Science
Foundation via grants CCF-1910571 and DMS-2012286. We would like
to thank Murat Erdogdu for pointing us to their complexity analysis of
Langevin Monte Carlo in chi-square divergence Erdogdu et al. (2020)
to remove the warm start assumptions.

Appendix
Proof of lemma 1

Proof Let A(t) = V; - V,U(X;). If no bouncing happens,
then

d
ROE V,"VIU(X,)V, < LIV, %

In addition, A(#) decreases when bouncing happens, since
there is some positive V,(l)ain (X;) being changed to
—V,(i) oy, U(X;) while X; and other V,(j )s remain unchanged.
Therefore, since | V;| does not change between refreshments,
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we have for any 1 € (0, Ty41 — T), >
MTx +1) < A(Ty) + tL| Vg, 2. (27)

Notice for a convex function U (x) that satisfy Assumption
1, we have by co-coercivity

IVU@)|? < 2LU (x),

therefore for any ¢ € [0, Ty4+1 — Tk), and any « > O,

'
UX1+) =UX7) +/0 MTy + 7)drt

L
< UXp) +1a(Te) + TlVTkl

(14b),(14c) /2 )
= U o VU (X7)| + 2Li%d

d )1
VLT
2d‘f) ,/U(XTk ) +2Li%d

=UX) +o(

=1+ a)U(Xg)
(28)

In particular,

UX7,,) < (1 + U (X)) +dVLtE  (—— +2V0L).

\/_

Choosing o = f , we have

U(X7,,) < A +a)U(X7) + CdLt},,.

Now we apply the above formula iteratively and derive

N+1
UXr) <1+ )NUXe) +CLd Y (1 +a)V 11
k=1
N+1
<+ ot)N+1(U(Xo) +CLd Y z,?)
k=1
(14d) (14e)

CVLTd.

_ 1 _ N+1 _
Here we used o = fT 0( ) so (1 + ) = 0(1),

which is true due to (14a), and that ¥ < VL LT, which is true
with our choice of T in (9). O

2 We remark here that A(r) is not well-defined at the bouncing times.
Nevertheless, (27) still makes sense since A () decreases at the bouncing
events, and since we only use (27) in the time integral sense, this will
not cause any problem.

Proof of lemma 2

Proof Let E = Z,ﬂvﬁl t;;. By properties of the Poisson pro-
cess Durrett (1999), if we condition on N, the distribution of
T1,T>, - - - , Ty has the same joint distribution as that of N
i.i.d. random variables uniformly distributed in (0, 7"). This
means

E@E|N) = 2 2 (T )’
IN) = ( 2(r-S"s )
| TN /t.1+~~+tN<T k; k ; k

dey -+ - dty. (29)

To calculate E(E | N), let us define

N

II(N’ T) - /11+~~~+tN<T (Z

k=1

N
T Zl‘k )dZN dry
k=1

and compute /1(N, T) by induction in N. For N = 0, as
the sum contains only one term, /7(0, T) = T2. An easy
calculation shows that I;(1,7) = %T3. We will show in
general

2N+ via

hN-T) =3

(30)

Indeed, suppose (30) holds for N — 1, we want to prove (30)
for N, the starting point of which is the following observation:

LN, T) = / Rdy - dn
1+t <T

T
—I—/ Ii(N —1,T —t;)ds.
0

The first integral can be treated by integrating the variables
one by one, from 7y to ty_1 and then ty_», etc.

/ fdty - - dry
t4Fty<T

=/ (T~ — - —ty_1)dty_y -+ dny
ity <T
1
=5/ (=t = —ty ) diy 2.+ dn
H4-Fty_o2<T
1 T 2
= 7/ AT — )N ldy = TN+2,
(N=DtJo (N +2)!
D
By the induction assumption (30) for N — 1 we have
T
/ ILI(N—-1,T — ) dy
0
2N N2

T 2N
:/ — (T —m)"dyy = ——T
o (N+1) (N +2)!
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Combining above with (31) we finish the proof for N. There-
fore

N!2(N 4+ 1)TN*T2 272

E(E | N .
&N = TV  (N+2!  N+2

The full expectation EE follows as N is a Poisson random
variable

EE E(E | N = n)P(N = n)

o

3
Il
=}

272 (VLT)" WLTY _ir
|

1

= n—+2 n!
2 VIT e (WL (JITY"
=2 Z((n+1)z (n+2)!>
2T 2 2e~ VLT _2r
VL L L VL

To get the desired estimate, we apply Chebyshev’s
inequality using the second moment. By the same arguments
leading towards (29), we have

N

NI
B 1) =7 [ (>
TN t+-+tn<T k=1

Denote

N 2
1} + (T — Ztk)z) )
k=1

N

N

2

LN, T>=/ >R+ @ =Y w?).
Nty <T 12 =1

Using the same induction argument as the proof of (30), we
can prove

4(N + (N + 6)TN+4

LN T) = (N + 4!

This can be easily verified for N
follows form the calculation:

L(N,T) = f i}
4+t <T

T
“r/ L(N —1,T —1t)dy
0

= 0, 1 and the induction

T
+2/ 21 (N =1, T —17) dy
0

1 r 4 1
= m\/(; tl (T—tl)N_ dtl

T
M/ (T — )N 3 dy
N+3) Jo

@ Springer

c(n+2)(n+3)(n+4)  n!

AN r, N
— | AT -m)Ntlar
+ T 1)!/(; i( 1) 1
_ AN DIV H6) iy
- (N + 4)! '
Thisshows E(2? | N) = M LN, T) = e T4
and therefore
[o)0]
EEzzz E(E? | N = n)P(N = n)
n=0
B i AT*(n + 6) ﬁT)"e,ﬁT

. 4 —JLT (\/—T)n _ (\/ZT)n
=are Z((n—}—Z)‘ 6(n+4)!)

472 24
= + 88_‘/ZT(

L L2
+ 3T + . )
R
This means
8T 28 T2
E(E -EE)? = —5 — 5 + 8 VI (=
L2 L L
+2T N 4 4e*ﬁT) _ 8T
Ly L2 2

where the inequality above holds for v/LT larger than some
universal constant (which we would assume as it is the inter-
esting parameter regime).

Finally, to conclude the proof, we apply Chebyshev
inequality to estimate the failure probability as

4T 27 | _ LE(E - EE)?
P(E>—)<P(E-EE>-"~—)< ———~
~ VL SV ST ar
2
< —.
VLT
O
Proof of lemma 3
Proof The first step is to show that
E,ld,U| < L. (32)

This is straightforward, since using integration by parts,

E,Aax,-wz:/ (ax,-wzdu:/ dyUdu <L, (33)
R4 R4
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and (32) then follows from Cauchy-Schwarz inequality.

The next step is to establish a concentration bound. Let
G(x) = ¥ (0, U), where ¥r(a) = ¥ (|a]) is a smooth non-
negative increasing function satisfying

Y (0) =¢'(0) =0, ¥(a) = la| for|a|l = 1, and [¢'(a)| < 2,
and g(x) = exp( %kG(x)). By the construction of G, we have
E, G = E, ¥ (dy,U) < 2E, |, U| < 2vL. (34)

Then Vg(x) = %W’(Bxi U)V (9, U)g(x). By Lemma 4 for
g(x), we have

AG
E, exp(AG) — (E, exp(T))2 = Var, g(x)
2
< % /}R [W(ax,U))ZWBX,U)(sz)”V(ax,.U)g%x) du
<2’ / V(3 U)(VZU) 'V (0, U) g (x) dpa
]Rd

= AZ/ dyx Ug?(x)dp < 22LE, exp(AG).
]Rd

Thus for A < —L_ we have

2L

1 IYERY)

Now we use (35) recursively, and we obtain for H(X) :=
E, exp(AG),

= 1o\2 A
HO) < ﬂ)(—l . A4_L) Jlim H (5" (36)

Notice

tim H( = tim (£, exp"0))’
1m — = l1mm Xp(—
£— 00 L £—00 w EXP yé

AG ¢
= lim (1 +EM7) = exp(AE,,G). (37)

{—o00

Moreover, by Bobkov and Ledoux (1997)*Proposition 4.1,

00 1 ok
M=)
k=0 4k
14+ VL
<

T 1AL

Substituting (37) and (38) into (36), we obtain

1+ AL
H() < ]_‘_—\/—exp()»]EMG).

AL

(38)

Finally, combining the above exponential moment bound of
G with Chebyshev inequality, we get

14+ AVL
P, (G(x) >E,G + r) < exp(—in)

Now take A = 1/2+/L, and r = 2¢+/Llogd, and using (34)
(noticing G(x) = |0y, U| when G(x) > r since r > 1), we
arrive at

IP’M<|BXI.U| >2JL + 2cﬁlogd) <34
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