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1 Introduction

The past decades have seen many advances in moving holographic QCD beyond the strict
Nf � Nc limit, which corresponds to the quenched approximation on the lattice, where
fermions are not allowed to run in loops. In holographic QCD, this is equivalent to neglecting
the effect of the flavor degrees of freedom on the supergravity background. For top-down
constructions built from intersections of “color” and “flavor” branes like the Witten-Sakai-
Sugimoto model (WSS) [1, 2], it means not only neglecting the backreaction of the flavor
branes in the background generated by the color branes, but also suppressing interactions
between mesons (brane fields) and glueballs (bulk fields).

Given that Nf ∼ Nc in real QCD, moving beyond the strict Nf � Nc limit not only
produces more precise predictions for hadron physics, it allows holographic models to make
predictions for processes that allow (indirect) observation of glueballs via decay to mesons
(see e.g. [3, 4]), and, as is our focus here, mixing between meson and glueball mass eigenstates.
In addition, one might hope that finite Nf/Nc effects will ameliorate some of the problems
plaguing (especially top-down) holographic QCD, such as the large number of light, spurious
states in the glueball [5] and meson [2] spectra. From the phenomenological side, it has
long been conjectured that the light isospin 0 mesons mix with glueball states [6–9].

Finding exact supergravity solutions that do include flavor backreaction remains a
significant challenge, because brane intersections boast fewer isometries than single stacks
of branes and thus require substantially more complicated solutions. Some progress has
been made in the Veneziano limit, where Nf/Nc is fixed and finite, and Nf , Nc → ∞.
Closed-form solutions with spatially localized flavor branes have been found, but only in
supersymmetric models such as [10–12]. Most works eliminate the difficulty of reduced
isometry by artificially enlarging the isometry group, that is, by “smearing” the flavor
branes transverse to their worldvolumes. (See for instance [13] with smeared D7-flavor
branes in the Klebanov-Witten model, smeared D6-flavors in ABJM [14], and [15] for a
beautiful review of smeared Veneziano-limit backgrounds.) An alternative option, that
has yielded many interesting results over the past several years, is to take the Veneziano
limit [16] in a simpler, bottom-up model: in Improved Holographic QCD (IHQCD) [16].

Incorporating flavor physics in Witten-Sakai-Sugimoto (WSS) is much more difficult. It
has, however, been attempted at leading order in Nf/Nc — with Burrington, Sonnenschein
and Kaplunovsky [17] tackling localized flavor branes, and Bigazzi and Cotrone [18] smeared
ones. These backgrounds are the basis of our approach.

In this paper, we study an example of glueball-meson mixing in the WSS model [1, 2].
We focus on mixing between a vector glueball, dual to a mode of the bulk graviton, and a
(pseudo)scalar meson, dual to transverse flavor-brane fluctuations. The effect arises due
to a quadratic term in the DBI action that couples graviton modes with brane modes, as
pointed out in [19]. We work in the “smeared” limit of [18], where the brane scalar and
bulk vector modes decouple from all other excitations at quadratic order.

We will show not only that the mixing effect arises at the same order in Nf/Nc as
the first-order backreaction of the flavor-branes on the geometry, but also that including
both effects is necessary to generate a physically sensible Lagrangian, and to preserve the
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translation symmetry broken by the probe branes and restored in the smeared approximation.
We also establish a general method for finding the mass eigenvalues for a Lagrangian with
vector-scalar mixing, in which the result involves scalar fields that have kinetic and mass
terms that cannot be simultaneously diagonalized. We show that the mass spectrum of the
vector glueball is unaffected by the mixing term, while the scalar mass spectrum may be
altered substantially.

Though the states we study appear to be spurious from the perspective of the lattice and
glueball spectra, our work serves not only as a “warm-up” for a comprehensive treatment
of backreaction on the hadron spectrum, it is also relevant to other holographic models
relying on brane intersections, like the famous D3-D5 model [20] often used in AdS/CMT.

We should note that some other examples of glueball-meson mixing have been explored
by other authors. Rinaldi et al. used a bottom-up model to argue that glueball and meson
states above 2GeV experience very little mixing [21]. Leutgleb and Rebhan, meanwhile,
pointed to a glueball-meson mixing phenomenon from the flavor-brane Chern-Simons term
in WSS, which involved a glueball dual to a bulk Ramond-Ramond 1-form, and the η meson
(dual to a mode of the brane gauge field) [22].

The outline of this paper is as follows: in section 2 we briefly review the original WSS
model, then describe the backreacted geometries of [17, 18]. In section 3 we derive the mixed
quadratic-order action for the vector glueball and brane scalar, identifying the realization
of a residual translation symmetry. We establish a method for finding the mass eigenvalues
of our glueball and meson states in section 4, and identify the linear order corrected masses
of the corresponding hadrons, discussing the trends we find there in section 5. In section 6
we conclude and describe directions for future work. We relegate tedious but important
details to a series of appendices.

2 Review of the WSS model

We first give an brief overview of the WSS model without and with the leading-order
backreaction, before turning to technical details in the next subsections. We also take this
opportunity to establish our variables and conventions.

2.1 Overview of the WSS model

The WSS model is one of the most commonly used holographic QCD frameworks, due
to its elegant and intuitive geometric realization of confinement [1] and chiral symmetry-
breaking [2]. The model is based on a non-supersymmetric brane intersection, in which Nc

D4-branes provide the color SU(Nc), while parallel stacks of Nf D8- and D8-branes provide
the chiral U(Nf )L× U(Nf )R flavor group. Here (as in [2]) we focus on the case where the
flavor branes are coincident, and the quark mass is zero.

Both stacks of branes are extended in the (3+1) dimensions of the dual field theory,
and are orthogonal on the remaining 6 dimensions as shown in table 1. In particular, the
D4-branes are extended along τ , taken to be periodic as τ ∼ τ + δτ .

When Nc � 1 and Nc � Nf , the D4 branes alone curve the spacetime, generating a
confining supergravity background. As in [2], antisymmetric boundary conditions imposed
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xi τ U xα

D4 X X X X
D8, D8 X X X X X X X X

Table 1. Brane configuration and coordinate labels in the WSS model. xµ = (x0, xi) denotes the
coordinates common to both color and flavor branes, which span the field theory directions. The
Nc color D4-branes wrap the compact τ direction, where the Nf flavor D8’s are localized in this
direction. The flavor branes are extended in the remaining 5 directions: a radial coordinate U and
an S4 parameterized by xα.

on the fermions living on the flavor branes along the compact τ direction lift the masses of
these states so they do not appear in the light spectrum.

When the flavor branes are treated as probes, the D8 and D8-branes assume a non-
trivial profile in this background, joining deep in the space (in the IR of the field theory)
but remaining parallel and separated near the boundary (in the UV). This realizes the
breaking of U(Nf )L× U(Nf )R → U(Nf )V at low energies. The closed string degrees of
freedom (or, at low energies, the supergravity modes) correspond to glueball states. Open
string degrees of freedom (or the brane fields) correspond to mesons.

Both Burrington et al. [17] and Bigazzi & Cotrone [18] furnish first order in Nf/Nc

corrections to the supergravity background generated by the D4-branes. In the compre-
hensive work of [17], the flavor branes are localized in the τ direction, and solutions are
given as a Fourier decomposition around the τ circle. In [18], the flavor branes are smeared
along the τ circle, maintaining the same isometry as the original, un-backreacted geometry,
which permits them to identify analytic solutions.

The physical interpretation of smearing the flavor branes around the τ circle is somewhat
mysterious, especially in the WSS context, where it implies coincident branes and antibranes.
We believe that the proper interpretation of smearing and of [18]’s result is actually as the
zeroth τ -direction Fourier mode of the full, τ -dependent solution from [17]. Indeed, one can
check that truncating [17]’s ansatz on the constant mode in the τ direction yields the same
equations of motion as [18]’s. (As discussed below, the background solutions of the two
papers differ, however, due to diverging choices of boundary conditions.)

The spectrum of excitations above this background contains Kaluza-Klein (KK) towers
on the τ circle, which for τ -dependent backgrounds should yield highly non-trivial mixing
among many different levels in the KK towers. However, we will see that restricting to the
trivial mode of the background in the τ direction also allows us to truncate the graviton
excitations to the lowest KK mode, as well as limiting the components of the graviton
we need to consider. This radically simplifies our analysis. Specifically, it allows us to
isolate a glueball-meson mixing between just two fields. Because of this simplification,
in this work we use the constant τ -direction Fourier mode of the background in [17] (or
equivalently, [18]).

We now provide some further details and establish conventions for the WSS model with
and without backreaction.
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2.2 D4-brane background

The supergravity background generated by the Nc D4-branes is determined by the super-
gravity action given in string frame as

Sbulk = 1
2κ2

10

∫
d10x

√
− det g

[
e−2φ

(
R− 1

12HMNLH
MNL + 4∂Mφ∂Mφ

)
− 1

2 · 4!F
2
4

]
,

(2.1)
where gMN is the metric, R is the Ricci scalar, F4 is the 4-form sourced by the D4-branes,
and φ is the dilaton. HMNL is the field strength for the Kalb-Ramond field BMN , which
we ignore in what follows: it vanishes on the D4-brane background and on the smeared,
first-order-backreacted background described in the next subsection. It also does not couple
at quadratic order to the excitations we are interested in. The indices N and M run over
the 10 spacetime coordinates, and the Newton constant is given by κ2

10 = (2π`s)8

4π , where `s
is the string length.

The equation of motion for the metric,

0 = G̃(0)
MN = R̃

(0)
MN − g̃

(0)
MN

[1
2R̃

(0) + 2(∇̃(0))2φ̃(0) − 2
(
∇̃(0)φ̃(0)

)2
− 1

4 · 4!e
2φ̃(0)(

F̃
(0)
4

)2]
+ 2∇̃(0)

M ∇̃
(0)
N φ̃(0) , (2.2)

will come in handy below. Here we are defining G̃(0) as the “supergravity version” of the
Einstein tensor — that is, as the combination of Riemann tensor, dilaton, and 4-form field
strength appearing on the right-hand side. This combination vanishes on the D4-brane
background.

Here we are introducing the notation gMN for the metric including graviton modes, g̃MN

for the background metric, and g̃(0)
MN for the unbackreacted background metric — that is, the

probe limit. We use the same conventions for the Ramond-Ramond forms and the dilaton.
The near-horizon geometry of the D4-branes satisfies this equation as well as equations

for the dilaton and Ramond-Ramond forms. The solution is given by

ds2
(0) := g̃

(0)
MNdx

MdxN =
(
U

R

)3/2 (
ηµνdx

µdxν + f(U)dτ2
)

+
(
U

R

)−3/2
(
dU2

f(U) + U2dΩ2
4

)

eφ̃
(0) = gs

(
U

R

)3/4
, F̃

(0)
4 = dC̃

(0)
3 = 2πNc

V4
ε4 , f(U) = 1− U3

KK

U3 , (2.3)

with ε4 the volume form on the 4-sphere, and R3 = πgsNc`
3
s. The volume of the 4-sphere is

V4 = 8π2

3 .
Recall that τ is periodic, with τ ∼ τ + δτ . The radial coordinate U transverse to the

D4 stack ranges over U ∈ [UKK,∞), where UKK > 0. In order to avoid a conical singularity
we must have δτ = 4π

3
R3/2

U
1/2
KK

. We often also use the KK scale in the periodic τ direction,
MKK = 2π/δτ .

In terms of field theory quantities, the constants appearing in the background are

R3 = g2
YMNc`

2
s

MKK
, UKK = 2

9g
2
YMNcMKK`

2
s , gs = g2

YM

2πMKK`s
, (2.4)

where gYM is the effectively 4d Yang-Mills coupling of the field theory (below the MKK
scale). The supergravity description is reliable while 1� Ncg

2
YM � 1/g4

YM [1, 2].
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2.3 Adding probe flavor branes

Adding stacks of Nf D8- and Nf D8-branes to the D4 background above realizes QCD’s
SU(Nf )L×SU(Nf )R flavor symmetry. The D8 and D8-branes are separated along the τ
direction and extended along radial coordinate U , along the “field theory directions” xµ, and
along the S4. In the probe limit, the brane and anti-brane stacks find an energy-minimizing
configuration by joining at a finite radial value U = U0, thus tracing out a curve in the U
and τ directions (representing the breaking of chiral symmetry) [1, 2].

We choose to embed the branes with the “maximal” embedding, such that U0 = UKK.
The embedding function thus simplifies so that the D8 and D8 branes are at antipodal
points on the τ circle. This makes the τ direction transverse to the branes. Especially when
discussing the symmetry properties of brane modes, it will sometimes be helpful to use the
coordinate Z ∈ [−∞,∞], related to U as

U

UKK
=
(

1 + Z2

U2
KK

)1/3

. (2.5)

The Z-coordinate is natural on the branes, where the (anti)symmetry of the normalizeable
modes determines the parity and charge-conjugation quantum numbers of the corresponding
mesons, as detailed in [2]. However, Z double-covers the U -coordinate, which is more
natural in the bulk.

The degrees of freedom on the D8-branes consist of a non-abelian U(Nf ) gauge field
and a single, U(Nf )-valued scalar Φ, representing transverse fluctuations of the flavor branes
in the τ direction.

At low energies, the physics on the branes is described by the Dirac-Born-Infeld (DBI)
and Chern-Simons (CS) actions. Note that these actions encode not only terms involving
the brane degrees of freedom, they also include couplings between the bulk graviton, dilaton,
and Ramond-Ramond forms and the brane fields.

The Chern-Simons term plays no role in the present work, as argued in appendix C.
The DBI action, meanwhile, is given by

SDBI = − 2π
(2π`s)9

∫
d9xTr

[
e−φ

√
− det (P [gab] + 2π`2sFab)

]
, (2.6)

where Fab is the field strength for the gauge field on the brane, and P [gab] is the pullback
of the metric onto the brane. The indices {a, b} run over the coordinates along the branes.

We work in static gauge and in the extremal configuration of the flavor brane stack, so
the pullback of background metric is trivial for directions along the brane, but has nontrivial
contributions from the scalar Φ encoding transverse fluctuations in the τ direction. It is
given by

P [gab] = gab +
√

2π`2sgτa∂bΦ +
√

2π`2sgτb∂aΦ + 2π`2sgττ∂aΦ∂bΦ , (2.7)

where we have dropped terms associated with the bulk Kalb-Ramond B-field and the
brane gauge field, as they are not relevant here. Our convention fixes the units of Φ to be
inverse-mass (as for the gauge field).
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When one expands the DBI action order by order in field fluctations, the leading terms
are in fact linear (tadpole) terms in the dilaton and graviton. This is not surprising: after
all, the D8 branes act as sources for the dilaton and graviton, and the current supergravity
background is a solution to the Einstein equations that only takes into account the masses
of the D4-branes (as noted in [19]). In the next subsection, we will see that these tadpoles
indeed disappear when one takes into account the backreaction of the flavor branes.

From this point on, we will ignore terms in the brane action associated with the gauge
field, since it does not couple at quadratic order to the excitations of interest. We will also
restrict focus on the U(1) sector, so Φ denotes just the U(1) part of the scalar field, and the
trace over flavor indices in the DBI action simply contributes an overall factor of Nf .

The parts of the DBI action relevant to our story thus become

SDBI ⊃ −
ζ̃δτ

2κ2
10

∫
d9x e−φ

√
− detP [gab] , (2.8)

where we define parameters ζ̃, and ζ as

ζ̃ = 9
8gsU2

KK

(
UKK
R

)3/2 (Ncg
2
YM)2Nf

27π3Nc
:= 9ζ

8gsU2
KK

(
UKK
R

)3/2
, (2.9)

and

ζ = (Ncg
2
YM)2

27π3

(
Nf

Nc

)
. (2.10)

We will see that ζ (or equivalently ζ̃) controls both the backreaction of the flavor branes on
the background and the strength of the mixing between glueball and meson modes.

To get an idea of the rough size of ζ in QCD, note that the low-energy limit of the WSS
model relies on two free parameters: MKK and the effective 4D ’t Hooft coupling Ncg

2
YM.

The WSS model’s predictions for the pion decay constant and the ρ mass,

f2
π =

(
.318

)g2
YMN

2
cM

2
KK

54π3 (2.11)

and
mρ =

(
.817

)
MKK , (2.12)

are often used to fix MKK and Ncg
2
YM. With the Nf = Nc = 3, this gives ζ = 0.33.

2.4 Backreaction of the D8-branes

We now move beyond the original WSS model to include the leading order backreaction
of the flavor D8-branes by solving the equations of motion derived from Sbulk + SDBI, as
in [10, 18].

We denote the backreacted versions of the background metric, dilaton, and Ramond-
Ramond four-form field strength as g̃MN , φ̃, and F̃4, respectively. The new Einstein equation
is given by perturbing the metric as gMN = g̃MN + δgMN and expanding to leading order

– 6 –
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in δgMN :

δ

(
Sbulk + SDBI

)
= − 1

2κ2
10

∫
d10x

√
− det g̃ e−2φ̃ G̃MN δg

MN

− ζ̃δτ

4κ2
10

∫
d10x

(
δ(τ) + δ(τ + δτ/2)

)e−φ̃√− det g̃√
g̃ττ

(
g̃ab δg

ab
)
,

(2.13)

where as before G̃MN is the “supergravity version” of the background Einstein tensor and
we have rewritten the DBI action as an integral over the bulk coordinates. The modified
equation of motion for g̃ab is thus

G̃ab = − ζ̃δτ2
(
δ(τ) + δ(τ + δτ/2)

) eφ̃√
g̃ττ

g̃ab . (2.14)

φ̃ is also modified. The source term in the Einstein equation corresponds to a tadpole term
for the graviton on the D8-brane worldvolume. Solving the new Einstein equations with
this source term included represents a leading-order backreacted solution, and will eliminate
the tadpole terms as a result.

The source term representing the flavor branes is not uniform along the τ direction.
Indeed, the leading order τ -varying backreaction was worked out in [17] as a Fourier mode
expansion along the τ direction. As noted previously, we consider only the trivial τ -direction
Fourier mode in what follows — equivalent to the “smeared” approximation. This allows
us to consider a decoupled sector of the excitations.

In the smeared approximation, the equation of motion for g̃ab becomes simply

G̃ab = −ζ̃ eφ̃√
g̃ττ

g̃ab . (2.15)

We can also assume from now on that the backreacted background metric, dilaton, and
potential depend only on the radial coordinate U (and, in particular, are τ -independent),
and also that the background metric remains diagonal. In other words, we assume that
the backreacted background obeys the same isometries as the original, un-backreacted
version, with the backreaction just modifying the functions of U appearing in equation (2.3).
Because the D8-branes do not directly source a C3, the field strength F̃4 = F̃

(0)
4 remains

unchanged.
It might appear at this point that equation (2.15) is “exact in ζ”, and thus that no

approximation to leading order in the backreaction has been made. However, one should
remember that in the process of arriving at this equation, we began with just the D4-
branes, found the geometry they source, and then took a near-horizon limit to obtain the
supergravity action (2.1), before adding in the D8-branes. To obtain equations truly exact
in ζ, we would have to begin by treating the D4 and D8 branes on an equal footing, find
the geometry sourced by both, and then take a near-horizon limit of that. As a result, we
should interpret (2.15) as already assuming that ζ is small.

The specific results for the background to linear order in ζ, as derived by [18], are
summarized in appendix A.
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3 Excitations around the background

We now turn to the a subset of the fluctuations (mesons and glueballs) on this backreacted
background: the brane scalar Φ, and gravitons hMN defined as

gMN = g̃MN + hMN . (3.1)

We focus in particular on a piece of the 10D graviton {hτµ, hτU} which transforms as a 5D
vector in (xµ, U).

The graviton should be expanded in terms of Kaluza-Klein (KK) modes along the τ
and S4 directions, which indeed correspond to higher mass and spin glueball states. We can,
however, neglect all but the trivial KK modes of the graviton in what follows provided that
the background as no τ dependence — as is the case in the smeared approximation we use.
(If one allowed the background to depend on τ , the different KK modes would mix with each
other.) Similarly, we can restrict to the zeroeth mode in the KK tower associated on the S4.

We thus will move forward assuming each excitation field is a function only of the
Lorentz coordinates xµ, and the U (or equivalently Z) coordinate.

3.1 Expanding the bulk action

We now derive an effective Lagrangian for these modes by expanding the bulk and DBI
actions to quadratic order in fields. Expanding the bulk action, we have

Sbulk = − 1
2κ2

10

∫
d10x

√
− det g̃ e−2φ̃ g̃ττ

×
{

1
4 g̃

µρg̃νσ
(
∂ρh

τ
σ − ∂σhτρ

)(
∂µh

τ
ν − ∂νhτµ

)

+ 1
2 g̃

µν g̃UU
(
∂µh

τ
U − ∂Uhτµ

)(
∂νh

τ
U − ∂Uhτν

)
+ G̃UUhτUhτU + G̃µνhτµhτν

}
. (3.2)

(See appendix B for the details.) Indices are raised and lowered using the background metric,
g̃MN . Note the appearance of the background supergravity “Einstein tensor” G̃, which
allows us to plug in the equation of motion (2.15) satisfied by the backreacted background.
This gives

Sbulk = 1
2κ2

10

∫
d10x

√
− det g̃ e−2φ̃ g̃ττ

{
− 1

4 g̃
µρg̃νσ

(
∂ρh

τ
σ − ∂σhτρ

)(
∂µh

τ
ν − ∂νhτµ

)

− 1
2 g̃

µν g̃UU
(
∂µh

τ
U − ∂Uhτµ

)(
∂νh

τ
U − ∂Uhτν

)
− ζ̃eφ̃√

g̃ττ
g̃UUhτUh

τ
U −

ζ̃eφ̃√
g̃ττ

g̃µνhτµh
τ
ν

}
,

(3.3)

making it clear that mass terms for {hτµ, hτU} appear as leading order corrections due to the
back reaction.
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Next, we switch to a dimensionless radial coordinate, with which

u = U

UKK
, hτu = UKKh

τ
U , f(u) = 1− u−3 , (3.4)

and for convenience rewrite the action in terms of three functions {a(u), b(u), c(u)} defined as

g2
s

UKKR3

√
−det g̃

det s e
−2φ̃ g̃ττ g̃

µρg̃νσ = a(u) ηµρηνσ , (3.5)

g2
s

UKKR3

√
−det g̃

det s e
−2φ̃ g̃ττ

g̃µν g̃UU

U2
KK

= M2
KKa(u)b(u)ηµν , (3.6)

and
g2
s

UKKR3

√
−det g̃

det s e
−2φ̃ g̃ττ

ζ̃eφ̃√
g̃ττ

g̃µν = ζM2
KK

2 c(u) ηµν , (3.7)

where det s is the determinant of the metric on the four-sphere. These expressions are
essentially equivalent to defining the functions in g̃ττ , g̃µν , and g̃UU . On the original
un-backreacted WSS background,

a(0)(u) = uf(u) , b(0)(u) = 4
9u

3f(u) , c(0)(u) = u5/2
√
f(u) . (3.8)

Armed with these definitions, we integrate out over the τ direction as well as the 4-sphere,
yielding an effectively 5D bulk action,

Sbulk = K

∫
d4x du

{
− a(u)

4 ηµρηνσ
(
∂ρh

τ
σ − ∂σhτρ

)(
∂µh

τ
ν − ∂νhτµ

)
− M2

KKa(u)b(u)ηµν
2

(
∂µh

τ
u − ∂uhτµ

)(
∂νh

τ
u − ∂uhτν

)
− M2

KKζc(u)
2 ηµνhτµh

τ
ν −

M4
KKζb(u)c(u)

2 hτuh
τ
u

}
, (3.9)

where the overall constant K is defined as

K = V4δτ U
2
KKR

3

2κ2
10g

2
s

. (3.10)

This form makes clear that {hτµ, hτu} indeed transforms as a 5D vector on a warped back-
ground (expressed through the functions a(u), b(u), and c(u)), with explicit mass terms
that arise through the backreaction of the D8-branes on the D4 background. Notice that
the action is written in terms of just two physical parameters MKK and ζ.

3.2 Expanding the brane actions

Next we turn to the action on the flavor branes, expanding to quadratic order in the scalar Φ
and the bulk graviton components hτµ and hτu. All contributions come from the DBI action.
The Chern-Simons action, as we argue in appendix C, does not contribute terms of this type.
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On the brane, it is natural to use the Z coordinate which fully covers the D8, D8 stacks,
instead of the radial U coordinate. The scalar Φ(xµ, Z) can be thus be thought of as a sum
of a field symmetric in Z, and a field anti-symmetric in Z:

Φ = Φ(S) + Φ(A) . (3.11)

Using the DBI action in equation (2.8) and the pullback of the bulk metric in equa-
tion (2.7) — where now the bulk metric includes graviton fluctuations — we have

SDBI ⊃ −
2ζ̃ δτ
2κ2

10

∫
d8σdZ e−φ̃

√
− det ǧ
g̃ττ

g̃ττ

[
g̃µνhτµ∂νΦ− dZ

dU
g̃UUhτU∂ZΦ + · · ·

]
, (3.12)

where det ǧ represents the determinant of the metric expressed in terms of the Z-coordinate.
From this form, along with the facts that dZ

dU is an anti-symmetric function of Z and
{hτµ, hτU} must be symmetric functions of Z, we can see that only the symmetric part of the
scalar Φ contributes to the coupling. We will therefore ignore the anti-symmetric part in
what follows.1

We ultimately prefer to work with an integral over U (thinking of all fields as functions
of U). The fact that we are working with functions symmetric in Z thus simply determines
the boundary condition at U = UKK (or u = 1) to be

0 = ∂ZΦ(S)
∣∣∣
Z=0

= dU

dZ
∂UΦ(S)

∣∣∣∣∣
U=UKK

. (3.13)

With this, we arrive at the expansion to quadratic order given by

SDBI ⊃
2ζ̃δτ
2κ2

10

∫
d8σ dU e−φ̃

√
− det g̃
g̃ττ

g̃ττ

×
[
−1

2 g̃
µν∂µΦ(S)∂νΦ(S) − 1

2 g̃
UU∂UΦ(S)∂UΦ(S) − g̃µνhτµ∂νΦ(S) − g̃UUhτU∂UΦ(S)

]
.

(3.14)

Integrating this expression over the 4-sphere, converting to the dimensionless radial
coordinate u, and applying the same definitions utilized for the bulk action gives us

SDBI ⊃ K
∫
d4x du ζM2

KKc(u)
[
−1

2η
µν∂µΦ(S)∂νΦ(S) − 1

2M
2
KKb(u)∂uΦ(S)∂uΦ(S)

− ηµνhτµ∂νΦ(S) −M2
KKb(u)hτu∂uΦ(S)

]
. (3.15)

Notice that this action has the same overall constant K as the bulk action, involves the
same functions {b(u), c(u)} which appeared in our bulk action expansion, and no others,
and again depends on the two essential parameters MKK and ζ.

1Note that our Φ is related by a factor of Z to the brane scalar y in WSS, so the symmetric mode of Φ
in fact corresponds to an antisymmetric, parity-odd mode of y.
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3.3 Gauge symmetry and absorption of a scalar field

The full quadratic action, the sum of equations (3.9) and (3.15), can be written as

S = K

∫
d4x du

{
− a(u)

4 ηµρηνσ
(
∂ρh

τ
σ − ∂σhτρ

)(
∂µh

τ
ν − ∂νhτµ

)
− M2

KKa(u)b(u)ηµν
2

(
∂µh

τ
u − ∂uhτµ

)(
∂νh

τ
u − ∂uhτν

)
− ζM2

KK
2 c(u)ηµν

(
hτµ + ∂µΦ(S)

)(
hτν + ∂νΦ(S)

)
− ζM4

KK
2 c(u)b(u)

(
hτu + ∂uΦ(S)

)2
}
.

(3.16)
Suppose for a moment we ignore the D-branes (or equivalently set ζ = 0). In that case,

the bulk fields decouple from the brane modes, and the object {hτµ, hτu} is a 5-dimensional
massless vector field in a curved background, with a gauge symmetry that was originally a
diffeomorphism of the metric, associated with transformations of the τ -direction. Once we
include the D8-branes, this transformation also involves a shift of the scalar field Φ, which
is associated with the location of the flavor branes on the τ circle. Specifically, the new
gauge transformation (really a Stueckelberg-like field redefinition) is

hτµ → hτµ − ∂µξ , hτu → hτu − ∂uξ , Φ(S) → Φ(S) + ξ , (3.17)

where ξ = ξ(xµ, u). Note that this is only a valid symmetry because we have included both
the backreacted background metric and the mixing term; if we attempt to include either
one without the other, we end up with an action that appears to violate this symmetry, and
results in a unphysical Lagrangian. This emphasizes the fact that the mixing term ought,
in fact, to be thought of as part of the backreaction.

We can take advantage of this symmetry to absorb away the scalar hτu, simplifying our
analysis. (Note that unlike the vector field on the brane analyzed by [2], this vector field
includes no massless zero mode to complicate the process.) We begin by defining the field
κ such that

∂uκ = hτu , (3.18)
and then we define a vector field κµ such that

κµ = hτµ − ∂µκ , Fµν = ∂µκν − ∂νκµ . (3.19)

Finally, we also define the scalar field

ω =
√
ζMKK

(
Φ(S) + κ

)
. (3.20)

These definitions leave us with

S=K

∫
d4xdu

{
− a(u)

4 ηµρηνσFµνFρσ−
M2

KKa(u)b(u)ηµν
2 ∂uκµ∂uκν−

M2
KKζc(u)

2 ηµνκµκν

− c(u)
2 ηµν∂µω∂νω−

M2
KKb(u)c(u)

2 ∂uω∂uω−MKK
√
ζc(u)ηµνκµ∂νω

}
,

(3.21)
an action involving only a 4-component massive vector field κµ and a scalar ω.
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4 Mode expansion in the radial coordinate

To determine the mass spectra of the hadrons dual to κµ and ω, we first decompose these
fields into eigenmodes along the radial direction, U .

Our quadratic action (3.21) is a sum of three terms:

S = SS + SV + SM (4.1)

where SV is the part of the action just involving the vector, SS is the part just involving the
scalar, and SM is the part of the action with the term that mixes the vector with the scalar.

We begin by constructing mode expansions for the vector and scalar fields separately,
and expressing the mixing term in terms of these expansions. Then, we show that the
mixing term has no effect on the mass spectrum of the vector glueball, since we can eliminate
the mixing by shifting the vector fields by a term akin to a gauge transformation. This
will result in an action for the scalar fields with kinetic and mass terms which cannot be
simultaneously diagonalized. Nonetheless, it is possible to diagonalize the equations of
motion, and thus find the spectrum of mass poles for the scalar fields.

4.1 Vector mode expansion

We begin with the terms quadratic in the vector field:

SV =K

∫
d4xdu

{
− a(u)

4 ηµρηνσFµρFρσ−
M2

KKa(u)b(u)ηµν
2 ∂uκµ∂uκν−

M2
KKζc(u)

2 ηµνκµκν

}
,

(4.2)
and expand the vector field in eigenmodes ψn(u):

κµ(xν , u) =
∑
n

Bn
µ(xν)ψn(u)√

a(u)
. (4.3)

We include the factor of 1√
a(u)

in this expression so that the “wavefunctions” ψn(u) will be
canonically orthonormal (with a trivial metric). Defining fnµν as the field strength of Bn

µ

and integrating by parts on u, we can then write the action in terms of a tower of 4d vector
glueballs {Bn

µ} as

SV = K

∫
d4x du

∑
n,m

ψn

{
− ψm

2 ηµρηνσfnµνf
m
ρσ

+ M2
KK
2

(
1√
a(u)

∂u

[
a(u)b(u)∂u

(
ψm√
a(u)

)]
− ζc(u)

a(u) ψm
)
ηµνBn

µB
m
ν

}
. (4.4)

The ψn(u) can be chosen to be eigenstates of the operator Ĥψ such that

Ĥψψn = − 1√
a(u)

∂u

[
a(u)b(u)∂u

(
ψn√
a(u)

)]
+ ζc(u)

a(u) ψn = λnψn , (4.5)
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with which our vector action becomes

SV = K

∫
d4x

∑
n

{
− 1

2η
µρηνσfnµνf

n
ρσ −

M2
KKλn
2 ηµνBn

µB
n
ν

}
. (4.6)

In what follows, we will also use notation where ψn(u) is represented by the ket |n〉. In
this language,

Ĥψ|n〉 = λn|n〉 , 〈n|m〉 = δnm ,
∑
n

|n〉〈n| = 1̂ . (4.7)

4.2 Scalar mode expansion

Now consider the scalar-only part of the action

SS = K

∫
d4x du c(u)

{
− 1

2η
µν∂µω∂νω −

M2
KKb(u)

2 ∂uω∂uω

}
. (4.8)

Again, we assume we have an expansion for the scalar field of the form

ω(xµ, u) =
∑
i

$i(xµ)ϕi(u)√
c(u)

, (4.9)

where the factor 1√
c(u)

is included so that the ϕi(u) wavefunctions are canonically
orthonormal.

This allows us to rewrite the scalar action in terms of the scalar tower {$i} as

SS =K

∫
d4xdu

∑
i,j

ϕi

{
−ϕjηµν∂µ$i∂ν$

j+M2
KK
2

1√
c(u)

∂u

[
b(u)c(u)∂u

(
ϕj√
c(u)

)]
$i$j

}
.

(4.10)
Here we define an operator Ĥϕ whose eigenstates are ϕi(u) with

Ĥϕϕi = − 1√
c(u)

∂u

[
b(u)c(u)∂u

(
ϕi√
c(u)

)]
= χiϕi(u) . (4.11)

Our scalar action becomes

SS = K

∫
d4x

∑
i

{
− 1

2η
µν∂µ$

i∂ν$
i − M2

KKχi
2

(
$i
)2
}
. (4.12)

Representing the wavefunction ϕi(u) as |i〉, we define a similar notation for the scalars as
we did for the vectors:

Ĥϕ|i〉 = χi|i〉 , 〈i|j〉 = δij ,
∑
i

|i〉〈i| = 1̂ . (4.13)

Here χi is the eigenvalue of the ith state. Note that the sets {ψn(u)} and {ϕi(u)} will be
distinct orthonormal bases for the same Hilbert space.
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4.3 Mass eigenstates for the bulk vector and brane scalar modes

We now turn to the mixing term,

SM = K

∫
d4x du

{
−MKK

√
ζc(u)ηµνκµ∂νω

}
. (4.14)

If we expand this in terms of our mode towers for the vector and scalar, and define the
“mixing operator”

K̂ψ(u) =
√
c(u)
a(u) ψ(u) , (4.15)

we can write this as

SM = K

∫
d4x

∑
i,n

{
−MKK

√
ζ〈i|K̂|n〉ηµνBn

µ∂ν$
i

}
. (4.16)

When we combine this with the previously analyzed vector action, we have

SV + SM = K

∫
d4x

∑
i,n

{
− 1

4η
µρηνσfnµνf

n
ρσ (4.17)

− M2
KKλn
2 ηµν

[
Bn
µB

n
ν + 2

√
ζ

λnMKK

∑
i

〈i|K̂|n〉Bn
µ∂ν$

i

]}
.

We can now define a shift of the vector tower which “completes the square” to eliminate
the mixing between scalars and vectors. This is

B̌n
µ = Bn

µ +
√
ζ

λnMKK

∑
i

〈i|K̂|n〉∂µ$i , (4.18)

noting that the field strengths of the vector fields satisfy fnµν = f̌nµν . As a result we can
write SV + SM = ŠV + ŠM with

ŠV = K

∫
d4x

∑
n

{
− 1

4η
µρηνσf̌nµν f̌

n
ρσ −

M2
KKλn
2 ηµνB̌n

µB̌
n
ν

}
, (4.19)

and

ŠM = K

∫
d4x

∑
i,j,n

{
ζ

2λn
〈i|K̂|n〉〈n|K̂|j〉ηµν∂µ$i∂ν$

j

}

= K

∫
d4x

∑
i,j

{
ζ

2〈i|K̂Ĥ
−1
ψ K̂|j〉η

µν∂µ$
i∂ν$

j

}
. (4.20)

At this stage we have decoupled the vector field. Note that the mass spectrum for
the vector will simply be determined by the eigenvalues of the operator Ĥψ: although the
backreaction of the branes onto the background metric has an effect on the masses, the
mixing term itself does not.
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The mixing term does, however, have a significant impact on the scalar spectrum.
Assembling the remaining terms into a new action for the scalar fields, we can write

ŠS = SS + ŠM

= K

∫
d4x

∑
i,j

{
− 1

2
〈
i
∣∣∣(1̂− ζK̂Ĥ−1

ψ K̂
)∣∣∣ j〉 ηµν∂µ$i∂ν$

j − M2
KK〈i|Ĥϕ|j〉

2 $i$j

}
.

(4.21)

The matrices multiplying the kinetic and mass terms here are not simultaneously
diagonalizable, so we cannot rewrite this action as a sum of separate scalar actions. But if
instead we work with the equations of motion, we can say

∂2$i −M2
KK
∑
j

〈
i
∣∣∣Ĥϕ̌

∣∣∣ j〉$j = 0 , (4.22)

with
Ĥϕ̌|j〉 =

(
1̂− ζK̂Ĥ−1

ψ K̂
)−1

Ĥϕ

∣∣∣j〉 . (4.23)

The mass poles of the scalar fields are then given by eigenvalues χ̌i of the matrix 〈i|Ĥϕ̌|j〉.
Note that the operator Ĥϕ̌ is not Hermitian, which is potentially an issue, since it ought

to be associated with an observable in this system. However, we should remember that our
entire construction, starting from equation (2.15), is only valid to linear order in ζ, because
we have added the D8-branes in after taking the supergravity limit of the background. It is
possible that a complete treatment of the brane system would remedy this problem. In any
case, to linear order in ζ we can use standard perturbation theory to find the eigenvalues,
while leaving the eigenstates unaffected.

5 Linear order results

From this point on we will be working to linear order in ζ. Essentially, we need to expand
the operators Ĥϕ̌ and Ĥψ to linear order in ζ, and use first order perturbation theory to
compute the leading correction to the eigenvalue spectra. Note that in addition to the
explicit ζ dependence in both operators, we also have the functions a(u), b(u), and c(u),
which are determined by the perturbed background, and therefore need to be expanded in
ζ. In the case of the scalar field mass spectrum, we will keep separate the perturbation to
arising from the explicit mixing term from that arising from perturbations to the background
metric in order to analyze their impacts individually.

5.1 Expanding the Hamiltonians

We will begin by assuming the functions a(u), b(u), and c(u) take the form

a(u) = a(0)(u)
(
1+ζa(1)(u)

)
, b(u) = b(0)(u)

(
1+ζb(1)(u)

)
, c(u) = c(0)(u)

(
1+ζc(1)(u)

)
.

(5.1)
In this case, when we expand our vector operator out to linear order, we obtain

Ĥψ = Ĥ
(0)
ψ + ζ δĤψ , (5.2)
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where
Ĥ

(0)
ψ ψ = − 1√

a(0)
∂u

[
a(0)b(0)∂u

(
ψ√
a(0)

)]
, (5.3)

and

δĤψψ = − ∂

∂u

[
b(0)b(1)∂ψ

∂u

]
+
[

1
2
√
a(0)

∂

∂u

(
a(0)′b(0)b(1)
√
a(0)

)
+ 1

2a(0)
∂

∂u

(
a(0)a(1)′b(0)

)
+ c(0)

a(0)

]
ψ .

(5.4)
We can write the eigenstates of the unperturbed Hamiltonian as |n〉0, so that

Ĥ
(0)
ψ |n〉0 = λ(0)

n |n〉0 . (5.5)

Then, using first order perturbation theory, we find the linear corrections to the eigenvalues as

λn = λ(0)
n + ζδλn = λ(0)

n + ζ〈n|δĤψ|n〉0 . (5.6)

Moving on to our scalar Hamiltonian, we expand to linear order and obtain

Ĥϕ̌ = Ĥ(0)
ϕ + ζ

(
δĤϕ̌,1 + δĤϕ̌,2

)
, (5.7)

where
Ĥ(0)
ϕ ϕ = − 1√

c(0)
∂u

[
c(0)b(0)∂u

(
ϕ√
c(0)

)]
, (5.8)

and

δĤϕ̌,1 ϕ = − ∂

∂u

[
b(0)b(1)∂ϕ

∂u

]
+
[

1
2
√
c(0)

∂

∂u

(
c(0)′b(0)b(1)
√
c(0)

)
+ 1

2c(0)
∂

∂u

(
c(0)c(1)′b(0)

)]
ϕ ,

(5.9)
and

δĤϕ̌,2 ϕ = K̂(0)
(
Ĥ

(0)
ψ

)−1
K̂(0)Ĥ(0)

ϕ ϕ . (5.10)

The eigenstates of the unperturbed Hamiltonian in this case are |i〉0 with

Ĥ(0)
ϕ |i〉0 = χ

(0)
i |i〉0 , (5.11)

and first order perturbation theory gives us

χ̌i = χ
(0)
i + ζ

(
δχi,1 + δχi,2

)
= χ

(0)
i + ζ

(
〈i|δĤϕ̌,1|i〉0 + 〈i|δĤϕ̌,2|i〉0

)
. (5.12)

In order to determine the functions a(1)(u), b(1)(u), and c(1)(u), we used the work of
Bigazzi et al. [18], which established the corrections to the metric up to linear order in
ζ, summarized in appendix A. The authors showed that these linear-order perturbation
functions satisfy second order differential equations with closed form solutions in terms
of hypergeometric functions. The constants of integration appearing there were fixed by
requiring regularity at U = UKK and removing the most divergent terms in U →∞, along
with other restrictions. In this work, we choose to impose the most stringent requirements
discussed in [18] rather than just those needed for satisfying physical constraints. This is
done primarily to provide concrete solutions which we can use in the next section.
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Figure 1. The lowest five unperturbed vector functions ψn(u).

10 100

-1.0

-0.5

0.5

1.0

<latexit sha1_base64="YjH2+HfyZxK8EJhmkwoSlQKUXFQ=">AAAB8XicbVDLSgNBEOyNrxhfUY9eBoMQL2FXgnoMePEYwTwwWULvZJIMmZ1dZmYDYclfePGgiFf/xpt/4yTZgyYWNBRV3XR3BbHg2rjut5Pb2Nza3snvFvb2Dw6PiscnTR0lirIGjUSk2gFqJrhkDcONYO1YMQwDwVrB+G7utyZMaR7JRzONmR/iUPIBp2is9NSdoIpHvJxc9oolt+IuQNaJl5ESZKj3il/dfkSTkElDBWrd8dzY+Ckqw6lgs0I30SxGOsYh61gqMWTaTxcXz8iFVfpkEClb0pCF+nsixVDraRjYzhDNSK96c/E/r5OYwa2fchknhkm6XDRIBDERmb9P+lwxasTUEqSK21sJHaFCamxIBRuCt/ryOmleVbzrSvWhWqqVszjycAbnUAYPbqAG91CHBlCQ8Ayv8OZo58V5dz6WrTknmzmFP3A+fwAa6ZB5</latexit>

'(u)

<latexit sha1_base64="4LdjpgS++av9G7x9LcHXFMJ2gxY=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipmQ7KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kD3MmM6A==</latexit>u

Figure 2. The lowest five unperturbed scalar functions ϕj(u).

It is also worth noting that these solutions can only be trusted in the regime u� 1
ζ , as

noted in [17]. In our context, this means using only those unperturbed states |n〉0 and |j〉0
which die off by the time u ∼ 1

ζ (forcing us to restrict our analysis to the lowest members
of each mode tower, or choose to assume an extremely small value of ζ, or both). Figures 1
and 2 show the lowest five unperturbed wavefunctions associated with both the vectors
and scalars. These wavefunctions are very small for u > 100. As a result, in order for our
results to be trusted rigorously, we must assume ζ � 0.01, a substantially smaller value
than the choice ζ = 0.33 obtained by fixing the parameters to mρ and fπ.

5.2 Discussion of numerical results

In order to generate our numerical results, we implemented the “shooting method” using
Mathematica, utilizing built-in differential equation solvers to find the unperturbed wave-
functions. Then, we computed the overlap integrals necessary to find the perturbations
of the eigenvalues using built-in numerical integration tools. The details of this process,
together with the numerical parameters used, are given in appendix D.

The numerical results for the eigenvalues corresponding to mixed glueball and meson
states are reported in table 2. The eigenvalues λn correspond to the glue tower, while the χj
correspond to mesons — though the corrected mass eigenstates are, of course, admixtures
of glueball and meson. The glueball eigenvalues are related to the masses as

m2
n = (λ(0)

n + ζδλn)M2
KK (5.13)

and similarly for the meson masses with χj .2

2We have learned through useful discussion with Florian Hechenberger that [18] identifies an additional
correction at leading order in ζ to the value ofM2

KK itself. However, we note that this correction should affect
all masses in the WSS model equally, so that if analysis is restricted to ratios of masses, this effect cancels out.
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Due to the structure of the glueball-meson coupling from DBI action, the corrections
to the glueball tower come entirely from the background metric, and are negative (pushing
the masses downward) for all states. This aligns with results for vector and axial-vector
meson masses discussed in [18].

The meson tower (now with glueball admixtures) is more interesting: while the effect
of the modified background geometry is still to push the eigenvalues downward, the contri-
bution from the mixing term is positive. For the four lightest mesons, the mixing term is
strong enough to make the overall correction positive, but is overtaken by the background
contribution for the fifth and higher modes. Indeed, the unperturbed wavefunctions ψ and
ϕ have the greatest overlap for lighter states, and have little overlap for heavier states. A
similar effect was observed in [21] for in a bottom-up holographic model. The net effect of
the corrections (including both background and mixing term) is to decrease the slope of
roughly linear dependence of m2 on excitation number.

Both of the towers we are analyzing are considered spurious, based on parity and
charge-conjugation quantum numbers. We believe that the vector mode of the graviton
corresponds to a JPC = 1+− glueball, identified in Brower et al. [5] as a spurious state,
based on comparison to lattice data in the quenched approximation [23]. We should remark
that [5] identified this mode as a 1−+ glueball. We believe that there is a some ambiguity
in the parity assignments, however, as noted also in [24]. [5] investigates only bulk modes in
the wrapped D4-brane background, and notes that there are two separate parity operations,
P : xi → −xi and Pτ : τ → −τ , and bases 4d parity assignments on the action of P , with
Pτ acting as a spurious additional symmetry. In [2], with the introduction of flavor branes,
this ambiguity is resolved because the larger symmetry group is broken to a subgroup that
takes (xi, τ) → (−xi,−τ), which is thus unambiguously equivalent to 4d parity for the
purpose of identifying the 4d quantum numbers of a given mode. Based on this definition,
the vector glueball we consider, which comes from the graviton mode hτµ, has Pτ = −1,
meaning that it violates natural parity and should be identified as a P = + state. Similarly,
as noted in [2] the action of charge conjugation is to flip the orientation of strings and act
with Pτ . Thus the glueball state we consider should be a 1+− mode.

The brane scalar we study corresponds to a isospin 0, 0−−. In the original WSS model,
this state is the second-lightest excitation of the transverse fluctuation mode, as noted
by [2], identified there to be parity odd.3

By including the leading Nf/Nc corrections to the WSS model, we are making the
model’s predictions more precise. It is an important question whether this improves or
worsens the alignment of WSS with experimental and lattice data. The light 0−− states
are famously artifacts of holographic QCD models, as no such states appear in the light
spectrum. It is thus encouraging, that here their masses are pushed higher. On the other
hand, the masses of the 1+− glueballs (also believe to be spurious) decrease, which is
less promising.

3In this work, this is the lightest mode of the symmetric part of the scalar Φ, which is, however, related
to the scalar field y of [2] by a factor of Z.
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n λ
(0)
n δλn

1 3.554 −1.280
2 8.053 −4.106
3 14.016 −8.652
4 21.459 −15.069
5 30.387 −23.477

j χ
(0)
j δχj,1 δχj,2 δχj

1 5.310 −0.932 3.855 2.923
2 10.5354 −4.207 7.106 2.899
3 17.2392 −9.098 11.280 2.182
4 25.426 −15.780 16.371 0.591
5 46.255 −34.987 29.299 −5.688

Table 2. On the left, a table of numerical values for the eigenvalues λ(0)
n in the unperturbed

background as well as the correction terms δλn. These are related to the mass of the vector glueball
as m2 = (λ+ δλ)M2

KK . On the right, a table of numerical values for the unperturbed eigenvalues
χ

(0)
j corresponding to the scalar meson, as well as the corrections terms: δχj,1 due to the mixing,

and δχj,2 due to the perturbed background, and δχj = δχj,1 + δχj,2.

6 Conclusion

We have showed that the WSS model incorporates mixing of glueballs and mesons via the
DBI action. As a proof of concept, we demonstrated the effect of this mixing for a sector
of the spectrum which decouples from the rest in a smeared-brane approximation of the
background: a vector mode of the graviton and the branes’ scalar field.

We found that in order to have a physically sensible effective Lagrangian for these
states (and to cancel the bulk-field tadpoles in DBI), one must also include the leading
backreaction of the flavor branes on the background. This crucial point is perhaps not
surprising in retrospect: while the quadratic term mixing the vector and scalar modes
appears even in a naive expansion of the DBI in the un-backreacted geometry, there are
additional terms appearing in the effective Lagrangian due to backreaction, which are of
the same order in Nf/Nc. Conversely, the brane scalar — corresponding to transverse
fluctuations of the flavor branes — plays a crucial role in realizing the “gauge symmetry”
of the vector graviton mode.

As both the kinetic terms and mass terms in this system cannot be simultaneously diago-
nalized, we described a general procedure for determining the mass eigenstates — equivalent
to finding the poles of a two-point function — that lends itself easily to numerical analysis.

We found that while the leading order backreaction of the metric tends to depress
meson and glueball masses, the explicit mixing provides a positive contribution which
overtakes the metric contribution for low-lying modes.

There are many interesting directions we hope to explore in the future. First: we worked
in an approximation that considered only the trivial mode of the background geometry
in the τ direction, ignoring the (broken) chiral symmetry of the background. The first
non-trivial mode — not suppressed by any parameter compared to the first — would in fact
induce a mixing between the 1+− glueball and experimentally relevant f0 mesons, which
have long been conjectured to mix with glueball states [9]. Including this mode would be
very interesting — but would also, of course, ruin the decoupling of the 4d vector hτµ from
other graviton modes, rendering the analysis significantly more complicated. It would also
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be interesting see whether trends we observe, like a decrease in the slope of mass-squared
versus excitation number for light scalars holds more generally for other mesons. ([18]
observed a similar trend in the predicted spectrum of excited ρ mesons.)

In addition, the type of DBI-induced mixing we observe is ubiquitous in backreacted
brane intersections, such as the ones reviewed in [15], or in the few (supersymmetric) brane
intersections like those in [10, 11], where closed form solutions for localized, un-smeared
flavor branes have been found. It would be interesting to understand whether the trends
observed in the WSS model — like the structure of the glueball-meson mixing which leaves
the glueball mass unaffected, or the tendency of the mixing term to overtake the effect of
the gravitational backreaction, is in fact universal, or whether some of these effects are
unique to Sakai-Sugimoto and/or the smeared approximation.

Finally, the operator technique we used to find the mass eigenvalues (leading to the
non-Hermitian “Hamiltonian” in equation (4.23) was exact in ζ. While this particular
problem fixes ζ to be small (as the background we consider is by definition first order),
one might explore the implications of this non-Hermeticity for more general functions
a(u), b(u), c(u) and larger values of ζ.

We leave these explorations to future work.
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A Summary of the linear order backreaction

Our numerical results rely on using the work of Bigazzi & Cotrone (BC) [18], who established
expressions for the perturbations of the background metric and dilaton to linear order in ζ.
We summarize their results here.

BC write the backreacted metric as

g̃µν = e2ληµν , g̃ττ = e2λ̃ , (A.1)
g̃αβ = `2se

2νsαβ , g̃ρρ = `2se
−2ϕ , (A.2)

with

f(U) = e−3r = Exp
[
−3U3

KKρ

`3sg
2
s

]
, (A.3)

and the relationship with the dilaton,

2φ = ϕ+ 4λ+ λ̃+ 4ν . (A.4)
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They then expand the functions λ(r), λ̃(r), ν(r), and φ(r) in the parameter εF = 9ζ
4 ,

defining
λ(r) = λ0(r) + εFλ1(r) + · · · , (A.5)

and similarly for the other three functions. By writing down the backreacted equations of
motion and integrating out over τ (see equation (2.15) along with others), BC identified
second order differential equations with source terms for these functions. These differential
equations can be solved in closed form, with

λ1 = 3
8 f̃ + y − 1

4
(
A2 +B2r

)
+ 1

4
(
A1 +B1r

)
, (A.6)

λ̃1 = −1
8 f̃ + y − 1

4
(
A2 +B2r

)
− 3

4
(
A1 +B1r

)
, (A.7)

φ1 = 11
8 f̃ + y − 5

4
(
A2 +B2r

)
+ 1

4
(
A1 +B1r

)
, (A.8)

ν1 = 11
24 f̃ + q , (A.9)

the functions {f̃ , y, q} then expressed as

f̃ = 4
9e
−3r/2

3F2

(1
2 ,

1
2 ,

13
6 ; 3

2 ,
3
2;e−3r

)
, (A.10)

y= z+C2−
[
C1+C2

(
1+ 3r

2

)]
coth

(3r
2

)
, (A.11)

q= 2M2+ 1
12
[
(A1+B1r)−5(A2+B2r)

]
+ 5

3z−
[
M1+M2(2+3r)

]
coth

(3r
2

)
, (A.12)

and finally the function z written as

z = −
e−9r/2(e−3r + 1)

[
9e3r

3F2
(

1
2 ,

1
2 ,

19
6 ; 3

2 ,
3
2 ; e−3r

)
+3 F2

(
3
2 ,

3
2 ,

19
6 ; 5

2 ,
5
2 ; e−3r

)]
162(1− e−3r)

−
8e−3r/2(10e−3r + 3) 2F1

(
1
6 ,

1
2 ; 3

2 ; e−3r
)

819(1− e−3r) + e−15r/2(38e3r + 8e6r − 40)
273(1− e−3r)13/6 . (A.13)

Note that we have added the “tilde” to their function f̃ , so as to avoid confusion with
the function defined in equation (2.3). At this stage there are eight unfixed constants of
integration: {A1, A2, B1, B2, C1, C2,M1,M2}, and six physical constraints can be imposed.
A zero energy constraint implies

5B1 −B2 − 18(C2 + 4M2) = 0 , (A.14)

requiring regularity as r →∞ (as U → U0) implies

B1 = 6C2 , B2 = 0 , M2 = C2
6 , (A.15)

and although not strictly required, we will also make use of the condition

C2 = 0 , (A.16)

which removes all logarithmic divergences as r →∞.
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Finally, BC performed an analysis of the behavior as r → 0 (U →∞), and established
that the remaining freedom in the constants of integration would correspond to givings
sources or VEVs to other gauge invariant operators, but they also noted that the most
divergent terms could be removed with the choices

C1 + C2 = k , M1 + 2M2 = 5
3k , (A.17)

with

k =
π3/2

[
3 +
√

3π − 12 ln 2 + 9 ln 3
]

78 Γ
(
−2

3

)
Γ
(

1
6

) , (A.18)

and the next sub-leading divergences with

A1 =
81
√

3π2
[
− 9 +

√
3π − 12 ln 2 + 9 ln 3

]
43120 (2)2/3 Γ

(
−14

3

)
Γ
(
−2

3

)2 , A2 = −2A1 . (A.19)

For concreteness, we have adopted all of these choices, giving us a fully determined solution
for the linear perturbation of the background.

Relating this back to the functions a(1), b(1), and c(1) required for our analysis then
gives us

a(1) = −15
8 f̃ + 9y + 18q − 81A1

4 , (A.20)

b(1) = −3
8 f̃ − 9y − 18q + 63A1

4 , (A.21)

c(1) = 51
16 f̃ + 27

2 y + 18q − 81A1
8 . (A.22)

B Perturbing the bulk action to quadratic order

We begin with the bulk action given in equation (2.1), expanding it out to quadratic order
in excitations around the background hτµ and hτU .

B.1 Assumptions and simplifications

We work with a backreacted background, but this backreaction treats the D8-branes as
“smeared out” in the τ -direction, as discussed in [18]. This implies that we have the structure

ds2 = g̃µνdx
µdxν + g̃ττdτ

2 + g̃UUdU
2 + g̃αβdx

αdxβ (B.1)

with

g̃µν = ηµν ×
(
a function of U

)
(B.2)

g̃ττ = a function of U (B.3)
g̃UU = a function of U (B.4)

g̃αβ = sαβ ×
(
a function of U

)
(B.5)

(where sαβ is the metric on the 4-sphere).
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Given these facts, we can identify the only non-vanishing Christoffel symbols as

Γ̃UUU , Γ̃Uµν , Γ̃µUν , Γ̃Uττ , Γ̃τUτ , Γ̃Uαβ , Γ̃αUβ , Γ̃αβγ , (B.6)

and we can identify that the Ricci tensor must be diagonal. In addition, the work of [18]
argued that the Kalb-Ramond form vanishes in the background, and the 4-form is unaffected
by the backreaction.

We consider graviton modes as fluctuations around the background metric of equa-
tion (3.1). We will assume that all of the perturbations depend only on the Lorentz
coordinates xµ, and on the radial coordinate U . (That is, we are working with the trivial
mode of the graviton KK-tower for the 4-sphere and the τ -direction). Note that indices of
these perturbations will be raised and lowered with the background metric.

We can see that hτN can only couple with another hτM at quadratic order, as there are
no other non-vanishing objects with only one τ index. For the same reason, if N 6= τ , we
cannot have M = τ . Finally, we cannot couple hτα quadratically to either hτµ or to hτU ,
because there are no non-vanishing objects with one α index.

As a result, we conclude that in the expansion of the bulk action to quadratic order the
fields of interest {hτµ, hτU} decouple from everything else. In particular, this will allow us to ig-
nore the expansions of both the dilaton and the 4-form, and drop any terms involving h = hNN .

B.2 Quadratic-order bulk action for hMN

We now expand the bulk action piece by piece for generic hMN . First, we note that to
quadratic order we have

√
−detg=

√
−det g̃

[
1+ 1

2h+ 1
8h

2− 1
4h

MNhNM

]
=
√
−det g̃

[
1− 1

4h
MNhMN

]
, (B.7)

so that

Lbulk = −1
4
√
− det g̃ e−2φ̃

[
R̃+ 4g̃MN∇M φ̃∇M φ̃−

e2φ̃

2 · 4! F̃
2
4

]
hMNhMN

+
√
− det g̃ e−2φ̃ gMN

[
RMN + 4∇M φ̃∇N φ̃

]
. (B.8)

We also have (again to quadratic order)

gMN = g̃MN − hMN + hMPhNP , (B.9)

and therefore (dropping linear terms)

4gMN∇M φ̃∇N φ̃ = 4
(
∇M φ̃∇N φ̃

)
hMPhNP , (B.10)

and also

R = gMNRMN =
[
g̃MN − hMN + hMPhNP

]
RMN = R̃MNh

MPhNP +
[
g̃MN − hMN

]
RMN ,

(B.11)
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which means

Lbulk =
√
− det g̃ e−2φ̃

{[
−1

4R̃−∇P φ̃∇
P φ̃+ e2φ̃

8 · 4! F̃
2
4

]
hMNhMN

+
[
R̃MN + 4∇M φ̃∇N φ̃

]
hMPhNP +

[
g̃MN − hMN

]
RMN

}
. (B.12)

What we are left with is the expansion of the Ricci tensor term.
The Cristoffel symbols become

ΓMLP = Γ̃MLP + 1
2(∇PhML +∇LhMP −∇MhLP )− 1

2h
MN (∇PhNL+∇LhNP −∇NhLP ) , (B.13)

so the Ricci tensor is

RMN = R̃NM+ 1
2(∇P∇MhPN+∇P∇NhPM−∇2hNM ) (B.14)

− 1
2∇P

[
hPQ∇MhQN

]
− 1

2∇P
[
hPQ∇NhQM

]
+ 1

2∇P
[
hPQ∇QhNM

]
+ 1

2∇N
[
hPQ∇MhQP

]
− 1

4
[
∇LhPN+∇NhPL−∇PhLN

][
∇MhLP +∇PhLM−∇LhMP

]
.

Next we combine the inverse metric and the Ricci tensor, and drop anything zeroeth
order or linear order as well as terms involving h, to write[

g̃MN − hMN
]
RMN (B.15)

= −∇N∇M
[
hMPhNP

]
+ 1

2∇
2
[
hMNhMN

]
+ 1

2∇
PhMN∇MhPN −

1
4∇

PhMN∇PhMN .

Putting this together with the earlier work, we now have the quadratic expansion of
the bulk Lagrangian density as

δ2Lbulk (B.16)

=
√
−det g̃ e−2φ̃

{[
−1

4R̃−∇P φ̃∇
P φ̃+ e2φ̃

8·4! F̃
2
4

]
hMNhMN+

[
R̃MN+4∇M φ̃∇N φ̃

]
hMPhNP

−∇N∇M
[
hMPhNP

]
+ 1

2∇
2
[
hMNhMN

]
+ 1

2∇
PhMN∇MhPN−

1
4∇

PhMN∇PhMN

}
.

Inside the action, we can use integration-by-parts to move total derivatives around,
giving us

δ2Lbulk =
√
− det g̃ e−2φ̃

×
{

1
2∇MhNP∇

PhMN − 1
4∇MhNP∇

MhNP +
[
R̃MN + 2

(
∇M∇N φ̃

)]
hMRhNR

−
[1

4R̃+
(
∇2φ̃

)
−
(
∇P φ̃

)(
∇P φ̃

)
− 1

8 · 4! F̃
2
4 e

2φ̃
]
hNMhNM

}
. (B.17)
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B.3 Expansion in terms of hτµ and hτU
Finally, we need to identify where the specific terms involving hτµ and hτU are. First we write

1
2∇MhNP∇

PhMN− 1
4∇MhNP∇

MhNP (B.18)

=−1
4 g̃ττ g̃

µρg̃νσ
(
∂ρh

τ
σ−∂σhτρ

)(
∂µh

τ
ν−∂νhτµ

)
− 1

2 g̃ττ g̃
µν g̃UU

(
∂µh

τ
U−∂Uhτµ

)(
∂νh

τ
U−∂Uhτν

)
+∇M

(
Γ̃Mττ g̃µνhτµhτν+Γ̃Mττ g̃UUhτUhτU

)
−R̃ττ

(
g̃µνhτµh

τ
ν+g̃UUhτUhτU

)
,

which then implies

√
− det g̃ e−2φ̃

[1
2∇MhNP∇

PhMN − 1
4∇MhNP∇

MhNP
]

= e−2φ̃
[
− 1

4 g̃ττ g̃
µρg̃νσ

(
∂ρh

τ
σ − ∂σhτρ

)(
∂µh

τ
ν − ∂νhτµ

)
− 1

2 g̃ττ g̃
µν g̃UU

(
∂µh

τ
U − ∂Uhτµ

)(
∂νh

τ
U − ∂Uhτν

)
−
[
R̃ττ + 2

(
∇τ∇τ φ̃

)] (
g̃µνhτµh

τ
ν + g̃UUhτUh

τ
U

)]
. (B.19)

At the same time, we have

√
−det g̃ e−2φ̃

[
R̃MN+2

(
∇M∇N φ̃

)]
hMRhNR

− 1
2

[1
2R̃+2

(
∇2φ̃

)
−2
(
∇P φ̃

)(
∇P φ̃

)
− 1

4·4! F̃
2
4 e

2φ̃
]
hNMhNM

=
√
−det g̃ e−2φ̃

{[
R̃ττ+2

(
∇τ∇τ φ̃

)](
g̃UUhτUh

τ
U+g̃µνhτµhτν

)
+g̃ττ

[
R̃UU+2

(
∇U∇U φ̃

)
−g̃UU

(1
2R̃+2

(
∇2φ̃

)
−2
(
∇P φ̃

)(
∇P φ̃

)
− 1

4·4! F̃
2
4 e

2φ̃
)]
hτUh

τ
U

+g̃ττ
[
R̃µν+2

(
∇µ∇ν φ̃

)
−g̃µν

(1
2R̃+2

(
∇2φ̃

)
−2
(
∇P φ̃

)(
∇P φ̃

)
− 1

4·4! F̃
2
4 e

2φ̃
)]
hτµh

τ
ν

}
.

(B.20)

When we combine these expressions, we obtain equation (3.2).

C Chern-Simons term

While the Chern-Simons terms on the branes contain couplings between the brane and bulk,
they do not contribute at quadratic order to the actions of the fields we are interested in.

A crucial element of this analysis is the fact that both the first and second Pontryagin
classes vanish on both the original and smeared backreacted backgrounds due to the diagonal
structure of the metric and the fact that the smeared background retains the same isometries
as the original. We demonstrate this explicitly in section 5.1.
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The Chern-Simons term takes the form [25]:

SCS =
∫
C ∧ TreF/2π ∧

√
Â(R) . (C.1)

Here C = ∑
iCi is the sum of bulk Ramond-Ramond forms, F is the gauge field strength

on the branes, and the A-roof genus Â is given by

Â(R) = 1− p1
24 + 1

16

( 7
360p

2
1 −

1
90p2

)
+ . . . (C.2)

where p1 and p2 are the Pontryagin classes defined as:

p1(R) = − 1
8πTrR ∧R

p2(R) = 1
128π4

[
(TrR ∧R)2 − 2TrR ∧R ∧R ∧R

]
(C.3)

with R, the Riemann tensor 2-form,

RAB = 1
2RABCDdx

C ∧ dxD . (C.4)

Expanding (C.1), we can identify terms which might contain the brane scalar Φ or the
vector piece of the graviton (hτU , hτµ), together or with another field:

SCS ⊃
∫ {
− 1

3840C1 ∧
(
p2

1 + 4
3p2

)
− 1

48C3 ∧ Tr F2π ∧ p1 −
1
48C5 ∧ p1

}
(C.5)

Note that the bulk fields appearing in (C.1) are pulled back to the brane’s worldvolume,
with possible couplings to Φ arising via the pullback as, for instance,

P [C1]A = CB
∂XB

∂xA
= CA + 1

2πα′Cτ
∂Φ
∂xA

(C.6)

where XA are fluctuation scalars and xA are the brane coordinates. (In the second equality
we applied static gauge.)

One can show that in the background with the isometries of WSS, neither p1 nor p2
have non-trivial background values, nor do they contain terms that are first order in (hτµ, hτU )
(and zeroth order in other fields). Note that this is true for both the original WSS model,
which treats the D8’s as probes, and for the partially-backreacted, “smeared” geometry
used here.

C.1 Relevant properties of the Pontryagin classes

Our argument for the vanishing of the Chern-Simons contribution relies on the fact that
neither of the Pontryagin classes p1 and p2 have non-zero background value, nor do they
have contributions at first order in (hτµ, hτU ). It will also rely on the components of p1 along
the S4 having no quadratic-order contributions.

We now demonstrate each of these facts individually, before arguing for the vanishing
of the whole quadratic-order Chern-Simons contribution in the next subsection.
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Note that the metric we are working with — both in its original form, and in the form
that includes some backreaction — is diagonal and depends only on the radial coordinate,
U (and the coordinates of the S4 to the extent that they appear in the S4 metric). It’s
then straightforward if a bit tedious to show that the only non-vanishing Riemann tensor
components are:

R̃µνρσ, R̃
µ
UνU , R̃

µ
τντ , R̃

µ
ανβ ,

R̃UτUτ , R̃
U
αUβ ,

R̃τατβ , R̃
τ
ατβ , R̃

α
βγδ , (C.7)

plus those related to these by the symmetries of the Riemann tensor,

RMNPQ = gMLR
L
NPQ = −RNMPQ = −RMNQP = RPQMN . (C.8)

As before we indicate with a tilde that these are quantities evaluated on the supergravity
background. We can heuristically summarize the above with

R̃MNLP ∝ (δML δNP − δMP δNL) . (C.9)

Structures appearing in p1 and p2 are Tr(R ∧R) and Tr(R ∧R ∧R ∧R). We can now see
that these vanish on the background. The object

{(R̃AB) ∧ (R̃BC)}MNLP = R̃AB[MN R̃
B
|C|LP ] ∝ δ

A
[MδNLδ|C|P ] (C.10)

appears once in Tr(R ∧R) and twice in Tr(R ∧R ∧R ∧R), and clearly vanishes. Hence,

p1 = O(h) , p2 = O(h2) (C.11)

where h represents any component of the graviton hMN .
The next step is to examine whether p1, pulled back to the branes, depends on (hτµ, hτU )

at linear order. It does not. The Christoffel symbols that are first order in h = (hτµ, hτU ) are

Γµντ , ΓµUτ , ΓUµτ , ΓUUτ (C.12)
Γτµν , ΓτµU , ΓτUU , Γτττ (C.13)
Γταβ , Γατβ . (C.14)

None of these have O(h0) terms. Clearly, all Riemann tensor components that are first order
in (hτµ, hτU ) must have a τ index as we can see from the definition of the Riemann tensor

RMNLP = ∂LΓMNP − ∂PΓMNL + ΓMLQΓQNP − ΓMPQΓQNL . (C.15)

Terms in p1 that are linear in h must be of the form

R̃ABMN R̂
B
ALP (C.16)

where the R̂BALP is first order (hτµ, hτU ). Clearly one of A, B, L, P must equal τ for this
quantity to be finite. If L = τ or P = τ , this component of p1 would need to be pulled
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back to the brane worldvolume using a Φ field, which places it at second order. If A = τ

or B = τ , R̃A BMN would need to have M = τ or N = τ , which again require a pullback.
Thus p1 has no first order components in the fields of interest.

Finally, we show that (p1)αβγδ ∼ O((hτµ, hτU )3) . Since p1 ∝ TrR∧R, we need to examine

RMNαβR
N
Mγδ (C.17)

for quadratic-order terms — either as a linear terms from each Riemann tensor, or quadratic
terms from one (with the other taking on its background value).

First we look for first order terms in RMNαβ which takes the form

RMNαβ = ∂αΓMNβ + ΓMαLΓLNβ − (α↔ β) (C.18)

where
ΓMαL = Γ̃MαL − hMU Γ̃UαL + · · · . (C.19)

Thus

RMNαβ = R̃MNαβ −
(
hMU ∂αΓ̃UβN + hLU Γ̃MαLΓ̃UNβ + hMU Γ̃UαLΓ̃LNβ

)
+ (α↔ β) + · · · (C.20)

= R̃MNαβ − hMU R̃UNαβ + · · · , (C.21)

which vanishes because the only non-zero components of the background Riemann tensor
on the S4 are R̃αβγδ.

This fact also implies that we need only concern ourselves with possible second-order con-
tributions from Rαβγδ. One can show that the expansion of these components takes the form

Rαβγδ = R̃αβγδ − hτUhατ R̃Uβγδ − hNτhτM
(
Γ̃MβδΓ̃αγN − (γ ↔ δ)

)
(C.22)

= R̃αβγδ − hNτhτM
(
Γ̃MβδΓ̃αγN − (γ ↔ δ)

)
(C.23)

We must have N = U , or M = U , or both for the second term to be finite. Any term of
that kind will also (by virtue of the structure of the background Christoffel symbols) force
α = γ, or α = δ, or β = γ, or β = δ. When we contract this with the background Riemann
tensor antisymmetrize on the form indices, this contribution will also vanish.

C.2 Vanishing contribution from the Chern-Simons term

We can now check one by one that the terms in (C.5) do not contribute to the quadratic-order
action for Φ and (hτµ, hτU ), using the properties derived in the previous subsection.

The first term goes like ∫
c1 ∧

(
p2

1 + 4
3p2

)
. (C.24)

The supergravity background does not have a background C1, so the c1 appearing here is a
fluctuation (representing a glueball state). Neither p2

1 nor p2 have first order contributions
in (hτµ, hτU ), so this term does not mix c1 with them. p1 and p2 also have no background
values, so this term also cannot mix c1 with Φ via the pullback.
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The second term in (C.5) goes like∫
C3 ∧ F ∧ p1 =

∫ (
C̃3 ∧ F ∧ p1 + c3 ∧ F ∧ p1

)
(C.25)

where as above we use C̃3 to denote the background value and c3 to denote the fluctuation
of the potential corresponding to a glueball mode. The first term in this expression is at
least first order in fluctations (because of the gauge field strength F ), and cannot mix the
brane gauge field with (hτµ, hτU ) at quadratic order because p1 has no first-order terms. It
does not mix the gauge field with Φ, meanwhile, because p1 has vanishing background value.
The second term in the C3 term expression is already second order in fields (and vanishes
anyway because p1 vanishes on the background).

Finally, we have the third term in (C.5), of the form∫
C5 ∧ p1 =

∫
(C̃5 + c5) ∧ p1 . (C.26)

The second term in this expression does not contribute any quadratic terms to the action
because p1 has no first order terms. This also means that the first term, containing the
background value of C5, does not provide any terms mixing Φ with (hτµ, hτU ) via the pullback.

One could still have terms at quadratic order in h in p1. It turns out that the relevant
components of p1 do not contain second order terms involving (hτµ, hτU ). The background
value C̃5 is defined via the field strength F̃6 = dC5 which is related to F̃4 via the Hodge dual:
F̃6 = ?F̃4. The background F̃4 is proportional to the volume form on the S4 and otherwise
only depends on U . F̃6 thus has components on the remaining 6 directions, (xµ, U, τ ), and
so we can choose C̃5 to components in 5 of these. If one component of C̃5 lies along the τ
direction, it would need to be pulled back to the brane world volume via a Φ. Such a term
would not contribute to a quadratic term because p1 is second order. If C̃5 has components
(xµ, U), one could get a contribution at quadratic order from a component of p1 with all
components along the S4. However, as shown above, none of these contain (hτµ, hτU ).

The Chern-Simons term thus contributes no additional quadratic order terms in the
action of Φ and (hτµ, hτU ).

D Numerical methods

Here we present a brief explanation of the numerical techniques used to acquire the
results given in table 2. To find the unperturned eigenstatates and eigenvalues for both
the vector and scalar wavefunctions, we used the “shooting method”. Then, we used
numerical integration to compute overlap integrals necessary to find the perturbations to
the eigenvalues.

• Shooting Method Details for the Scalar Wavefunctions:

– Shooting for the scalar wavefunctions ϕi(u) was performed first in the z = Z
UKK

variable, normalized, and then the solutions were converted to u.
– The built-in differential equation solver NDSolve was used within Mathematica to find

the solutions, and NIntegrate was used to normalize them.
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– Correctly implementing the boundary condition at u = 1 then gave us wavefunctions
which vanished at this location, as can be seen in figure 2.

– In order to implement “shooting” to find the eigenvalues χ(0)
i , we introduced two

parameters u∞ and ε, and required |ϕi(u∞)| ≤ ε.

• Shooting Method Details for the Vector Wavefunctions:

– Shooting for the vector wavefunctions ψn(u) was performed in the u variable, again
using NDSolve inside Mathematica, and then normalized using NIntegrate.

– The differential equation is badly behaved at u = 1, so the method utilized a cut-off
parameter u0 = 1 + δ, and implemented boundary conditions at this location based
on a series expansion of the solutions.

– Again, correctly implementing the boundary conditions gave us wavefunctions which
vanished at u = 1 (as seen in figure 1).

– The eigenvalues λ(0)
n were found using “shooting” with the same parameters u∞ and

ε, and the requirement |ψn(u∞)| ≤ ε.

• Calculating δλn and δχi,1:

– To compute the overlap integrals giving the corrections to each eigenvalue from the
background geometry perturbation, the functions a(1)(u), b(1)(u), and c(1)(u) were
entered into Mathematica analytically.

– However, the behavior of these functions for large u was found to be more accurate
and stable if, above a parameter umax, a Taylor Series approximation was used instead.

– This Taylor series was implemented with Ns terms in it (with Ns a new numerical
parameter).

– Having done this, NIntegrate was used to perform the necessary overlap integrals,
with the limits u ∈ [1 + δ, u∞], fixed by the numerical parameters chosen earlier.

• Calculating δχi,2:

– To compute δχi,2, we approximated (5.10) as

δĤϕ̌,2 =
N∑
n

K̂(0)
(
|n〉0 0〈n|
λ

(0)
n

)
K̂(0)Ĥ(0)

ϕ (D.1)

– This introduced a final numerical parameter N , corresponding to the number of vector
states summed over to approximate

(
Ĥ

(0)
ψ

)−1
.

• Numerical Parameter Choices

– The choices for the numerical parameters utilized are listed in table 3.
– The results were tested for robustness by varying these parameters (singly and in

combinations), and determining how much the results varied.
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parameter value
u∞ 1000000
ε 10−20

δ 10−10

umax 10
Ns 20
N 50

Table 3. A table of numerical parameters used.

– The limiting factor in accuracy was found to be the value of N , the number of vector
states included in the calculation of δχi,2.

– Numerical integrals were then used, as usual, with NIntegrate, using the limits
u ∈ [1 + δ, u∞].

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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