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ABSTRACT
Selberg’s central limit theorem states that the values of log |ζ(1/2+ iτ)|, where τ is a uniform random variable
on [T , 2T], are asymptotically distributed like a Gaussian random variable of mean 0 and standard deviation√

1
2 log log T . It was conjectured by Radziwiłł that this distribution breaks down for values of order log log T ,

where a multiplicative correction Ck would be present at level k log log T , k > 0. This constant should be the
same as the one conjectured by Keating and Snaith for the leading asymptotic of the 2kth moment of ζ . In
this paper, we provide numerical and theoretical evidence for this conjecture. We propose that this correction
has a signi"cant e#ect on the distribution of the maximum of log |ζ | in intervals of size (log T)θ , θ > 0. The
precision of the prediction enables the numerical detection of Ck even for low T ’s of order T = 108. A similar
correction appears in the large deviations of the Keating–Snaith central limit theorem for the logarithm of
the characteristic polynomial of a random unitary matrix, as "rst proved by Féray, Méliot and Nikeghbali.

KEYWORDS
Riemann zeta function;
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random matrix theory

1. Introduction and main results

1.1. Introduction

The large values of the Riemann zeta function ζ : C \ {1} → C on the critical line Re(s) = 1/2 play an important role in number
theory. There are several conjectures describing its behavior. For example, the moment conjecture gives the leading order of the

Q1

moments of the function on the interval [0, T] (see, e.g., [26, 28, 35]):

Conjecture 1 (Moment Conjecture). For k ≥ 0, as T → ∞, we have

1
T

∫ T

0
|ζ(1/2 + it)|2kdt ∼ Ck(log T)k2 . (1)

Lower bounds of the same order of magnitude are known unconditionally (see [24, 32] and the earlier works of [19, 31]). Consistent
upper bounds on the level of the leading exponent are known unconditionally for 0 ≤ k ≤ 2 (from the work of [23]), and for all
k ≥ 0 conditionally on the Riemann hypothesis [17, 34]. This article is predominantly about the constants Ck.

At the level of the constant, Conjecture 1 is only proved in the case k = 1, by Hardy and Littlewood with C1 = 1, and the case
k = 2 by Ingham with C2 = 1

(2π)2 [21, 25]. The constants Ck, k > 0, have been conjectured in [28] using random matrix theory to
be of the form

Ck = ak · fk, (2)

where

ak =
∏

p primes

(
1 − 1

p

)k2 ∞∑

m=0

(
%(k + m)

m!%(k)

)2
p−m, (3)

and

fk = G2(1 + k)
G(1 + 2k) . (4)

Here, G denotes the Barnes G−function. An alternative approach using Dirichlet series yields the same conjecture [12].
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2 E. AMZALLAG ET AL.

As pointed out in [30], the constants Ck should also appear in the large deviations of Selberg’s central limit theorem. The original
theorem asserts that if τ is sampled uniformly in the interval [T, 2T], then for σ 2

T = 1
2 log log T and any "xed V ∈ R,

P
(

log |ζ(1/2 + iτ)| > σT · V
)

∼
∫ ∞

V

e− x2
2

√
2π

dx, as T → ∞. (5)

However, for V of the order of the variance, the proposed correction is

Conjecture 2 (Radziwiłł’s Conjecture1). If τ is uniformly distributed on [T, 2T] and σ 2
T = 1

2 log log T, then for V = V(T) ∼
k
√

2 log log T with k > 0, we have

P
(

log |ζ(1/2 + iτ)| > σT · V
)

∼ Ck

∫ ∞

V

e− x2
2

√
2π

dx, as T → ∞. (6)

To see why the conjecture is plausible, one can weigh the choice of τ by the value |ζ(1/2 + iτ)|2k by de"ning the probability P̃
with dP̃

dP = |ζ(1/2+iτ)|2k

E[|ζ(1/2+iτ)|2k] (and Ẽ for the corresponding expectation). With this notation, the le!-hand side of (6) becomes

P
(

log |ζ(1/2 + iτ)| > σT · V
)

= E[|ζ(1/2 + iτ)|2k] · (log T)−2k2 · Ẽ[e−2kXT1(XT > 0)], (7)

where XT = log |ζ(1/2 + iτ)| − k log log T. The limiting distribution of XT/σT under P̃ (for integer k) has been recently proved by
Fazzari to be standard Gaussian as in Selberg’s theorem [13]. Together with the asymptotics (1), this would imply that as T → ∞,

P
(

log |ζ(1/2 + iτ)| > σT · V
)

∼ Ck(log T)−k2
∫ ∞

0
e−2kσT z e−z2/2

√
2π

dz

∼ Ck(log T)−k2 1√
2π · k

√
2 log log T

,

by taking e−z2/2 = 1− z2
2 +. . . and integrating. The right-hand side is the same asymptotic as Equation (6) since a standard Gaussian

estimate yields
∫ ∞

V
e− x2

2√
2π

dx ∼ 1√
2π

e−V2/2
V as V → ∞.

1.2. Results

The main objective of this article is to provide more evidence that the moment correction Ck, predicted by random matrix theory,
should be present in (6). On the theoretical side, it was proved by Féray, Méliot, and Nikeghbali that a similar correction naturally
appears in the large deviations of the Keating–Snaith central limit theorem for the characteristic polynomial of the circular unitary
ensemble (CUE):

Theorem 1.1 (Theorem 7.5.1 [16]). Let PN(θ) = det(I − eiθ U) be the characteristic polynomial of an N × N random matrix U
sampled under the Haar measure PU(N) on the unitary group U(N). Write σ 2

N = 1
2 log N. Then we have for V = V(N) ∼ k

√
2 log N

as N → ∞, k ≥ 0, and any θ ∈ [0, 2π),

PU(N)

(
log |PN(θ)| > σN · V

)
∼ fk

∫ ∞

V

e− x2
2

√
2π

dx, as N → ∞,

where fk is given in Equation (4).

The statement of Theorem 1.1 is precisely the random matrix analogue of (6). Using the usual dictionary (see, e.g., [7, 27, 28]),
one compares the unitary characteristic polynomial PN(θ) with ζ(1/2 + it), and by comparing densities of eigenvalues and zeros of
zeta, the matrix size N corresponds to a height log(t/2π).

Large deviations in di$erent ranges were also considered by Hughes et al. [20]. In that paper, they show that log |PN(θ)|/A(N)

satis"es a large deviation principle, for various ranges of A(N). The appropriate range in the context of Theorem 1.1 is moderate
deviations:

√
log N * A(N) * N, and it is shown in [20] that the rate function is either quadratic or linear, depending on the

precise growth of A(N). Similar results have also been proved in the general context of β-ensembles and Wigner matrices in [10, 11].
Theorem 1.1 di$ers in that it examines a very particular form of A(N) and derives the resulting precise constant multiple of the
Gaussian. The proof of Theorem 1.1 was done in [16] in the general context for mod-φ convergence. For completeness, we provide
the detailed computation following the result of Keating and Snaith in the appendix.

1There is a small typo in the statement of the conjecture in the original paper where V ∼ k
√

log log T . A factor of 2 in the square root is missing.
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EXPERIMENTAL MATHEMATICS 3

The statement of Theorem 1.1 may be adapted for the imaginary part of log PN(θ)2. Additionally, the statement of Theorem 1.1
can be generalized to other classical compact groups, where the distribution should again be Gaussian but with a di$erent correction
gk (corresponding to the relevant matrix group moment), see, for example, Féray et al. [16]. From such calculations one could deduce
conjectures akin to Conjecture 2 for symplectic and orthogonal families of L-functions (cf. [7]).

Beyond the theoretical evidence from Theorem 1.1, we also provide numerical evidence of the presence of the correction Ck. We
choose to investigate its e$ect on the maximum of the real part of the logarithm of the zeta function in short intervals, instead of
directly testing (6). The reason for this is that the presence of the correction leads to a very precise re"nement of the Fyodorov-Hiary-
Keating conjecture for the maximum of log |ζ(1/2 + iτ + ih)| for h in a short interval, [14, 15]. The conjecture was originally stated
for mesoscopic intervals, that is, intervals of size 2π(log T)θ for −1 < θ ≤ 0. The statement was adapted in [5] (cf. Theorem 1.2) to
macroscopic intervals of size 2π(log T)θ , for θ > 0, but fell short of capturing terms beyond the leading order. It turns out that the
correction Ck has a measurable e$ect on the recentering of the maximum. More precisely, we propose the following re"nement:

Conjecture 3. Consider a !xed θ > 0. If τ is uniformly distributed on [T, 2T], then we have

max
|h|≤π(log T)θ

log |ζ(1/2 + i(τ + h))| =
√

1 + θ log log T − 1
4
√

1 + θ
log log log T + Gθ ,T , (8)

where (Gθ ,T , T ≥ 1) is a family of random variables converging in distribution to a Gumbel random variable Gθ with P(Gθ ≤ x) =
exp(−e− 1

β (x−m)
) and parameters

β = β(θ) = 1
2
√

1 + θ

m = m(θ) = (0.06537 . . . ) + β2 log C√
1+θ − β2

2

(
log(1 + θ) − log(4π)

)
.

(9)

As can be seen from the leading order of (8), the relevant regime of large deviation at a given θ is
√

1 + θ log log T. Together with
Conjecture 2, this leads naturally to the choice k = √

1 + θ for Ck in (9). The precise numerical constant appearing in the de"nition
of m in (9) is the Meissel-Mertens constant divided by 4, see Equation (14).

The upshot of Conjecture 3 is a very precise prediction to order one for the maximum of log |ζ(1/2 + i(τ + h))|, including very
good control of the "nite-size e$ects, that can be compared to the numerical data. The high precision of the conjecture to order one
is the saving grace here, as the factors log log T, log log log T, and Gθ ,T in (8) remain essentially of the same order for all testable T’s
(around T = 1023 seems to be the current computational limit). In particular, this spares us some of the di%culty of testing the
moment conjecture, see [22].

Table 1. Values of the leading order
coe!cient in the moment conjecture (1).
The exact values for k = 1, 2 are
due to Hardy and Littlewood, and Ing-
ham respectively [21, 25]. The (trun-
cated) numerical values for higher k can
be found in [22].

k Ck = ak fk

1 1
2 1

2π2 ≈ 5.066 × 10−2

3 5.708 × 10−6

4 2.465 × 10−13

Table 2. The ratio of the empirical mean of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| divided by
the model prediction with no correction (C ≡ 1) and with C√

1+θ at integer θ . From left to right,
the data corresponds to T = 107, T = 108, and T = 109.

θ C ≡ 1 C√
1+θ

0 0.9441 1.0490
1 0.9143 1.0147
2 0.8343 0.9679
3 0.7569 0.9165

θ C ≡ 1 C√
1+θ

0 0.9544 1.0454
1 0.9170 1.0099
2 0.8450 0.9708
3 0.7713 0.9225

θ C ≡ 1 C√
1+θ

0 0.9540 1.0343
1 0.9174 1.0043
2 0.8510 0.9703
3 0.7795 0.9234

2The appropriate calculation yields fk = |G(1 + ik)|2.

maybe
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We chose to test Equations (8) and (9) at T = 107, 108 and 109, where it is not costly to amass a good sample size for many θ ’s for
0 < θ ≤ 3. A snapshot of the results for the empirical mean of the maximum are given in Table 2 and Figures 2, 3 and 4. The main
conclusion there is that the correction Ck is necessary to "t the data. Details on the numerical experiments are given in Section 3.

The case θ = 0 is special as Conjecture 3 is not expected to hold. It was proposed in [14, 15] that the subleading order
should instead be − 3

4 log log log T. One then would expect the empirical mean to lie lower than the prediction (8). In addition,
the &uctuations should not be exactly Gumbel but a randomly shi!ed Gumbel. The e$ect of the random shi! is such that the right
tail of the distribution of the recentered maximum is not exponential, as for a pure Gumbel, but should be heavier: of the form
ye−βy. This would in e$ect increase the contribution of the &uctuations to the mean. The two above corrections seem hard to observe
numerically. One problem is that they are competing e$ects, which may mutually cancel. Secondly, there is the systematic problem
that the standard deviation of the maximum is fairly large at θ = 0, as can be seen for example in Figure 4. Theoretical progress to
settle the Fyodorov-Hiary-Keating conjecture has recently been made in [1, 3, 18, 29]. A continuous smoothing of the subleading
order between − 1

4
√

1+θ
log log T to − 3

4 log log T as θ ↓ 0 has been proposed in [4] by taking θ ∼ (log log T)−α , 0 < α < 1. This
gives a subleading order of − (1+2α)

4 log log T. Again, this interpolation seems hard to capture numerically as the standard deviation
of the maximum is large for small θ .

The paper is structured as follows. The details on how the theoretical prediction based on Conjecture 3 is generated are given
in Section 2. The conjecture is derived in Section 2.1 using basic extremal value theory, assuming Conjecture 2 and reasonable
properties of ζ . We comment on the control of the "nite-size e$ects and on the numerical computations of the Ck’s for all 0 ≤ k ≤ 2
in Section 2.2. Numerical experiments are discussed in Section 3. The appendix contains a proof of Theorem 1.1 following the work
of Keating and Snaith [28].

2. Derivation of prediction

2.1. Derivation of Conjecture 3

In this section, we derive Conjecture 3 based on the following assumptions:

Assumption. For τ a uniform random variable on [T, 2T] and θ > 0, the stochastic process

(|ζ(1/2 + i(τ + h))|, |h| ≤ π(log T)θ )

satis!es the following:

1. Discretization: the maximum over the interval [−π(log T)θ , π(log T)θ ] can be reduced to the maximum over a discrete set Hθ ,T
corresponding to the midpoints between the zeros of |ζ(1/2 + i(τ + h))| on the interval.

2. Independence: The variables |ζ(1/2 + i(τ + h))|, h ∈ Hθ ,T, are independent.
3. Large deviations of Selberg’s central limit theorem: Equation (6) holds with k = √

1 + θ .

Assumption 1 is reasonable as the maximum should be achieved between two zeros. The precise discretization can be rigorously
established, see Proposition 2.7 in [5]. The idea there is simple. The approximate functional equation (see for example Theorem 1.8
in [26]) gives

ζ(1/2 + iτ) =
∑

n≤T
n−1/2−iτ + O(T−1/2).

Therefore, as far as the large values are concerned, ζ behaves like a trigonometric polynomial with frequency at most log T. This
implies that the spacing between local maxima (and the zeros) should be of the order of 1/ log T. Similar reductions have been
used in the study of large values of the characteristic polynomial of random matrices, see Lemma 4.3 in [9]. Assumption 2 cannot be
exact, but it is likely a very good approximation. More precisely, it has been known since the work of Bourgade [6] that the correlation
between log |ζ(1/2 + i(τ + h))| and log |ζ(1/2 + i(τ + h′))| should decay like log |h − h′|−1 whenever |h − h′| ≤ 1. The values
are then said to be log-correlated. These fairly strong correlations are responsible for the di$erent behavior at θ = 0 mentioned in
the introduction. However, for θ > 0, most pairs of points in the large interval now lie at a distance much larger than one. The
correlations between the values at h and h′ then should decay very fast with the distance: like |h − h′|−1, see Equation 1.27 in [5]
and Lemma 2.1 in [2]. Assumption 3 is the one to be tested. The choice of k comes from the expected leading order of the maximum
being

√
1 + θ log log T.

From these assumptions, the derivation of the distribution of the maximum is a standard computation in extreme value theory.
However, we shall need very good control of the "nite-size e$ects to compare with numerics, so we include the details. The "nite-size
e$ects are discussed in the next section.

The number of zeros N (t) on [0, t] is known to a very good level of precision thanks to the Riemann-von Mangoldt formula, see
for example [26, 36],

N (t) = t
2π

log t
2πe + 1

π
Im log ζ(1/2 + it) + O(1). (10)

0
- in ?
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This implies that the number of zeros in the interval [τ − π(log T)θ , τ + π(log T)θ ] is

Nθ ,T = N (τ + π(log T)θ ) − N (τ − π(log T)θ )

= (log T)θ log τ

2πe + O((log T)θ )

= (log T)1+θ + O((log T)θ ).

(11)

This will be the approximation for the cardinality of the discrete set Hθ ,T . The above implies

log Nθ ,T = (1 + θ) log log T + O((log T)−1). (12)

Focussing on Assumption 3, the right tail of the distribution of log |ζ(1/2 + iτ)| is expected to be Gaussian with multiplicative
correction Ck and variance

σ 2
T = 1

2
∑

p≤T

1
p . (13)

In [30], Conjecture 2 is stated for σ 2
T = 1

2 log log T. Whereas it is true that
∑

p≤T
1
p = (1 + o(1)) log log T, the o(1)-term is needed

for precise numerics. Mertens’ second theorem asserts that, see for example [37],
∑

p≤T

1
p = log log T + B + O

( 1
(log T)3

)
, (14)

where B = 0.26149 . . . is the Meissel-Mertens contant. Hence, from (13), the standard deviation is asymptotically

σT =
√

1
2 log log T + B

2
√

2 log log T
+ O

( 1
(log T)3

)
. (15)

We are now ready to derive Conjecture 3. We use the shorthand notation N = Nθ ,T , σ = σT and C = C√
1+θ (the moment

coe%cient). Under Assumptions 1, 2, and 3, we have for any Y = Y(T) with σY ∼ √
1 + θ log log T as T → ∞,

P
(

max
|h|≤π(log T)θ

log |ζ(1/2 + i(τ + h))| ≤ σ Y
)

∼



1 −
NC

∫ ∞
Y

e− x2
2√

2π
dx

N





N

. (16)

The correct level of the maximum is obtained by choosing Y for which the numerator in Equation (16) is of order one. With this
mind, consider Y* the solution to the equation

NC
∫ ∞

Y*

e− x2
2

√
2π

dx = 1. (17)

Since
(

1 − a
n

)n
= e−a ·

(
1 − O

(a2

n

))
, (18)

Equations (17) and (16) then imply for σY = σ Y* + y, y ∈ R, as T → ∞,

P
(

max
|h|≤π(log T)θ

log |ζ(1/2 + i(τ + h))| ≤ σ Y* + y
)

∼ exp
(
−G(y)

)
, (19)

where

G(y) =
∫ ∞

Y*+y/σ e− x2
2 dx

∫ ∞
Y* e− x2

2 dx
. (20)

The quantity σY* is the deterministic shi! in Equation (9). To see this, recall that standard Gaussian estimates give the asymptotics

∫ ∞

Y

e− y2
2

√
2π

dy =
(

1 − O
( 1

Y2

)) 1
Y

e− Y2
2

√
2π

. (21)
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Combining (17) and (21) gives the following equation for Y* = Y*(T):

NC√
2π

e− (Y*)2
2

Y*
= 1 + O

( 1
(Y*)2

)
. (22)

The solution can be approximated recursively. A "rst approximation omitting 1
Y* = e− log Y* yields Y* ≈

√
2 log N. Writing Y* =√

2 log N + δ in (22) gives an equation for δ:

δ2

2
+ δ

√
2 log N + 1

2
log log N + 1

2
log 2 + log

(

1 + δ
√

2 log N

)

= log C − 1
2

log 2π . (23)

It is straightforward to solve this by expanding the logarithm to get

Y* =
√

2 log N + δ (24)

=
√

2 log N − 1
2
√

2 log N

(
log log N + log 4π − 2 log C

)
+ O

( log log N
log N

)
. (25)

It remains to note that Equation (11) and Equation (15) imply as T → ∞

σ
√

2 log N =
√

1 + θ log log T +
√

1 + θ
B
2

+ o(1), (26)
σ

2
√

2 log N
= 1

4
√

1 + θ

(
1 + O((log log T)−1)

)
. (27)

A!er multiplication by σ , the "rst two terms in Equation (25) give the leading correction for the maximum of log |ζ |:
√

1 + θ log log T − 1
4
√

1 + θ
log log log T.

The remaining terms with log C, B, log(1 + θ) and log 4π amount to the deterministic shi! m in Equation (9).
It remains to study the &uctuations around Y*. This is done by computing the asymptotics of the function G, de"ned by (20).

Using the Gaussian estimate (21) again yields

G(y) ∼ e− Y*

σ y · e− y2
(2σ2)

1 + y
σY*

, as T → ∞. (28)

Equation (9) follows by noting that e−y2/(2σ 2) ∼ 1 by (15), and 1 + y
σY* ∼ 1 for any "xed y by (25). Moreover, Equations (11), (15)

and (25) imply

Y*

σ
∼ 2

√
1 + θ , as T → ∞. (29)

Putting this back in (28) gives the parameter β of the Gumbel distribution in Equation (9).

2.2. Discussion of the Finite-Size E!ects

In this section, we explain how the numerical predictions of Conjecture 3 are obtained, including the computations of the coe%cients
Ck.

According to Conjecture 3, the mean of max|h|≤π(log T)θ log |ζ(1/2+ i(τ +h))| consists of two terms: the deterministic recentering

√
1 + θ log log T − 1

4
√

1 + θ
log log log T, (30)

and the expectation of the Gumbel random variable Gθ ,T . In the limit T → ∞, this variable should converge to a Gumbel random
variable Gθ with parameters m and β given in Equation (9) so that

E[Gθ ] = m + βγ , (31)

where γ is the Euler constant γ = 0.577 . . . .
To give an idea of the orders of magnitude in the problem considered, note that for T = 108, we have

log log 108 = 2.78 . . . , log log log 108 = 1.07 . . . . (32)@ ← this is correct

loglog 108=2.91 . . . . 1%1%107=2^78 . - -
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Scaling the simulations up to to T = 1023 wouldn’t result in much additional precision, since there

log log 1023 = 3.97 . . . , log log log 1023 = 1.39 . . . . (33)

This modest gain would come at a substantial computational time cost. Despite the curse of iterated logarithms, it is possible to derive
accurate numerical predictions thanks to a precise control of the lower order terms and their "nite-size corrections.

The computation of the deterministic shi! σY* follows the treatment in the last section. More precisely, for the number of zeros
Nθ ,T , we rely on Equation (11) and take

Nθ ,T ≈ (log T)θ log T
2πe . (34)

The error term in (11) is of order (log T)−1, which is comparatively small. For the variance σ 2
T , note that the constant B = 0.26149 . . .

is fairly close to the value of log log T in view of (32). For this reason, we use Equation (15) in the computation. One might expect a
quadratic correction to

∑
p≤T

1
p of the form

∑
p≤T

1
8p2 ≈ 1

32 , due to the expansion of the Euler product. However, this only leads to
a change of approximately 0.01 in the prediction at θ = 3 and T = 109 that we choose to neglect. The approximation of the product
by the exponential in Equation 18 also comes at a low cost, since the multiplicative error (1 − O(a2/n)) is evaluated at a = 1, by
design in (17), and at n = Nθ ,T ≈ (log T)θ ≥ 18.4. This multiplicative error becomes of small shi! in the exponential, allowing us to
discard it. The Gaussian estimate (22) is not quite precise enough for these "ne numerics. Indeed, this leads to Equation (25), with an
error O

(
log log Nθ ,T

log Nθ ,T

)
. This error remains substantial at any T’s that are computationally reachable. For this reason, we approximate

Y* directly by numerically solving Equation (17) 3. This takes care of all "nite-size corrections to σY*.
It remains to evaluate the mean of the Gumbel random variable Gθ ,T . As can be seen from Equation (28), the function G converges

to e−2
√

1+θy, albeit very slowly. The term e−y2/2σ 2 could be particularly problematic since σ is of the order
√

log log T. To take care
of this, instead of using βγ in the mean of a Gumbel (cf. Equation (31)), we simply evaluate the mean by working directly with the
function G(y) in Equation (20). The mean of the recentered random variable max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))|−σY* can then
be evaluated using the cumulative distribution function 1 − exp(−G(y)). This may be over cautious as this procedure yields a value
that di$ers from the limiting mean by only 0.03 at T = 109 and θ = 3. In Equation (29), we also use σ 2

σY* for β instead of the limiting
value (2

√
1 + θ)−1. For θ = 3, these considerations yield a mean of 0.17 . . . for Gθ ,T compared to 0.14 . . . for the limiting function

e−2
√

1+θy. In the same way, the variance of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| in the limit should be the one of a Gumbel with
parameter β , i.e.,

Var(Gθ ) = β2π2

6
. (35)

The "nite-size e$ects of computing the variance with the CDF 1 − exp(−G(y)) are small compared to using Equation (35), so we
use the latter for simplicity. (The di$erence for the standard deviation between the two values is around 0.05 for T = 109 at θ = 3,
which is relatively small compared to the gap between the prediction and the numerical value, cf. Figure 6.)

Finally, we turn to computing the moment coe%cient Ck (which recall appears in the de"nition of m, see (9)). For our purpose,
we are interested in the value of Ck = akfk given by Equation (2) for k ∈ (1, 2), since k = √

1 + θ and for our numerics we take
θ ∈ (0, 3). Certain evaluations of ak and fk appear in the literature: see for example [22], where they compute Ck for the "rst few
integers k:

The numerical values of Ck = akfk presented in Section 3 were computed4 by evaluating (3) and (4). Figure 1 plots Ck for θ ∈ (0, 3)

(i.e. k ∈ (1, 2)).

3. Numerical Experiments

3.1. About the Experiments

Thanks to the precision of Conjecture 3, the prediction can be tested using fairly rudimentary numerical experiments. The datasets
were generated using Python 3.8. We employ SageMath’s lcalc function [33], which uses Michael Rubinstein’s L-function calculator.
We also implement multiprocessing to expedite the run-time for large simulations. Samples were constructed at T = 107, 108 and
109 over the interval 0 ≤ θ ≤ 3 for each 0.1 increment for T = 107, 108 and for each 0.25 increment for T = 109.

For each height, T, the method consisted on generating S evaluations of τ , for τ uniformly distributed on [T, 2T]. Hence, the
interval [τ −π(log T)θ , τ +π(log T)θ ] was discretized at every 2π

log(T/2π) , and the maximum over this discrete set of points computed.
The sample sizes S at each θ were 500, 400, 300 for T = 107, 108 and 109 respectively.

3We use the numerical solver NSolve of Mathematica 11.3 which gives a precision of 16 digits.
4Computations were completed in SageMath [33], version 9.1, using Python 3.8.

← I makethis 1.38 .? . .
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Figure 1. Graph of the conjectured leading order coe!cient Ck of the 2kth moment of |ζ(1/2 + it)|, for k = √
1 + θ . The horizontal dashed line is at the value C2 = 1

2π2
corresponding to θ = 3.

Figure 2. The empirical mean of the samples of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| as a function of θ , 0 ≤ θ ≤ 3, with step size 0.1 at T = 107. The dotted lines
correspond to the theoretical predictions for C ≡ 1 and for C√

1+θ .

3.2. Results

The main numerical results concern the empirical mean of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| as a function of 0 ≤ θ ≤ 3.
These are plotted in Figures 2, 3 and 4. The results are compared with the theoretical predictions of Conjecture 3 (as detailed in
Section 2), both including the correction C√

1+θ and without, i.e., C ≡ 1. We observe that the prediction line for C ≡ 1 exhibits
greater divergence from the mean as θ grows, when compared to the corrected C√

1+θ prediction. This is despite the drastic reduction
in the variance. This reduction in variance is consistent with the prediction of the parameter β of the Gumbel distribution in Equation
(9), which decreases with θ . There is a small discrepancy for large θ , where the prediction is slightly outside the intervals given by the
sample values. Indeed, the prediction is above the maximum of the sample at θ = 3 by 0.144 for T = 107 (a relative error of 3%), for
T = 108 by 0.082 (a relative error of 1.8%), and for T = 109 by 0.076 (a relative error of 1.6%). The discrepancy seems to get worse
as θ grows. This may be the trace of lower order terms of E[|ζ(1/2 + iτ))|2k]. Such terms were studied in [8]. There, a re"nement of
Equation (1) is given where E[|ζ(1/2 + iτ))|2k] is proposed to be a polynomial in log T of degree k2. They do observe that for larger
k’s the leading coe%cient Ck in Equation (1) is much smaller than the coe%cients of lower order powers, see p.29 in [8]. This could
potentially have a detectable e$ect for T of the order of 108.
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Figure 3. The empirical mean of the samples of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| as a function of θ , 0 ≤ θ ≤ 3, with step size 0.1 at T = 108. The dotted lines
correspond to the theoretical predictions for C ≡ 1 and for C√

1+θ .

Figure 4. The empirical mean of the samples of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| as a function of θ , 0 ≤ θ ≤ 3, with step size 0.25 at T = 109. The dotted lines
correspond to the theoretical predictions for C ≡ 1 and for C√

1+θ .

Table 2 gives the ratio of the empirical mean over the two predictions (C ≡ 1 and C√
1+θ ) for T = 107, T = 108 and T = 109.

Again, the ratios suggest that C√
1+θ is the correct prediction. Note that the ratios are improving as T increases.

We also examine the convergence of the empirical mean by computing the relative displacement for the predictions from the
empirical means, and by calculating the normalized kernel density estimator as shown in Figure 5. We see that as T grows the relative
displacements exhibit smaller deviation centered around 0, with the most pronounced e$ect occurring for C√

1+θ at T = 109.
The estimate of the standard deviation of max|h|≤π(log T)θ log |ζ(1/2+i(τ +h))| turned out to be trickier, see Figure 6. The method

to obtain the theoretical prediction is explained a!er Equation (35). There is a signi"cant discrepancy between the prediction and
the numerical results. We do observe a reduction of the variance as predicted by Equation (35) and the de"nition of β in Equation
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Figure 5. The relative displacement of the samples of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| from the mean.

Figure 6. The standard deviation of the samples of max|h|≤π(log T)θ log |ζ(1/2 + i(τ + h))| as a function of θ , 0 ≤ θ ≤ 3.

(9). Note that the standard deviation is fairly small on the whole range of θ . In fact, it is of the order of 1/
√

S , where S is the size
of the sample. This might complicate the detection of a signal. The discrepancy seems to be the same for all range of T’s. It is also
increasing in θ . We currently have no convincing explanations for this phenomenon.
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Appendix A: Proof of Theorem 1.1

For completeness, we provide the proof of Theorem 1.1 based on the work of Keating and Snaith [28]. Recall that we write PN(θ) = det(I − eiθ U)

for the characteristic polynomial of a random N × N unitary matrix. Let σ 2
N = 1

2 log N and V = V(N) ∼ k
√

2 log N as N → ∞. We will show
that as N → ∞

PU(N)

( log |PN(θ)|
σN

> V
)

∼ fk
∫ ∞

V

e−
x2
2

√
2π

dx, (A1)

where fk is given in (4).
First, consider the Laplace-Fourier transform of log |PN(θ)|:

MN(s) = EU(N)[|PN(θ)|s] =
∞∑

j=0

EU(N)

[
(log |PN(θ)|)j

]

j! sj, s ∈ C, (A2)

where the average is taken over the unitary group with respect to Haar measure. Due to the rotational invariance of the Haar measure on U(N),
MN(s) is independent of θ . Using the Selberg integral, Keating and Snaith [28] (cf. [28], Equation (6)) determined a "nite N formula for MN(s),
valid for all real θ and Re(s) > −1

MN(s) = EU(N)[|PN(θ)|s] =
N∏

j=1

%(j)%(j + s)
%2(j + s/2)

. (A3)

From (A3), one deduces that, as N → ∞, MN(2k) ∼ fkNk2 .
The quantity MN(s) can be written in terms of the cumulants Qj(N) as follows

MN(s) = exp




∞∑

j=1

Qj(N)

j! sj



 . (A4)

The cumulants are simply the Taylor coe%cients of log MN(s). By di$erentiating the logarithm of (A3), Keating and Snaith calculated the asymptotic
form of the cumulants Qj(N) (see Section 2.2 in [28])

Q1(N) = 0 (A5)

Q2(N) = 1
2

log N + 1
2
(γ + 1) + 1

24N2 − 1
80N4 + O

( 1
N6

)
(A6)

Qm(N) = (−1)m 2m−1 − 1
2m−1

(
%(m)ζ(m − 1) − (m − 3)!

Nm−2

)
+ O

( 1
Nm−1

)
, (A7)

for m ≥ 3. Note that Q2(N) = σ 2
N(1 + o(1)). So we can prove (A1) with σ 2

N replaced by Q2(N).
Now, let ρN(x) be the probability density function of log |PN(θ)|:

ρN(x) = d
dx EU(N)[1{log |PN(θ)| ≤ x}], (A8)

and its rescaled version

ρ̃N(x) =
√

Q2(N)ρN(
√

Q2(N)x). (A9)

Note that ρ̃N is the derivative with respect to V of the le!-hand side of (A1). Using the relation ρn(x) = 1
2π

∫
R e−iyxMN(iy)dy, Keating and Snaith

determined (cf. [28], Equation (53)) that

ρ̃N(x) = 1√
2π

e−
x2
2



1 +
∞∑

m=3

Am(N)

Q2(N)
m
2

m∑

p=0

(m
p

)
xpE(m, p)



 , (A10)

④
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where

E(m, p) =
{

im−p(m − p − 1)!!, m − p even
0, m − p odd

, (A11)

and where the terms Am(N) are determined combinatorially from the cumulants and Equation (A9). For example, we have

A3(N) = Q3(N)

3!
A4(N) = Q4(N)

4!
A5(N) = Q5(N)

5!

A6(N) = Q6(N)

6! + 1
2!

Q3(N)2

(3!)2 .

The sum over p in Equation (A10) is a monic polynomial in x of degree m. The right-hand side of Equation (A10) is rapidly convergent as x grows,
which is the regime of interest.

As N → ∞, Am(N) approaches a constant, see [28]. Evaluating Equation (A10) at x = k log N√
Q2(N)

then gives

ρ̃N

( k log N√
Q2(N)

)
= 1√

2π
e−

1
2

k2 log2 N
Q2(N)



1 +
∞∑

m=3

Am(N)

Q2(N)
m
2

m∑

p=0

(m
p

)( k log N√
Q2(N)

)p
E(m, p)



 . (A12)

Note that x ∼ k
√

2 log N as N → ∞, ensuring the convergence of Equation (A12). For large N (hence large x), the leading term corresponding to
p = m dominates in the sum over p, hence

ρ̃N

( k log N√
Q2(N)

)
∼ 1√

2π
e−

1
2

k2 log2 N
Q2(N)

(

1 +
∞∑

m=3
Am(N)

(k log N
Q2(N)

)m)

(A13)

∼ 1√
2π

N−k2
ek2(γ+1)

(

1 +
∞∑

m=3
Am(N)(2k)m

)

, (A14)

using Equation (A6).
To prove the theorem, it remains to express the term in the parenthesis in terms of fk. Recall from the comment following Equation (A3) that

fk = lim
N→∞

MN(2k)
Nk2 . (A15)

Then, we have as N → ∞ using (A6),

MN(2k)
Nk2 = exp

(

2k2Q2(N) − k2 log N +
∞∑

m=3

Qm(N)

m! (2k)m
)

(A16)

∼ exp
(

k2(γ + 1) +
∞∑

m=3

Qm(N)

m! (2k)m
)

(A17)

= exp
(

k2(γ + 1)
) (

1 +
∞∑

m=3
Am(N)(2k)m

)

. (A18)

The "nal line follows by expanding the exponential with the in"nite sum in the exponent in the Taylor series, and then grouping terms according
to power of 2k. The fact that this results in the weights Am(N) follows immediately from the combinatorial de"nition, see the discussion following
(A11) and [28]. Hence fk is given by Equation (A18), and the result follows by substituting the expression into (A14).
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