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ARTICLE INFO ABSTRACT

Keywords: Land cover is an integral component for characterizing anthropogenic activity and promoting sustainable land
Fusion o use. Mapping distribution and coverage of land cover at broad spatiotemporal scales largely relies on classifi-
Land cover classification cation of remotely sensed data. Although recently multi-source data fusion has been playing an increasingly
Optical . . e . . . . . .

SAR active role in land cover classification, our intensive review of current studies shows that the integration of
Waveform LiDAR optical, synthetic aperture radar (SAR) and light detection and ranging (LiDAR) observations has not been
Accuracy thoroughly evaluated. In this research, we bridged this gap by i) summarizing related fusion studies and assessing

their reported accuracy improvements, and ii) conducting our own case study where for the first time fusion of
optical, radar and waveform LiDAR observations and the associated improvements in classification accuracy are
assessed using data collected by spaceborne or appropriately simulated platforms in the LiDAR case. Multi-
temporal Landsat-5/Thematic Mapper (TM) and Advanced Land Observing Satellite-1/ Phased Array type L-band
SAR (ALOS-1/PALSAR) imagery acquired in the Central New York (CNY) region close to the collection of
airborne waveform LVIS (Land, Vegetation, and Ice Sensor) data were examined. Classification was conducted
using a random forest algorithm and different feature sets in terms of sensor and seasonality as input variables.
Results indicate that the combined spectral, scattering and vertical structural information provided the maximum
discriminative capability among different land cover types, giving rise to the highest overall accuracy of 83%
(2-19% and 9-35% superior to the two-sensor and single-sensor scenarios with overall accuracies of 64-81% and
48-74%, respectively). Greater improvement was achieved when combining multitemporal Landsat images with
LVIS-derived canopy height metrics as opposed to PALSAR features, suggesting that LVIS contributed more useful
thematic information complementary to spectral data and beneficial to the classification task, especially for
vegetation classes. With the Global Ecosystem Dynamics Investigation (GEDI), a recently launched LiDAR in-
strument of similar properties to the LVIS sensor now operating onboard the International Space Station (ISS), it
is our hope that this research will act as a literature summary and offer guidelines for further applications of
multi-date and multi-type remotely sensed data fusion for improved land cover classification.

1. Introduction

Land cover is a fundamental attribute that links physical environ-
ments and human activities. As a key determinant of land use, it varies at
different spatial scales from local to global and temporal scales from
days to millennia (Cihlar, 2000). Timely and accurate information on
land cover has been identified as a critical information component for a
broad range of environmental and socioeconomic studies and applica-
tions, including forest management, desertification control, biodiversity
conservation, sustainable land use planning, and climate change
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monitoring (e.g. Chapin III et al., 2000; Douglas, 1999; Jansen and
Gregorio, 2002; Penner, 1994; Skole, 1994; Vitousek, 1994). Knowledge
on land cover and the associated dynamics is increasingly required by
research scientists, governmental agencies and nonprofit organizations
to improve understanding on interactions between the natural landscape
and humans and to promote better decision making that will increase
socioeconomic welfare while preserving limited land and biodiversity
resources.

Remote sensing provides a spatially continuous and highly consistent
representation of the Earth’s surface (Foody, 2002), and thus has been
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Table 1
Examples of land cover (and/or land use) classification through multi-type data fusion (published in peer-reviewed journals since 2000).
Authors Objective(s) Study site(s) Sensors Classification Accuracy
A - algorithm(s) improved over
Optical SAR LiDAR
the use of
single-type data
Adams and Shrubland mapping Southeastern Ohio, USA Landsat-8 OLI* Leica ALS50 Random forest (RF) 9% (OA: overall
Matthews in a managed forest accuracy)
(2018) landscape
Adrian et al. Crop type mapping An agricultural site in Sentinel-2* Sentinel-1* Deep learning (DL) —4-30% (OA),
(2021) Columbia, MO, USA —0.20-0.21
(Kappa)
Adriano et al. Building damage Palu, Indonesia Sentinel-2*, Sentinel-1%, RF 1-3% (OA)
(2019) mapping PlanetScope ALOS-2
PALSAR-2*
Alonzo et al. Urban tree species Santa Barbara, CA, USA AVIRIS Riegl Q560 Canonical 4-51% (OA)
(2014) mapping discriminant
analysis (CDA)
Amarsaikhan et al. Urban land cover Ulaanbaatar, Mongolia QuickBird TerraSAR-X Maximum 13% (OA)
(2010) classification likelihood (ML)
Attarchi and Mountainous forest Hyrcanian Forest (Loveh), Landsat-7 ETM+ ALOS-1 ML, RF, support —3-12% (0A)
Gloaguen (2014) classification Iran PALSAR vector machine
(SVM), neural
network (NN)
Blaes et al. (2005) Crop identification Central Belgium SPOT XS ERS-2 ML 2-37% (OA)
Landsat-7 ETM+ Radarsat-1*
Bork and Su (2007)  Rangeland Aspen Parkland, Alberta, Aerial photos Optech ML 16-28% (OA)
vegetation Canada (RGB)” ALTM2025
classification
Cai et al. (2020) Wetland mapping The Dongting Lake Sentinel-2*, MODIS  Sentinel-1* Stacked 7% (OA), 0.05
wetland, Hunan Province, generalization (Kappa)
China
Cho et al. (2012) Savanna tree species Kruger National Park, HiFIS Small-footprint ML 3-6% (OA)
mapping South Africa LiDAR
Chust et al. (2004) Mediterranean land Minorca Island, Spain SPOT XS* ERS-1/2* ML 0.01-0.08
cover discrimination (Kappa)
Dalponte et al. Classification of Bosco della Fontana AISA Eagle Optech SVM, ML, k-nearest 0.01-0.05
(2008) complex forest areas ~ Natural Reserve, Italy ALTM3100 neighbor (Kappa)
Dalponte et al. Tree species Southeastern Trento, Italy AISA Eagle, Optech SVM, RF 8-11% (OA),
(2012) classification over a GeoEye-1 ALTM3100EA 0.11-0.14
mountain area (Kappa)
Du et al. (2021) Land cover Trento, Italy and Hyperspectral LiDAR-derived DL 1-2% (OA)
classification University of Southern imagery” elevation”
Mississippi Gulf Park
campus, MS, USA and
University of Houston
campus, TX, USA
Fagan et al. (2018) Pine plantation Southeastern U.S. Landsat-5 TM* Riegl VQ-480 Decision tree (DT) 2-5% (OA)
mapping
Feng et al. (2019a) Coastal land cover Yellow River Delta, China Sentinel-2* Sentinel-1* DL 3-30% (OA),
classification 0.04-0.34
(Kappa)
Feng et al. Urban land use University of Houston Hyperspectral LiDAR-derived DL 8-38% (0A),
(2019b) mapping campus, TX, USA imagery” DSM™ 0.09-0.42
(Kappa)
Forzieri et al. Fine-scale mapping Marecchia River, Italy ADS40, MIVIS LiDAR-derived ML, spectral angle 5-18% (OA)
(2013) of heterogeneous DTM and DSM mapper (SAM),
urban/rural spectral information
landscapes divergence (SID)
Fu et al. (2017) Wetland vegetation Sanjiang Plain, China Gaofen-1 ALOS-1 RF —7-37% (OA),
mapping PALSAR, —0.08-0.50
Radarsat-2 (Kappa)
Furtado et al. Land cover The Lago Grande de Curuai Landsat-5 TM Radarsat-2 DT 1-17% (OA),
(2015) classification of the floodplain, Para, Brazil 0.01-0.11
Amazon vérzea (Kappa)
Geerling et al. Floodplain A floodplain along the river ~ CASI Optech ML 6-27% (OA),
(2007) vegetation Waal, Netherlands ALTM2033 0.06-0.28
classification (Kappa)
Ghamisi et al. Classification of University of Houston CASI, AISA Eagle LiDAR-derived RF, DL 3-29% (OA),
(2017) urban/rural campus, TX, USA and DSM”, Optech 0.03-0.32
landscapes Trento, Italy ALTM 3100EA (Kappa)
Guo et al. (2011) Urban scene Biberach, Germany Applanix DSS 22 M Riegl LMS-Q560 RF 2-14% (OA)
classification (RGB)
Hartling et al. Urban tree species Forest Park, St. Louis, MO, WorldView-2/3 LiDAR-derived DL, SVM, RF 3-4% (0A),
(2019) classification USA DTM, DSM and 0.03-0.05
intensity” (Kappa)
Urban classification CASI-1500 SVM
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Table 1 (continued)
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Authors Objective(s) Study site(s) Sensors Classification Accuracy
Optical SAR LIDAR algorithm(s) improved over
the use of
single-type data
Hasani et al. University of Houston LiDAR-derived 6-14% (OA),
(2017) campus, TX, USA DSM” 0.07-0.16
(Kappa)
Heckel et al. Forest cover Thuringia, Germany and Sentinel-2A Sentinel-1A RF 0-8% (OA)
(2020) delineation southern Kruger National *
Park, South Africa
Held et al. (2003) Tropical mangrove The Daintree River estuary, =~ CASI AIRSAR ML 6-19% (OA)
mapping Queensland, Australia
Hong et al. (2022) Classification Houston, TX, USA and Hyperspectral LiDAR-derived DL 8-25% (OA),
Trento, Italy imagery” imagery” 0.09-0.30
(Kappa)
Hong et al. (2021) Classification University of Houston 1CASI-1500 2Sentinel-1 'LiDAR-derived DL 19-26% (OA),
campus, TX, USA 2Sentinel-2 imagery” 0.10-0.28
2Berlin, Germany and Hong (Kappa)
Kong, China 212-23% (0A),
0.11-0.43
(Kappa)
Hribljan et al. Tropical mountain Ecuadorian Andes Landsat-5 TM* ALOS-1 RF 4-29% (OA)
(2017) peatland mapping PALSAR*,
and soil carbon Radarsat-1*
storage estimation
Huang et al. Land cover St. Louis, MO, USA Landsat-7 ETM+* Radarsat-1 ML 1-10% (OA)
(2007) classification
Hiitt et al. (2016) Land use/land cover Sanjiang Plain, China Formosat-2 TerraSAR-X ML, RF 2-16% (OA),
and crop * 0.03-0.21
classification (Kappa)
Ienco et al. (2019) Land cover mapping Reunion Island, France and Sentinel-2* Sentinel-1* DL 6-16% (OA),
Koumbia, Tuy, Burkina 0.07-0.19
Faso (Kappa)
Iervolino et al. Classification of a Maspalomas Special WorldView-2 TerraSAR-X ML 2% (OA), 0.04
(2019) semiarid landscape Natural Reserve, Spain (Kappa)
Inglada et al. Early crop type Toulouse, France Landsat-8 OLI* Sentinel-1A RF 0.01-0.10
(2016) identification * (Kappa)
Jones et al. (2010) Coastal tree species Gulf Islands National Park AISA Dual Eagle + TRSI Mark IT SVM 1% (0A),
mapping Reserve, British Columbia, Hawk 0 (Kappa)
Canada
Ke et al. (2010) Forest species Heiberg Memorial Forest, QuickBird Leica ALS50 DT 0.01-0.19
classification NY, USA (Kappa)
Koetz et al. (2008) Land cover Aix-en-Provence, France AISA Eagle Optech SVM 6-44% (OA),
classification for ALTM3100 0.07-0.49
forest fire (Kappa)
management
Kuplich et al. Land use Campinas, Sao Paulo State, Landsat-5 TM ERS-1* ML 3-45% (OA)
(2000) classification Brazil
Kwan et al. Land cover University of Houston Hyperspectral LiDAR-derived Joint sparse —2-6% (OA),
(2020a, 2020b) classification campus, TX, USA imagery” elevation” representation —0.02-0.07
(JSR), SVM, DL (Kappa)
Laurin et al. (2013) Tropical forest and Border of Sierra Leone and Landsat-5 TM, ALOS-1 ML, NN 2-34% (OA),
land cover mapping Liberia ALOS-1 AVNIR-2 PALSAR* 0.03-0.39
(Kappa)
Lee and Shan Coastal zone Coastal Camp Lejeune, NC, IKONOS NASA Airborne ML 1-2% (OA)
(2003) mapping USA Topographic
Mapper
Li et al. (2019) Land cover mapping  University of Houston Hyperspectral LiDAR-derived SVM 3-29% (OA),
campus, TX, USA and imagery”, DSM", Riegl VQ- 0.05-0.31
Rochester, NH, USA Headwall 480 (Kappa)
Hyperspec Imaging
Spectrometer
Liao et al. (2018) Tree species Wijnendale Forest, Airborne Prism TopoSys Harrier SVM, DL 4-25% (OA),
mapping Belgium EXperiment (APEX) 56 0.05-0.33
(Kappa)
Liu et al. (2017) Urban tree species City of Surrey, British CASI-1500 Leica ALS70-HP RF 9-19% (OA),
mapping Columbia, Canada 0.10-0.20
(Kappa)
Lu et al. (2011) Tropical land cover City of Altamira, Brazil Landsat-5 TM ALOS-1 ML 0-54% (OA),
classification PALSAR, —0.01-0.60
Radarsat-2 (Kappa)
Luo et al. (2016) Land cover Zhangye, Gansu Province, CASI-1500 Leica ALS70 ML, SVM 8-68% (OA),
classification China 0.13-0.71
(Kappa)
McNairn et al. Operational annual Five pilot sites across SPOT-4/5 Radarsat-1 * DT 1-16% (0A),
(2009) crop inventory southern Canada Landsat-5 TM* Envisat 0-0.23 (Kappa)
ASAR*
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Authors Objective(s) Study site(s) Sensors Classification Accuracy
Optical SAR LIDAR algorithm(s) improved over
the use of
single-type data
Michelson et al. Swedish land cover The Genevad River basin, Landsat-5 TM ERS-1* ML, sequential 6-20% (OA),
(2000) classification Sweden maximum a 0.07-0.19
posteriori (SMAP), (Kappa)
NN
Naidoo et al. Savanna tree species  The Greater Kruger CASI-1500 Waveform RF 7-56% (OA),
(2012) classification National Park, South Africa LiDAR” 0.09-0.66
(Kappa)
Park et al. (2018) Paddy rice mapping Sutter County, CA, USA Landsat-5 TM* ALOS-1 RF, SVM —1-17% (OA),
and Dangjin, South Korea PALSAR*, —0.02-0.24
Radarsat-1* (Kappa)
Rasti and Ghamisi Land cover University of Houston ITRES CASI-1500, Optech Titam RF 12-54% (OA),
(2020) classification campus, TX, USA and AISA Eagle MW, Optech 0.14-0.67
Trento, Italy ALTM 3100EA (Kappa)
Reiche et al. Detection of tropical ~ Viti Levu, Fiji Landsat-7 ETM+* ALOS-1 Break detection For 2-3% (OA)
(2015) deforestation PALSAR* Additive Season and
Trend (BFAST)

Sanli et al. (2009) Monitoring of land Edremit, Turkey Landsat-5 TM Radarsat-1 ML 6% (OA), 0.05
use change and its (Kappa)
environmental
impacts

Sasaki et al. (2012) Land cover and tree Expo’70 Commemorative Aerial photos Optech ML, DT 3-29% (OA),
species classification Park, Suita, Osaka, Japan (green, red, near- ALTM2050 0.07-0.39

infrared)” (Kappa)

Shupe and Marsh Desert vegetation Yuma Proving Ground, AZ,  Landsat-5 TM ERS-1 ML 15-50% (OA),

(2004) mapping USA 0.16-0.53
(Kappa)

Singh et al. (2012) Urban land cover Mecklenburg County, NC, Landsat-5 TM Leica ALS50 ML, DT 6-32% (OA)
assessment USA

Stawik et al. Vegetation mapping The lower Biebrza basin, HySpex (VNIR- Riegl LMS* RF 0.02-0.11

(2019) Poland 1800, SWIR-384)* (Kappa)
Song et al. (2020) Classification University of Houston Hyperspectral LiDAR-derived SVM, extreme 1-5% (OA),
campus, TX, USA imagery” DSM™ learning machine 0.02-0.05
(ELM), DL (Kappa)
Stramondo et al. Earthquake damage Izmit, Turkey and Bam, IRS-1C*, Terra ERS-1/2%, ML 5-27% (OA),
(2006) detection Iran ASTER* Envisat 0.08-0.35
ASAR* (Kappa)
Sukawattanavijit Land cover Central Thailand Landsat-8 OLI, Radarsat-2 SVM 7-14% (OA),
et al. (2017) classification THEOS 0.16-0.24
(Kappa)

Sun et al. (2019) Subtropical crop- The lower reaches of the Sentinel-2A/B*, Sentinel-1A RF, SVM, NN 0-17% (OA),

type mapping Yangzi River, China Landsat-8 OLI* 0.01-0.22
(Kappa)

Teo and Huang Land cover Chiayi and Kaohsiung WorldView-2, Optech ALTM Nearest neighbor 6-25% (OA),

(2016) classification Counties, Taiwan CASI-1500 Pegasus 0.02-0.30
(Kappa)

Torbick et al. Rice monitoring Myanmar Landsat-8 OLI Sentinel-1A DT 0.01-0.24
(2017) *, ALOS-2 (Kappa)

PALSAR-2

Toyra et al. (2001)  Wetland flood Peace-Athabasca Delta, SPOT-4* Radarsat-1* Mahalanobis 0.12-0.17
mapping Alberta, Canada distance (Kappa)

Voss and Urban tree species University of Northern AISA, AISA Eagle Leica ALS50 Nearest neighbor 9-11% (OA)

Sugumaran classification Iowa campus, IA, USA
(2008)
Waske and Land cover Bonn, Germany SPOT-5, Landsat-5 Envisat ML, DT, SVM 0-23% (OA)
Benediktsson classification ™ ASAR™,
(2007) ERS-2*
Waske and van der Land cover Bonn, Germany Landsat-5 TM Envisat SVM, RF 4-7% (OA)
Linden (2008) classification ASAR*,
ERS-2*

Xu et al. (2018a) Classification of University of Houston Hyperspectral LiDAR-derived SVM, ELM, DL 1-34% (OA),
urban/rural campus, TX, USA and imagery” DSM” 0.02-0.36
landscapes Trento, Italy (Kappa)

Xu et al. (2018b) Land cover Williamson County, IL, Landsat-5 TM* LiDAR-derived DL 8% (OA), 0.12
classification USA occupancy and (Kappa)

intensity”

Zhang et al. (2014) Urban land cover Pearl River Delta Landsat-7 ETM+, Envisat- RF 1-3% (0A),
and impervious (Guangzhou, Shenzhen, SPOT-5 ASAR, 0.01-0.03
surface mapping Hong Kong), China TerraSAR-X (Kappa)

Zhou et al. (2018) Urban land cover Suzhou, Jiangsu Province, Landsat-8 OLI, EO- Sentinel-1A RF 1-6% (OA),
classification China 1 Hyperion 0.01-0.08

(Kappa)

Zhu and Tateishi
(2006)

Land cover mapping

Zhangwu County,
Liaoning, China

Landsat-5 TM*
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Authors Objective(s) Study site(s) Sensors Classification Accuracy
Optical SAR LIDAR algorithm(s) improved over
the use of
single-type data
classification
(MTFC)
Zhu et al. (2012) Urban and peri- Eastern Massachusetts, Landsat-7 ETM+* ALOS-1 RF 1-22% (OA)
urban land cover USA PALSAR
classification

" Data acquired at multiple time steps.
# Sensor name not specified.

* Studies with land use mapping or change monitoring as the claimed objective.

recognized as a major data source for mapping land cover distribution.
Optical, synthetic aperture radar (SAR) and light detection and ranging
(LiDAR) are three widely adopted remote sensing imaging techniques
that use different wavelengths, energy sources and mechanisms, and
data acquired encapsulate different information contents. Specifically,

(@ 3

optical data provide spectral reflectance measurement of the target
illuminated by sunlight, whereas LiDAR returns can characterize the 3-D
structure and radar signals are sensitive to the structural and dielectric
properties of the target (e.g. roughness and moisture). Although each
has been proven useful in numerous classification studies, data fusion
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Fig. 1. Growth of classification research over the past two decades based on (a) optical-SAR and optical-LiDAR fusion, and (b) algorithms applied.
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strategies can combine the complementary information contained in
different types of data and contribute to an improved discriminative
capability among different land cover classes relative to the use of in-
dividual data types. In the past two decades, synergies of multiple data
sources for land cover classification have received more and more
attention, largely because spaceborne optical and SAR data from oper-
ational and archival satellite missions are increasingly available and
airborne LiDAR technologies continue to become more mature and
affordable.

Table 1 provides a detailed review of existing literature that explored
pixel- or feature-level fusion of multi-source data collected by different
types of sensors and were published in peer-reviewed journals from
2000 until Oct 2021. These studies were selected as they aimed at
mapping land cover (and/or land use) distribution in a wide range of
environments from urban, desert and coastal zones, to forest, cropland
and rangeland, and most importantly, they explicitly presented

176

classification accuracies from which improvement gained by the fusion
could be assessed, a major difference compared to existing reviews of
data fusion that are approach oriented (e.g. Ghassemian, 2016; Ghamisi
et al., 2019). Among the 75 identified studies, 38 of them examined the
combined use of optical and spaceborne SAR images, 36 were based on
integration of optical and airborne LiDAR data, and Hong et al. (2021)
proposed a multimodal framework and tested it on a hyperspectral-
LiDAR dataset and a multispectral-SAR dataset. Over 40% of these
studies were developed based on the use of multitemporal data (denoted
by a superscript “*”) that provide increased information over that from a
single date. Also, according to Table 1, marginal to substantial increases
in overall accuracy and Kappa were achieved relative to the use of
single-type data. A more obvious increasing trend over time can be
observed for optical-LiDAR fusion studies (Fig. 1a). With the advent of
big data and in parallel with the rapid computational advances, deep
learning, a specialized subset of machine learning and a fastest-growing
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trend in data sciences, has gained increasing interest in remote sensing
image classification (Fig. 1b).

Regardless of the choice of classification algorithms, more consid-
erable improvements with larger variabilities were always associated
with pairwise comparisons of SAR vs. optical-SAR classification
(Fig. 2b), and LiDAR vs. optical-LiDAR classification (Fig. 3b), as
opposed to optical vs. optical-SAR or optical-LiDAR classification
(Fig. 2a and 3a). Only in rare cases did the fusion of optical and SAR data

end up with slightly lower accuracies than those derived from optical
data alone (shown as points located below the 1:1 line in Fig. 2a). While
van Beijma et al. (2014) combined a LiDAR-derived digital surface
model (DSM) with aerial photography and airborne SAR data to delin-
eate salt marsh vegetation habitats in the Loughor Estuary, South Wales,
UK, and Jahncke et al. (2018) demonstrated the value of incorporating
QuickBird optical, LiDAR, and Radarsat-2 full polarimetric SAR data for
improved mapping of a wetland area south of Halifax, Nova Scotia,
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Table 2
Summary of the data and features used for classification.
Sensor Spatial resolution (m) Date Features™ Number of
features
Landsat-5/ 30 2009/4/10 (leaf- Surface reflectance (SR) and 3 x 3 neighborhood variance at bands 1-5, 7, and the 52
™ off) Normalized Difference Vegetation Index (NDVI).
2009/5/122009/
7/15
(leaf-on)
2009/10/19
ALOS-1/ 9.37 (slant range), 3.17-3.20  2010/5/12 Features of intensity, polarimetry, interferometry and texture. 132
PALSAR (azimuth) 2010/6/272010/
8/12
(leaf-on)2010/
11/12
(leaf-off)
LVIS 20 (nominal footprint 2009/8/ rh25, rh50, rh75, and rh100. 4

diameter) 24-2009/8/26

* See Section 3.1 for detailed descriptions of the features extracted from each dataset.

Canada, the synergistic use of all three types of data in classification of
more general land cover types and how classification accuracy will be
affected have not been thoroughly evaluated.

In addition to providing a summary of recent works and associated
improvements, we present here a case study to investigate further the
benefits of fusion. Specifically, we aim to address two previously
unanswered questions: i) can classification accuracy be improved by
combining the three different types of data with a commonly used
classifier (random forest), and ii) to what degree the inclusion of sea-
sonal spectral and scattering variations of certain vegetation classes may
impact the accuracy when optical, SAR, and LiDAR data are used in
combination. Our particular interest is to assess the improvement in
classification accuracy attributed to the fusion and the gain of infor-
mation (as opposed to other factors such as the use of different classi-
fiers). To the best of our knowledge, this is the first work that
simultaneously fuses optical, radar and waveform LiDAR observations,
where data are acquired from spaceborne or appropriately simulated
platforms in the LiDAR case.

The Central New York (CNY) region, which is recognized for its
persistent cloudiness and precipitation, was chosen as the study area.
Multitemporal Landsat-5/TM and ALOS-1/PALSAR images acquired
close to the collection of airborne waveform LiDAR data by NASA’s
Land, Vegetation, and Ice Sensor (LVIS) were examined. Experiments
started from the use of single-date features solely derived from one
specific sensor and gradually shifted to multi-date and multi-sensor
fusion. Results were analyzed both qualitatively and quantitatively,
providing a rare glimpse of the variability of classification performance
due to the use of different features as inputs. This research was built
upon our earlier work that focused on the integration of multi-type SAR
features in vegetation and land cover mapping (Jin et al., 2014), and it is
particularly timely now that a spaceborne LiDAR sensor, the Global
Ecosystem Dynamics Investigation (GEDI), with similar properties to
our examined LVIS sensor is currently operational at the International
Space Station.

2. Study area and data
2.1. Study area

The study area is located in the Central New York (CNY) region,
mainly in Onondaga County, with a ground extent of approximately 57
km x 52 km (Fig. 4). While our work was evaluated on a single site, it is
easily generalizable as the site is sufficiently diverse containing urban
and suburban environments, strong water, agriculture and different
forest presence and has strong topographic effects. Topography varies
substantially in the N-S direction from a fairly level plain of Lake Ontario
on the north to high hills in the Appalachian Plateau on the south. The
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City of Syracuse is located at the center. It receives significant lake-effect
snow from Lake Ontario and is considered the snowiest metropolitan
city in the United States.

Forests in this region are predominantly second-growth, as intensive
agricultural activities led to a major disturbance in the 19th century
(Stanton and Bills, 1996). Various deciduous and evergreen species
exist, with the ages ranging from 20 to 100 or more years (Zhuang et al.,
2015). Common tree species include American beech (Fagus grandifolia),
sugar maple (Acer saccharum), white ash (Fraxinus americana), and
basswood (Tilia americana) as deciduous, and Norway spruce (Picea
abies), white pine (Pinus strobus), and eastern hemlock (Tsuga cana-
densis) as evergreen (Nyland et al., 1986). Shrubland as early succes-
sional habitats dominated by sparse-to-dense shrubs and intermixed
with young trees have moderate presence. Agriculture contributes
significantly to the local economy, as farmlands cover more than 30% of
total land area in Onondaga County (USDA, 2014). Natural and semi-
natural herbaceous plants are mostly in the abandoned farmlands.
Such areas have minimal footprints, and thus are merged with agricul-
tural croplands and pasturelands to form a class named herbaceous/
planted. Water, developed and barren lands are also present in the study
area. Definitions of all land cover classes assessed are consistent with
those applied to the National Land Cover Database (NLCD) series.

2.2. Airborne LiDAR data

LVIS is an airborne, medium footprint, full waveform laser altimeter
designed, developed and operated by NASA’s Goddard Space Flight
Center (GSFC) (Blair et al., 1999). LVIS emits laser pulses at 1064-nm
wavelength with 5-mJ output energy and 10-ns bursts. The digitally
recorded signals establish a vertical profile of the footprint instanta-
neously illuminated, from which attributes such as surface topography
and vegetation coverage can be derived.

The LVIS data of the study area were acquired by 27 horizontal and
11 vertical flight lines during leaf-on season on August 24-26, 2009. The
swath width was approximately 2 km and the nominal footprint diam-
eter was 20 m. The footprint density varied spatially due to swath
overlap between adjacent flight lines. Among the standard LVIS prod-
ucts processed at GSFC, the LVIS Ground Elevation (LGE) data were
adopted, including geolocation (lat./long.), surface elevation, and
relative heights to surface at quartile cumulative return energy (Blair
et al., 2006). These height metrics, derived from a Gaussian decompo-
sition algorithm (Hofton et al., 2000), are referred as rh25, rh50, rh75
and rh100 and directly depict the vertical profile of canopy structure
(Sun et al., 2011).
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Table 3
Training and validation sample sets.

Class Training Validation: Number of total (mixed) pixels
Deciduous 200 251 (126)

Evergreen 200 129 (82)

Shrubland 200 124 (66)

Herbaceous/Planted 200 178 (72)

Water 200 130 (34)

Developed 200 129 (35)

Barren 200 159 (13)

Total 1,400 1,100 (428)

2.3. Satellite optical and SAR data

Optical data were represented by four images acquired by Landsat-5/
TM and SAR data were comprised of four images from ALOS-1/PALSAR.
All image dates were within 1-2 years of the LVIS campaign. Consid-
ering the high stability of the study area, no significant errors were
introduced by this small temporal variability. Both the spectral and the
radar datasets included one image in the leaf-on season, one image in the
leaf-off season, and two images during the transitional period between
leaf-on and leaf-off conditions (Table 2).

The selected Landsat scenes at path 15/row 30 (UTM Zone 18 North,
WGS-84) had minimal cloud and cloud shadow contamination over the
study area. All were obtained from the USGS Earth Resources Obser-
vation and Science (EROS) Center (source: https://earthexplorer.usgs.
gov) and processed to Level 1 T through Standard Terrain Correction.
The six reflective bands (1-5 and 7) at the 30 m spatial resolution were
extracted to provide spectral information of different land cover types.

Single look complex (SLC) PALSAR Level 1.1 data in the fine beam
dual (FBD) polarization (HH and HV) mode were downloaded from the
Alaska Satellite Facility Distributed Active Archive Center (ASF-DAAC,
source: https://asf.alaska.edu), all from an off-nadir angle of 34.3 de-
grees in an ascending orbit at path 134/frame 850. Slant range pixel
spacing is 9.37 m, and azimuth pixel spacing is 3.17-3.20 m. Meteoro-
logical data collected at a weather station in the City of Syracuse showed
that cumulative precipitation was less than 4 mm within 24 h prior to
the dates of PALSAR acquisition and there was no snow on the ground at
the time of PALSAR overpass (Jin et al., 2014).

3. Methodology

The procedure implemented for land cover classification can be
summarized as follows. Multiple features were first derived from the co-
registered Landsat, PALSAR and LVIS data, respectively (Table 2). A set
of thematic maps was then produced using the same training sample set
extracted from high-resolution orthoimagery but different combinations
of the features as classification inputs. The quality of the maps was
evaluated on an independent validation sample set in terms of classifi-
cation accuracy. Finally, importance of three feature sets, each corre-
sponding to a specific sensor, was analyzed with respect to individual
and all land cover types assessed in this study.

3.1. Feature extraction

For each Landsat-5/TM scene, digital numbers (DNs) of bands 1-5
and 7 were converted to surface reflectance (SR) using the Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) algo-
rithm (Masek et al., 2006), exactly the one that has been applied to
generate the official Landsat TM and ETM + Level 2 SR products (USGS,
2020a, 2020b). To avoid the high correlation among the numerous
indices that have been proposed, a single but frequently used metric was
extracted from the spatial and spectral domain, respectively. Specif-
ically, variance was computed on each SR band using a 3 x 3 moving
window to express the spatial correlation (or variability) of neighboring
pixels, and the Normalized Difference Vegetation Index (NDVI) was
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derived from SR of the near-infrared and red bands as a major indicator
of the presence, density and health of vegetation (Tucker, 1979). We
also avoided removing potentially correlated variables to allow the
classifier to reach its full potential. Therefore, the total number of fea-
tures per scene was 13 comprised of the SR and variance of each of the
six reflective bands and the NDVI.

Features extracted from multitemporal ALOS-1/PALSAR data can be
summarized into four categories, namely intensity, polarimetry, inter-
ferometry and texture. Intensity metrics characterize the strength of the
radar signals returned and detected by the sensor. Polarimetric param-
eters obtained through decomposition approaches describe the type and
contribution of different scattering mechanisms (i.e. surface, double
bounce, and volume scattering). Interferometric coherence quantifies
the degree of similarity and to which the target area remains unchanged
at two separate times. Spatial texture measures the spatial pattern of
ground objects from various aspects (e.g. smoothness, variation, de-
pendency). Detailed descriptions of PALSAR data processing and feature
extraction are provided in Jin et al. (2014). To facilitate a direct overlay,
all PALSAR-derived features were co-registered to Landsat scenes using
a collection of 24 ground control points (GCPs) on screen, and resampled
to 30 m pixel size through a bilinear interpolation. This is consistent
with the routine and commonly adopted protocol for image-to-image
registration, and a total root mean square (RMS) error of less than 0.5
pixels was achieved.

Relative height (rh) metrics were retrieved from the LVIS LGE
product for all flight lines and measured footprints. Point data were
rasterized and interpolated to 30 m Landsat base images using a
Delaunay triangulation method embedded in L3Harris’s ENVI software
package (Boulder, CO, USA) (e.g., Sun et al, 2011; Huang et al., 2013).
Four images were therefore created, corresponding to rh25, rh50, rh75
and rh100, respectively.

3.2. Selection of training and validation samples

Digital orthoimagery produced at the 0.3 m and 0.6 m resolution
from aerial photos acquired between 2008 and 2011 was used to extract
reference data for both training and validation purposes. The sampling
unit was set to be 30 m by 30 m, consistent with the pixel size of the
processed Landsat, PALSAR and LVIS data. A total of 1400 pixels were
manually digitized to constitute the training sample set, including 200
pixels from each of the seven land cover classes examined in this study
(Table 3). Because training data need to be representative of the classes
in the classification scheme, pure pixels were intentionally selected so
that the unique spectral signature of each class can be captured. The only
exception was the developed class, where some sample pixels fell within
residential areas and contained a mixture of vegetation (e.g. trees) and
constructed materials (e.g. houses).

A probability sampling design, namely stratified random sampling,
was employed to determine the location of validation samples. Pre-
liminary analysis of an intermediate classification showed that a certain
amount of pixels were erroneously labelled as evergreen, shrubland, or
barren. Therefore, larger sample sizes were allocated to these three
strata to ensure that each reference (or ground) class would have sulffi-
cient sample pixels to yield precise estimates of class-specific accuracy.
More specifically, a simple random sample of 300 pixels was selected
from the evergreen stratum, 200 pixels from barren and shrubland,
respectively, and 100 pixels from each of the remaining four strata (i.e.
water, developed, deciduous and herbaceous/planted), resulting in a
total of 1100 pixels in the validation sample set. Each sample pixel was
overlaid digitally on the orthoimagery. Reference class labels were then
identified by photointerpretation, including not only a primary label of
the dominant or most likely land cover class, but also an alternate label
for those situations where a single class cannot cover the entire pixel or
be assigned to the pixel with high confidence (Stehman and Czaplewski,
1998). This labeling protocol provides additional information on vali-
dation data quality for assessing its potential effect on the accuracy
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Table 4
Single-sensor models developed using different images and features.
Data combination Designation ~ Number of Number of
images features
TM leaf-on (7/15/09) Ton 1 13
TM leaf-off (4/10/09) Tofr 1 13
TM bitemporal (4/10/09, 7/15/09) To 2 26
TM multitemporal (4/10/09, 5/12/ Ty 4 52
09, 7/15/09, 10/19/09)
PALSAR leaf-on (8/12/10) Pon 1 30
PALSAR leaf-off (11/12/10) Pos 1 30
PALSAR bitemporal” (8/12/10, P, 2 62
11/12/10)
PALSAR multitemporal* (5/12/10, Py 4 132
6/27/10, 8/12/10, 11/12/10)
LVIS L, 4 4

" Coherence metrics were included in the feature space for classifications that
used multi-date PALSAR data.

Table 5
Two-sensor models developed using different images and features.
Data combination Designation ~ Number of Number of
images features

TM leaf-on + PALSAR leaf-on TonPon 2 43

TM leaf-on + PALSAR leaf-off TonPoff 2 43

TM leaf-on + PALSAR TonP2 3 75
bitemporal

TM leaf-on + PALSAR TonP4 5 145
multitemporal

TM leaf-off + PALSAR leaf-on TotPon 2 43

TM leaf-off + PALSAR leaf-off TotPoff 2 43

TM leaf-off + PALSAR TogP2 3 75
bitemporal

TM leaf-off + PALSAR TofP4 5 145
multitemporal

TM bitemporal + PALSAR ToPo 4 88
bitemporal

TM bitemporal + PALSAR ToPy 6 158
multitemporal

TM multitemporal + PALSAR T4Pon 5 82
leaf-on

TM multitemporal + PALSAR TaPosr 5 82
leaf-off

TM multitemporal + PALSAR T4Py 6 114
bitemporal

TM multitemporal + PALSAR T4P4 8 184
multitemporal

TM multitemporal + LVIS T4Ly 8 56

PALSAR multitemporal + LVIS P4L, 8 136

Table 6
Three-sensor models developed using different images and features.
Data combination Designation ~ Number of Number of
images features
TM leaf-on + PALSAR leaf-on + TonPonLy 6 47
LVIS
TM leaf-on + PALSAR leaf-off + TonPofrly 6 47
LVIS
TM leaf-off + PALSAR leaf-on + TotPonLy 6 47
LVIS
TM leaf-off + PALSAR leaf-off + TotfPotfLy 6 47
LVIS
TM bitemporal + PALSAR ToPoLy 8 92
bitemporal + LVIS
TM multitemporal + PALSAR T4P4Ly 12 188

multitemporal + LVIS

estimates (Stehman and Foody, 2009), thus has been applied in various
studies including all previous NLCD accuracy assessments (e.g. Stehman
et al.,, 2003; Wickham et al.,, 2004, 2010, 2013, 2017, 2021).
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Approximately 40% of the pixels in the validation sample set had an
alternate class label (Table 3), and most were due to the identification of
mixed land cover when referring to 0.3 m and 0.6 m resolution aerial
photos for labeling pixels at the 30 m resolution.

3.3. Classification

Random forest (RF), an ensemble learning algorithm (Breiman,
2001), was employed in this study to assign each pixel to a specific land
cover type. We opted to use RF classifiers instead of recently developed
deep learning (DL) methods because: i) our dataset size was small which
could lead to DL generalization issues, ii) RFs allow a better insight on
individual feature performance, an important insight for our compari-
son, and iii) tree-based algorithms remain the classification choice for
large scale mapping (e.g., the NLCD). In classification tasks, RF gener-
ates lots of classification trees, each trained on a bootstrapped sample of
the original training data and searching across a random subset of the
input features to determine a split at each node. The output is the ma-
jority vote of the classes predicted by individual unpruned trees. For a
particular feature, its importance can be measured as the difference
between classification accuracy of the out-of-bag (OOB) samples before
and after permuting the values of that feature while leaving the rest
unchanged. A higher accuracy decrease suggests higher importance of
that feature. Compared to a single decision tree, RF classifiers largely
reduce the overfitting problem and are more tolerant to outliers (or
noise) in the training data (Briem et al., 2002; Chan and Paelinckx,
2008; Pal and Mather, 2003).

To explore the role of the features in land cover classification, mul-
tiple RF models were built using the same training sample set but
different sensor and seasonality combinations. Specifically, nine models
were developed based on features extracted from individual sensors
(Table 4), and sixteen and six models by the combined use of two- and
three-sensor features, respectively (Tables 5 and 6). Each model con-
sisted of 500 classification trees, and one-third of the total number of
input features were randomly picked at each splitting node. To prevent
overfitting, the minimum number of samples in a leaf (or terminal) node
was set to 5. All classifications were performed using the Statistics
Toolbox in Mathwork’s MATLAB software package (Natick, MA, USA).
Feature importance was calculated when all of the 188 variables were
involved, indicating the maximum discriminative capability of the
datasets used in this study.

3.4. Accuracy assessment

The value of a thematic map derived from remotely sensed data
directly relies on classification accuracy, a commonly accepted measure
of the correctness of a classification (Foody, 2002). Accuracy assessment
is therefore an essential step in classification tasks. Because validation
data were collected following a probability sampling design, the estab-
lishment of statistically rigorous design-based inference for the accuracy
estimates from a sample to the population can be guaranteed (Stehman,
2000). In this study, population was defined as pixels where all sensor
data were available, and agreement was defined as a match between the
map class and either the primary or alternate reference label to account
for potential thematic ambiguity of the validation samples (Stehman
et al. 2003; Wickham et al. 2004, 2010, 2013, 2017, 2021).

An error matrix was constructed to characterize classification accu-
racy and the performance of each RF model. While statistical tests are
important, accuracy reporting was approached from the practical
perspective, that is, examine whether the improvements are sufficiently
meaningful to warrant the additional acquisition and process of fused
datasets. The answer to this depends on the application, therefore error
matrices are presented allowing each reader to come to their own con-
clusions with respect to their particular needs. To accommodate
different sampling intensities among strata, each sample pixel was
weighted inversely to its inclusion probability (i.e. the probability of a
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Estimated accuracy (%) of classifications derived from single-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from cor-
responding accuracies of the T4 scenario (top row, bold) with positives showing increases and negatives showing decreases.

Scenarios Deciduous Evergreen Shrubland Herbaceous/Planted Water Developed Barren
PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc
Ty 63 97 95 60 91 33 70 95 86 100 84 77 45 9
To -2 1 0 12 -1 1 2 -11 -6 0 -2 -1 13 5
Tofe -22 -8 -17 21 -5 -10 1 -8 -4 -1 -11 -3 51 1
Ton -6 -3 -4 -14 -3 1 -24 -13 -16 0 -5 -3 50 4
Py -8 -5 -7 -22 -13 -6 2 -3 -8 -9 -32 1 48 -5
Ly -12 -1 -10 -39 -56 13 -18 -4 -23 -48 -11 -21 2 -2
Py -9 -5 -6 -30 -26 -11 -8 -5 -11 -30 -37 -2 40 -6
Pon -21 -13 -11 -33 -35 -15 -19 -7 -14 -34 -39 -15 -5 -7
Post -21 -10 -11 -35 -32 -13 -23 -8 -17 -33 —-40 -16 42 -5
Table 8

Estimated accuracy (%) of classifications derived from two-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from corre-
sponding accuracies of the T4L, scenario (top row, bold) with positives showing increases and negatives showing decreases.

Scenarios Deciduous Evergreen Shrubland Herbaceous/Planted Water Developed Barren

PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc
T4Ly 87 96 99 52 89 54 68 97 79 100 86 76 61 18
T4P4 -22 1 -4 10 4 -21 6 1 7 0 -2 2 -15 -4
T4P2 -22 1 -3 10 2 -20 8 -3 6 0 -3 2 -16 -6
T4Post 20 1 -5 9 2 -18 4 -2 6 0 -2 1 -16 -8
T4Pon -21 1 -4 8 2 -19 3 -4 6 0 -3 1 -15 -8
T2P4 -23 1 -6 21 2 -22 9 -2 3 0 -6 2 37 -8
ToPs -24 0 -4 20 2 -20 9 -6 1 0 -4 2 -16 -9
ToP4 -32 0 -21 35 0 -28 10 -5 3 -1 -10 9 35 -13
TonP4 -28 0 -8 -3 1 -22 -2 3 -9 0 -5 1 -13 -7
TofP2 -36 -1 -19 37 -2 -30 10 -6 3 -1 -5 8 37 -7
TonP2 -30 -1 -9 -4 1 -24 -11 1 -5 0 -7 -5 -13 -10
TonPoft -30 0 -8 -6 1 -23 -13 0 -10 0 -6 -3 38 0
TonPon -29 1 -8 -6 1 -24 -10 -2 -11 0 -8 -6 -13 -9
ToPofe -38 0 -20 29 -1 -29 -1 -7 3 -1 -7 -3 37 -9
TotPon -44 -4 -19 36 -5 -32 7 -7 3 -1 -10 2 37 -8
PyLy -35 3 -6 -30 -43 -7 -2 -3 -10 0 -13 -12 30 -14

Table 9

Estimated accuracy (%) of classifications derived from three-sensor models. Producer’s and user’s accuracies (PAc and UAc) are presented as deviations from cor-
responding accuracies of the T4P4L, scenario (top row, bold) with positives showing increases and negatives showing decreases.

Scenarios Deciduous Evergreen Shrubland Herbaceous/Planted Water Developed Barren
PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc

T4P4Ly 87 96 99 54 91 61 72 99 88 100 87 77 48 14
ToPsLy -1 1 -1 5 0 -4 -5 -1 -5 0 0 -1 52 -5
TofPonLy -5 2 -5 5 31 9 -1 -5 -5 -1 9 -17 50 -1
ToPofiLy -5 2 -4 7 -32 10 -4 -6 -6 -1 -9 -16 50 -4
TonPonLy -5 2 -5 -20 -9 -7 -11 -4 -18 0 -6 -3 51 6
TonPosiLy 4 2 4 22 20 -4 14 -5 18 0 -8 -4 50 2

particular pixel being included in the sample set). Because the seven
strata used for validation sample selection are based on an intermediate
classification map and do not exactly correspond to any classification
scenario examined, cell proportions of the error matrix and the
accompanying accuracy measures, including overall accuracy and class-
specific user’s and producer’s accuracies, were estimated following the
formulas presented in Stehman (2014). Standard errors of the accuracy
estimates were also computed, quantifying the degree of uncertainty due
to sampling variation of validation data. Accuracy results were reported
for each classified map with different features as classification inputs.

4. Results and discussion
4.1. Accuracy of classifications derived from different data inputs

4.1.1. Impact of multi-date fusion on classification accuracy
Tables 7-9 summarize accuracies of the single-, two-, and three-
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sensor classifications with designated names presented in Tables 4-6,
respectively. For each table, results are listed in descending order of
overall accuracy (reported in Fig. 5), and user’s accuracy (UAc) and
producer’s accuracy (PAc) are presented as deviations from corre-
sponding accuracies of the scenario that has the highest overall accuracy
to facilitate a more straightforward assessment of the differences among
classifications. All accuracy estimates are rounded to the nearest whole
number. Standard errors of the overall accuracy are around 2% in all
classification scenarios.

Overall accuracies of single-sensor classifications ranged from 48%
to 74% (Fig. 5). Among all single-sensor scenarios, the highest overall
accuracy was achieved through the integration of multitemporal Land-
sat data (T4), and was about 1% higher than the overall accuracy of the
two-date Landsat classification (T3) and 10% higher than the single-date
Landsat overall accuracies (T, or Tof). Similarly, compared to the sin-
gle- and two-date PALSAR classifications, combining multitemporal
PALSAR data improved overall accuracies by 14-15% and 8-9%,
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Fig. 5. Overall accuracy of all classifications performed in this study. A descending order is applied to the single-, two- and three-sensor scenarios, respectively.
Columns filled with upward diagonals correspond to the scenarios presented in Table 10.

Table 10

Estimated accuracy (%) of classifications developed using combinations of different sensor data. Producer’s and user’s accuracies (PAc and UAc) are presented as
deviations from corresponding accuracies of the T4P4L, scenario (top row, bold) with positives showing increases and negatives showing decreases.

Scenarios Deciduous Evergreen Shrubland Herbaceous/Planted Water Developed Barren

PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc
T4P4Ly 87 96 99 54 91 61 72 929 88 100 87 77 48 14
T4Ly 0 0 0 -2 -2 -7 -4 -2 -8 0 -2 0 13 4
T4P4 -23 -4 8 2 -28 2 -1 -1 0 -4 1 -3 1
Ty -25 1 -4 6 1 -28 -2 -3 -2 0 -4 0 -3 -5
P4L, -35 3 -6 -32 -45 -14 -6 -5 -18 0 -15 -13 43 -9
Py -32 -4 -11 -15 -12 -34 0 -6 -10 -9 -35 1 45 -10
Ly -37 0 -14 -33 -55 -15 -20 -8 -25 -48 -14 -20 -1 -7

respectively. The choice of sensor also had considerable impact on
overall accuracy. Classifications of Landsat data resulted in overall ac-
curacies of 64-74%, consistently higher than overall accuracies of
PALSAR (48-63%) and LVIS (58%) classifications. More substantial
differences in accuracy were associated with certain classes (Table 7).
For example, producer’s accuracies of shrubland and developed and
user’s accuracies of evergreen and water varied by 40-56% with regard
to the use of different sensor data.

Moving to the two-sensor classifications (Fig. 5, Table 8), a 17%
difference in overall accuracy was observed among the numerous
combinations. Starting with the lowest performer, multi-date PALSAR
combined with LVIS data (P4L,) was able to classify different land cover
types to 64%, an overall accuracy inferior to all other two-sensor sce-
narios. Using single-date Landsat and PALSAR data resulted in classifi-
cations with a nearly identical overall accuracy of 67%. Including all
PALSAR observations increased overall accuracy to 71% (TotP4 and
TonP4), which was further improved to 76% by incorporating multi-date
Landsat observations also (T4P4). The most accurate two-sensor classi-
fication was generated with the joint use of LVIS and multitemporal
Landsat data as classification inputs (T4Ly), and an overall accuracy of
81% was achieved. Compared to T4P4, substantial improvement was
associated with the deciduous and shrubland classes, as producer’s ac-
curacy of deciduous and user’s accuracy of shrubland were increased by
more than 20%. It should be noted that although the exclusive use of
PALSAR (P4) led to a 5% higher overall accuracy than was obtained by
using LVIS alone (Ly) (63% vs. 58%, Table 7), greater improvement was
gained when combining multitemporal Landsat images with LVIS data
as opposed to PALSAR, suggesting that LVIS contributed more useful
thematic information that are complementary to Landsat data and
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beneficial to the classification task.

Performance of three-sensor classifications was relatively close
compared to that of single- and two-sensor scenarios with overall ac-
curacy varying from 74% to 83% (Fig. 5, Table 9). Similar overall ac-
curacies of 74-77% were attained with the fusion of single-date Landsat,
PALSAR and LVIS data. Nonetheless, replacing the leaf-on with the leaf-
off Landsat scene gave rise to a nearly 30% increase in user’s accuracy of
evergreen and a 10% increase in producer’s accuracy of herbaceous/
planted (TonPofrly VS. ToffPofflv, TonPonLy VS. ToffPonLy). The integration
of Landsat and PALSAR leaf-on and leaf-off pairs with LVIS data
increased overall accuracy to 82% (T2P2Ly). Another 1% improvement
was achieved by the further addition of Landsat and PALSAR images
acquired during the transitional period (T4P4Ly), leading to the highest
overall accuracy of 83%. Specifically, producer’s accuracies of shrub-
land and developed were considerably improved to 91% and 87% when
fusing two- or multi-date Landsat and PALSAR with LVIS data, whereas
user’s accuracies of deciduous and water were consistently higher than
96% for all three-sensor scenarios.

To examine the impact of including alternate labels for validation,
accuracies of all classification scenarios were also calculated following a
more strict agreement defined as a match between the map class and the
primary label only (see Appendix A). Overall accuracies reported in
Fig. A.1 are 6-9% lower compared to those present in Fig. 5. This is
consistent with the general expectation considering the fact that the
existence of mixed pixels was ignored and no allowance was permitted
for any thematic ambiguity in the reference class labels. However, the
relative performance of the different combinations of sensor types and
dates remains fundamentally the same, although the absolute values of
increase or decrease may be different (Table A.1).
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Fig. 6. Land cover maps created using different sensor combinations (a)-(g), and by manually assigning each 30 m pixel a reference class (h) based on the 0.6 m
resolution orthoimagery (i). Pixels containing no LVIS LiDAR footprints (displayed in white, (a)-(g)) were excluded from classification and accuracy assessment.

Table 11
Error matrix and associated accuracy estimates (%) of the classification using multitemporal Landsat and PALSAR data as inputs (T4P,4). Overall accuracy is 76% with a
standard error (SE) of 2%.

Class Water Developed Barren Deciduous Evergreen Shrubland Herbaceous/Planted Total UAc (SE)
Water 3.734 0.000 0.000 0.000 0.000 0.000 0.000 3.734 100 (0)
Developed 0.053 21.361 0.372 1.292 0.000 0.036 4.249 27.363 78 (4)
Barren 0.000 1.064 0.308 0.000 0.000 0.002 0.778 2.153 14 (5)
Deciduous 0.043 0.311 0.000 19.362 0.100 0.201 0.036 20.052 97 (1)
Evergreen 0.387 0.418 0.000 0.998 3.230 0.093 0.107 5.234 62 (7)
Shrubland 0.107 2.381 0.000 8.002 0.057 6.374 2.431 19.353 33 (4)
Herbaceous/Planted 0.000 0.036 0.000 0.275 0.000 0.179 21.622 22,111 98 (1)
Total 4.324 25.572 0.680 29.929 3.387 6.884 29.224 100

PAc (SE) 86 (3) 84 (4) 45 (22) 65 (4) 95 (2) 93 (2) 11 4)
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Error matrix and associated accuracy estimates (%) of the classification combining LVIS with multitemporal Landsat and PALSAR data as inputs (T4P4L,). Overall

accuracy is 83% with a standard error (SE) of 2%.

Class Water Developed Barren Deciduous Evergreen Shrubland Herbaceous/Planted Total UAc (SE)
Water 3.734 0.000 0.000 0.000 0.000 0.000 0.000 3.734 100 (0)
Developed 0.021 21.810 0.336 1.292 0.000 0.036 4.985 28.481 77 (4)
Barren 0.000 1.064 0.308 0.332 0.000 0.002 0.556 2.263 14 (5)
Deciduous 0.021 0.729 0.000 27.768 0.000 0.468 0.021 29.007 96 (2)
Evergreen 0.468 0.693 0.000 1.579 3.406 0.043 0.107 6.297 54 (6)
Shrubland 0.021 0.439 0.000 0.826 0.036 5.645 2.345 9.313 61 (6)
Herbaceous/Planted 0.000 0.222 0.000 0.000 0.000 0.036 20.648 20.906 99 (1)
Total 4.266 24.958 0.644 31.797 3.442 6.230 28.663 100
PAc (SE) 88 (3) 87 (4) 48 (25) 87 (2) 99 (1) 91 (5) 72 (4
8 8
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Fig. 7. Histograms of the four vegetation types in the LVIS-derived height metrics: (a) rh25, (b) rh50, (¢) rh75, and (d) rh100.

4.1.2. Impact of multi-sensor fusion on classification accuracy
Accuracies derived from combinations of different types of features
associated with one, two or three sensors were summarized in Table 10
(also see the columns filled with upward diagonals in Fig. 5). Fusing
LVIS with multitemporal PALSAR data (P4L,) increased overall accuracy
by 6% and 1%, compared to the use of each dataset individually. The
integration of Landsat with PALSAR (T4P4) and Landsat with LVIS (T4Ly)
contributed to more substantial improvement in classification perfor-
mance over single-sensor classifications. For example, an increase of
13% and 23% in overall accuracy was respectively attained due to the
addition of Landsat data relative to using PALSAR or LVIS alone (T4P4
vs. Py, T4Ly vs. Ly). As expected, combining the features derived from all
three sensors led to the highest overall accuracy of 83% (T4P4Ly), 2-19%
superior to the two-sensor scenarios. The slight improvement of 2% over
T4Ly implies that the benefits of introducing SAR features to Landsat and
LVIS were limited for classifying the land cover types present at the
study site. It should be noted that when Landsat data were available, the
inclusion of LVIS data was capable of improving overall accuracy by 7%
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(T4Ly vs. T4, T4P4Ly vs. T4Py4), a larger extent over the 1% improvement
obtained by adding LVIS to PALSAR only (P4Ly vs. P4). This indicates
that LVIS-derived height metrics can be more successful in discrimi-
nating different land cover types with the combined use of Landsat data.
Differences in class-specific accuracies were more noticeable for certain
vegetation-related classes like deciduous, evergreen and shrubland, as
well as the developed class that was defined as a mixture of constructed
materials (i.e. impervious surface) and vegetation planted for recrea-
tion, erosion control and aesthetic purposes.

The corresponding classified maps were also evaluated qualitatively.
Although an intensive inspection at multiple locations was conducted,
classifications over a small area consisting of 85 by 75 30-m pixels were
presented in Fig. 6 to facilitate a clearer interpretation. A reference land
cover classification, as Fig. 6h shows, was generated by visually iden-
tifying the dominant class of every 30 m pixel based on the orthoimagery
at the 0.6 m resolution over the selected area (Fig. 6i). Substantial dif-
ferences can be observed when comparing Fig. 6g, the resultant map of
T4P4Ly classification, to the other six maps derived from single- and two-
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Fig. 8. Averaged feature importance for each land cover class and over
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sensor classifications (Fig. 6a-f), and Fig. 6g appears more consistent
with the real land cover patterns as displayed in Fig. 6h and i. Specif-
ically, in Fig. 6g, the confusion between deciduous and shrubland in
Fig. 6a and d was considerably reduced, and only a small number of
pixels were classified as barren, as opposed to Fig. 6b and f, where large
barren patches were erroneously created. Besides, lower spatial het-
erogeneity was achieved in Fig. 6g compared to Fig. 6¢ and e, and ar-
tifacts and isolated pixels that are most likely to be noise were largely
removed. Despite the overall consistency, the comparison of Fig. 6g and
h also reveals that certain misclassification occurred between the her-
baceous/planted and developed classes. This may be largely due to the
difficulties in separating natural and semi-natural herbaceous and
planted areas (e.g. croplands) from grass-covered ground in the devel-
oped context (e.g. residential backyards and golf courses). Nonetheless,
this assessment still proved that the model developed using Landsat,
PALSAR and LVIS data concurrently can generate a visually more reli-
able land cover classification over multiple land cover types with
varying extents of ground coverage.

4.2. Added value of LiDAR observations in characterizing vegetation

To further evaluate the contribution of LVIS in improving class-
specific accuracies, a comparison was conducted between the two
classifications before and after LVIS data were fused with multitemporal
Landsat and PALSAR images as inputs (T4P4 vs. T4P4Ly). Tables 11 and
12 show the error matrix of the two classified maps created over the
entire study area, respectively. The rows represent remote sensing-
derived classification and the columns correspond to ground refer-
ence. Cell entries are expressed as proportion of area. The diagonal cells
summarize correctly classified areas (displayed in bold), and all off-
diagonal cells indicate errors.
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Disagreement was largely associated with the deciduous and
shrubland classes in the T4P4 classification, as displayed in a light gray
color in Table 11. Substantial deciduous pixels were misclassified as
shrubland, resulting in remarkably high omission error of deciduous and
high commission error of shrubland. This is mainly attributed to the
similarities of the two vegetation classes in their spectral, scattering and
temporal signatures. In contrast, vertical structural features extracted
from LiDAR waveforms played a crucial role in distinguishing shrubland
from deciduous forest. As shown in Table 12, including LVIS relative
height (rh) metrics largely resolved the problem, and predominantly
contributed to the 28% increase in user’s accuracy of shrubland and the
23% increase in producer’s accuracy of deciduous. Specifically, signa-
tures of the deciduous, evergreen, shrubland, and herbaceous/planted
classes were explored with respect to each rh metric based on the
reference data (Fig. 7). It is clear to see that the separability of shrubland
and deciduous was high, especially in rh75 and rh100. Also, Fig. 7d
coincides with the commonly adopted definition of shrubland as areas of
shrubs and young trees less than 5 m tall, whereas deciduous/evergreen
forest referring to areas dominated by trees that are generally greater
than 5 m tall. The fact that deciduous overlaps with evergreen to a large
degree in all of the four rh metrics caused the two classes hard to
separate, a major limitation of using LVIS alone. This could largely be
compensated by the integration of multitemporal Landsat data due to
additional information on seasonal changes they brought in (Table 10).

Among the seven land cover types, barren was always the least well
characterized with the lowest producers’ and user’s accuracies. Ac-
cording to Tables 11 and 12, omission error of the barren class is
attributed to the fact that more than 50% of barren pixels were labeled
as developed. Meanwhile, the majority of pixels classified as barren were
actually developed or herbaceous/planted on the ground, giving rise to
its markedly high commission error. Nonetheless, its impact on the
overall quality of the resultant classified maps is considered marginal,
since barren is a rare class that represents only 2% of the study area from
the map perspective.

4.3. Importance of sensor type to individual classes

To examine the relevant importance of spectral, scattering and ver-
tical structural features in land cover classification, an assessment was
implemented on the classifier that combined all of the 188 variables
extracted from Landsat, PALSAR and LVIS data as classification inputs
(T4P4Lv). The variables were grouped into three feature sets, each cor-
responding to a specific sensor and sensor type. Importance was
measured as the mean decrease in accuracy as a result of the OOB
samples being misclassified providing that the four most important
features in the feature set evaluated was absent (Fig. 8, also see Fig. B.1
and Table B.1 in Appendix B for the importance of individual features).

Compared to PALSAR and LVIS, the Landsat feature set was of
greater importance to the overall accuracy. Both Landsat and LVIS
contributed considerably more than the numerous PALSAR-derived
features, since randomly permuting values of those features yielded a
slightly decreased overall accuracy by less than 1%. LVIS was the most
indispensable feature set for three out of the four vegetation classes
assessed in this study: deciduous, shrubland and herbaceous/planted.
The critical role that multitemporal Landsat data played in mapping
evergreen, as discussed in Section 4.2, was confirmed by the fact that
when Landsat features were removed, the chance an evergreen pixel
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labeled as any other class increased by 14%. The integration of the
PALSAR feature set was more beneficial to shrubland and herbaceous/
planted over the other classes.

5. Conclusions

This study illustrates that integration of spaceborne optical (Landsat-
5/TM) and SAR (ALOS-1/PALSAR) and airborne full-waveform LiDAR
(LVIS) data provides the most pronounced discriminative power among
different land cover types. An overall accuracy of 83% was achieved
when all spectral, scattering and vertical structural features were used as
classification inputs, 2-19% and 9-25% higher than the numerous two-
sensor and single-sensor scenarios assessed, respectively. The inclusion
of seasonal spectral and scattering variations of vegetation classes also
improved overall accuracy by nearly 10%, when observations from all
three sensors were used in combination. Compared to PALSAR features,
LVIS-derived canopy height metrics contributed more useful thematic
information that is complementary to Landsat data and beneficial to
classification performance, especially for vegetation classes. As more
applications and studies of spaceborne GEDI LiDAR emerge, this study
serves as a guide regarding to what extent accuracy of classification
maps may be improved through the fusion of multi-date and multi-type
remotely sensed data with a commonly used classifier of random forest.
Future work will be focused on extending our current proof-of-concept

Table Al
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work to additional sites, sensors and time periods with the use of
other machine learning as well as advanced deep learning algorithms
that have gained a lot of interest recently to ensure more generalized and
statistically representative conclusions.

Declaration of Competing Interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgements

This work was partially supported through NSF’s Macrosystems
Biology and NEON-Enabled Science (MSB-NES) Program to H. Jin [grant
number 2106030] and NASA’s Biodiversity Program to G. Mountrakis
[grant number NNX09AK16G]. We sincerely thank the four anonymous
reviewers and the associate editor for their careful review and many
constructive comments and suggestions that helped improve the
manuscript.

Appendix A

See Table Al and Fig. Al.

Producer’s and user’s accuracies (%) of classifications derived from single-, two- and three-sensor models, where agreement is defined as a match between the map
class and the primary reference label only for the validation samples. The table is formatted to be consistent with Tables 7-9 in the text.

Scenarios Deciduous Evergreen Shrubland Herbaceous/Planted Water Developed Barren

PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc PAc UAc
(a) Single-sensor classifications
Ty 57 91 66 44 80 23 65 93 85 100 81 68 45 9
Ty 0 1 4 6 -1 2 2 -11 -6 0 -3 1 -1 -1
Tofr -21 -8 -3 8 -10 -8 3 -8 -6 -10 -13 -1 -3 -3
Ton -8 -5 -7 -20 —4 -5 —24 -14 —-18 0 -8 -2 49 1
Py -10 —-12 -11 —-25 —-28 -10 0 -5 -13 -17 -33 3 2 -5
Ly —14 —4 -12 -33 -57 1 —-16 -8 -25 —49 -14 -18 —28 -7
P, -10 -7 -6 -25 —40 -12 -8 -8 —-16 -37 -38 -1 -3 -6
Pon -20 -16 —-12 —-27 —45 —-14 -18 -11 -15 —-34 —41 —14 -6 -7
Posr -21 -16 -18 -31 —42 -13 -23 -11 -21 -41 -41 -13 -8 -7
(b) Two-sensor classifications
T4Ly 87 96 99 52 89 54 68 97 79 100 86 76 61 18
T4P4 -30 -5 -34 -7 -9 -31 1 -2 6 0 -6 -6 -16 -4
T4Py -29 -5 -33 -7 -11 -30 2 -5 6 0 -6 -6 -16 -6
T4Pogs -27 -5 -36 -8 -9 -28 -2 -5 6 0 -5 -8 -16 -8
T4Pon -27 -5 -34 -5 -10 -29 -2 -6 6 0 -6 -8 -16 -8
T,P4 -23 1 -6 21 2 -22 9 -2 3 0 -6 2 37 -8
ToP2 -29 -6 -31 -1 -11 -29 3 -8 0 0 -8 -5 -16 -9
TotP4 -32 0 -21 35 0 —-28 10 -5 3 -1 -10 9 35 -13
ToP2 -36 -1 -19 37 -2 -30 10 -6 3 -1 -5 8 37 -7
TonP4 -36 -7 —40 —24 -11 -35 -9 -1 -11 0 -10 -8 -16 -7
TotPost —42 -6 -35 0 -16  -36 -6 -9 0 -10 -12 -8 -18 -13
ToffPon —48 -13 -33 6 -20 -39 2 -9 0 -10 -15 -3 -18 -12
TonP2 -30 -1 -9 -4 1 —24 -11 1 -5 0 -7 -5 -13 -10
TonPoft -38 -8 —40 -25 -10 -35 -19 -2 -12 0 -12 -12 32 -5
TonPon —-38 -6 -39 —26 -15 -35 -17 -8 —-12 0 -13 -15 -16 -9
PyLy -35 3 -6 -30 —43 -7 -2 -3 -10 0 -13 -12 30 -14
(c) Three-sensor classifications
T4P4Ly 87 96 99 54 91 61 72 99 88 100 87 77 48 14
T2P,Ly -1 1 -1 5 0 -4 -5 -1 -5 0 0 -1 52 -5
ToffPonLv -5 2 -5 5 -31 9 -1 -5 -5 -1 -9 -17 50 -1
TotPosfLy -5 2 -4 7 -32 10 -4 -6 —6 -1 -9 -16 50 —4
TonPonlv -5 2 -5 -20 -9 -7 -11 -4 -18 0 -6 -3 51 6
TonPofrLyv —4 2 —4 -22 -20 -4 -14 -5 -18 0 -8 —4 50 2
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Fig. Al. Overall accuracy of single-, two- and three-sensor classifications, where agreement is defined as a match between the map class and the primary reference
label only for the validation samples. The figure is formatted to be consistent with Fig. 5 in the text.

Appendix B

See Fig. B1 and Table B1.
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Fig. B1. Importance of all features extracted from (a) Landsat, (b) PALSAR, and (c) LVIS data. Note that subplots (a) and (c) are combined due to the similar scale
of 0-10%.
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Table B1
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Importance of all Landsat, PALSAR, and LVIS features used for classification (expressed in percent). Shading is applied to the four most important features of each

dataset that are labeled in Fig. B.1.

(a) Landsat (52) (b) PALSAR* (132)

4/10 7/15 Intensity Interferometry (y) Texture (8/12, Texture (5/12, Texture (6/27, Texture (11/12,
w3) w3) w3) w3)
SR (b1) 0.49 SR (b1) 1.91 HH(8/12) 0.10  ymu 016 HOMpyy 002 HOMpyy 0.01 HOMpyy 002 HOMpyy 0.01
SR (b2) 1.85 SR (b2) 1.16 HH (5/12) 0.24  (8/12vs.11/12) CON_gn 0.03  CON_gy 0.02  CON_gy 0.02  CON_gy 0.02
SR (b3) 1.56 SR (b3) 5.54  HH (6/27) 0.09  yuu 0.18 DIS_un 0.02  DIS_un 0.01 DISun 0.02  DIS uu 0.01
SR (b4) 541 SR (b4) 2,65 HH(11/12) 0.17  (6/27 vs. 8/12) ENT _pn 0.01  ENT_py 0.02  ENT gy 0.01 ENT yy 0.00
SR (b5) 5.40 SR (b5) 3.56 HV (8/12) 0.14  yuu 0.48  ENE py 0.00 ENE gy 0.01  ENE gy 0.00  ENE gy 0.01
SR (b7) 8.16 SR (b7) 5.27 HV (5/12) 1.02  (5/12vs. 8/12) COR_gn 0.01 COR_yn 0.03  COR_un 0.02  COR_pn 0.02
Var (b1) 0.09 Var(bl) 1.12 HV (6/27) 049  yuu 033 HOMjg4y 001 HOMpyy 0.00 HOMyy 001 HOMpyy  0.04
Var (b2) 0.03 Var(b2) 0.15 HV(11/12) 0.32  (5/12vs.11/12) CON_py 0.01 CON_py 0.00 CON_gy 0.03  CON_py 0.01
Var (b3) 0.03 Var(b3) 022 HH-HV(8/12)  0.03 ypn 0.35  DIS_yy 0.01  DIS_y 0.01  DISjy 0.01  DIS_jy 0.02
Var (b4) 0.58 Var(b4) 0.64 HH-HV (5/12) 0.04  (5/12vs. 6/27) ENT v 0.00  ENT py 0.00 ENT uy 0.01 ENT vy 0.09
Var (b5) 0.04 Var(b5) 0.53 HH-HV (6/27) 0.06  ymu 0.12  ENE_ py 0.00  ENE_py 0.01  ENE vy 0.01  ENE_ gy 0.05
Var (b7) 0.08 Var(b7) 080 HH-HV(11/12) 0.07 (6/27 vs.11/12) COR_py 0.01 COR_py 0.03  COR_uv 0.03  COR_py 0.11
NDVI 6.14 NDVI 3.77 HH/HV (8/12) 0.04 Y_HV 0.13  Texture (8/12, Texture (5/12, Texture (6/27, Texture (11/12,
(8/12vs. 11/12) w15) w15) w15) w15)
5/12 10/19 HH/HV (5/12) 0.02 HOMpyy 009 HOMpyy 0.07 HOMpyy 0.05 HOMpygy 0.06
SR (b1) 2.16 SR (b1) 1.25  HH/HV (6/27) 0.03  ynv 0.15  CON_pg 0.04  CON_py 0.12  CON_gy 0.02  CON_gy 0.06
SR (b2) 0.98 SR (b2) 3.89 HH/HV (11/12) 0.02  (6/27 vs. 8/12) DIS_un 0.04 DIS un 0.07  DIS_uu 0.03  DIS_yu 0.07
SR (b3) 1.07 SR (b3) 0.46  Polarimetry (H, o) Y_HV 0.17  ENT_ gy 0.02  ENT py 0.01  ENT gy 0.03  ENT gy 0.04
SR (b4) 290 SR (b4) 270  «a(8/12) 0.13  (5/12vs. 8/12) ENE_yn 0.02  ENE gy 0.01  ENE yu 0.03  ENE gy 0.04
SR (b5) 6.11 SR (b5) 446 H(8/12) 0.08  ynv 0.51 COR_un 0.03  COR_un 0.03  COR_un 0.02  COR_pyn 0.01
SR (b7) 7.44 SR (b7) 0.70  «a(5/12) 0.07  (5/12vs.11/12) HOMyyy 017 HOMpyy 0.04 HOMyy 0.09 HOMyy  0.05
Var (b1) 0.11 Var(bl) 0.23 H(5/12) 015  ynv 0.42  CON_py 0.05  CON_py 0.01  CON_py 0.00  CON_gy 0.03
Var (b2) 0.07 Var(b2) 0.15 «(6/27) 0.08  (5/12vs. 6/27) DIS_ v 0.08  DIS_uy 0.01 DISuv 0.01 DIS v 0.03
Var (b3) 0.05 Var(b3) 0.04 H(6/27) 0.06  ynv 0.06  ENT yy 0.05  ENT gy 0.03  ENT py 0.11  ENT vy 0.01
Var (b4) 0.78 Var(b4) 033 «a(11/12) 0.04  (6/27 vs. 11/12) ENE gy 0.06  ENE vy 0.03  ENE vy 0.10  ENE vy 0.04
Var (b5) 0.20 Var(b5) 0.34 H(11/12) 0.02 COR_py 0.14  COR_uy 0.03  COR_uv 0.04  COR_uy 0.02
Var (b7) 0.60 Var(b7) 0.15
NDVI 1.08 NDVI 1.58
(c) LVIS (4)
rh25 2.80  rh50 6.72  rh75 5.96  rh100 6.79

* For a full description of the numerous PALSAR features and how they are calculated the reader is referred to Jin et al. (2014).
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