Low-Rank Approximation
for Multiscale PDEs
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1. Introduction

Multiscale phenomena are ubiquitous, with applica-
tions in many physical sciences and engineering fields:
aerospace, material sciences, geological structure analy-
sis, and many others. The different scales often have
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different physics, which entangle to produce complicated
nonlinearities. Partial differential equations (PDEs) are of-
ten used to model these problems, with different scales
captured in the coefficients and functions that define the
PDE. These PDE models are challenging to compute di-
rectly, so analysis and algorithms specifically targeted to
multiscale problems have been developed and investi-
gated. Following convention, we focus in this review on
problems with two distinct scales, with a small positive pa-
rameter € capturing the ratio between the small and large
scales.

Though modern multiscale analysis dates back to as-
ymptotic PDE analysis that was seen already in Hilbert
and Poincaré expansions early last century (see review
in [PS08]), the impetus for computations involving mul-
tiscale PDEs came largely from the US Department of En-
ergy (DOE) National Labs within the ASCI (Advanced
Strategic Computing Initiative) [Hor09]. Since that time,
analysis and computation in multiscale PDEs have taken
different paths. Analysis has tended to follow a single
“universal” strategy, passed down from tradition. The
equation is decomposed into several levels according to
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asymptotic expansions involving the scale parameters,
with the subequation at each level representing physics
at a single scale, and subequations at the finer level feed-
ing information to those at the coarser level. This analyti-
cal machinery has been used to treat multiscale PDEs aris-
ing from such varied backgrounds as kinetic theory, semi-
classical quantum systems, and homogenization of com-
posite materials, among others [PS08, E11].

On the computational side, strategies for handling
multiscale PDEs are more varied. Problems are usually
handled by specifically designed solvers. One class of
solvers called asymptotic-preserving schemes [HJL17] are
designed to preserve asymptotic limits of kinetic equa-
tions. These schemes usually contain some component
of macro-solvers and micro-solvers, integrated in a clever
way to reveal different structures in different regimes. An-
other class of solvers called numerical homogenization meth-
ods [E11, OS19, EE03] usually target elliptic and parabolic
equations in which the coefficients that represent media
have oscillatory elements. These methods usually consist
of offline and online stages, with either the homogenized
media or the representative basis functions being prepared
in the offline stage.

Why are most numerical schemes for multiscale PDEs
equation-specific despite the analytical tools being largely
unified? This intriguing question has motivated our inves-
tigations into devising a universal numerical strategy for
solving multiscale PDEs. While the approach is yet to be
developed fully, we believe that our progress on this issue
is of wide interest, and this article surveys our progress to
date. Crucially, our approach exploits the low-rank struc-
ture present in discretizations of multiscale PDEs.

To demonstrate the fundamental idea, we consider the
following problem:

Léut = f, (1)

where £€ is a linear partial differential operator that de-
pends explicitly on the small parameter €, while f repre-
sents the boundary condition or the source term, which
is assumed to have no dependence on €. Multiscale prob-
lems that can be formulated in this way include elliptic
equations with highly oscillating media and the neutron
transport equation with small Knudsen number. Due to
the e-dependence of the operator, the solution u¢ inherits
structures at both fine and coarse scales.

An asymptotic limit is revealed by multiscale analysis
using asymptotic expansions as € — 0. In this limit, the os-
cillation at the fine scale is fast and the detailed oscillation
pattern no longer matters — only macroscopic quantities
are relevant. Formally, writing the homogenization limit
as

cut=f, 2)
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we have
[u¢ —u*|| > 0ase — 0. (3)

The norm of the approximation error depends heavily on
the particular equation at hand.

The numerical challenge in solving (1) is that many de-
grees of freedom may be needed. Naive finite element or
finite difference methods would require mesh size h < €
to resolve fine-scale structure of the solution at the ¢ level.
For a problem on R, the discretized system would there-
fore have O(e=9) degrees of freedom, leading to prohibi-
tive computational and memory cost for small €. From
an application perspective, it often suffices to characterize
the solutions on the macroscopic level, where oscillations
at the € scale are largely absent. This property raises the
question of whether we can obtain an approximate solu-
tion of this type using only O(1) degrees of freedom. If
we know how to derive (2), we can simply solve for u*,
which has the required macroscopic properties, and typi-
cally requires a discretization with O(1) degrees of freedom.
Often, though, the limiting equation (2) and its solution
u* are difficult to find explicitly, even when it is possible
to establish their existence. These difficulties have led re-
searchers to propose problem-specific solutions.

We believe that a universal approach for finding the
large-scale solution can be devised, and that exploitation
of the low-rank structure of the solution space is the key
to developing such an approach. As suggested above, the
Green’s matrix G¢ (the discretized Green's function on fine
grids) for the multiscale system (1) requires dimension
0(e~%) to represent the underlying Green’s function accu-
rately. However, if a limiting system such as (2) exists, this
limiting system can be well-represented numerically by G*,
a Green’s matrix with dimension only O(1). This phenom-
enon suggests the system can largely be “compressed” and
hence is of low rank; see illustration in Figure 1. In the lan-
guage of numerical linear algebra, this transition amounts
to performing a truncated singular value decomposition
(SVD) of G¢ to obtain G*.

discretization discretization

O(e)

* * sk —_— se, e € € __
L*-U" =f Liu” = f homogenization £ 4= f L*-U"=f

l | | I

U =G - ut = [ G (@ y)F(y)dy U‘:/G‘(w,y)f(y)dy U =Ge.f

I I | I

U* € span{G*} u" € {G*(z,y)} u® € {G(z,9)} U° € span{G°}
Green ;unction

Figure 1. PDEs with small parameters have homogenized
limits, meaning the solutions to the original PDEs can be
well-approximated by the solutions to the limiting equations.
While analytically the two solution spaces are “close,” the
original equation requires many more degrees of freedom to
solve numerically than its limiting counterpart. The numerical
Green'’s matrix is intrinsically low rank.

Green matrix Green function Green matrix
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If we obtain the truncated SVD of the matrix G¢ by start-
ing with a full SVD, the resulting algorithms would be im-
practical because of the large dimension of the matrix and
the expense of preparing and storing the full matrix G¢
and computing its SVD. Several new linear algebra solvers
take a quite different approach. Instead of accessing the
full matrix, these new solvers merely require computation
of matrix-vector products, involving the target matrix and
several randomly selected vectors (typically vectors with
Gaussian i.i.d. entries). Translated to the PDE solver set-
ting, these matrix-vector multiplications amount to com-
puting numerical solutions to PDEs with some random
source terms, a task that may be practical if the number of
such operations required is modest. The randomized SVD
(rSVD) approach is one method of this type. It is equipped
with a thorough analysis and achieves optimality in terms
of computational efficiency. We make use of this method
in the techniques described in the remainder of this article.

The main theme of our article, then, is the use of ran-
domized SVD solvers to exploit the low-rank features of
multiscale PDEs. We will describe two strategies both of
which are divided into “offline” and “online” stages. The
offline stage sees the preparation of either the solution
space or the boundary-to-boundary map used in the do-
main decomposition, while the online stage singles out
the specific solution for the given source f. The two strate-
gies are described in Section 4.1 and 4.2, respectively. In
Section 5, we present the nonlinear extension utilizing
manifold learning algorithms for reconstructing the low-
rank features of the solution manifold. Prior to these dis-
cussions, we describe in Section 2 two algorithm classes
— asymptotic preserving and numerical homogenization
— for identifying the asymptotic limits of multiscale prob-
lems. As examples, we use the multiscale radiative trans-
fer equation (RTE) and the elliptic equation with rough
media. Section 3 explores the two main elements of our
approaches: the numerical low-rank feature of multiscale
PDEs and the randomized SVD solver for efficient recon-
struction of low-rank operator/spaces. We conclude with
a discussion of future work in Section 6.

2. Examples

Kinetic equations and elliptic equations with oscillating
media are two examples of multiscale PDEs, for which
computational schemes were developed separately. The
specific features of these problems were incorporated into
the design of asymptotic preserving schemes and numer-
ical homogenization methods, respectively. We review
these techniques and highlight the shared low-rank prop-
erty of these two problems.

2.1. Kinetic equations and asymptotic preserving meth-
ods. Kinetic equations, which originate from statistical
mechanics, describe the evolution of probability density
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for identical particles in phase space. A model equation,
the radiative transfer equation (RTE), characterizes the evo-
lution of photon density. In the steady state, this equation
is

—v - Vyu® + S¢uf] = f(x,v), (x,V)EKX XV, (4)

where f(x,v) is the light source, and the linear collision
operator S¢ describes the interaction of photons with the
optical media. The small parameter ¢ is encoded in this
operator.

The operator S¢ defines several distinct regimes. In the
optically thick regime, it is defined by

S¢u(x,v) = 1 fk(x, v, U )u(x, v")dv’
€M
) (5)
— —fk(x, v, v)u(x,v)dv’ .
€M

In this case, k(x,v,0’) is the scattering coefficient that de-
scribes the possibility of a photon located at x changing its
velocity from v to V', and the parameter ¢ is called the Knud-
sen number, standing for the ratio of the mean free path to
the typical domain length. When the medium is optically
thick, the mean free path is small, with € <« 1. This means
the photon particles are scattered fairly often, and the sys-
tem statistically achieves the equilibrium state, which can
itself be characterized mathematically. One example is to
observe light in atmosphere, where the average mean free
path is about 10 m, and the observation is conducted at the
scale of 10 km, leading to € ~ 1073. By performing asymp-
totic expansion in terms of ¢, the inhomogeneity in the
velocity domain vanishes, and one can show that u®(x, v)
asymptotically approximates u*(x), a function without de-
pendence on v that solves a diffusion equation. We have
the following result from [BLP11].

Theorem 1. Suppose that uc solves (4) with collision term S
being isotropic, that is, k(x,v,v") = a(x) for some function o.
Let X c R% be bounded with smooth boundary, and V = S4-1,
Assume that the boundary condition is

ué(x,v) = p(x,v) on x€dX, v-n,<0. (6)
Then

[lu€ — u*HLz(dxdv) -0, (7)

where u* = u*(x) solves

V- (ﬁvxu*(x)) —g(), xeX,  (8)

with the boundary condition

u(x) = §p(x),

where £4(x) solves a proper boundary layer equation and g can
be obtained from [ f(x,v)dv.

on x €KX,
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This result indicates that the homogenized operator as
€ »> 0is £L* « V, - ((1/0)Vy). Similar results, when
k(x,v,v") fails to have the form of o(x) in the anisotropic
optical media, are still available, but the explicit form of
L* is no longer available.

A second regime of interest for S€ is one in which the
media is highly heterogeneous [DGO0O0]:

€ — E ’ ' ’
S u(x,v)—Lk(e,v,v)u(x,v)dv

- /\/ k (g, v, U) u(x,v)dv’ .

In this case, the photons go through the media that os-
cillates at a small scale: For example, sunlight passing
through a heavy cloud with a large number of small
droplets or a laser beam passing through crystals. The am-
plitude of k determines the photon scattering frequency.
Since k oscillates rapidly, photons also change rapidly be-
tween the high- and low-scattering regimes. On a large
scale, the photons can be viewed approximately as scatter-
ing with an averaged frequency. A mathematical result is
as follows [DGOO].

)

Theorem 2. Let the conditions from Theorem 1 hold, and sup-
pose that the collision term S€ is defined in (9). Then

|lu® — “*”Lz(dxdv) -0, (10)
where u*(x, v) solves
—v - Vut + S [u*] = f(x,0), (x,v)eXxV, (11)

where S*u(x,v) = o*(x) f, u(x,v") — u(x,v)dv’ for some
o*(x). Furthermore, if k(x,v,v") = o(x) is periodic in x with
period [0,1]4, then o* = f[o,l]d a(x)dx.

In special cases, such as under periodic or random er-
godic conditions, the function o* can be computed explic-
itly. (There are also works that investigate the asymptotic
limit of the RTE when the system is both highly oscillatory
and in diffusion regime; see [GMO01].)

In both limiting regimes, the limiting equations (8)
and (11) can be solved much more efficiently than the orig-
inal equation (4). The discretization of (4) is constrained
strongly by ¢, due either to stability (as in (5)) or accuracy
(as in (9)). By contrast, the solution u* varies smoothly,
containing no e-scale effects, so it can be obtained accu-
rately by applying a discretization with mesh width O(1)
to the asymptotic limiting equation. If the latter equation
is available, computation of u* by this means is the recom-
mended methodology.

Methods for kinetic equations are termed “asymptotic
preserving” (AP) if they can relax the requirement that the
discretization width h satisfies h = o(e) yet still capture
the asymptotic limits. Many different AP approaches have
been proposed. For linear equations, existing AP meth-
ods rely on even-odd or micro-macro decomposition. For
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nonlinear equations, knowledge of the specific forms of
the limits is usually required, and this knowledge is built
into the solvers [HJL17]. As mentioned above, these spe-
cific forms are often not available, so many AP methods
cannot be applied to a large set of multiscale kinetic equa-
tions. This observation begs the question: Knowing the
existence of the limit, but not its particular form, can we
still devise efficient methods for solving kinetic equations?
2.2. Elliptic equations and numerical homogenization.
Another class of multiscale equations that has been inves-
tigated deeply is elliptic equations with highly oscillatory
coefficient. These problems have the form

=V - (a®*(x) que) =f, (12)

where € <« 1 is the scale on which the media oscillates.
(The source term f has no small-scale contribution.)

This equation is a model problem from petroleum engi-
neering where it is crucial to precompute the underground
flow before expensive construction of infrastructure takes
place [BL11]. The problem is typically solved on kilometer-
scale domains, but the heterogeneities in the media can
scale at centimeters. Certain forms of this equation can
be approximated effectively by an equation that can be
solved efficiently. Suppose the media coefficient a®(x) has
the form a(x, x/¢), that is, it varies on two scales (1 and ¢),
and moreover is periodic with respect to the fast variable
(the second argument in a(x, x/€)). Then in the limiting
regime as € — 0, the solution u® converges to that of a ho-
mogenized equation, with the media “smoothed-out,” as
described in the following result [All92].

Theorem 3. Let u® solve (12) in the domain x € X with zero
boundary condition. Suppose a(x,x/¢) is periodic with respect
to the second argument. Then

(13)

where u* solves the following effective equation with zero bound-
ary condition:

—Vy - (a*(x)qu*) = f?

[l = ullee S ellulg »

xeX, (14)

where a*, the effective media, can be computed from a cell prob-
lem (See Definition 2.1 in [All92]).

As in the previous section, when a limiting equation can
be derived explicitly, the best course for obtaining a use-
ful solution it to solve this equation directly, as the mesh
width in the discretization scheme can be much larger than
€. See [EH09] for a discussion of a reduced number of ba-
sis functions and [E11] for computation of the effective me-
dia.

However, the validity and the specific form of the ef-
fective limit are known only in special cases like the one
described in Theorem 3. In other cases, we seek a solver
that relies on as little analytical knowledge as possible. An
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approach known as numerical homogenization has been in-
vestigated extensively. This approach is founded on two
principles: a discretization scheme independent of ¢, and
a numerical solution scheme that captures the true lim-
iting behavior of the solution on the discrete level. Vari-
ants of numerical homogenization include application of
the J(-matrix, a purely algebraic technique [Hac15]; and
a Bayesian approach that views the source f, and hence
the solution u¢, as Gaussian fields [Owh15], which further
translates to game theory [OS19]. All these methods are
successful, but they all implicitly rely on properties of the
underlying elliptic equation. Can we devise an approach
that applies to general problems with oscillatory media
that exploits the low-rank property in the solution space,
without using analytical structure explicitly?

3. A Unified Framework for Multiscale PDEs
Based on Random Sampling
We have given several examples of multiscale models that
arise in applications, and mentioned several algorithmic
approaches that make use of the limiting equations, when
available. We describe next the foundations of a unified
scheme that captures asymptotic limiting behavior auto-
matically, even when the asymptotic limits are unavail-
able. Our method exploits low-rank structure and uses
random sampling to discover this structure. We describe
the low-rank property in Section 3.1 and the randomized
SVD method for revealing this structure in Section 3.2.
3.1. Numerical rank. We consider a bounded linear op-
erator A, which maps f € X to a space Y, that is

A:. X - Y

f P u

In the PDE setting, A is the solution operator that maps the
boundary conditions and/or source term f to the solution
u. The numerical rank of such an operator is defined as
follows.

Definition 1 (Numerical rank). The numerical 7-rank of
A is the rank of the lowest-rank operator within the z-
neighborhood of A4, that is,

k.(A) :== min{dimranA : A € L(X,Y),||4 - A| < 7}.

In other words, k;(A) is this smallest dimension of the
range among all the operators within distance 7 of A.

When A is the PDE solution map, then A with low rank
is also a linear map with a finite dimensionality. It can be
viewed as the discrete version (or a matrix of dimension
k.(A)) that approximates A within 7 accuracy. The defi-
nition suggests that if A can be found, it is optimal in the
sense of numerical efficiency. The concept is rather similar
to the Kolmogorov N-width, defined as follows.

Jung/Jury 2022

Definition 2 (Kolmogorov N-width). Given the linear op-
erator A : X — Y, the Kolmogorov N-width dy(A) is the
shortest distance from its range to all N-dimensional space,
that is,

dn(A) = S:dim$=N (4, 5)

IS —vlly (15)

T sdims=n" P ves  fllx
Indeed, the Kolmogorov N-width and numerical rank
are related by the following result [CLLW20a].

Proposition 1. For any linear operator A : X' — Y, we have
the following.

(a) If the numerical t-rank is N, then dn(A) < T.
(b) If dy(A) < T < dy_1(A), then the numerical t-rank is
N.

For the three examples presented in Section 2, the nu-
merical ranks can be calculated from their limiting equa-
tions. For one-dimensional RTE in the diffusion regime,
if we denote by A€ and A* the solution operators of (4)
and (8), respectively, then noting that A* can be approxi-
mated using 1/4/7 grid points to achieve 7 accuracy, when
€ < 7, the numerical rank is naturally k.(A¢) < 1/\/T —€.
Without employing the knowledge of the existence of the
limit, however, a brute-force discretization naturally re-
quires O(1/et**!) degrees of freedom: O(1/¢t) for the up-
wind discretization in x and O(1/t%) for the discretization
in v, where o depends on the particular numerical integral
accuracy. Translating into Green's-matrix language, this
observation means that G is represented by O(1/e7%*1!) de-
grees of freedom but its range can be captured by a com-
pressed Green’s matrix G* with just O(1) column vectors.

The same argument applies to the elliptic equation on
a two-dimension domain with high oscillations. When
second-order linear finite elements are used, with no
knowledge of the limiting system, O(1/e2t) degrees of free-
dom are required, dropping to O(1/7) when the the limit-
ing system is known. In other words, the full Green’s ma-
trix G¢ requiring O(1/¢?) degrees of freedom can be well-
represented using just O(1) column vectors.

In all these cases, the degrees of freedom for a given nu-
merical method are substantially larger than the numeri-
cal rank of the problem. Thus, much of the information
in these full-blown representations is redundant and com-
pressible. A low-rank representation exists and yields a
much more economical representation.

3.2. Random sampling in numerical linear algebra.
Knowing the existence of the low-rank structure and find-
ing such a structure are very different goals. The Kol-
mogorov N-width is a concept developed in numerical
PDEs, but it has made little impact in numerical PDEs
for a simple reason: Traditional PDE solvers require a
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predetermined set of basis functions, while the Kol-
mogorov N-width looks for “optimal” basis functions.
How can an optimal basis be found without first form-
ing the full basis? Translated to linear algebra, this ques-
tion is about finding the dominant singular vectors in a
matrix without forming the whole matrix. Specifically, if
A € R™" js known to be approximately low rank, mean-
ing that there exists U,, a m X r matrix with orthonormal
columns with r <« min(m, n) and

IA = Al = [IA = U U7 Al < [IA]]

can we find U, without forming the full matrix A?
In linear algebra, it is well-known that U, is simply the
collection of the first r singular vectors of A. Writing

n
A=UVT = > o], (16)

i=1
where U = [u;,uy,..,u,] € R™" and V =
[U1,V;,...,0,] € R™" contain the left/right singular vec-

tors and ¥ = diag(o;, 03, ...,0,,) contains the singular val-
ues, then U, is the first ¥ columns in U.

The standard method for computing the SVD requires
A to be stored and computed with. But the celebrated ran-
domized SVD (1SVD) method [HMT11]| captures the range
of a given matrix by means of random sampling of its col-
umn space, which requires only computation of matrix-
vector products involving A and random vectors — opera-
tions that can be performed without full storage or knowl-
edge of A. Implementation of rSVD is easy and its perfor-
mance is robust.

The idea behind the algorithm is simple. If matrix A €
R"" has approximate low rank r < min{m, n}, the matrix
maps an n-dimensional sphere to an m-dimensional ellip-
soid that is “thin:” r of its axes are significantly larger than
the rest. With high probability, vectors that are randomly
sampled on the n-dimensional sphere are mapped to vec-
tors that lie mostly in a r-dimensional subspace of R"™ —
the range of A. An approximation to A, can be obtained
by projecting onto this subspace.

A precise statement of the performance of randomized
SVD is as follows [HMT11].

Theorem 4. Let A be an m X n matrix. Define

Y=AQ, (17)

where Q = [@y , ..., W, is @ matrix of size n x (r + p) with
its entries randomly drawn from an i.i.d. normal distribution,
where p is an oversampling parameter. If o,,; < o = O(1),
then the projection of A onto the space spanned by Y, defined by

Py(A) = Y(YTY)"IYTA,

yields that ||A — Py(A)|| < o, with high probability, and

.
ElIA—Py(AIl S =17+ <o0.
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The result reconstructs the range of A in a nearly opti-
mal way. It is optimal in efficiency because to capture a
rank-r matrix, only r+ p matrix-vector products involving A
are required for the calculation of Y, and the oversampling
parameter p is typically quite modest. (p = 5 is a typi-
cal value.) The result is nearly optimal in accuracy as well.
The error bound relies only on o, ,, which is expected to
be smaller than ;. The decay profile of singular values do
not affect the approximation accuracy.

If a low-rank approximation to the matrix A is required,
and not just an approximation of its range, another step
involving multiplications with its transpose is needed. The
full method is shown in Algorithm 1.

Algorithm 1 Randomized SVD.

1: Given an mxn matrix A, target rank r and oversampling
parameter p;
2: Setk=r+p;

3: Stage A:

4 Generate an n X k Gaussian test matrix ;

5 Form Y = AQ;

6: Perform the QR-decomposition of Y: Y = QR

7: Stage B:

8 Form B = ATQ;

9 Compute the SVD of the k X n matrix BT = UzV™;

1. SetU=QU;
1: Return: U,2, V.

—

4. Random Sampling for Multiscale
Computation

Here we describe how rSVD can be incorporated into mul-
tiscale PDE solvers to exploit the low-rank structure of
these equations. Our procedure is composed of both of-
fline and online stages. Low-rank structure is learned in
the offline stage, while in the online stage, the solution for
the given source / boundary term f in (1) is extracted.

We consider in particular the following boundary value
problem:

(Luf)(x) =0,
Bu(x) = ¢(x),

where B is the boundary condition operator, 0K the
boundary associated with domain X, and we now denote
the source term (the boundary data) by ¢. Our fundamen-
tal goal is to construct the low-rank approximation to the
Green’s operator G¢ for (18). With this operator in hand,
the solution can be computed for any value of the bound-
ary conditions ¢ at a relatively small incremental cost.

If we apply rSVD to approximate G¢ directly, we need
to compute products of this operator with random vectors.
For problem (18), this operation corresponds to solving

xe X,

18
x €eoX, (18)
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the problem with ¢ replaced by random boundary condi-
tions. Solving even one such problem efficiently is a com-
putationally challenging task. We use the domain decom-
position framework.

We start by partitioning the domain X into subdomains

as follows:
M
K= K,
m=1

where the patches X, overlap, in general. We denote by
0X,, the boundary associated with X,,,. Furthermore, we
identify the subregions that intersect with J,,, as follows:

In={neN:1<n<M, X, Nk, #0},

(19)

and define the interior of the patch to be

Kn =K\ | K | -
nedy,
For this particular partition of the domain, we define the
partition-of-unity functions y,,, m = 1, 2, ..., M to have
the following properties:

M
Z mx)=1, V¥VxeX,

m=1 (20)
x € XKy,

. 0< ym(x)<1,
with
x € K\Ky,.

Xm(x) =0,
We choose a discretization that resolves the small scales in
the solution, defining a mesh width h « €. (The number

of subdomains M is independent of €.) A typical decom-
position is illustrated in Figure 2.

1---=
1
1
1
|
1

xR

] ‘Local subdomain K,

Overlap

Figure 2. lllustration of domain decomposition of a
rectangular domain X in 2D with overlap.

How do we design the offline stage to “learn” the low-
rank approximation? We propose two approaches that
lead to two different kinds of algorithms. In the first ap-
proach we learn the optimal basis functions within each
subdomain, while the second algorithm employs Schwarz
iteration, preparing the boundary-to-boundary map in the
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offline stage. Other PDE solvers that utilize randomness
can also be found in [CEGL16,BS18, Mar20]. In particular
in [CEGL16] the authors studied, specifically for elliptic
type equations, the generalized eigenvalue problem of the
stiffness and mass matrices, and give an error bound using
the largest eigenvalue obtained offline.

4.1. Learning basis functions. In standard domain de-
composition, the local discretized Green’s matrix G,, is
assembled from a “full” collection of basis functions in
the patch X,,. The global solution to (18), confined to
each X,,, is a linear combination of the columns G,,. The
coefficients of these combinations are chosen so that that
the continuity conditions across patches and the exterior
boundary condition are all satisfied. The complete process
can be outlined as follows.

1. Offline stage: Form =1, 2, ..., M, find
Gm = [bm,l 5 bm,z ...] 5

where each local function by, , is a solution to (18)
restricted to the subdomain X,,, with fine grid h <« ¢
and delta-function boundary conditions. That is,

LEby, =0, x €Ky

21
x €0K,,, (21)

bm,n = 5m,n ’
where §,, ,, is the Kronecker delta that singles out the
n-th grid point on the boundary 0%, .
2. Online stage: The global solution is

M M
u= Z UmXm = Z XmGmCm>
m=1 m=1
with the support of each u,, = G, confined to

XK, where ¢, is a vector of coefficients determined by
the boundary conditions ¢ and continuity conditions
across the patches.

The complete basis represented by G,,, has a low-rank
structure that can be revealed using randomized SVD. In-
stead of using delta functions as the boundary conditions,
we propose to obtain basis functions by setting random
values on 9X,,, as follows:

{Lerm,n =0,

Tmn = @mon >

x € Xy,

22
x € 0K,,, (22)

where w,, , is defined to have a random value drawn i.i.d.
from a normal distribution at each grid point in 6%,,. De-
noting Gy, = {1, tn2 -}, we have from linearity of the
equation that
G = GpQ,

where Q is a random i.i.d. matrix with entries w,, ,. This
G}, is used in the online stage, as an accurate surrogate of
Gy, see Algorithm 2.

Although we do not apply full-blown rSVD here, the ho-
mogenizable and low-rank property of the local solution
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Algorithm 2 A general framework for multiscale PDE
LEuf = 0 over X with Buf = f on 0X.

1: Domain Decomposition

2 Partition domain according to (19).
3: Offline Stage:
4

: Prepare i.i.d. Gaussian vectors w,;, i =1, ..., k;,
on each 0K,
5: Solve the basis function r,; in (22) on each Q,,,

and collect the local basis in G,,
6: Online Stage:

7: Use continuity condition and global boundary
data ¢ to determine coefficient vectors ¢y, ¢y, ..., Cpr,
and set

M
u= Z XmGmCm (23)
m=1

8: Return: approximate global solution u.

space implies that G},, and G,,, share similar range with the
number of basis functions k,, in G}, being much smaller
than n,,, the number of grid points on dX,,, and indepen-
dent of €. In Figure 3 we plot the angles between G}, and
G,, for two of the equations discussed in Section 2. In both
cases, and for small ¢, the approximated Green’s matrix
quickly recovers the true Green’s matrix as the number of
samples k,,, increases, and thus captures the local solution
space. We should note that if G,,, does not have low-rank
structure, in the sense that k,, ~ n,,, then solving (22)
would be equally expensive as solving (21), hence the ran-
dom sampling technique does not gain any computational
efficiency when the system is not homogenizable.

In Figure 4 we showcase the basis functions on a patch

for elliptic equation with media coefficient a(x,x,) =
1 + 10001g(xy,x,), with S = {(x1,x,) € [0,1]?
(x1 c08(1004/(x; — 0.5)2 + (x, — 0.5)2)) < x,—0.5}. For this
non-conventional media without any periodic structure,
the traditional multiscale methods are no longer valid, but
our method still quickly captures the optimal basis.

For particular boundary conditions ¢, the global solu-
tion is assembled from the local basis functions in the
online stage. Two numerical examples are shown in Fig-
ure 5. In both examples, there is little visible difference
between the reference solution and the approximated one
computed from the reduced random basis. Only 8.3% and
62.5%, respectively, of the degrees of freedom required by
the full basis are needed to represent these solutions using
a random basis; see details in [CLLW20a].

Since we do not have access to the full set of basis func-
tions, the condition that u defined in (23) is continuous
across subdomains can be satisfied only in a least-squares
sense; see [ CLLW20a] for details.
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1
10 20 30 40 50 10 20 30 40 50
Number of Random Samples Number of Random Samples

Figure 3. Angle between the true Green’s matrix G,, and the
approximate version Gf,, confined on the interior of a patch

K, for some m, as the number of random samples increases.
Left plot: Angle for 1D RTE (4) with diffusive kernel (5) and
various values of e. Right plot: Angle for elliptic equation (12)
on a rectangular local patch with ¢ = 274, Data

from [CLLW20a].
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Figure 4. Optimal basis functions and their projections onto
the approximate spaces. First row: First two singular vectors
of the Green’s matrix on a local patch. Second row:
Projections onto the space spanned by 6 random sampled
basis functions. Note that the small random sample captures
well the leading eigenvectors of the true Green'’s operator.
Data from [CLLW20al].

4.2. A low-rank Schwarz method. Our second approach
for exploiting the low-rank property in multiscale compu-
tations is based on Schwarz iteration. The Schwarz method
is a standard iteration algorithm within the domain de-
composition framework, in which boundary-value prob-
lems are solved on the patches, with neighboring patches
subsequently exchanging information and re-solving un-
til consistency is attained. The exchange of boundary in-
formation between neighboring patches is known as the
boundary-to-boundary (BtB) map. The map has an ex-
ploitable low-rank property.

To develop the approach, we write the solution of (18)
as

N
US(xX) = D Am (U (x), (24)
m=1

where the partition-of-unity functions y,, are defined
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Figure 5. First row: Solutions for 1D RTE (4) with
Henyey-Greenstein kernel in (5) with ¢ = 275. Second row:
Solutions for the elliptic equation (12) with Dirichlet boundary
condition and highly oscillatory medium a(x, x/e) =

2+1.8sin(27x, /€) 2+sin(27x,/€) with
2+1.8 cos(27x,/€) 2+1.8 cos(27x, /€)

¢ =274, The left column shows reference solutions while the
right column is obtained from randomized reduced bases.
Data from [CLLW20al].

2 + sin(27x;) cos(27x,) +

in (20). The solution u$, on patch m is uniquely deter-
mined by f,,, its local boundary condition, according to
the equation

Lus, =0,
Ui (X) = frn(x),

The Schwarz method starts with initial guesses to the lo-
cal boundary conditions f,, = f3, then on iteration ¢, it
solves the subproblems (25) with f,, = f£ to obtain all
local solutions u§,. By confining ug, on the boundaries of
adjacent patches, one updates the boundary conditions for
surrounding patches:

x € Xy,

25
x €0K,,. (25)

Sm P
S () — us (Ol g, — (X)), Vn € Iy,

Here 8, denote the solution to (25) confined in the inte-
rior of X,,,, and %, takes the trace of the solution on the
neighboring boundaries X,, n X, for n € 7,, for the
updated boundary condition.

Define the BtB map by A,, := $,,08,,, and define A and
f* to be the aggregation of A, and f, respectively, over
i=1,2,.., M. We can then write the updating procedure
as

(26)

ft+1 — ./lft .
The overall method is summarized in Algorithm 3.

Most of the computation in the Schwarz method dur-
ing the iteration comes from solving the boundary-value
PDEs on the patches, to implement the map A. Since the
PDE is homogenizable, the solution space on each patch is
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Algorithm 3 Schwarz method for multiscale PDE £L¢u¢ = 0
over X with Bu® = f on dX.

1: Given total iterations T;
2: Domain Decomposition

3: Partition domain according to (19).

4: Schwarz Iteration:

5: Initialize £ for each 0, and sett = 0.

6: While |f! — f{=!| > TOL

7: Solve (25) for ul, using f, for each m.

8 Update f!*! = ut, on X, N 3K, n € I,,.
9: t—>t+1.

10: End

11:  Solve (25) for u, using f}, for each m.
12: Assemble global solution u = ZZ=1 KUy, -

13: Return: approximated global solution u”.

approximately low rank, and the map A can be expected
to inherit this property. If we can “learn” this operator
in an offline stage, and simply apply a low-rank approxi-
mation repeatedly in the online stage, the online part of
Algorithm 3 can be made much more efficient. In our ap-
proach, Algorithm 1 is used to compress the map A.

This approach is quite different from the one described
in Section 4.1, in the sense that it is not only the range of
the solution space, but the whole operator that is being ap-
proximated. To apply Algorithm 1, we need to define the
“adjoint operator” for A on the PDE level. This operator
is composed of the adjoints 8, for the local solution op-
erators S, of (25) on each domain X,,. The form of §;,
is specific to the PDE; we use the elliptic equation as an
example. Defining £¢ = V - (a(x, x/€)V), S;;, is defined in
the following result.

Theorem 5. Let S,, be the confined solution operator for the el-
liptic equation with Dirichlet boundary condition on patch X,,.
Given any function g supported on X,,, the adjoint operator
8;, acting on g is given by:

oh

Smg = a3~

onlox,,’ (27)

where % is the outer normal derivative on 05C,, and h solves
the following sourced elliptic equation:
{V . (a (x, g) Vh(x)) =g, xeX,

(28)
h(x)=0, x €0,y .

We also describe calculation of the adjoint operator S;;,
for the RTE (4).

Theorem 6. Let S, be the confined solution operator for
RTE (4) and the conditions in Theorem 1 hold. Given any
function g supported on X, X V, the adjoint operator S;,, is
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defined as follows:
8r8(x,v) = h(x,v), x€dK,, v-n.<O0, (29)
where h solves the adjoint RTE over X ,,, which is
—v-V,h—8¢[h] = g(x,v), (x,v) €eX,,xV, (30)

with outgoing boundary condition h(x,v) = 0 on x € 0K,
andv - n, > 0.

The specific form of the adjoint operator S8;,, allows us
to adapt the randomized SVD algorithm to compress the
confined solution map §,,; see Algorithm 4. This method
requires only k solves of local PDE (25) and sourced ad-
joint PDE (28) (or (30)), together with a QR factorization
and SVD of relatively small matrices. The overall low-rank
Schwarz iteration is then summarized in Algorithm 5.

Algorithm 4 Randomized SVD for §,,,.
Given target rank r and oversampling parameter p;
Setk=r+p;
Stage A:

Generate k random boundary conditions £; on
[oN.
5: Solve (25) using §; as boundary conditions and re-

strict the solution over X, to obtain uj.

6: Find orthonormal basis Q = [q,...,qx] of U =
[egy e, ]
7: Stage B:

Ll

8: Construct zero extension of g, over X,,,, denoted
by gi.

9: Solve (28) or (30) for h; using g as source.

10: Compute b; using h; by flux (27) or restriction on
incoming boundary (29).

11: Assemble all fluxes B = [by, ..., by].

12: Compute SVD of B* = U2 V;.

13: Compute Uy, = QUy.

14: Return Uy, Z, V.

In Figure 6 we present the confined solution operator
8,, and its low-rank approximation 8},. For the radiative
transfer equation, the map is a 2880-by-40 matrix, with
the size of each patch being 0.2x[-1,1], with Ax = 1/360
and Av = 1/40. The random sampling procedure recon-
structs it with just 6 samples. For the elliptic equation, the
map is a 1600-by-160 matrix, and the size of each patch
is 1x[0,1] with Ax = 1/40. The random sampling approx-
imates it well with 60 samples. The compression rates for
these examples are thus 6.7 and 2.7, respectively. See de-
tails in [CLLW21].

In Figure 7, we show numerical examples for the global
solutions of two problems obtained from the approach of
this section. The reference solution (obtained with a fine
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mesh) is well captured by the approximation that uses the
low-rank BtB map as the surrogate in the Schwarz iteration.
These two cases use just 15% and 43%, respectively, of the
number of local solves needed to capture the BtB map at
fine scale. While the relative error of the reduced Schwarz
method decays as fast as the standard Schwarz iteration, as
shown in Figure 8, the cost is much reduced. See Table 1
for a comparison of computation times.

Algorithm 5 Reduced Schwarz method for multiscale PDE
LEuf = 0 over X with Bu® = ¢ on dK.

1: Given rank k, total iterations T

2: Domain Decomposition

3: Partition domain according to (19).

4: Offline Stage:

5: For all m, use Algorithm 4 to find the rank-k ap-
proximation to 8,,, denoted by UI'S/v;"".

6: Online:
7: Initiate f;9(x) for each d,,, and set t = 0.
8:  While |ff — fi=1| > TOL

9: Evaluate ul, = U'SI"V™™ i, for each m.
10: Update f{*! = u, on X, N9K,, n € 7,,.
11: t—>t+1.

12 End

13: Solve (25) for ul, using f!, for each m.

14: Assemble global solution u = 22]:1 AUl

15: Return u(x).

o
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8 +Sm (6 = 1/9) [ 8 *Sm
5 St (e = 1/9) s S
T 04 m \€ P m
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%0_2 Sm (6 1/81) 311
£ £
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Order

Figure 6. The singular decay of the restricted local solution
operator 8, and its low-rank approximation 8}, for the RTE
(left) and the elliptic equation (right). In RTE (4) we use
heterogeneous collision kernel (9)

N _ € _ 1 1l.1l+cos(47rx)
k(x/e,v,v") = 0(x) = 81 1.1+sin(27mx/e) "
we use a(x, x/€) = 2+1.8sin(mx, /€) 2+sin(7x,/€)

’ 2+1.8cos(mx,/€)  2+1.8sin(mx;)

Data from [CLLW21, CLW20].

and in elliptic equation

with € = 274,

5. Manifold Learning and Nonlinear Multiscale
Problems

It is not straightforward to extend the techniques of the

previous section to nonlinear PDEs. Despite low-rank prop-

erties still holding due to the existence of the limiting
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Figure 7. The comparison between the reference solutions
(left column) and the approximation using reduced Schwarz
method (right column). The first and second rows are for the
RTE and the elliptic equation, respectively. In RTE (4) we use
heterogeneous collision kernel (9)

N _ € _ 1 1.1+cos(47x)
k(x/e,0,v") = 0°(x) = €, 1.1+sin(27x/e,)’
and in elliptic equation we use
_ 2+1.8sin(mrx,/€) 2+sin(7x,/€)
a(x, x/€) = 2+1.8cos(mx,/e)  2+1.8sin(mx;)

from [CLLW21, CLW20].

with (€1,€2) = (1/81, 1/9),

with € = 274, Data

S ——rank k=40
L0 —e—rank k = 70

Q rank k£ = 100
IS ——rank k = 130
& - - -Schwarz ]

0 10 20 30 40 50
Iteration Time
Figure 8. Relative error for reduced Schwarz methods for

various ranks k for elliptic equation with oscillatory medium
that is the same as Figure 7. Data from [CLW20].

equation, the argument based on compressing the Green'’s
matrix no longer holds. The collection of solutions for dif-
ferent source / boundary terms is not longer a linear sub-
space, but a solution manifold.
We consider the general nonlinear multiscale problem
in the following form
News = f, (31)
where V¢ is a nonlinear differential operator that depends
explicitly on the small parameter €. The term f can be
the source term, boundary conditions or initial conditions.
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RTE offline (s) | online (s)
Rank = 5 227.99 0.0029
Rank = 6 268.46 0.0162
Full rank 706.99 0.0148
Schwarz | 1027.40
elliptic offline (s) | online (s)
Rank = 40 49.7 0.049
Rank = 70 87.3 0.061
Schwarz | 31.4

Table 1. Run time comparison between vanilla Schwarz
method and the reduced Schwarz method. k = 5,6 for the RTE
and k = 40, 70 for the elliptic equation with Dirichlet boundary
condition. The configuration of the media is the same as
those in Figure 7. Data from [CLLW21, CLW20].

Assume further that the equation has an asymptotic limit

Nout = f (32)

as € — 0, that is, ||[u® — u*|| - 0 as ¢ » 0. The argument
for the linear problem is still applicable: The degrees of
freedom required by the classical numerical method for
solving (31) grows rapidly as € — 0, while the existence of
the homogenized equation (32) indicates that only O(1)
degrees of freedom should be needed to resolve macro-
scale features. From a manifold perspective, the solutions
to (31) vary in a high-dimensional space as f changes, but
this manifold is approximated to within distance O(¢) by
another manifold whose dimension is O(1).

Suppose a manifold in a high-dimensional space is ap-
proximately low-dimensional, can we quickly learn it with-
out paying the high-dimensional cost? We turn to mani-
fold learning for answers to this question. We are partic-
ularly interested in adopting the ideas from the local lin-
ear embedding and multi-scale SVD approaches that learn
the manifold from observed point clouds, and interpolate
the local solution manifold using multiple tangent-space
patches, see references in [CLLW20Db].

We denote the nonlinear solution map of (31) by 8¢ :
f €X - u® € Y, which maps the source term or initial /
boundary conditions f(x) to the solution of the equation.
In the offline stage, we randomly sample a large number of
configurations f; in X, and compute the associated solu-
tions uf = 8°f; € Y on fine grids. These solutions form a
point cloud in a high-dimensional space Y. The {f;}’s are
then subdivided into a number of small neighborhoods,
and we construct tangential approximations to the map-
ping 8¢ on each neighborhood. In the online stage, given a
new configuration f, we identify the small neighborhood
to which it belongs and find the corresponding solution
by performing linear interpolation. The overall offline-
online strategy in summarized in Algorithm 6. We stress
that some modifications are needed to reduce the cost of
implementation. For example, the algorithm should be
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combined with domain decomposition (for example,
Schwarz iteration) to further confine the computation to
local domains, to save computational cost.

In Figure 9 we plot the local low-dimensional solution
manifold for a nonlinear RTE (specifically, a linear RTE
nonlinearly coupled with a temperature term). The so-
lution manifold appears to have a local two-dimensional
structure; the point clouds lie near on a two-dimensional
plane. We refer to [CLLW20b] for more details of the im-
plementation and numerical results.

Algorithm 6 Manifold learning algorithm for solving
Neus = f.

1. Offline

2: Randomly sample f;(x), i =1, ..., N, and find so-
lutions uf = 8¢ f;.

3: Online: Given f(x):

4: Step 1: Identify the k-nearest neighbors of f(x),
call them fipi=12..k with f; being the nearest
neighbor;

5: Step 2: Compute 8°¢ ~ uf + U - c with

1 51 o ik 5T B

where c is a set of coefficient that fits f — f; with a
linear combination of f;, — f; , for j =2, 3, ..., k.
J 1

6: Return u® = §%¢.
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Figure 9. Point cloud and its fitting plane for a 1D nonlinear
RTE with Knudsen number ¢ = 27%, when confined in a small
patch containing an interval [0.625,1.375]. The solution profile
is approximately determined by the temperature T at two grid
points x = 0.625 and x = 1.375. The z-axis shows the value of
u(x = 1). The dependence is clearly linear and
two-dimensional. Data from [CLLW20b].

912 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY

6. Looking Forward

We have seen a vast literature addressing all aspects of the
computation of multiscale problems. Over the years, the
research has been drifting gradually away from its origin,
where solvers were influenced by analytical understanding,
specifically of the limiting behavior of the specific PDE.
Machine learning algorithms have shown more and more
power in sketching the solution profile with a much re-
duced numerical cost. In particular, the existence of the ho-
mogenized limit suggests there are low-rank features in the
discrete system, and that random linear algebra techniques
and manifold learning methods, when utilized properly,
can identify these features for a compressed representation
of the PDE solutions.

We have reviewed two methods, both of which make
use of the domain decomposition framework. They com-
press either basis functions or the boundary-to-boundary
map in an offline learning stage. This review article serves
as a showcase of the power of random solvers in numer-
ical PDEs. For time-dependent problems, and homoge-
nization problems that have weak-convergence (instead
of strong) such as quantum systems in the semi-classical
regime, further development of the approaches is needed.
Incorporation of time and weak-limit in the algorithm-
design lies at the core of future challenges.
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