
Computer Physics Communications 278 (2022) 108417

Contents lists available at ScienceDirect

Computer Physics Communications

www.elsevier.com/locate/cpc

Fast algorithms of bath calculations in simulations of quantum
system-bath dynamics !,!!

Zhenning Cai a, Jianfeng Lu b, Siyao Yang a,∗

a Department of Mathematics, National University of Singapore, Level 4, Block S17, 10 Lower Kent Ridge Road, 119076, Singapore
b Department of Mathematics, Department of Physics, and Department of Chemistry, Duke University, Box 90320, Durham, NC 27708, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 February 2022
Received in revised form 6 May 2022
Accepted 15 May 2022
Available online 20 May 2022

Keywords:
Dyson series
Inchworm Monte Carlo method
Integro-differential equation
Accelerated bath calculation
Fast algorithms

We present fast algorithms for the summation of Dyson series and the inchworm Monte Carlo method
for quantum systems that are coupled with harmonic baths. The algorithms are based on evolving
the integro-differential equations where the most expensive part comes from the computation of bath
influence functionals. To accelerate the computation, we design fast algorithms based on reusing the
bath influence functionals computed in the previous time steps to reduce the number of calculations. It
is proven that the proposed fast algorithms reduce the number of such calculations by a factor of O (N),
where N is the total number of time steps. Numerical experiments are carried out to show the efficiency
of the method and to verify the theoretical results.

 2022 Elsevier B.V. All rights reserved.

1. Introduction

In classical thermodynamics, many processes are irreversible due to the dissipation of energy. To describe such an effect at the quantum
level, quantum dissipation has been widely studied in the literature, and one of the successful approaches is the Caldeira-Leggett model
[8,9], which assumes that the quantum system is coupled with a harmonic bath. The presence of the bath leads to non-Markovian and
irreversible dynamics of the quantum system. The system-bath dynamics has also been extensively used to study quantum decoherence,
which leads to classical behavior of the quantum systems. In addition to its theoretical importance, the model is widely used to describe
interaction of a quantum system with its environment, and has applications in a number of fields including quantum optics [5], quantum
computation [38], and dynamical mean field theory [20].

The main challenge for simulating Caldeira-Leggett type models lies in the huge degrees of freedom associated with the harmonic bath,
which makes the direct calculation of the wave function impossible in practice. For decades, many techniques for dimension reduction
have been developed in order to avoid solving the harmonic bath directly. Some classical numerical methods based on path integrals, such
as the quasi-adiabatic propagator path integral (QuAPI) method [28,32], the iterative QuAPI-based methods [27,30] and the hierarchical
equations of motion (HEOM) [45], introduce the bath effects using the influence functional [19] and can produce numerically exact
results, while a considerably large memory cost is often required. A wave function-based approach known as the multiconfiguration time-
dependent Hartree (MCTDH) method [2,33], as well as its multilayer formulation (ML-MCTDH) [47], has achieved impressive success in
molecular systems, although they may become harder to converge for the nonequilibrium heat transport in the Caldeira-Leggett model
[11].

Another conventional approach to the system-bath dynamics is the generalized quantum master equation (GQME) [52,37,34] obtained
by applying the Nakajima-Zwanzig projection operator, which reduces the dissipative bath term to a memory kernel. Such formulation
provides an exact integro-differential equation for simulating the reduced dynamics. However, the evaluation of the memory kernel could

! Zhenning Cai’s work was supported by the Academic Research Fund of the Ministry of Education of Singapore under grant A-0004592-00-00. The work of JL was
supported in part by the National Science Foundation via grants DMS-2012286 and CHE-2037263.
!! The review of this paper was arranged by Prof. N.S. Scott.

* Corresponding author.
E-mail addresses: matcz@nus.edu.sg (Z. Cai), jianfeng@math.duke.edu (J. Lu), matsiya@nus.edu.sg (S. Yang).

https://doi.org/10.1016/j.cpc.2022.108417
0010-4655/ 2022 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.cpc.2022.108417
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2022.108417&domain=pdf
mailto:matcz@nus.edu.sg
mailto:jianfeng@math.duke.edu
mailto:matsiya@nus.edu.sg
https://doi.org/10.1016/j.cpc.2022.108417

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 1. Two cases of bath correlation invariance B(τ1,τ2) = B(τ ′
1,τ ′

2).

be challenging due to its dependence on the projector. To alleviate this difficulty, [42,51] have proposed new approaches to calculating the
memory kernel based on its projection-free formulations. The transfer tensor method (TTM) [10] based on the discretization of GQME is
later introduced, which is also applied [41] in a method called the time evolving density matrix using orthogonal polynomials algorithm
(TEDOPA) [13,39] to reduce the size of the propagator. Further development on the evaluation of memory kernel includes [24] where the
memory kernel is related to the evolution of a reduced system propagator which is numerically computed by ML-MCTDH, and [22] which
computes the memory kernel based on semiclassical trajectories.

An alternative to these deterministic approaches gaining popularity in the recent years is a class of stochastic methods known as
the diagrammatic quantum Monte Carlo (dQMC) [40,49], which have been shown to be powerful in describing the equilibrium physics
of impurity models. The underlying idea is to replace the expensive high-dimensional integrals in the Dyson series of the quantum
observable by the average of unbiased samples of diagrammatic expansions [12,35,48]. For example in GQME, the memory kernel can
be evaluated stochastically using the real time path integral Monte Carlo [16,15]. However, such an approach severely suffers from the
notorious numerical sign problem [12,7,6], meaning that the variance of the numerical solution grows at least exponentially with time.
To maintain the accuracy of the results, a large number of Monte Carlo samples need to be drawn as time increases, leading to an
extremely expensive computational cost on the evaluation of the bath influence functional. To mitigate the sign problem, many techniques
such as stochastic unraveling of influence functionals [44] and multilevel blocking Monte Carlo [26,18,36] have emerged throughout the
past several decades. Recently, the inchworm Monte Carlo method [14,12] based on the partial resummation of Dyson series has been
proposed, which has proven impressive capability to relieve the sign problem both numerically [11,7] and theoretically [6]. Nevertheless,
the computations of the bath influence functional remain to be the major bottleneck [4,50] even after such reductions. In this paper, we
consider a strategy to further reduce the cost of bath calculations in the summation of Dyson series and inchworm Monte Carlo method.

The central idea to reduce bath calculations lies in the invariance of the influence functional in Dyson series or inchworm method,
which is formulated as a summation over some pairwise bath interactions. In detail, the expected value of an observable O can be written
as tr

(
ρ(0)eit H O e−it H

)
with ρ(0) being the initial density matrix and H the quantum Hamiltonian. In the diagrammatic Monte Carlo

methods, such an expression is often denoted using the unfolded Keldysh contour [21] plotted in Fig. 1. By Wick’s theorem, computing
the trace requires us to evaluate the correlation function B(τ1, τ2) of two time points −t ≤ τ1 ≤ τ2 ≤ t , which can be diagrammatically
represented as an arc in Fig. 1. This two-point correlation function satisfies the translational invariance (when τ1 and τ2 are on the same
side of the origin) and the stretching invariance (when τ1 and τ2 are on different sides of the origin). Making use of this property can
greatly reduce the computational cost for the bath calculation.

Let us remark that the invariance of the two-point correlation function is also utilized in the recently proposed SMatPI (small matrix
decomposition of the path integral) method [31], which is an improved version of the iterative QuAPI method. In SMatPI, the bath
integrand factor is computed using the Feynman-Vernon influence functional. The SMatPI method groups a number of paths into some
small matrices, and using the translational invariance of the Feymann-Vernon influence functional, the information in the small matrices
can be directly used in future time steps without being recalculated. In our method, the bath influence functional is the sum of a lot of
diagrams, and the reuse of previously calculated functionals avoids recomputation of all the translated or stretched diagrams included,
which significantly enhances the computational efficiency.

The rest of this paper is organized as follows. In Section 2, we introduce the spin-boson model and its Dyson series expansion. An
integro-differential equation associated with Dyson series is then derived, based on which we propose a fast algorithm where the previous
bath calculations are reused. An analysis on computational cost is included to examine the performance of the proposed algorithm.
Such framework is then applied to Section 3 where the more complicated inchworm Monte Carlo method is studied. Some numerical
experiments are carried out in Section 4 to verify the theoretical results in Section 2 and 3, and test the order of convergence of the fast
algorithms. Finally, some conclusions and discussions are given in Section 5.

2. Fast calculation of time evolution of Dyson series

2.1. Introduction to spin-boson model and Dyson series

We study the system-bath dynamics described by the von Neumann equation for the density matrix ρ(t)

i
dρ

dt
= [H,ρ] := Hρ − ρH, (1)

where the Schrödinger picture Hamiltonian H is a Hermitian operator on the Hilbert space H = Hs ⊗ Hb , with Hs and Hb representing
respectively the Hilbert spaces associated with the system and the bath. The Hamiltonian H consists of the Hamiltonians of the system
and the bath, as well as a coupling term describing the interaction of the system and the bath. Assuming that the coupling term has the
tensor-product form, we have

H = Hs ⊗ Idb + Ids ⊗ Hb + W s ⊗ Wb,

where Hs, W s ∈ Hs , Hb, Wb ∈ Hb , and Ids, Idb are the identity operators for the system and the bath, respectively. In our paper, we take
the common assumption that the bath is modeled by a larger number of harmonic oscillators. While the algorithms discussed in this work
can be easily generalized to any multiple-state open quantum systems, we only consider the simplest system modeled by a single spin.

2

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Such a problem contains most difficulties in the treatment of the system-bath coupling, which is known as the spin-boson model to be
introduced below.

2.1.1. Spin-boson model
As one fundamental example of the system-bath dynamics [46,23,17], the spin-boson model assumes that

Hs = span{|0〉 , |1〉}, Hb =
L⊗

l=1

(
L2(R3)

)
,

where L is the number of harmonic oscillators in the bath. The corresponding Hamiltonians are

Hs = εσ̂z + %σ̂x, Hb =
L∑

l=1

1
2
(p̂2

l + ω2
l q̂2

l)

Here σ̂x , σ̂z are Pauli matrices satisfying σ̂x |0〉 = |1〉, σ̂x |1〉 = |0〉, σ̂z |0〉 = |0〉, σ̂z |1〉 = − |1〉, and the parameters ε , % are respectively the
energy difference between two spin states and the frequency of the spin flipping. In the bath Hamiltonian Hb , the notations p̂l , q̂l and ωl
are respectively the momentum operator, the position operator and the frequency of the lth harmonic oscillator. The coupling operators
are given by

W s = σ̂z, Wb =
L∑

l=1

clq̂l,

where cl is the coupling intensity between the lth harmonic oscillator and the spin.
The density matrix solving (1) can be written as ρ(t) = e−it Hρ(0)eit H , and we assume its initial value has the separable form ρ(0) =

ρs ⊗ ρb with the initial bath ρb being the thermal equilibrium exp(−βHb), where β is the inverse temperature. We are interested in the
evolution of the expectation for a given observable O = O s ⊗ Idb acting only on the system, defined by

〈O (t)〉 := tr(Oρ(t)) = tr(O e−it Hρ(0)eit H) = tr(ρs ⊗ ρbeit H O se−it H) = trs(ρsG(−t, t)) (2)

where the propagator G(−t, t) := trb(ρbeit H O se−it H) is a 2 × 2 Hermitian matrix due to the cyclic property of the trace operator:

G(−t, t)† = trb(eit H†
O †

se−it H†
ρ†

b) = trb(eit H O se−it Hρb) = trb(ρbeit H O se−it H) = G(−t, t). (3)

2.1.2. Dyson series
Due to the high dimensionality of the space Hb , it is impractical to solve e±it H directly. One feasible approach is to apply the method

of quantum Monte Carlo to approximate G(−t, t) numerically. It is well known that G(−t, t) can be expanded into the following Dyson
series (for derivation, see [7]):

G(−t, t) = eit Hs O se−it Hs +
+∞∑

m=1

im
∫

−t≤s≤t

ds(−1)#{s<0}U (0)(−t, s, t) · Lb(s), for t ≥ 0. (4)

The above formula is interpreted as:

• Integral notation: for any a ≤ A

∫

a≤s≤A

ds :=
A∫

a

dsm

sm∫

a

dsm−1 · · ·
s2∫

a

ds1.

• #{s < 0}: number of components in s = (s1, s2, · · · , sm) that are less than 0.
• System associated functional U (0):

U (0)(−t, s, t) = G(0)
s (sm, t)W sG(0)

s (sm−1, sm)W s · · · W sG(0)
s (s1, s2)W sG(0)

s (−t, s1), (5)

where

G(0)
s (si, sf) =

e−i(sf−si)Hs , if si ≤ sf < 0,

e−i(si−sf)Hs , if 0 ≤ si ≤ sf,

eisf Hs O seisi Hs , if si < 0 ≤ sf.

(6)

• Bath influence functional Lb:

Lb(s1, · · · , sm) =

0, if m is odd;∑

q∈Q(s)

∏

(s j ,sk)∈q

B(s j, sk), if m is even, (7)

3

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

where B : {(τ1, τ2) | τ1 ≤ τ2} →C is the two-point bath correlation whose value only relies on the difference of the absolute values of
the two variables:

B(τ1,τ2) = B∗(%τ) = 1
π

∞∫

0

J (ω)

[
coth

(
βω

2

)
cos(ω%τ) − i sin(ω%τ)

]
dω (8)

with

%τ = |τ1| − |τ2|.
The explicit formula of the single-variable function B∗(·) depends on the real-valued spectral density J (ω). The set Q(s) is given by:

Q(s1, · · · , sm) =
{
{(s j1 , sk1), · · · , (s jm/2 , skm/2)}

∣∣∣ { j1, · · · , jm/2,k1, · · · ,km/2} = {1, · · · ,m}, jl < kl for any l = 1, · · · ,m/2
}
.

(9)

To get some intuition behind the definition of the bath influence functional, we consider a simple case m = 4, where the equation (7)
turns out to be

Lb(s1, s2, s3, s4) = B(s1, s2)B(s3, s4) + B(s1, s3)B(s2, s4) + B(s1, s4)B(s2, s3), (10)

which can be graphically represented by the following diagrams:

Lb(s1, s2, s3, s4) = + + . (11)

In the diagrammatic representation above, each diagram refers to a product B(·, ·)B(·, ·) where each arc connecting a pair of bullets
denotes the corresponding two-point correlation. For general m, the value of the corresponding bath influence functional is the sum of all
possible combinations of such pairings, and the number of these diagrams is (m − 1)!!. Since the bath influence functional vanishes when
m is odd, the right-hand side of (4) actually only sums over terms with even m.

To evaluate G(−t, t), one may truncate the Dyson series at a sufficiently large even integer M̄ and evaluate those high-dimensional
integrals on the right-hand side using Monte Carlo integration, resulting in the bare dQMC. More specifically, one can draw M samples
of {m(i), s(i)} independently according to a certain distribution P (m, s) for m = 2, · · · , M̄ and s satisfying −t ≤ s1 ≤ · · · ≤ sm ≤ t . Then
G(−t, t) can be approximated by

G(−t, t) ≈ eit Hs O se−it Hs + 1
M

M∑

i=1

1
P (m(i), s(i))

· im
(i)

(−1)#{s(i)<0}U (0)(−t, s(i), t)Lb(s(i)). (12)

The numerical solution obtained via bare dQMC has been proved to have a variance that grows double exponentially with respect to t
[6]. Therefore, the number of samples M should increase with t accordingly to achieve sufficient accuracy at the final time. Hence, the
computational cost of the Monte Carlo approximation, especially the expensive evaluation of the bath influence functional Lb , also grows
double exponentially with time. To mitigate this problem, in the next section, we will formulate an integro-differential equation which
gives the time evolution of G(−t, t). Thus some bath influence functionals obtained when computing G(−t′, t′) with t′ < t can be reused
when computing G(−t, t). Before that, however, we first present the following useful properties of the bivariate functions G(0)

s (·, ·) and
B(·, ·) appearing in the definitions of U (0) and Lb:

Proposition 1.

• For any si ≤ sf , we have

G(0)
s (−sf,−si) = G(0)

s (si, sf)
† for si .= 0 and sf .= 0,

B(−sf,−si) = B(si, sf).
(13)

• For any si ≤ sf and %t ≥ 0, we have

B(si, sf) =

B(si − %t, sf − %t), if si ≤ sf < 0,

B(si + %t, sf + %t), if 0 < si ≤ sf,

B(si − %t, sf + %t), if si < 0 ≤ sf.

(14)

• For any si , sf and %t satisfying si ≤ sf ≤ 0 ≤ si + %t ≤ sf + %t, we have

B(si + %t, sf + %t) = B(si, sf). (15)

(13) can be verified by a case-by-case argument under different settings of si and sf and its detailed proof is placed in Appendix A.
(14) and (15) are the results derived by the definition of the two-point correlation (8). We remark that due to the existence of O s in the
definition of G(0)

s (·, ·), the first equality in (13) does not hold when si or sf equal to 0.

4

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

2.2. Integro-differential equation for the propagator

To derive the integro-differential equation, we begin with calculating the derivative of G(−t, t). By definition (4),

G(−(t + %t), (t + %t))

= ei(t+%t)Hs O se−i(t+%t)Hs +
+∞∑

m=2
m is even

im
∫

−t≤s≤t

ds(−1)#{s<0}U (0)(−(t + %t), s, t + %t) · Lb(s)

−
+∞∑

m=2
m is even

im
−t∫

−(t+%t)

ds1

∫

s1≤s2···≤sm≤t

ds2 · · ·dsm(−1)#{{si}m
i=2<0}U (0)(−(t + %t), s, t + %t) · Lb(s)

+
+∞∑

m=2
m is even

im
t+%t∫

t

dsm

∫

−(t+%t)≤s1≤···sm−1≤sm

ds1 · · · dsm−1(−1)#{{si}m−1
i=1 <0}U (0)(−(t + %t), s, t + %t) · Lb(s).

Here we split all integrals into three parts based on the distribution of the time sequences. Note that a minus sign is added before the
second summation above since s1 is restricted within [−(t +%t), −t] in this term and thus (−1)#{s<0} = −(−1)#{{si }m

i=2<0} . This expression
allows us to differentiate G(−t, t) by the definition of the derivative:

d
dt

G(−t, t) = lim
%t→0

G(−(t + %t), (t + %t)) − G(−t, t)
%t

= d
dt

(
eit Hs O se−it Hs

)
+

+∞∑

m=2
m is even

im
∫

−t≤s≤t

ds(−1)#{s<0} d
dt

U (0)(−t, s, t) · Lb(s)

−
+∞∑

m=2
m is even

im
∫

−t≤s2≤···≤sm≤t

ds2 · · ·dsm(−1)#{{si}m
i=2<0}U (0)(−t,−t, s2, · · · , sm, t) · Lb(−t, s2, · · · , sm)

+
+∞∑

m=2
m is even

im
∫

−t≤s1≤···≤sm−1≤t

ds1 · · · dsm−1(−1)#{{si}m−1
i=1 <0}U (0)(−t, s1, · · · , sm−1, t, t) · Lb(s1, · · · , sm−1, t).

(16)

Using the definition (5) of U (0) , the derivative in the first series is computed by

d
dt

U (0)(−t, s, t) = d
dt

(
G(0)

s (sm, t)
)

W sG(0)
s (sm−1, sm)W s · · · W sG(0)

s (s1, s2)W sG(0)
s (−t, s1)

+ G(0)
s (sm, t)W sG(0)

s (sm−1, sm)W s · · · W sG(0)
s (s1, s2)W s

d
dt

(
G(0)

s (−t, s1)
)

= iHsU (0)(−t, s, t) − iU (0)(−t, s, t)Hs.

Note that d
dt

(
eit Hs O se−it Hs

)
= iHseit Hs O se−it Hs − ieit Hs O se−it Hs Hs , which yields

d
dt

(
eit Hs O se−it Hs

)
+

+∞∑

m=2
m is even

im
∫

−t≤s≤t

ds(−1)#{s<0} d
dt

U (0)(−t, s, t) · Lb(s) = i[Hs, G(−t, t)]. (17)

As for the other two series on the right-hand side of (16), we can simplify them by using

U (0)(−t,−t, s, t) = W sU (0)(−t, s, t), U (0)(−t, s, t, t) = U (0)(−t, s, t)W s.

Summarizing all the simplifications of (16), we obtain

d
dt

G(−t, t) = i[Hs, G(−t, t)]+
+∞∑

m=1
m is odd

im+1
(∫

−t≤s≤t

ds(−1)#{s<0}W sU (0)(−t, s, t)Lb(s, t)

−
∫

−t≤s≤t

ds(−1)#{s<0}U (0)(−t, s, t)W sLb(−t, s)
)
.

(18)

Note that m takes odd values in (18) since the underlined time sequences in (16) have odd numbers of components. The equation (18)
has already provided us an integro-differential equation to work on. However, we may make further simplification by combining the two
integrals into one using the following lemma:

5

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Lemma 1. For any time sequence −t < s1 < · · · < sm < t, define s′
i = −sm+1−i for i = 1, · · · , m. Then −t < s′

1 < · · · < s′
m < t and

U (0)(−t, s′, t) = U (0)(−t, s, t)† for si .= 0, i = 1, · · · ,m, (19)

Lb(−t, s′) = Lb(s, t). (20)

The statement (19) for the system associated U (0) can be checked by

U (0)(−t, s′, t) = G(0)
s (s′

m, t)W sG(0)
s (s′

m−1, s′
m)W s · · · W sG(0)

s (s′
1, s′

2)W sG(0)
s (−t, s′

1)

= G(0)
s (−s1, t)W sG(0)

s (−s2,−s1)W s · · · W sG(0)
s (−sm,−s′

m−1)W sG(0)
s (−t,−sm)

= G(0)
s (−t, s1)

†W sG(0)
s (s1, s2)

†W s · · · W sG(0)
s (sm−1, sm)†W sG(0)

s (sm, t)†

= U (0)(−t, s, t)†

using (13). The equation (20) can also be verified using (13). The rigorous proof can be found in Appendix A.
Now we apply the change of variables as shown in Lemma 1 to the second integral in (18). Note that (19) holds almost everywhere in

the domain of integration. We then have
∫

−t≤s≤t

ds(−1)#{s<0}U (0)(−t, s, t)W sLb(−t, s) =
∫

−t≤s′≤t

ds′(−1)#{s′>0}U (0)(−t, s′, t)†W sLb(s′, t)

= −
∫

−t≤s′≤t

ds′(−1)#{s′<0}
(

W sU (0)(−t, s′, t)Lb(s′, t)
)†

.

(21)

In the last equality above, we have used the fact that s′ = (s′
1, · · · , s′

m) has odd number of components and thus (−1)#{s′>0} = −(−1)#{s′<0}

for almost every s′ . Inserting (21) back to (18), we reach a simpler integral-differential equation for G(−t, t):

Proposition 2. The propagator G(−t, t) satisfies the integro-differential equation

d
dt

G(−t, t) = i[Hs, G(−t, t)] +
+∞∑

m=1
m is odd

im+1
∫

−t≤s≤t

ds(−1)#{s<0}(K(s, t) + K(s, t)†) (22)

for t > 0, where

K(s, t) = W sU (0)(−t, s, t)Lb(s, t).

Based on the evolution equation (22), one can consider solving G(−t, t) iteratively using Runge-Kutta type methods. To avoid large val-
ues of m in the computation, we truncate the series up to a certain odd integer, and evaluate the high-dimensional integrals stochastically
via Monte Carlo approximation. Compared to the original bare dQMC for the Dyson series (12), solving (22) should be more efficient as
m decreases by 1 for each term of the summation. We also point out that the numerical methods based on the integro-differential equa-
tion preserve the Hermitian property (3) of G(−t, t) as one can easily check that the right-hand side of (22) is always Hermitian under
Monte Carlo approximation, while this is not guaranteed by bare dQMC (12) and may be badly violated when the number of samples
M is insufficient. Moreover, since the equation provides us the time evolution of G(−t, t), we are now able to reuse the calculated bath
influence functionals which will give the major improvement on the efficiency of the algorithm. Our numerical method will be detailed in
the following section.

2.3. Numerical method

To discretize (22), we consider a numerical scheme inspired by the second-order Heun’s method. For a general ordinary differential
equation

d
dt

u(t) = f (t, u(t)), t ∈ [0, tmax],

the scheme reads

U∗
i = Ui−1 + hf (ti−1, Ui−1),

Ui = 1
2
(Ui−1 + U∗

i) + 1
2

hf (ti, U∗
i),

(23)

where h is the time step length, ti = i · h, and Ui is the numerical approximation of u(ti). For our integro-differential equation, the sums
over high-dimensional integrals should be evaluated in the same way as the bare dQMC (12) using Monte Carlo approximation. In the ith
time step, suppose we have Mi samples of time sequences Si = {s(j)

i }Mi
j=1 drawn from the domain

Ti =
M̄⋃

m=1
m is odd

T (m)
i , (24)

6

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

where T (m)
i is the m-dimensional simplex defined by

T (m)
i := {s = (s1, · · · , sm) | −ti ≤ s1 ≤ · · · ≤ sm ≤ ti}, (25)

and each sampled time sequence satisfies the probability density function Pi (m, s) for m = 1, 3, · · · , M̄ . Thereby, the scheme coupling
Heun’s method with Monte Carlo integration to approximate G(−ti, ti) is formulated as

G∗
i = Gi−1 + hi[Hs, Gi−1] + h

Mi−1

Mi−1∑

j=1

1

Pi−1(m
(j)
i−1, s(j)

i−1)
· im

(j)
i−1+1 · (−1)#{s(j)

i−1<0}(K(s(j)
i−1, ti−1) + K(s(j)

i−1, ti−1)
†),

Gi = 1
2
(Gi−1 + G∗

i) + 1
2

hi[Hs, G∗
i] + h

2Mi

Mi∑

j=1

1

Pi(m
(j)
i , s(j)

i)
· im

(j)
i +1 · (−1)#{s(j)

i <0}(K(s(j)
i , ti) + K(s(j)

i , ti)
†), for s(j)

i ∈ Si

(26)

for i = 1, 2, · · · , N where Nh = tmax with initial condition G0 = O s . The set of samples Si are drawn independently according to the
distribution Pi . We remark that one can apply higher order schemes to achieve better order of accuracy with respect to step length h.
Throughout the current work, however, we use the Heun’s method which can already provide satisfactory numerical results. The accuracy
of discretization will be verified by numerical tests later in Section 4.2. We also refer readers to the numerical experiments in [7, Section
7], where Heun’s method is applied to a number of spin-boson simulations and shows good performance.

The major computational cost lies in the evaluation of K(s, ti) in each time step. While evaluating each K(s, ti), the bath influence
functional Lb(s, ti) is generally much more expensive than the U (0)(−ti, s, ti), especially when m is large. In fact, the computational cost
of Lb , which is essentially the hafnian of a matrix [1], grows at least exponentially with respect to m using some recent indirect methods
such as Björklund’s algorithm [3] or the inclusion-exclusion principle [50], while the cost of U (0) grows only linearly with m since U (0) is
a product of 2m + 1 matrices as defined in (5). A comparison of the computational time for these two parts will be performed later in
Section 4.3.

Due to the high computational cost of Lb , the purpose of this paper is to reduce the number of bath influence functionals to be
computed during the evolution of G(−t, t). While the straightforward application of the numerical scheme (26) requires computation of
different bath influence functionals in different time steps, by the invariance of the two-point bath correlation given in Propositions (13)
to (15), we can actually reuse some bath influence functionals that have been calculated in previous time steps to improve the overall
efficiency. This idea utilizes the following property of Lb , which can be easily derived from (14):

Proposition 3. Given s = (s1, · · · , sm) ∈ T (m)
i for i = 1, · · · , N − 1 and odd number m = 1, 3, · · · , M̄, define the operator I j(s) = (s̃1, · · · , ̃sm) such

that

s̃k =
{

sk + jh, if sk ≥ 0,

sk − jh, if sk < 0
(27)

for k = 1, · · · , m and j = 0, 1, · · · , N − i. We have I j(s) ∈ T (m)
i+ j and

Lb(I j(s), ti+ j) = Lb(s, ti).

This proposition shows that a class of bath influence functionals has the same value, and thus we just need to compute one of them
if multiple influence functionals appear in our computation. To illustrate how such reuse can be applied to the scheme (26), we consider
the following simple example, where we only sample one time sequence with m = 1 (so the sequence actually reduces to a point) in each
time step and consider the time evolution of the scheme up to t = 3h:

(i) in the first time step, we pick a sample s1 ∈ (−h, h). Here we assume s1 is negative which can be denoted by the black dot in the top
panel of Fig. 2. The corresponding bath influence functional Lb(s1, h) = B(s1, h) is then calculated and can be denoted by blue arc;

(ii) in the second time step, I1(s1) = s1 − h is a sample in T (1)
2 whose bath influence functional can be directly obtained from

Lb(I1(s1), 2h) = Lb(s1, h) according to Proposition 3. Such reuse of computed bath influence functionals can be visualized as a
stretch of the blue arc by length h in Fig. 2, and the value of the blue arc is invariant after being stretched. In addition to reuse of
calculations, we sample a new time point s2 ∈ (−2h, 2h) and calculate Lb(s2, 2h). In Fig. 2, we assume s2 is positive and Lb(s2, 2h)
is represented by the red arc;

(iii) at t = 3h, the blue arc can be further stretched by another time step h and the value remains the same, meaning that we again
obtain the bath influence functional directly using Lb(I2(s1), 3h) = Lb(s1, h) where I2(s1) = s1 − 2h ∈ T (1)

3 . Similarly, we can also
reuse Lb(I1(s2), 3h) = Lb(s2, 2h) with I1(s2) = s2 + h ∈ T (1)

3 , which corresponds to shifting the red arc to the right by h. Afterwards,
we draw another new sample s3 ∈ (−3h, 3h) and calculate Lb(s3, 3h) denoted by the green arc.

For general m, this reuse of bath influence functionals can be similarly understood by replacing the arcs by the summation of diagrams
such as in (10). We remark that such invariance does not hold for the system functional U (0) , which does not have a similar property as
Proposition 3 due to the existence of O s in its definition.

As can be observed from Fig. 2, given any time sequence s j at the jth time step for j < i, shifting or stretching it to Ii− j(s j) always
moves the nodes away from t = 0 by at least length h. This means all the samples obtained by stretching or shifting have no time points
falling between −h and h. As a result, the samples for the ith time step cannot be only inherited from previous time steps. To complete
the sampling of Ti , we also need to draw extra samples from T̂ i = ⋃M̄

m=1
m is odd

T̂ (m)
i where

7

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 2. Calculation reuse of Lb(si , ti) for m = 1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

T̂ (m)
i =

{
(s1, · · · , sm) ∈ T (m)

i

∣∣ ∃ s j such that −h < s j < h
}

. (28)

For example, in Fig. 2, the nodes building up the red diagrams in (−2h, 2h) and green diagrams (−3h, 3h) should be newly drawn from
T̂2 and T̂3 respectively since these diagrams can never be obtained from shifting or stretching diagrams at previous time steps. Based on
the definition (28), we may express T (m)

i as

T (m)
i =

i⋃

j=1

Ii− j(T̂ (m)
j)

where Ii− j(T̂ (m)
j) is the collection of time sequences which are shifted or stretched from jth step:

Ii− j(T̂ (m)
j) = {Ii− j(s) | s ∈ T̂ (m)

j }.

One may easily see that Ii− j(T̂ (m)
j) are pairwise disjoint for j = 1, · · · , i and thus

i∑

j=1

|T̂ (m)
j | =

i∑

j=1

|Ii− j(T̂ (m)
j)| = |T (m)

i |. (29)

Hence the volume of each T̂ (m)
j can be calculated by

|T̂ (m)
j | = |T (m)

j | − |T (m)
j−1| =

1
m! [(2t j)

m − (2t j−1)
m]. (30)

To implement the numerical scheme (26), we sample time sequences Ŝi ⊂ T̂ i in each step and evaluate the corresponding bath influ-
ence functionals. Afterwards, we construct Si by combining the new samples Ŝi with the old samples Ii− j(Ŝ j) for j = 1, · · · , i − 1 whose
bath influence functionals can be directly reused by Proposition 3, and then evaluate Gi according to (26). Such a procedure is described
by the Algorithm 1.

Algorithm 1 Dyson series

1: input Ŝi = {s(j)
i }M̂i

j=1 ⊂ T̂ i for i = 1, · · · , N
2: Set G0 ← Id
3: for i from 1 to N do
4: Compute L̂i = {Lb(s(j)

i , ti)}M̂i
j=1

5: Set Si ← ⋃i
j=1 Ii− j(Ŝ j) 2 Shift/stretch samples

6: Set Li ← ⋃i
j=1 L̂ j 2 Reuse bath calculation

7: Compute Gi by scheme (26) based on Si and Li
8: end for
9: return Gi for i = 1, · · · , N

To complete the implementation, we need to specify the sampling strategy for the input Ŝi , which is associated with the probability
density function Pi(m, s) in (26). Ideally, the number of samples in Ŝi should be proportional to the integral of the absolute value of the
bath influence functional:

M̂(m)
i ∝

∫

s∈T̂ (m)
i

ds|Lb(s, ti)| =
∫

s∈T̂ (m)
i

ds

∣∣∣∣∣∣

∑

q∈Q(s,ti)

∏

(s j ,sk)∈q

B(s j, sk)

∣∣∣∣∣∣
. (31)

In practice, as the integral is difficult to evaluate, we replace B(s j, sk) by an empirical constant B ∈ (0, max |B|), so that

M̂(m)
i = M̂(1)

1

λ̂
· |T̂ (m)

i | · m!!B m+1
2 = M̂(1)

1

λ̂
· (2ti)

m − (2ti−1)
m

(m − 1)!! · B m+1
2 (32)

where λ̂ = 2Bh is the normalizing factor. In the numerical implementation, one may first assign M̂(1)
1 = M̂0, and the other M̂(m)

i
can then be set as the nearest integer to the right-hand side of the formula above. Afterwards, we generate each time sequence s =
(s1, · · · , sm) ∈ T̂ (m)

i by drawing a sample from the uniform distribution U (T̂ (m)
i). The following theorem provides the explicit expression

for the probability density Pi(m, s) appearing in scheme (26):

8

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Proposition 4. For any i = 1, 2, · · · , N and m = 1, 3, · · · , M̄, Pi(m, s) is given by

Pi(m, s) = 1
λi

· m!!B m+1
2 (33)

where

λi =
M̄∑

m′=1
m′ is odd

(2ti)
m′

(m′ − 1)!! · B m′+1
2

Proof. For any time sequence s which is obtained by either reuse or newly sampling in each step, we have P (s ∈ T (m)
i) ∝ M(m)

i where
M(m)

i is the number of time sequences with m components in ith step. According to our sampling strategy,

M(m)
i =

i∑

j=1

M̂(m)
j = M̂0

λ̂
· m!!B m+1

2 ·
i∑

j=1

|T̂ (m)
j | = M̂0

λ̂
· m!!B m+1

2 · |T (m)
i |

where we have used the relation (29) for the last inequality. Note that the time sequences Si used in scheme (26) are constructed the
samples drawn from the pairwise disjoint U [Ii− j(T̂ (m)

j)], and the number of these samples locating in each Ii− j(T̂ (m)
j) is proportional to

the volume |Ii− j(T̂ (m)
j)| according to (32). Therefore, any time sequence in Si can be considered as a sample drawn in U [T (m)

i] and thus
we reach the conclusion (33) by

Pi(m, s) = P (s ∈ T (m)
i |s ∈ Ti) · 1

|T (m)
i |

= P (s ∈ T (m)
i)

∑M̄
m′=1

m′ is odd
P (s ∈ T (m′)

i)
· 1

|T (m)
i |

= 1
∑M̄

m′=1
m′ is odd

|T (m′)
i | · m′!!B m′+1

2

· m!!B m+1
2 . !

2.4. Implementation of Algorithm 1 with low memory cost

In general, the reuse of bath calculations described in Algorithm 1 requires storing of all time sequences (Line 5) as well as bath
influence functionals (Line 6) in a simulation, which will lead to a high memory cost when the number of samples is large. However for
Dyson series, the linearity of its governing equation (22) allows us to implement the reuse algorithm at a much lower memory cost. To
begin with, we apply the scheme (26) recursively and get the following explicit formula for any Gi :

Gi = α̃i O s + 1
2

h
i−1∑

k=1

α̃i−k−1(α + α̃)(βk + β
†
k) + 1

2
h(βi + β

†
i) (34)

where the operator α = 1 + ih[Hs, ·] and α̃ = 1
2 (1 + α2). βi is the average of Monte Carlo samples s = (s1, · · · , sm)

βi = 1
Mi

Mi∑

j=1

γi(s(j)
i) · U (0)(−ti, s(j)

i , ti)Lb(s(j)
i , ti) with γi(s) = 1

Pi(m, s)
· im+1 · (−1)#{s<0}.

Note that the direct evaluation of Gi by (34) requires the storage of all reusable Lb . To avoid this, we consider the following resumma-
tion of βi according to where the samples are originally generated:

βi = θi1 + θi2 + · · · θii (35)

where the partial sum

θik := 1
Mi

M̂k∑

j=1

γi

(
Ii−k(ŝ(j)

k)
)

· U (0)(−ti,Ii−k(ŝ(j)
k), ti)Lb(Ii−k(ŝ(j)

k), ti)

stands for the part of calculations where the samples are shifted or stretched from kth step. Note that any kth column of

θ11,

θ21, θ22,

· · · , · · · , · · · ,

θi1, θi2, · · · , · · · , θii,

· · · , · · · , · · · , · · · , · · · ,

θN1, θN2, · · · , · · · , · · · , θN N ,

(36)

9

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

shares the same bath influence functionals with the value {Lb(ŝ(j)
k , tk)}M̂k

j=1 according to the Proposition 3. Therefore, once we have com-

puted one Lb(ŝ(j)
k , tk), it is added to all θik for i = k, · · · , N and then can be discarded and thus we need to only store one single bath

influence functional to obtain all θkk′ for 1 ≤ k′ ≤ k ≤ N . In the end, the total memory cost for computing Gi for i = 1, · · · , N will only be
the storage of these θkk′ , which are essentially (N + 1)N/2 two-by-two matrices.

2.5. Analysis on computational cost

To conclude the discussion on the summation of Dyson series, we examine the computational cost that is saved by reusing the bath
influence functionals. Specifically, we consider the ratio 1 − #{ŝ(m)}/#{s(m)} for various m where

#{ŝ(m)} = M̂(m)
1 + M̂(m)

2 + · · · + M̂(m)
N ,

#{s(m)} = M(m)
1 + M(m)

2 + · · · + M(m)
N .

Here #{ŝ(m)} denotes the number of (m + 1)-point bath influence functionals that one needs to evaluate up to Nth time step in our
algorithm, and #{s(m)} denotes the corresponding number if all bath influence functionals are to be calculated. For example in Fig. 2, we
have #{ŝ(1)} = 3 as the blue and red diagrams need to be computed only once. However, without reusing the existing information, one
then has to draw all the time sequences independently and compute the corresponding #{s(1)} = 6 (3 blue arcs, 2 red arcs and 1 green
arc) bath influence functionals. Therefore, we have achieved a 50% reduction of the computational cost in this example. In general, by (32)
we have

#{ŝ(m)} = M̂0

λ̂
·
(
|T̂ (m)

1 | + |T̂ (m)
2 | + · · · + |T̂ (m)

N |
)

· m!!B m+1
2

= M̂0

λ̂
· |T (m)

N | · m!!B m+1
2 = M̂0

λ̂
·
√

B(2
√

BtN)m

(m − 1)!!
and

#{s(m)} = M̂0

λ̂
·
(

N|T̂ (m)
1 | + (N − 1)|T̂ (m)

2 | + · · · + |T̂ (m)
N |

)
· m!!B m+1

2

= M̂0

λ̂
·

N∑

i=1

|T (m)
i | · m!!B m+1

2 = M̂0

λ̂
·

N∑

i=1

√
B(2

√
Bti)

m

(m − 1)!! .

(37)

Hence, for a given m, the percentage of the computational cost that one can save is given by

1 − #{ŝ(m)}
#{s(m)} = 1 − Nm

1m + 2m + · · · + Nm =: R(m)(N) (38)

which only relies on the number of time steps N .
Below we plot the graphs of R(m) (dashed lines) for various m up to t = 5 with the time step length h = 0.05 in Fig. 3, which are

all monotonically increasing and thus one may benefit a higher reduction of computational cost from the bath calculation reuse for
longer time simulations. In addition, the curves become lower as m grows, indicating that the bath influence functionals with smaller
m are reused more frequently for fixed N . This observation can be diagrammatically understood in Fig. 2. In general, a time sequence
s = (s1, · · · , sm) with larger m is more likely to have one of its components falling in (−h, h), so that its bath influence functional has to
be newly evaluated. However, the value of m usually does not go too large for the purpose of computing Dyson series. When m = M̄ = 25,
one can still expect an around 77% reduction in bath computations at t = 5. As time further evolves, we may apply the Faulhaber’s formula
[25]

1m + 2m + · · · + Nm ∼ Nm+1

m + 1
as N → +∞ (39)

to get the asymptotic behavior of R(m):

R(m)(N) ∼ 1 − m + 1
N

. (40)

Below we will take into account all choices of m and estimate the overall reduction of the computational cost. Let T (m) denote the
average wall clock time for the evaluation of Lb(s1, · · · , sm, t), the overall savings of the computational time spent on bath computations
is then estimated as

RT(N,h,B) = 1 −

∑M̄
m=1

m is odd
#{ŝ(m)} · T (m)

∑M̄
m=1

m is odd
#{s(m)} · T (m)

. (41)

In our implementation, the bath influence functional is computed using a recently proposed fast algorithm based on the inclusion-
exclusion principle [50, Section 2], whose computational complexity is O (2m). Thereby, asymptotically we have

10

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 3. Graphs of R(m) and Rasy
T for Dyson series (left: M̄ = 13, right: M̄ = 25).

RT ∼ Rasy
T := 1 −

∑M̄
m=1

m is odd
#{ŝ(m)} · 2m

∑M̄
m=1

m is odd
#{s(m)} · 2m

= 1 −
∑ M̄+1

2
m=1

(4
√

BtN)2m−1

(2m−2)!!
∑ M̄+1

2
m=1

∑N
i=1

(4
√

Bti)2m−1

(2m−2)!!
where B is the parameter describing the amplitude of two-point correlation. For large N , this can be approximated by

Rasy
T ∼ 1 − M̄ + 1

N
,

which agrees with Fig. 3 where Rasy
T (solid lines) converges to R(M̄) as t grows. This behavior is due to the fact that more bath influence

functionals with m = M̄ are sampled when t gets larger, and the cost for the evaluation of these (M̄ + 1)-point functionals becomes
dominant. For the same reason, the graph of Rasy

T becomes closer to R(M̄) as B increases.

3. Fast implementation of inchworm Monte Carlo method

The idea of the fast algorithm for summing Dyson series can also be applied to the inchworm Monte Carlo method introduced in [7],
which computes the two-variable full propagator G(si, sf), which generalizes G(−t, t) defined in (4) to any initial time point si ∈ [−t, t]\{0}
and final time point sf ∈ [si, t]\{0}. Similar to (22), the inchworm method can also be formulated as an integro-differential equation
with bath influence functionals of any time series between si and sf inside the integral. This structure again allows us to reuse the bath
influence functionals computed in previous time steps. Below we will review the formulas of the inchworm Monte Carlo method before
introducing our numerical method.

3.1. Introduction to inchworm Monte Carlo method

3.1.1. Full propagator
The full propagator G(si, sf) is formulated by

G(si, sf) = G(0)
s (si, sf) +

+∞∑

m=2
m is even

im
∫

si≤s≤sf

ds(−1)#{s<0}U (0)(si, s, sf) · Lb(s), (42)

where G(0)
s (si, sf) is given in (6). When si = sf , it is defined as G(si, sf) = Id. Note that this definition is consistent with the Dyson series

(4) if we set si = −t and sf = t . The following properties of G(·, ·) will be found useful later in the numerical method:

Proposition 5.

• Shift invariance: For any %t ≥ 0, if sf + %t < 0 or si ≥ 0, we have

G(si + %t, sf + %t) = G(si, sf). (43)

• Conjugate symmetry: For any −t ≤ si ≤ sf < t, we have

G(−sf,−si) = G(si, sf)
† (44)

11

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

• Jump condition: G(·, ·) is discontinuous on the line segments [−t, 0] × {0} and {0} × [−t, 0] and

lim
sf→0+

G(si, sf) = O s lim
sf→0−

G(si, sf);

lim
si→0−

G(si, sf) = lim
si→0+

G(si, sf)O s.
(45)

The rigorous proofs for the statements above are omitted as (43) and (45) can be immediately derived by (14) and the definition of
U (0) respectively, and the proof of (44) is identical to that of (20) in Lemma 1 by changing the variables s in the integral to s′ .

3.1.2. Integro-differential equation for G(si, sf)

The full propagator has been proved to satisfy the following integro-differential equation [7]:

∂G(si, sf)

∂sf
= sgn(sf)

iHsG(si, sf) +
+∞∑

m=1
m is odd

im+1
∫

si≤s≤sf

ds(−1)#{s<0}W sU(si, s, sf)Lc
b(s, sf)

 . (46)

Here we recall that W s is the perturbation associated with the system, and sgn(·) is the sign function. U is defined similarly to U (0) with
the bare propagator G(0)

s (·, ·) replaced by the full propagator G(·, ·):

U(si, s, sf) = G(sm, sf)W sG(sm−1, sm)W s · · · W sG(s1, s2)W sG(si, s1). (47)

The definition of Lc
b is similar to the bath influence functional Lb :

Lc
b(s1, · · · , sm, sf) =

∑

q∈Qc(s,sf)

∏

(s j ,sk)∈q

B(s j, sk), (48)

but Qc is a subset of Q appearing in Lb which only includes “linked” pairings, which means in its diagrammatic representation any
two points can be connected with each other using arcs as “bridges”. For example when m = 3, Lc

b(s1, s2, s3, sf) only contains one linked
diagram in (11):

Lc
b(s1, s2, s3, sf) = = B(s1, s3)B(s2, sf). (49)

Another example for m = 5 is given by

Lc
b(s1, s2, s3, s4, s5, sf)

= + + +
:= B(s1, s3)B(s2, s5)B(s4, sf) + B(s1, s4)B(s2, s5)B(s3, sf)

+ B(s1, s4)B(s2, sf)B(s3, s5) + B(s1, s5)B(s2, s4)B(s3, sf)

(50)

which does not include the unlinked terms in the bath influence functional Lb(s1, s2, s3, s4, s5, sf) such as

:= B(s1, s2)B(s3, s5)B(s4, sf),

:= B(s1, s3)B(s2, sf)B(s4, s5), · · ·
(51)

where the pairs marked in red do not connect to the rest part of the diagrams via the arc bridges. Compared with the Dyson series,
working with equation (46) is more advantageous as the series in the right-hand side has a faster convergence with respect to m. Also,
Lc

b(s1, · · · , sm, sf) includes fewer diagrams than Lb(s1, · · · , sm, t) in equation (22) for the Dyson series, making its direct evaluation cheaper
than the bath influence functional for small m. However, asymptotically the number of diagrams in Lc

b(s1, · · · , sm, sf) also grows as a
double factorial [43], and its evaluation for large m is even more expensive than Lb(s1, · · · , sm, t) [50]. Therefore, we again look for
possible reuse of computed bath influence functionals when evolving the numerical solution.

3.2. Numerical method

Again, we truncate the series in the integro-differential equation up to a finite M̄ as an approximation and apply the Runge-Kutta
method for discretization on a uniform triangular mesh plotted in Fig. 4(a). For simplicity, we first consider the first-order forward Euler
scheme:

G̃ j,k = G̃ j,k−1 + sgn(tk−1)h

iHsG̃ j,k−1 +
M̄∑

m=1
m is odd

im+1
∫

t j≤s≤tk−1

ds(−1)#{s<0}W sŨI (t j, s, tk−1)Lc
b(s, tk−1)

 (52)

for −N ≤ j < k ≤ N with N = tmax/h. Here each G̃ j,k is the approximation of the exact solution G(t j, tk) and is denoted by a dot in
Fig. 4(a). Since U defined in (53) contains G(sk, sk−1) not on the grid points, we need to approximate U using ŨI defined by

12

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 4. An example for h = 0.1, N = 3 and t = 0.3 (left: mesh structure, right: decomposition of the domain of integration {−0.2 ≤ s1 ≤ s2 ≤ s3 ≤ 0.1}).

ŨI (t j, s1, · · · , sm, tk−1) = G̃ I (sm, tk−1)W sG̃ I (sm−1, sm)W s · · · W sG̃ I (s1, s2)W sG̃ I (t j, s1) (53)

where the interpolating function G̃ I (·, ·) satisfies G̃ I (t., tn) = G̃.,n , for all j ≤ . ≤ n ≤ k − 1, and the piecewise linear interpolation is
adopted in our implementation. To ensure these G̃.,n are available before evaluating (53), we compute the full propagator column by
column from left to right in Fig. 4(a). For each of these columns, we compute from top to bottom along the corresponding arrow. In order
to better present the reuse of computed bath influence functionals, we consider the following decomposition of the domain of integration:

{s = (s1, · · · , sm) | t j ≤ s1 ≤ · · · ≤ sm ≤ tk−1} =
k−2⋃

p= j

T (m)
p,k−1 (54)

where

T (m)
p,k−1 = {(s1, · · · , sm) | tp ≤ s1 ≤ tp+1, s1 ≤ s2 ≤ · · · ≤ sm ≤ tk−1}, (55)

which are pairwise disjoint for p = j, · · · , k − 2. This decomposition can be visualized using the example in Fig. 4: when we use the
scheme (52) to evaluate G̃−2,2 (node in red box in Fig. 4(a)), the domain of integration for m = 3 is the simplex {(s1, s2, s3) | −0.2 ≤ s1 ≤
s2 ≤ s3 ≤ 0.1} plotted in Fig. 4(b). According to the decomposition (54), this simplex can be split into T (3)

0,1 (blue tetrahedron), T (3)
−1,1 (red

pentahedron) and T (3)
−2,1 (green pentahedron). This decomposition allows us to reuse the bath integrand factor Lc

b(s, tk−1) when computing
an integral in (52) via

∫

t j≤s≤tk−1

ds(−1)#{s<0}W sŨI (t j, s, tk−1)Lc
b(s, tk−1) =

∫

t j+1≤s≤tk−1

ds(integrand) +
∫

s∈T (m)
j,k−1

ds(integrand) (56)

where the value of Lc
b(s, tk−1) in the second integral above has been obtained when calculating G̃ j+1,k , while Lc

b(s, tk−1) in the last
integral should be newly evaluated. This reuse of bath calculation can also be understood by the same example in Fig. 4: when evaluating
G̃−2,2, the values of Lc

b(s, 0.1) for s = (s1, s2, s3) in {−0.1 ≤ s1 ≤ s2 ≤ s3 ≤ 0.1} (points in blue and red pentahedra) can be reused from
G̃−1,2 (node in blue box in Fig. 4(a)), and Lc

b(s, 0.1) for s ∈ T (2)
−2,1 (points in the green pentahedron) are to be calculated newly. However,

we remark that such reuse does not apply to the entire integrand as the value of ŨI replies on the t j , which are different in G̃−2,2 and
G̃−1,2.

At this point, we draw time sequences Sp,k−1 := {s(i)
p,k−1}

Mp,k−1
i=1 from T p,k−1 = ⋃M̄

m=1
m is odd

T (m)
p,k−1 and approximate the sum of integrals

in (52) using Monte Carlo method. The numerical scheme becomes

G j,k = G j,k−1 + sgn(tk−1)h

[

iHsG j,k−1 + 1
∑k−2

p= j Mp,k−1

k−2∑

p= j

Mp,k−1∑

i=1

1

P j,k−1(m
(i)
p,k−1, s(i)

p,k−1)
×

× im
(i)
p,k−1+1

(−1)
#{s(i)

p,k−1<0}W sUI (t j, s(i)
p,k−1, tk−1)Lc

b(s(i)
p,k−1, tk−1)

]

where the function P j,k−1(m, s) gives the probability density of (m, s) in
⋃k−2

p= j T p,k−1, and the functional UI is similarly defined as (53)

with all G̃ I replaced by G I . The reuse of bath influence functionals stated in (56) is also reflected in the above scheme: when evaluating
G j,k , Lc

b(s(i)
p,k−1, tk−1) for p = j +1, · · · , k −2 have already been obtained when computing G j+1,k , and Lc

b(s(i)
p,k−1, tk−1) for p = j should be

newly calculated. Such implementation also indicates that one should follow a proper order to evolve the scheme, which will be discussed
in detail in the next section.

13

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 5. An example for N = 3 (left: time evolution of inchworm Monte Carlo method, right: sampling and reuse strategy).

To achieve a higher convergence order in time, we now put Heun’s method (23) into this framework and the corresponding inchworm
Monte Carlo method reads:

G∗
j,k =G j,k−1 + sgn(tk−1)h

[

iHsG j,k−1 + 1
∑k−2

p= j Mp,k−1

k−2∑

p= j

Mp,k−1∑

i=1

1

P j,k−1(m
(i)
p,k−1, s(i)

p,k−1)
×

× im
(i)
p,k−1+1

(−1)
#{s(i)

p,k−1<0}W sUI (t j, s(i)
p,k−1, tk−1)Lc

b(s(i)
p,k−1, tk−1)

]

,

G j,k =1
2
(G j,k−1 + G∗

j,k) + 1
2

sgn(tk)h

[

iHsG∗
j,k + 1

∑k−1
p= j Mp,k

k−1∑

p= j

Mp,k∑

i=1

1

P j,k(m
(i)
p,k, s(i)

p,k)
×

× i(m
(i)
p,k+1)

(−1)
#{s(i)

p,k<0}W sU∗
I (t j, s(i)

p,k, tk)Lc
b(s(i)

p,k, tk)

]

(57)

where U∗
I in the second stage is given by

U∗
I (t j, s1, · · · , sm, tk+1) = G∗

I (tm, sk+1)W sG∗
I (sm−1, sm)W s · · · W sG∗

I (s1, s2)W sG∗
I (t j, s1)

with

G∗
I (t., tn) =

{
G.,n, if (.,n) .= (j,k + 1),

G∗
j,k+1, if (.,n) = (j,k + 1).

In general, the inchworm Monte Carlo method (57) for the integro-differential equation (46) is similar to the scheme (26) for Dyson series,
but for the inchworm method, some special care needs to be taken at time t = 0, which will be detailed in the next section.

3.2.1. General procedure of the inchworm Monte Carlo method
To apply the numerical scheme (57) accurately and efficiently, we need to take the properties of G(·, ·) into consideration, which leads

us to the rules below that we should follow during the implementation:

(R1) The evolution of the numerical scheme should begin with the boundary value G j, j = Id for j = −N, . . . , N , which are denoted by the
red dots in Fig. 5(a).

(R2) Due to the discontinuities, when j = 0 or k = 0 (blue dots in Fig. 4(a)), G j,k is considered to be multiple-valued, and we use G0±,k
and G j,0± respectively to represent the approximation of the left and right limits lim

s→0±
G(s, tk) and lim

s→0±
G(t j, s). By the jump condition

(45), we have the relation

G j,0+ = O sG j,0− and G0−,k = G0+,k O s for − N ≤ j ≤ −1,1 ≤ k ≤ N.

In particular, the boundary value on the discontinuities are given by: G0+,0+ = G0−,0− = Id and G0−,0+ = O s . Consequently, the
interpolation of G I appearing in the functional UI should satisfy

lim
s→0±

G I (t j, s) = G j,0± , lim
s→0±

G I (s, tk) = G0±,k,

lim
s→0+

lim
s̃→0+

G I (s̃, s) = lim
s→0−

lim
s̃→0−

G I (s, s̃) = Id, lim
s→0−

lim
s̃→0+

G I (s, s̃) = O s

and the conditions for G∗
I in U∗

I are similar. This rule is indispensable in our implementation to keep the second-order convergence
rate in time of the Heun’s method.

14

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 6. Calculation reuse of Lc
b(s1, s2, s3, tk) along the path G−1,0 → G−2,1 → G−3,2.

(R3) We only compute G j,k locating in the green triangle in Fig. 5(a) excluding the origin. Afterwards, the value of G−k,− j is obtained
by the conjugate symmetry (44). In addition, the following full propagators are assigned with the same values according to the shift
invariance (43):

G−N,−N+ j = G−N+1,−N+ j+1 = · · · = G− j−1,−1 = G− j,0− ,

G N− j,N = G N− j−1,N−1 = · · · = G1, j+1 = G0+, j for 1 ≤ j ≤ N − 1.
(58)

Algorithm 2 Evolution of inchworm Monte Carlo method

1: input Sp,k = {s(i)
p,k}

Mp,k
i=1 ⊂ T p,k and Lp,k = {Lc

b(s(i)
p,k, tk)}

Mp,k
i=1 for −N ≤ p ≤ k − 1 and 0 ≤ k ≤ N

2: Set G j, j ← Id for j = −N, · · · , −1, 0−, 0+, 1, · · · , N and G0−,0+ ← O s 2 Initial condition
3: for n from 1 to N do 2 Time evolution on nth thick segment in Fig. 5(a)
4: Compute G−n,0− by (57) and set G−n,0+ ← O s G−n,0− , G0±,n ← G−n,0∓ 2 Compute blue dots
5: for .1 from 1 to n do 2 Compute inside quadrant IV
6: Compute G−n,.1 by (57) and set G−.1,n ← (G−n,.1)†

7: end for
8: for .2 from 1 to N − n − 1 do 2 Assign values in quadrant I and III
9: Set G−n−.2,−.2 ← G−n,0− and G.2,n+.2 ← G0+,n

10: end for
11: end for
12: return G j,k for −N ≤ j ≤ k ≤ N

We are now ready to sketch the implementation of the numerical scheme (57) in Algorithm 2. For the example in Fig. 5(a), the
computation of full propagators should be first carried out on the thick red segment, followed by the blue thick segment and finally the
black one. Such order of calculation is to guarantee that the values of shorter propagation Gn,. for j ≤ n ≤ . ≤ k are available before
computing G j,k as argued previously. On each of these segments, we only evaluate G j,k in the green triangle from left to right, and the
rest dots on the same segment can be directly assigned according to (R3). With the evolution of numerical scheme clarified, we now focus
on the efficient construction of the input Sp,k and Lp,k , which will be specified in the next section.

3.2.2. Time sequence sampling and reuse of bath calculation
Due to the invariance and symmetry of the full propagators, one only needs to evaluate G j,k in the green triangular area in Fig. 5(a)

where the index (j, k) satisfies 0 ≤ k ≤ − j and −N ≤ j ≤ −1. Since computing G j,k requires samples in T p,k−1 for j ≤ p ≤ k − 2 and T p,k
for j ≤ p ≤ k − 1 (see (57)), we need to prepare time sequences Sp,k and calculate Lp,k for −N ≤ p ≤ k − 1 and 0 ≤ k ≤ N according to
the splitting (54). These indices (p, k) are denoted by the green nodes (both “×” and “•”) in Fig. 5(b). In fact, we can focus only on those
“•” nodes since the set of samples Sp,k for (p, k) on “×” nodes can be obtained by shifting the samples in Sp−k,0:

s(i)
p,k = s(i)

p−k,0 + tk 1 for 0 ≤ p < k ≤ N

where 1 is the row vector with all its components being 1. We can then use (15) to directly assign the bath value for these “×” nodes:

Lc
b(s(i)

p,k, tk) = Lc
b(s(i)

p−k,0,0).

Note that this cannot be applied to the green “•” nodes as the corresponding (s(i)
p,k, tk) contains both positive and negative entries and

thus the condition of (15) cannot be satisfied.
From here, we will only work with Sp,k with “•” indices and consider the reuse of bath influence functionals for inchworm Monte

Carlo method. Since the full propagator is now defined in the two-dimensional half-space, we have multiple paths following which the
bath influence functionals can be reused and each of these paths is represented by an arrow in the quadrant IV of Fig. 5(b). For example,
the red arrow denotes the reuse of Lc

b(s1, · · · , sm, tk) for calculating G−1,0 → G−2,1 → G−3,2, which is illustrated in Fig. 6. When m = 3,
each Lc

b(s1, s2, s3, tk) is represented by a linked diagram as defined in (49), where the time sequence (s1, s2, s3) denoted by the three
dots is a sample in T (3)

p,k . Note that in each diagram, the leftmost dot marked in red should always be restricted within [tp , tp+1] by the
definition of T (m)

p,k . One can easily see that Proposition 3 also applies to Lc
b . Hence, by the stretching invariance, the diagrams with the

same color have the same functional value. In addition, we remark that the shifting invariance such as the reuse of red arc in Fig. 2 is no
longer considered now since the left end tp and right end tk satisfy tp < 0 ≤ tk for all “•” nodes in Fig. 5(b).

15

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Similar to algorithm for Dyson series, we consider the sample space T̂ p,k from which we draw new time sequences in each time step
(e.g., the blue diagram in (−h, 0), the red diagram in (−2h, h) and the green diagram in (−3h, 2h)). To do this, we generalize (28) to two
indices:

T̂ (m)
p,k =

{
(s1, · · · , sm) ∈ T (m)

p,k

∣∣ − h < tk < h or ∃ si such that − h < si < h
}

, (59)

where p = −N, · · · , −1 and k = 0, · · · , N . The volume of T̂ (m)
p,k is similarly given by the relation:

|T̂ (m)
p,k | =

{
|T (m)

p,k | − |T (m)
p+1,k−1|, if − N ≤ p ≤ −2,1 ≤ k ≤ N,

|T (m)
p,k |, if p = −1 or k = 0,

(60)

where |T (m)
p,k | can be calculated by the definition (55):

|T (m)
p,k | =

tp+1∫

tp

ds1

∫

s1≤s2≤···≤sm

ds2 · · · dsm = 1
m! [(tk−p)m − (tk−p−1)

m]. (61)

In general, our algorithm for inchworm Monte Carlo method is summarized in Algorithm 3. Lines 2–9 build up the time sequences
Sp,k and bath influence functionals Lp,k along the arrows in Fig. 5(b) following the strategy similar to Algorithm 1 for the Dyson series,
and Lines 10–14 construct Sp,k and Lp,k with “×” indices. The sampling method for the input Ŝp,k is also similar to that for the Dyson
series: the number of samples in Ŝp,k is set as

M̂(m)
p,k = M̂0

λ̂
· |T̂ (m)

p,k | · m!!B m+1
2 (62)

where M̂0 = M̂(1)
−1,0 and λ̂ = Bh. Each sample is again generated according to the uniform distribution U (T̂ (m)

p,k). The formula of the
density function P j,k(m, s) used in the numerical scheme is then given by the following proposition:

Proposition 6. For any −N ≤ j < k ≤ N and m = 1, 3, · · · , M̄,

P j,k(m, s) = 1
λ j,k

· m!!B m+1
2 (63)

where

λ j,k =
M̄∑

m′=1
m′ is odd

(tk− j)
m′

(m′ − 1)!! · B m′+1
2

The proof of this proposition is almost identical to that of Proposition 4 and thus omitted.

Algorithm 3 Efficient implementation of inchworm Monte Carlo method

1: input Ŝp,k = {s(i)
p,k}

M̂p,k
i=1 ⊂ T̂ p,k for −N ≤ p ≤ −1 and 0 ≤ k ≤ N

2: for n from 1 to N do 2 Reuse on the arrows covering (N − n + 1) “•” in Fig. 5(b)
3: for . from 0 to N − n do

4: Compute L̂−1−.,n+. = {Lc
b(s(j)

−1−.,n+., tn+.)}M̂−1−.,n+.

j=1 2 Arrows starting from p = −1

5: Compute L̂−n−.,. = {Lc
b(s(j)

−n−.,., t.)}
M̂−n−.,.

j=1 2 Arrows starting from k = 0

6: Set S−1−.,n+. ← ⋃.
j=0 I j(Ŝ−1,n); S−n−.,. ← ⋃.

j=0 I j(Ŝ−n,0) 2 Stretch samples

7: Set L−1−.,n+. ← ⋃.
j=0 L̂−1,n; L−n−.,. ← ⋃.

j=0 L̂−n,0 2 Reuse ̂L values
8: end for
9: end for

10: for n from 1 to N do 2 Assign values of “×”
11: for . from 1 to N − n + 1 do

12: Set S−n+.,. ← {s(j)
−n,0 + t. · 1(m(j)

−n,0)}M̂−n,0
j=1 and L−n+.,. ← L̂−n,0

13: end for
14: end for
15: return Sp,k and Lp,k for −N ≤ p ≤ k − 1 and 0 ≤ k ≤ N

Remark 1. Unlike the method based on Dyson series, low memory cost implementation for inchworm method is not available. The system
factor U∗

I in the numerical scheme (57) now depends on the previously computed full propagators, which prohibits the preparation of
all the partial sums like we did in Section 2.5. Consequently, these sums have to be computed sequentially, and all the bath influence
functionals have to be stored to gain the efficiency. One possible workaround for long-time simulations is to restrict the memory length
like in the iterative QuAPI method [28]. We will leave this to future works.

16

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

3.3. Analysis on computational cost

We again examine the computational cost saved after reusing the bath calculations for inchworm Monte Carlo method. By (62), the
total number of samples in Ŝp,k with “•” indices in Fig. 5(b) is in general given by

#{ŝ(m)} = M̂0

λ̂
·
(

N∑

n=1

N−n∑

.=0

|T̂ (m)
−1−.,n+.| + |T̂ (m)

−n−.,.|
)

· m!!B m+1
2 (64)

where |T̂ (m)
p,k | is summed along the arrows in the quadrant IV. Applying the relation (60) on each arrow yields

#{ŝ(m)} = M̂0

λ̂
·
(

N∑

n=1

|T (m)
−1−N+n,N | + |T (m)

−N,N−n|
)

· m!!B m+1
2

= M̂0B
m+1

2

λ̂(m − 1)!!
·
[
(t2N)m + (t2N−1)

m − (tN)m − (tN−1)
m]

.

On the other hand, similar to (37) for Dyson series, the number of all time sequences, denoted by #{s(m)}, is expressed by (64) with the
volume |T̂ (m)

p,k | replaced by |T (m)
p,k |. Note that the value of |T (m)

p,k | only depends on the difference k − p according to (61), we therefore have

#{s(m)} = M̂0

λ̂
·

2N∑

i=1

∑

−N≤p≤−1,
0≤k≤N,
k−p=i

|T (m)
p,k |

· m!!B m+1

2

= M̂0

λ̂
·

N∑

j=1

j ·
(t j)

m − (tm
j−1)

m! +
2N∑

j=N+1

(2N − j + 1) ·
(t j)

m − (tm
j−1)

m!

 · m!!B m+1
2

= M̂0B
m+1

2

λ̂(m − 1)!!
·

2N∑

j=N+1

(t j)
m −

N−1∑

j=1

(t j)
m

 .

Thus, for the order-m bath influence functionals, the proportion of the computational cost saved by the reuse is

R(m)(N) = 1 − #{ŝ(m)}
#{s(m)} = 1 − (2N)m + (2N − 1)m − (N)m − (N − 1)m

∑2N
j=N+1(j)m − ∑N−1

j=1 (j)m
. (65)

For large N , the denominator can again be estimated by Faulhaber’s formula (39):

2N∑

j=N+1

(j)m −
N−1∑

j=1

(j)m =
2N∑

j=1

(j)m − 2
N−1∑

j=1

(j)m − Nm ∼ (2N)m+1 − 2(N − 1)m+1

m + 1
− Nm,

yielding the following asymptotic growth of R(m):

R(m)(N) ∼ 1 − 1 − (1
2)m+1

1 − (1
2)m

· m + 1
N

, (66)

which also converges to 1 at the rate O (1
N). It can be seen that this asymptotic value is close to 1 − (m + 1)/N as in (40) for the Dyson

series, especially for large m. In particular, one can check that (38) and (65) are equal when m = 1. This similarity can be verified by
the graphs of R(m) in Fig. 7 where the dashed lines are almost identical to those in Fig. 3 for Dyson series, suggesting that inchworm
Monte Carlo method can benefit the same reduction in the computational cost of Lc

b(s1, · · · , sm) after reusing the bath calculations. By
further taking the computational complexity of Lc

b(s1, · · · , sm) into consideration, which is O (αm) with α ≈ 2.1258 upon applying the
inclusion-exclusion principle [50, Section 3], the overall reduction of the computational cost can again be formulated as (41) with T (m)

denoting the average wall clock time on evaluating Lc
b(s1, · · · , sm, sf), which has the following asymptotic behavior:

17

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 7. Graphs of R(m) and Rasy
T for inchworm Monte Carlo method (left: M̄ = 13, right: M̄ = 25).

RT ∼ Rasy
T = 1 −

∑M̄
m=1

m is odd
#{ŝ(m)} · αm

∑M̄
m=1

m is odd
#{s(m)} · αm

= 1 −
∑ M̄+1

2
m=1

(
√

Bα)2m−1

(2m−2)!! ·
[
(t2N)2m−1 + (t2N−1)

2m−1 − (tN)2m−1 − (tN−1)
2m−1]

∑ M̄+1
2

m=1
(
√

Bα)2m−1

(2m−2)!! ·
(∑2N

j=N+1(t j)2m−1 − ∑N−1
j=1 (t j)2m−1

)

∼ 1 −
(M̄ + 1)

(
2 − (1

2)M̄)
)

2
(

1 − (1
2)M̄)

) · 1
N

as N → +∞.

This ratio again converges to R(M̄) as shown by the solid lines in Fig. 7.

4. Numerical experiments

In our numerical experiments, we consider the spin-boson model where the system Hamiltonian has the energy difference ε = 1 and
frequency of the spin flipping % = 1. For the bath influence functional, we assume an Ohmic spectral density

J (ω) = π

2

L∑

l=1

c2
l

ωl
δ(ω − ωl)

where the number of modes is set as L = 400. The coupling intensity cl and frequency of each harmonic oscillator ωl above are respectively
given by

cl = ωl

√
ξωc

L
[1 − exp(−ωmax/ωc)], ωl = −ωc ln

(
1 − l

L
[1 − exp(−ωmax/ωc)]

)
, l = 1, · · · , L

where the maximum frequency is set as ωmax = 4ωc . Hence, the two-point correlation (8) is formulated as

B(τ1,τ2) =
L∑

l=1

c2
l

2ωl

[
coth

(
βωl

2

)
cos

(
ωl%τ

)
− i sin

(
ωl%τ)

]
.

In Fig. 8, we plot the amplitude of the two-point correlation with Kondo parameter ξ = 0.4, inverse temperature β = 5 and primary
frequency ωc = 2.5 as the orange curve. The empirical constant B appearing in (32) and (62) should then be chosen between (0, 1.2).
Larger B will lead to more time sequences sampled with large m, and thus a higher computational cost. In practice, one may start with
a relatively small B to see whether the variance is small enough. If not, one may then increase B and repeat the simulation. According
to our tests, choosing B = 0.2 provides satisfactory results. We will also consider another numerical example with ξ = 0.2 for which the
modulus of the two-point bath correlation is given by the blue curve in Fig. 8. The corresponding B is set to be 0.1. For all our numerical
examples in this section, we truncate the series in (22) and (46) by M̄ = 11.

18

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 8. Two-point correlation functions for different Kondo parameters (orange: ξ = 0.4, blue: ξ = 0.2).

Fig. 9. Evolution of 〈σ̂z(t)〉 under different settings of the Kondo parameter (left: ξ = 0.2, right: ξ = 0.4).

4.1. Evolution of observable

To validate our numerical method, we first apply our reuse of bath calculations to both coupling intensities and compare the evolution
of the observables to the results of classical methods. The observable of interest is set to be O = σ̂z ⊗ Idb which only acts on the system,
and the initial density matrix ρ = ρs ⊗ ρb is given by

ρs = |0〉 〈0| and ρb = Z−1 exp(−βHb) ,

where Z is a normalizing factor satisfying tr(ρb) = 1. The evolution of observable 〈σ̂z(t)〉 is then evaluated discretely by

〈σ̂z(nh)〉 ≈ 〈0| G−n,n |0〉 for n = 0,1, · · · , N

where G−n,n is computed by either scheme (26) for Dyson series or scheme (57) for inchworm Monte Carlo method.
In our numerical tests, we set the time step to be h = 0.05. It is generally believed that the inchworm Monte Carlo method requires

less samples than the summation of the Dyson series. Therefore we set the initial number of samples M̂0 to be 105 for the solver of the
Dyson equation (22), and set M̂0 = 104 for the inchworm Monte Carlo method. In Fig. 9, we plot the numerical results of observable for
both Kondo parameters. The results by iterative QuAPI method [28,29] are also given as the reference solutions. In the left panel, the two
curves are hardly distinguishable and both match the reference solution well. In the right panel, however, an obvious difference between
two curves can be observed after t = 2.5 and the result of the iterative QuAPI method indicates that the inchworm Monte Carlo method
gives a better approximation. This is due to the fact that the larger amplitude of B(τ1, τ2) with ξ = 0.4 makes the Dyson series harder to
converge with respect to m for long time simulations. As a result, the truncation M̄ = 11 is no longer sufficient for Dyson series, but still
works for the inchworm Monte Carlo method thanks to its faster convergence as mentioned in Section 3.1.2.

19

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 10. Evolution of 〈σ̂z(t)〉 for various time step lengths.

Table 1
Wall clock time (seconds) on evaluating a given U (0)(−t, s1, · · · , sm, t) and Lb(s1, · · · , sm, t).

m 1 3 5 7 9 11

U (0) 6.8000e-05 1.1800e-04 1.8000e-04 2.0800e-04 2.3200e-04 3.6500e-04
Lb 1.0100e-04 3.2800e-04 6.7200e-04 0.0011 0.0016 0.0023

4.2. Accuracy test

To verify the accuracy of the numerical discretization by Heun’s method used throughout this paper, we plot the results of 〈σ̂z(t)〉
computed by both algorithms with different time steps in Fig. 10. The parameters of simulations are set to be the same as the left panel
of Fig. 9. For Dyson series, the result of h = 0.05 is indistinguishable with the result of h = 0.025 by naked eyes, while the curve for
h = 0.1 still shows observable discrepancy with the other two lines. Note that h = 0.05 is used for the simulations in Fig. 9, which is
now proven to be reliable according to our accuracy test. For the inchworm Monte Carlo method, the convergence is achieved at a coarser
grid h = 0.1, which is possibly due to the smaller number of terms in the bath influence functional. As a comparison, we also plot the
results by first-order Forward Euler scheme (dashed curves), which obviously have not converged at h = 0.05. This shows the advantage
of Heun’s method in terms of the accuracy of time discretization. While the second-order Heun’s scheme is sufficient to produce accurate
simulations up to t = 3 in the current work, it is also worthwhile to consider higher-order or implicit schemes for the integral-differential
equations (22) and (46) to achieve better accuracy and stability.

4.3. Efficiency test

We now examine the computational time that can be saved by reusing the bath calculations. The experiments are carried out using
MATLAB on AMD Ryzen 7 4800H CPU, and we use the parameters for the orange curve (ξ = 0.4) in Fig. 8 for the efficiency tests.

We first compare the wall clock time on evaluating a given system associated U (0) with that on Lb appearing in the integrand of
Dyson series. As shown in Table 1, the evaluation of Lb is more expensive than U (0) in terms of time consumed for all choices of m.
As m increases, this difference becomes larger due to the linear complexity of U (0) and exponential complexity of Lb . Therefore, the
computational cost on the bath influence functional dominates the overall evaluation of a given Dyson series. Similar conclusion for the
inchworm Monte Carlo method can be drawn by Table 2, where we list the wall clock time of UI and Lc

b in the scheme (57). Here both
Lb and Lc

b are computed using the fast algorithms based on inclusion-exclusion principle as mentioned previously. Instead of directly
summing the linked diagrams in (50), a given Lc

b(s, t) is evaluated indirectly under such algorithms which relies on the value of Lb(s, t)
as well as Lb(s̃, t) for some subsequences s̃ ⊂ s, making Lc

b in general more expensive than Lb despite the fact that Lc
b contains fewer

diagrams. We refer the readers to [50] for more details of the algorithm. On the other hand, the computation of UI defined by (53) in
inchworm method is faster than U (0) defined by (5) in Dyson series since each matrix G I in UI is obtained by linear interpolation, which
is cheaper than G(0)

s in U (0) where a matrix exponential is to be computed.
In Fig. 11, we plot the theoretical savings in computational time spent on bath computations RT defined by (41) as the yellow solid

lines, where the average wall clock time T (m) for Lb in Dyson series and Lc
b in inchworm Monte Carlo method are respectively assigned

with the values in Table 1 and 2. The graphs of R(1) and R(11) are also plotted as the reference. As augured in Section 2.5 and 3.3, RT is
always bounded by R(1) and R(11) .

Meanwhile, we carry out two sets of numerical simulations under both methods with the initial number of samples M̂0 = 100. In
the first set of simulations, we apply the bath calculation reuse and record the total time spent on the bath influence functional up to

20

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Table 2
Wall clock time (seconds) on evaluating a given UI (si, s1, · · · , sm, sf) and Lc

b(s1, · · · , sm, sf).

m 1 3 5 7 9 11

UI 2.8000e-05 5.3000e-05 7.2000e-05 1.2600e-04 1.5900e-04 1.7000e-04
Lc

b 8.8000e-05 4.0200e-04 0.0010 0.0025 0.0053 0.0118

Fig. 11. Overall savings of computational time spent on bath calculations.

nth time step as T̂ (n), while the second set are implemented without reusing calculations and the time consumed on bath is denoted by
T (n). Then we may use the ratio

Rreal
T (n) = 1 − T̂ (n)/T (n)

to measure the overall saving in time in real implementations, which are plotted as the purple solid lines in Fig. 11. Since each evaluation
on Lb or Lc

b cannot cost exactly the same amount of time, some oscillations can be observed in the purple curves. Nevertheless, Rreal
T

generally matches the theoretical RT as t grows, and thus we have verified the complexity analysis in Section 2.5 and 3.3. As time further
evolves, we may expect the overall saving in time to gradually converge to R(11) (orange dashed lines). Therefore, asymptotically the bath
calculation reuse can achieve a total reduce in computational time at around the percentage 1 − 12

n for both Dyson series and inchworm
Monte Carlo method for this example according to (40) and (66).

4.4. Order of convergence

As both numerical methods we have developed are stochastic schemes based on Monte Carlo, it is of interest to study the convergence
rate of the standard derivation of the numerical solution with respect to the initial number of samples M̂0. In this experiment, we fix
the time step length as h = 0.1 and compute up to t = 1. The parameter setting for the two-point correlation is given as ωc = 1, ξ = 0.1
and β = 0.2 with the empirical constant B = 0.3. We run the same simulation independently for Nexp = 1000 times, and the standard
derivation of G−n,n is estimated as

σM̂0
(tn) =

 1
Nexp

Nexp∑

k=1

∥∥∥G[k]
−n,n − µ−n,n

∥∥∥
2

F

1/2

, for n = 0,1, · · · ,20

where ‖ · ‖F denotes the Frobenius norm. Here G[k]
−n,n is the result of kth numerical simulation, and µ−n,n should be the expectation of

G−n,n , which in our implementation is replaced by the numerical exact solution G−n,n that is computed based on a large initial number of
samples M̂0 = 106 for Dyson series and M̂0 = 105 for inchworm Monte Carlo method. The numerical results are shown in Fig. 12, where
the 1/2 order of convergence for the standard derivation is obvious, indicating that the optimal convergence rate of Monte Carlo method
is achieved in both stochastic schemes.

5. Conclusion

We propose fast algorithms by reusing calculations of bath influence functionals to accelerate the summation of Dyson series and
inchworm Monte Carlo method in the simulation of system-bath dynamics. For Dyson series, an integro-differential equation is derived,
allowing us to solve the evolution of the observables using classic numerical schemes such as Runge-Kutta type methods. The idea of

21

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

Fig. 12. Evolution of the convergence rate of the standard derivation for the numerical solution.

our fast algorithm is to make use of the invariance of the bath influence functionals so that any bath influence functional computed in
the current time step can be reused in all the future time steps. Thanks to the linearity of the governing equation, the reuse algorithm
for Dyson series can be implemented at a low memory cost. Such idea is then extended to the inchworm Monte Carlo method which
computes the observables via the bivariate full propagator G(si, sf), where the bath influence functionals calculated during the computation
G(si, sf) can be reused when computing G(si − τ , sf + τ) for any τ > 0. According to our complexity analysis, the computational cost is
saved by a factor of N with N being the number of time steps, which makes our algorithms efficient for long time simulations. These
theoretical results are further verified by numerical experiments.

While we mainly focus on spin-boson model in this paper, our acceleration strategy can be also applied to general quantum systems
interacting with the harmonic bath, where the value of two-point correlation B(τ1, τ2) only relies on the time difference %τ = |τ1| − |τ2|
as in (8). We also point out that for certain parameter settings of B(τ1, τ2), a very small truncation at M̄ = 1 or M̄ = 3 may be sufficient for
Dyson series and inchworm Monte Carlo method (see such examples in [7, Section 7]). In these cases, computational cost on the system
integrand factor is comparable to that on the bath as shown in Table 1 and 2. Therefore, including the system associated functional in
the calculation reuse will be an interesting future direction. In addition, as the storage of bath influence functionals is the Achilles’ heel
of inchworm method in the current framework, further explorations into the memory cost reduction are also worth considering in future
works.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Appendix A. Proof of statements

A.1. Proof of (13)

Proof. • If si ≤ sf < 0, we have

G(0)
s (si, sf)

† =
(

e−i(sf−si)Hs
)†

= e−i(si−sf)Hs ,

B(si, sf) = B∗(sf − si) = B∗(si − sf)

Since 0 < −sf ≤ −si in this case,

G(0)
s (−sf,−si) = e−i(si−sf)Hs = G(0)

s (si, sf)
†,

B(−sf,−si) = B∗(si − sf) = B(si, sf).

• If 0 < si ≤ sf , we have −sf ≤ −si < 0 and thus

G(0)
s (−sf,−si) = e−i(sf−si)Hs =

(
e−i(si−sf)Hs

)†
= G(0)

s (si, sf)
†,

B(−sf,−si) = B∗(sf − si) = B∗(si − sf) = B(si, sf).

22

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

• If si < 0 < sf , we have −sf < 0 < −si and thus

G(0)
s (−sf,−si) = e−isi Hs O se−isf Hs =

(
eisf Hs O seisi Hs

)†
= G(0)

s (si, sf)
†,

B(−sf,−si) = B∗(si + sf) = B∗(−(si + sf)) = B(si, sf).

The above analysis excludes the special cases 0 = si ≤ sf and si < sf = 0 for which the statement for B(·, ·) is still true, while for
G(0)

s (·, ·) in general it is not due to the presence of O s .

• If 0 = si < sf , we have −sf < 0 and

G(0)
s (−sf,−si) = G(0)

s (−sf,0) = O se−isf Hs = O sG(0)
s (si, sf)

†,

B(−sf,−si) = B(−sf,0) = B∗(sf) = B∗(−sf) = B(si, sf).

• If si < sf = 0, we have −si > 0 and

G(0)
s (−sf,−si)O s = G(0)

s (0,−si)O s = e−isi Hs O s = G(0)
s (si, sf)

†,

B(−sf,−si) = B(0,−si) = B∗(si) = B∗(−si) = B(si, sf).

• If si = sf = 0,

G(0)
s (−sf,−si) = G(0)

s (0,0) = I = G(0)
s (si, sf)

†,

B(−sf,−si) = B(0,0) = 1
π

∞∫

0

J (ω)dω = B(si, sf). !

A.2. Proof of (20) in Lemma 1

Proof. Define sm+1 = t and s′
0 = −t , we have

Lb(−t, s1, · · · , sm) =
∑

q′∈Q(−t,s′)

∏

(s′j ,s
′
k)∈q′

B(s′
j, s′

k)

=
∑

q′∈Q(−t,s′)

∏

(s′j ,s
′
k)∈q′

B(−sm+1− j,−sm+1−k)

=
∑

q′∈Q(−t,s′)

∏

(s′j ,s
′
k)∈q′

B(sm+1−k, sm+1− j)

replace j′ = m + 1 − k,k′ = m + 1 − j ⇒ =
∑

q′∈Q(−t,−s)

∏

(s′
m+1−k′ ,s′m+1− j′)∈q′

B(s j′ , sk′)

=
∑

q′∈Q(−t,−s)

∏

(−sk′ ,−s j′)∈q′
B(s j′ , sk′)

=
∑

q∈Q(s,t)

∏

(s j′ ,sk′)∈q

B(s j′ , sk′) = Lb(s1, · · · , sm, t). !

References

[1] A. Barvinok, in: Random Structures & Algorithms, 1999, pp. 29–61.
[2] M.H. Beck, A. Jackle, G.A. Worth, H.D. Meyer, Phys. Rep. 324 (2000) 1–105.
[3] A. Björklund, B. Gupt, N. Quesada, ACM J. Exp. Algorithmics 24 (2019).
[4] A. Boag, E. Gull, G. Cohen, Phys. Rev. B 98 (2018) 115152.
[5] H. Breuer, F. Petruccione, The Theory of Open Quantum Systems, Oxford University Press, 2007.
[6] Z. Cai, J. Lu, S. Yang, arXiv:2006 .07654.
[7] Z. Cai, J. Lu, S. Yang, Commun. Pure Appl. Math. 73 (11) (2020) 2430–2472.
[8] A.O. Caldeira, A.J. Leggett, Phys. A, Stat. Mech. Appl. 121 (3) (1983) 587–616.
[9] A.O. Caldeira, A.J. Leggett, Ann. Phys. (N. Y.) 149 (2) (1983) 374–456.

[10] J. Cerrillo, J. Cao, Phys. Rev. Lett. 112 (2014) 110401.
[11] H.-T. Chen, G. Cohen, D.R. Reichman, J. Chem. Phys. 146 (2017) 054106.
[12] H.-T. Chen, G. Cohen, D.R. Reichman, J. Chem. Phys. 146 (2017) 054105.
[13] A.W. Chin, Á. Rivas, S.F. Huelga, M.B. Plenio, J. Math. Phys. 51 (9) (2010) 092109.
[14] G. Cohen, E. Gull, D.R. Reichman, A.J. Millis, Phys. Rev. Lett. 115 (26) (2015) 266802.
[15] G. Cohen, E. Gull, D.R. Reichman, A.J. Millis, E. Rabani, Phys. Rev. B 87 (2013) 195108.
[16] G. Cohen, E. Rabani, Phys. Rev. B 84 (2011) 075150.
[17] C. Duan, Z. Tang, J. Cao, J. Wu, Phys. Rev. B 95 (21) (2017) 214308.
[18] R. Egger, L. Mühlbacher, C.H. Mak, Phys. Rev. E 61 (2000) 5961–5966.
[19] R.P. Feynman, F.L. Vernon, Ann. Phys. (N. Y.) 24 (1963) 118–173.

23

http://refhub.elsevier.com/S0010-4655(22)00136-9/bibD4AAE5BD57113E8C54FD96117A6EE724s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib1F33444318FEFA2B3A741764267D7E52s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib7D4313A5AAA7F1A51B2965EBBE624857s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib6EE2D116E3DB8BC67FC7D2A739C2766Es1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibA02E35DDB7A50970747EA146C5E6162As1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibB9F441BADE97081E922EF96E440882D0s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib1BBE89E1F04CACCC0852281988D21113s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibE9267B4372E96699DBA845E7CA063BCDs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib3E48ADB5AAAE19429688D800A802D8DFs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibE2C96220D39DC7EF626AF264416360C2s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib889E81289C282D835387188BF695F5F9s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib7CD42DE8EEF2E5F7AA5FDB5BADF0050Fs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibC5FA58D39AF2B07FB7CB0948671A47FEs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibFCCFF0C35E36E3A751236C37878D726Ds1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib90F8421D34299EA9CF13EFD15396FFE4s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib70A0F4144466A035D2F351BAD42EDBFFs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib034227C5FE367E82D62649868D7FBA0As1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib67B7DB2C168ABE03D4B2DEDA03D04D1Fs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibEF1C129856625E40300FB90E06F683E1s1

Z. Cai, J. Lu and S. Yang Computer Physics Communications 278 (2022) 108417

[20] E. Gull, A.J. Millis, A.I. Lichtenstein, A.N. Rubtsov, M. Troyer, P. Werner, Rev. Mod. Phys. 83 (2011) 349–404.
[21] L.V. Keldysh, Sov. Phys. JETP 20 (4) (1965) 1018–1026.
[22] A. Kelly, T.E. Markland, J. Chem. Phys. 139 (1) (2013) 014104.
[23] D. Mac Kernan, G. Ciccotti, R. Kapral, J. Chem. Phys. 116 (6) (2002) 2346–2353.
[24] L. Kidon, H. Wang, M. Thoss, E. Rabani, J. Chem. Phys. 149 (10) (2018) 104105.
[25] D.E. Knuth, Math. Comput. 61 (203) (1993) 277–294.
[26] C.H. Mak, Phys. Rev. Lett. 68 (1992) 899–902.
[27] D.E. Makarov, N. Makri, Chem. Phys. Lett. 221 (5–6) (1994) 482–491.
[28] N. Makri, J. Math. Phys. 36 (5) (1995) 2430–2457.
[29] N. Makri, J. Phys. Chem. A 102 (24) (1998) 4414–4427.
[30] N. Makri, J. Chem. Phys. 146 (13) (2017) 134101.
[31] N. Makri, J. Chem. Theory Comput. 16 (7) (2020) 4038–4049.
[32] N. Makri, E. Sim, D.E. Makarov, M. Topaler, Proc. Natl. Acad. Sci. 93 (9) (1996) 3926–3931.
[33] H.-D. Meyer, U. Manthe, L.S. Cederbaum, Chem. Phys. Lett. 165 (1) (1990) 73–78.
[34] H. Mori, Prog. Theor. Exp. Phys. 33 (3) (1965) 423–455.
[35] L. Mühlbacher, E. Rabani, Phys. Rev. Lett. 100 (17) (2008) 176403.
[36] L. Mühlbacher, R. Egger, J. Chem. Phys. 118 (1) (2003) 179–191.
[37] S. Nakajima, Prog. Theor. Phys. 20 (6) (1958) 948–959.
[38] M.A. Nielsen, I.L. Chuang, Quantum Computation and Quantum Information: 10th Anniversary Edition, Cambridge University Press, 2010.
[39] J. Prior, A.W. Chin, S.F. Huelga, M.B. Plenio, Phys. Rev. Lett. 105 (2010) 050404.
[40] N.V. Prokof’ev, B.V. Svistunov, Phys. Rev. Lett. 81 (1998) 2514–2517.
[41] R. Rosenbach, J. Cerrillo, S.F. Huelga, J. Cao, M.B. Plenio, New J. Phys. 18 (2) (2016) 023035.
[42] Q. Shi, E. Geva, J. Chem. Phys. 119 (23) (2003) 12063–12076.
[43] P.R. Stein, Discrete Math. 21 (1978) 309–318.
[44] J.T. Stockburger, H. Grabert, Phys. Rev. Lett. 88 (17) (2002) 170407.
[45] J. Strümpfer, K. Schulten, J. Chem. Theory Comput. 8 (8) (2012) 2808–2816.
[46] H. Wang, J. Chem. Phys. 113 (22) (2000) 9948–9956.
[47] H. Wang, M. Thoss, J. Chem. Phys. 119 (3) (2003) 1289–1299.
[48] P. Werner, A. Comanac, L. de’ Medici, M. Troyer, A.J. Millis, Phys. Rev. Lett. 97 (2006) 076405.
[49] P. Werner, T. Oka, A.J. Millis, Phys. Rev. B 79 (3) (2009) 035320.
[50] S. Yang, Z. Cai, J. Lu, New J. Phys. 23 (6) (2021) 063049.
[51] M.-L. Zhang, B.J. Ka, E. Geva, J. Chem. Phys. 125 (4) (2006) 044106.
[52] E. Zwanzig, J. Chem. Phys. 33 (5) (1960) 1338–1341.

24

http://refhub.elsevier.com/S0010-4655(22)00136-9/bib397D70A13EB3A7CE07F48C7552E06DCBs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibA38139AD5B5A91960FD5AC9B1F501745s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib75AFC0E48717C5E4317BE839522FABEEs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibECEDED87A2EB95A74FBF84B26036DE66s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibDF1A735C700B4C2DC7222B54189A7DF8s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibE360D24A84E55F1FC0F43A77705EDD92s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibAB73AD09632FD67D519ABA46D64D53E2s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibBFB479FCD81884014FA867C209435FB7s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib9C6AA67AD232352CEEA9F3CB9D6B6E96s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib41A74D21D1D22BA740D26025044A7F0As1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibABDF6E856847C000398B78E9CE7AD830s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibE2EEA11AADF97A2DB8CF709C0AD970B1s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib20D63954B7EDF6503076F2547157F9DDs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibA9D8C2E43B3D4FD0B7E4225E85C59262s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibF4FF41C292E0D76CEE7708B7DF09F761s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibFF648783F4CDFE2462F4222192245C7Fs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib398EEEA8AD950111A17F3A4D7903CEF3s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib2806DAF718E4C180E92C46F1DC2D2E98s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib6B59FD90460EC8B2B4177CF418273907s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib9A27AEC641009B93F31C265E7FABC306s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibF5A7CED8A2A23BB7890D39E79E274F81s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibE756CCFB723E661ED7E9DE5417D891C8s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib0F7BB55DE1362E203F689F90B8273490s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib850EE7C359353032FE322DF633C2A3F7s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibBC4DFABA0B6E79B360188AB38E321F6Cs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib42F7B1362D5C88E81D84E001D4C4F8D2s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib5423299276E2184A37494BA7C8934EEBs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib4DD1B930205128E2EA6803A451C924B6s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib89524C684D3D603DA72ECD4F0C56D96Bs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibF4ACEEB2AA22C8E4EA5E9D5372B3D76Fs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib1F5597CF7F1A6966E1C0C8CFFD4FC76Bs1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bibF5E2DF166682E5891B8AD7CA6A227926s1
http://refhub.elsevier.com/S0010-4655(22)00136-9/bib56D0F079E545263EB055C299DE66D68Es1

	Fast algorithms of bath calculations in simulations of quantum system-bath dynamics
	1 Introduction
	2 Fast calculation of time evolution of Dyson series
	2.1 Introduction to spin-boson model and Dyson series
	2.1.1 Spin-boson model
	2.1.2 Dyson series

	2.2 Integro-differential equation for the propagator
	2.3 Numerical method
	2.4 Implementation of Algorithm 1 with low memory cost
	2.5 Analysis on computational cost

	3 Fast implementation of inchworm Monte Carlo method
	3.1 Introduction to inchworm Monte Carlo method
	3.1.1 Full propagator
	3.1.2 Integro-differential equation for G(si,sf)

	3.2 Numerical method
	3.2.1 General procedure of the inchworm Monte Carlo method
	3.2.2 Time sequence sampling and reuse of bath calculation

	3.3 Analysis on computational cost

	4 Numerical experiments
	4.1 Evolution of observable
	4.2 Accuracy test
	4.3 Efficiency test
	4.4 Order of convergence

	5 Conclusion
	Declaration of competing interest
	Appendix A Proof of statements
	A.1 Proof of (13)
	A.2 Proof of (20) in Lemma 1

	References

